Содержание

Заземляющие устройства - принцип работы, назначение и устройство заземления

 

Заземляющие устройства — основной принцип работы

Защитная функция заземляющего устройства базируется на том принципе, что части электроустановок, прикосновение к которым в случае нарушения изоляционного слоя крайне опасно для человеческой жизни, необходимо соединять с заземляющим устройством. При этом, заземляющие устройства (заземлители) должны находиться непосредственно в грунте.

Таким образом, создается необходимое сопротивление в электропроводящей сети. Оно получается весьма малое, а падение напряжения на нем не будет достигать критического значения. В итоге, удар тока, который получит человек в случае нарушения изоляционного слоя, будет не смертельным. Если человек соприкоснется с данной деталью, он будет в зоне действия пониженного напряжения.

Чем лучше будет изготовлено заземляющие устройство (заземление), тем меньше вероятность того, что на корпусах электроприборов возникнет напряжение. Качество заземляющего устройства зависит, в первую очередь, от того, насколько велико его сопротивление. При этом, чем ниже сопротивление в данной сети, тем заземление качественнее. В этом случае, расходы материалов и труда будут несколько большими, нежели без изготовления заземления, однако безопасность конструкции будет в несколько раз выше.

Из чего состоит заземляющие устройство

Заземляющие устройство представляют собой систему, включающую в себя несколько основных частей:

  1. Естественные заземлители, то есть элементы, которые находятся непосредственно в почве или соприкасаются с ней. Именно через них электрический ток уходит в землю;
  2. Заземляющие проводники — через них заземлители соединяются с заземляемым оборудованием;
  3. Искусственные заземлители. Они схожи с естественными заземлителями, однако их специально размещают в почве для сооружения заземляющей конструкции.

Следует отметить, что каждый из указанных пунктов может быть устроен совершенно по-разному. В общем, заземляющее устройство, это совокупность заземлителя и заземляющего проводника. С его помощью производят заземление элементов или корпусов электроустановок.

Какие дополнительные функции может выполнять заземляющие устройство

Достаточно часто заземляющие устройство выступает в роли грозоотвода, а также может выполнять функцию молниезащиты строения. Если же неподалеку находится вторая электроустановка, мощность которой не превышает 1 кВт, то для ее заземления можно использовать ту же заземляющую систему. С помощью данного решения в значительной степени снижаются расходы на сооружение заземления.

В этом случае нормой будет служить наименьшее значение сопротивления растеканию тока. Вычисляют его, исходя из значений наименьшего сопротивления для каждой из объединенных в одном заземлителе электроустановок, при этом, необходимо взять наименьшее значение.

Что такое рабочее заземление

В процессе изготовления рабочего заземления с заземляющим устройством соединяют какую-нибудь из точек электрической цепи. Сооружают рабочее заземление через специальные устройства, например, через пробивные предохранители, разрядники или резисторы.

podvi.ru

Как технологически правильно устроить контур заземления по схеме

Если в оборудовании повреждена изоляция, то части, которые не должны проводить электрический ток, могут оказаться под действием напряжения. Прикасаясь по привычке к ручкам, кожуху или корпусу, пользователь получает удар током, и становится проводником его в землю. Сила тока в 0,1 А смертельно опасна для человека. Так как сопротивление тела колеблется в пределах от сотен до тысяч Ом, то приборы с маленьким напряжением становятся угрозой.

Действенной мерой защиты от электрических травм является заземление. Это устройство представляет собой продуманное соединение одной из частей установки с землей, которое делается с помощью элементов и проводников заземления. Они собираются в группы и закладываются в грунт. Основным правилом защитных устройств является то, что сопротивление заземления во много раз меньше этого показателя человеческого тела.

Чтобы определить максимально возможное сопротивление защитного заземления нужно просуммировать напряжение техники и замыкающих земельных токов. Кроме того, следует определиться с наличием изолированного или заземленного нейтрального проводника и другими важными технологическими особенностями, которые установлены в правилах ПУЭ.

Наружный заземляющий контур

Схема заземляющего устройства состоит из наружных

естественных или искусственных элементов, проложенных в земле и собранных в общий контур. В устройство защиты входят и внутренние сети проводников на стенах, которые присоединяются к наружному контуру.

Элементы из металла, проложенные в земле, обеспечивают большую площадь соприкосновения с грунтом и имеют малое сопротивление. В качестве наружных элементов широко используют находящиеся в земле металлические трубчатые магистрали. Не подключают к заземлению трубопроводы взрывчатых и легковоспламеняющихся веществ.

Детали обсадных труб, металлического каркаса в железобетонных конструкциях домов, нулевые провода воздушной электропроводки с напряжением 1000 В с повторным заземлением успешно применяют в качестве элементов наружной защиты. Все случайные металлические элементы обязательно подсоединяются в двух местах к защитному контуру.

Все узлы соединяются сваркой, длина шва определяется в зависимости от сечения проводника. Если невозможно сварить детали, тогда применяют хомуты со стороны места входа магистрали в строение. Сварочные соединения обрабатывают битумом для защиты от преждевременной коррозии.

Обязательно заземляют:

  • корпуса и кожухи электрических установок, агрегатов и их приводов, конструкционные каркасы распределительных щитов управления, шкафов и щитков;
  • корпуса и конструкции из металла кабельных муфт, железные обмотки проводов и кабелей, металлические трубы для прокладки проводки;
  • трансформаторные вторичные обмотки.

Не защищают заземлением:

  • конструкции опорных изоляторов проводки;
  • приборы, помещенные на заземленных платформах, так как на них предусматривается необработанное место для контакта с плоскостью;
  • корпуса приборов измерения и контроля, которые стоят в наборных щитках или шкафах.

Если нет подходящих естественных элементов заземления, контур наружной защиты выполняют из искусственно подобранных в соответствии с ПУЭ. По типу они бывают горизонтальными, заглубленными и вертикальными.

Горизонтальными элементами служат полосы стали толщиной более 4 мм и шириной не менее 10 мм, которые прокладываются в горизонтальном направлении в земле и связывают вертикальные стержни.

Горизонтальные и заглубленные варианты являются родственными по конструкции, они закладываются на дно ямы при установке опор электропередач. Заземление изготавливается по проекту монтажной организацией в мастерских. Материалом служит стальная полоса или круглая арматура.

Вертикальное заземление представляет собой забитые в грунт трубы или металлический прокат и стальную арматуру.

Монтаж контура наружного заземления выполняется по специальным схемам и в соответствии с ПУЭ. Все подготовительные работы в виде пробивки отверстий, установке закладных деталей, рытье траншей, осуществляется на первом этапе работ.

От чего зависит величина сопротивления заземления:

  • разновидности грунта на участке, его структуры и состояния;
  • глубины прокладки электродов;
  • свойств материалов и сечения электродов.

Свойства грунта определяются его способностью сопротивляться растеканию электрического тока в толще земли. Для контура считается лучше, если этот показатель меньше.

Заземление рабочее и защитное устройство

Защитное устройство спасает человека от удара электричеством, а включенные в сеть бытовые приборы от поломки при пробое напряжения на корпус.

Рабочее заземляющее устройство организовывает защиту и нормальное функционирование электрических приборов. Рабочее заземление постоянного действия применяется только для промысленного электрического оборудования, а бытовые приборы заземляются через ноль розетки. Но некоторые бытовые агрегаты следует наглухо защитить заземлением:

  1. стиральная машина с большой собственной электроемкостью, работающая во влажных условиях, пробивает на корпус и «щиплет» руку;
  2. на микроволновых печах сзади стоит специальная клемма для дополнительного заземления, так как в ней установлен источник сверхвысоких частот. Если в розетке недостаточный контакт, то прибор может выдавать неучтенные волны на опасном для здоровья уровне;
  3. варочные поверхности электрической духовки и индукционной печи, в которых внутренняя проводка работает при критических состояниях и ток иногда пробивает на корпус;
  4. настольный компьютер стационарного вида утечку электричества дает большую. Корпусные плавающие потенциалы приводят к замедлению работы и снижению производительности, и заземление крепят за любой подходящий винт на задней панели.

В некоторых случаях нельзя рассчитывать только на одно заземление, так как грунт не относится к линейным проводникам электричества. Его сопротивление определяется рабочим напряжением и площади контакта с элементом контура. Если разнести два контура на расстояние друг от друга на 1,2– 1,5 метра, то площадь соприкосновения эффективно увеличивается в сто раз. Нельзя увеличивать расстояние разноса больше указанного размера, это повлечет разрыв потенциального поля, и площадь сразу сокращается.

Нельзя заземляющие проводники выводить в наружное пространство и подключать их к неподготовленным площадкам контакта. Любой металл обладает своим потенциалом и при влажных наружных условиях начинается коррозия и разрушение. Наличие смазки на контакте помогает только в сухих условиях. Если коррозия пойдет под оболочку проводника, то в критической ситуации проводник моментально отгорит и контур не защитит человека от поражения.

Если электрические установки подключать в последовательном порядке и подсоединять не один заземляющий проводник на шину, а несколько, то авария на одном приборе потянет за собой и остальные. Они не смогут работать производительно, так как будут несовместимы в электромагнитном плане.

Для устройства контура идеально подходят влажные глины, суглинки и торфяные грунты. Практически невозможно установить защитную конструкцию в каменистой земле и скальных породах.

Работы по изготовлению и монтажу контура

Если в доме и на участке нет заземления, устраивают такую конструкцию на вводе в жилище, что является повторным заземлением. Чаще всего подключение электричества от городской линии электропередач в дом идет по воздуху, и устройство вторичного заземления требуется по правилам ПУЭ.

На первом этапе выбирают месторасположения, размеры и форма контура. Устанавливают его недалеко от ввода, а по форме контур бывает треугольный, прямоугольный или в виде линии, который состоит из любого числа вертикальных штырей, собранных стальной полосой.

На чем заострить внимание:

  • при устройстве горизонтальных контуров
    глубина ям не должна быть меньше 0,5– 0,8 м;
  • глубина закладки вертикальных металлических профилей с учетом траншеи составляет не менее 3,5– 3,8 м;
  • на выбор длины вертикальных элементов влияет тип почвы, глубина замерзания земли, относительная влажность грунта;
  • для эффективности контура увеличение его в диаметре не так важно, гораздо лучше добавить его длину;
  • расстояние между вертикальными элементами должно быть не менее длины одного из них. Если принять это расстояние меньше, то производительность контура снижается.

Земляные подготовительные работы

Для разметки устанавливают колышки с натянутой бечевкой и разметку выполняют штыком лопаты. Землю по разметке выкапывают на глубину траншеи по ширине 30 см. Для нижнего слоя подсыпают мягкий грунт слоем 25 см в виде чернозема без мусора и каменных добавлений, который непосредственно будет контактировать с элементами заземления. Иногда используют привозной грунт с добавлением торфа или перегноя. Во время обратной засыпки после устройства контура грунт периодически послойно уплотняют.

Устройство контура

В углах траншеи забивают вертикальные штыри, которые предварительно оставляют над уровнем земли на 30 см, что нужно для удобства выполнения сварочных работ. После этого приваривают горизонтальные полосы с запасом длины на концах. Полосовую сталь нельзя натягивать, она должна располагаться свободно.

К выполнению сварки предъявляются особые требования. Все длины швов регламентированы в нормативных справочниках в зависимости от различного сочетания полос, кругляка и квадрата между собой. Обычно для однотипного профиля длина шва принимается 100 мм, а разнотипные элементы привариваются с созданием наибольшей площади соприкосновения и обваривают все места соединения.

После окончания сварочного соединения все места сварки окрашивают краской или обмазывают битумом. Для вертикальных стержней контура и горизонтальных элементов не допускается наличие краски на протяжении всей поверхности.

Далее равномерно забивают всю сваренную конструкцию в грунт (осаживают). Для облегчения места входа в землю поливают водой. Ударные нагрузки на места сварки проверяют неоднократно прочность конструкции. Предварительное затачивание концов вертикальных швов болгаркой или точильным кругом очень облегчит забивание.

Для подключения контура к вводу и к распределительному ящику используют полосу металла, которую жестко фиксируют на указанных конструкциях.

Как измерить заземление

После изготовления контура удостоверяются в его надежности, для чего измеряют сопротивление растеканию электрического тока в земле и сопротивление сваренного металлического контура. Для этого в настоящее время существуют разнообразные электронные приборы. Пользуются и старыми советскими надежными устройствами. Бытовой тестер для этого подойдет мало, так как земля не является линейным проводником тока.

Беру напрокат или одалживают электронный современный прибор или старый советский ручной мегомметр индукционного способа действия. Проверить сопротивление контура не удастся ручным прибором, но при тщательно и правильно выполненном сварном соединении оно десятилетиями находится в норме.

Сопротивление растекания проверяют голыми зачищенными электродами, которые погружают в землю на глубину до одного метра на расстоянии полутора метров друг от друга. При этом выдерживают полярность меггера, контур защиты должен выдерживать молниевый удар. Но разрушительная сила такого природного катастрофического явления приравнивается к взрыву и заземление от него может не спасти.

Поэтому для измерения сопротивления текучести крутят ручку меггера и определяют показания на шкале. Пользоваться в этом случае сетевым напряжением, миллиамперметром и резистором очень опасно.

Собственник дома, самостоятельно выполнивший устройство заземления, не может полноценно оценить его качество просто визуальным осмотром и иногда требуется пригласить специалиста, владеющего профессиональными приемами и знаниями. Это может быть работник электротехнической службы любого крупного предприятия.

Все нормативные документы предъявляют требования по омическому сопротивлению в зависимости от многочисленных факторов. Ими учитываются эксплуатационные условия, климат, действующие напряжения электрических приборов, особенности электроснабжения и схема подключения. И в зависимости от этого формируется максимально допустимый предел сопротивления почвы текучести тока, который варьируется в очень большом диапазоне.

Исходя из опытных замеров, в соответствии с нормативными схемами, допустимый показатель для частного дома составляет 4 Ома. Это вполне реальная цифра, которая поможет защитить человека от поражения током. Уменьшение показателя будет более благоприятно для повышения эффективности защиты электроприборов в жилище.

Оцените статью: Поделитесь с друзьями!

elektro.guru

Понятие о заземлении и заземляющих устройствах

Заземление – это намеренное соединение элементов электроустановки с заземляющим устройством.
Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем.

Есть два вида заземлителей - естественные и искусственные.

К естественным заземлителям относятся металлические конструкции зданий, надежно соединённые с землёй.

В качестве искусственных  заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединённых друг с другом стальными  полосами  или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы.

Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество искусственных заземлителей.

Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы.

Качество заземления определяется значением сопротивления заземляющего устройства, которое  должно  быть  значительно  меньше  сопротивления  фазных  проводников  и  которое можно снизить, увеличивая площадь заземлителей или проводимость среды — используя множество стержней, повышая содержание солей в земле и т. д. Электрическое сопротивление заземляющего устройства определяется требованиями ПУЭ ("Правила  устройства  электроустановок").
В первую очередь условия работы устройства заземления  определяются удельным сопротивлением земли, а также электрическими параметрами защитных и заземляющих проводников. Сопротивление земли необходимо тщательно учитывать в каждом отдельном случае, так как разница на тех или иных участках может составлять до 100 тысяч раз.
В зависимости от целевого назначения, заземляющие устройства бывают рабочие, защитные и грозозащитные.
Защитные устройства  необходимы для защиты людей от поражающего действия электротока при непредвиденном замыкании фазы на нетоковедущие части электрической установки.
Рабочие устройства  предназначены для обеспечения необходимого режима функционирования электроустановки в любых условиях - как в нормальных, так и чрезвычайных.
Грозозащитные заземляющие устройства необходимы для заземления тросовых и стержневых громоотводов. Их задача – отвод тока молнии в землю.
Заземляющие устройства электроустановок во многих случаях могут выполнять одновременно несколько функций – к примеру, быть и рабочим и защитным.
При сдаче в эксплуатацию заземляющего устройства монтажная организация должна предоставить всю необходимую документацию в соответствии с нормами и правилами. Основным документом является  паспорт заземляющего устройства  – документ, который содержит всю информацию о параметрах заземляющего  устройства  (ЗУ)  и в который впоследствии будут заноситься все изменения.
Такие изменения часто касаются результатов обслуживания, когда   осуществляется   проверка   ЗУ.
Результаты   осмотра  ЗУ   и   возможного   ремонта   заносятся   в паспорт заземляющего устройства. Также часто необходимо проведение проверки технического состояния устройства с осуществлением замеров сопротивления. По результатам  такого обследования составляется протокол заземляющего устройства.

Измерение   сопротивления   контура   заземления   проводится   нашей    электроизмериельной  лабораторией.

 

Подробные консультации и стоимость услуг Вы можете получить , связавшись с нами:

  • тел/факс: (8212)21-30-20

 

elkomspec.ru

Заземлитель, как основной элемент устройства заземления

Обустроенное заземление встречается сегодня практически в каждом доме. И это неудивительно, так как оно обеспечивает безопасную работу электрооборудования и непосредственно проводки. В этой статье поговорим о таком важном элементе, как заземлитель.

Известно, что без такого элемента конструкция заземления не может существовать, и уж тем более выполнять поставленные задачи.

Что такое заземлитель? Общее описание

Заземлитель — металлический проводник или армированный штырь, вкопанный на нужную глубину в грунт. Он может работать одиночно или в комплексе с другими электродами, например, в треугольном контуре. Перед этим элементом стоит основная функция контактировать с высоковольтным электричеством, однако нельзя судить о его оптимальной функциональности, если не определено сопротивление.

Горизонтальный и вертикальный заземлители

Обратите внимание! Сопротивление заземлителя должно быть очень низким. Только так можно рассчитывать на полноценную защиту домашней электрической цепи.

Определившись с вопросом, что называется заземлителем перейдем к изучению его видов.

Виды заземлителей: тонкости их использования

Каждый вид электрода имеет конкретное назначение, которое мы и рассмотрим:

  • Глубинный заземлитель — конструкция, предусматривающая сложный монтаж, но имеющая массу преимуществ. Из особенностей такого вида электродов, можно выделить, что их монтаж занимает значительно меньше места, чем стандартный контур заземления. Доказана эффективность этого проводника в местах с наименьшим удельным сопротивлением почвы. На сегодняшний день, в нормативных актах прописывается, что можно применять подобный элемент в подвале и цокольном этаже.

Важно! Проводить монтаж глубинного заземлителя стоит исключительно при помощи буровых установок.

  • Искусственный заземлитель — очередная конструкция из металла, предназначенная специально для устройства заземления дома. Зачастую такие материалы изготавливают на производстве и реализуют в специализированных торговых точках. Сюда включаются оцинкованные изделия или материалы, покрытые медным опылением. Отличным примером искусственного электрода выступает модульное заземление.
  • Естественный заземлитель — это металлическая конструкция, выступающая с любым внешним видом. Обычно в качестве электродов используются конструкции из металла или стали. Важно соблюдение структуры материала. Идеально, если на нем нет рифлений и засечек, так как эти нюансы увеличивают показатель сопротивления. Такой вид заземлителя обязательно соединяется с общей системой защиты не менее, чем двумя проводниками.

    Современный заземлитель

Для домашних условий идеальным решением остается использование вертикальных заземлителей, чего не скажешь о промышленном направлении. Здесь, наоборот целесообразна установка анодного электрода. Его применяют для защиты трубопроводов и подземных сооружений. По сути материал достаточно надёжный и устойчив к воздействию коррозии.

Особенности электролитического заземления

Данная разновидность заземления эффективно используется в местах песчаной, вечномерзлой и каменистой почвы. Также в условиях, где грунт имеет высокое удельное сопротивление и требуется специальное оборудование для установки обычных электродов.

Важно! Используя стандартные электроды для устройства контура заземления в песчаной и других типах почвы с высоким сопротивлением, вам придется установить их множество (порядка 100).

Немного о достоинствах электролитического заземления

Полушаровый заземлитель

На самом деле, как и штыревое заземление, электролитическое обладает некоторыми весьма важными достоинствами.

  1. Этот тип электродов обеспечивает минимальное сопротивление грунту, примерно до 10 раз меньше в отличие от традиционных заземлителей.
  2. Выполняется из специальной смеси, предшествующей образованию коррозии.
  3. Имеет длительный срок службы. Если стальной электрод заземления служит около 5-7 лет, то электролитический порядка 50.
  4. Не требует большой глубины для установки, достаточно вмонтировать заземлитель на полметра.

Принцип работы электрода

Главным элементом данного типа заземления считается труба Г-образной формы. Она вбивается на определенную глубину, которая предварительно заполняется смесью из минеральных солей. Вещество впитывает воду из окружающего грунта, создавая при этом выщелачивание, вследствие чего образуется электролит. Затем этот же электрод проникает в почву, увеличивая ее токопроводимые свойства. Удельное сопротивление снижается, и как следствие уменьшается промерзание почвенного слоя.

Часто после окончания изготовления проекта, происходит подтаивание грунта рядом с строением. К сожалению, это очень опасно для фундамента и грозит осадкой дома. Поэтому электрики рекомендуют при проектировании электролитического заземления учитывать фактор повреждения зданий, а, следовательно, требуют отдалятся от мест застройки.

В условиях сильного промерзания почвы принято использовать горизонтальные электроды. Они являются доступными и простыми в монтаже. Однако, при любой возможности работать буровым оборудованием, лучше всего установить вертикальный заземлитель.

Заземлитель с омедненным наконечником

Как проверить электрод?

Заземлители электролитического типа требуют регулярной проверки на работоспособность. Проводят его обслуживание однажды в 2-3 года. Здесь важно определить превратилась ли смесь в электролит. Если электролит образовался, проводят замену смеси, то есть добавляют новый состав солей. Аналогично проверяется каждый электрод, если он не один. Таким образом, установка будет служить еще несколько лет.

Важно! Достаточно заправить электрод минеральными солями высокого качества, и он прослужит порядка 10-15 лет. Но пренебрегать регулярным обслуживанием нельзя.

Групповой и одиночный заземлитель: характеристики

Каждый отдельный тип заземлителя либо электрода имеет свои характеристики, которые важно учитывать при проектировании контура заземления. Рассмотрим каждый из них с подобранностями:

  • лидирующее место в использовании занимает групповой заземлитель. Считается, что его применение зарегистрировано гораздо чаще, чем использование одиночного. Однако, оба типа имеют схожие характеристики. Тем не менее количественная характеристика приспособлений имеет несколько иные закономерности. Ответим вопрос, почему так часто используют сложные (групповые) заземлители. Мы выяснили, что перед непосредственной реализацией проекта находится сопротивление материалов контура. Считается, чем больше будет установленных электродов, тем ниже будет сопротивление уравнителей потенциала.

    Групповой заземлитель схема

  • Одиночный электрод несколько уступает групповому, несмотря на аналогичные черты. Характеристики устройства должны учитываться для того, чтобы работа контура по обеспечению защиты человека от поражения электрическим током была оптимальной для конкретных условий. Течение тока через одиночный заземлитель сопровождается возникновением электрических потенциалов.

    Одиночный заземлитель схема

Смотрите схемы заземлителей с условными обозначениями ниже.

Что такое коррозия и какие несет последствия для заземлителей?

Еще со школьной скамьи, а именно из уроков географии мы знаем, что коррозия — это природное разрушительное воздействие на металлические предметы и их оболочки, которые длительно находятся в земле. Чаще всего такой дефект материала происходит в местах повышенной влажности.

Обычно коррозия возникает после 9-10 лет использования металлической конструкции, и несет определенные последствия для заземляющего устройства. Например, большие повреждения контура заземления плюс наличие ржавчины влечет за собой увеличение сопротивления.

Важно! В зоне, где имеется риск скорейшего возникновения коррозии, целесообразно использовать материалы для сооружения контура заземления из нержавеющей стали.

Случается, когда коррозия проникает и под оболочку заземляющего проводника, ведущего к основному электрическому щитку или трансформатору. В подобной ситуации опытные электрики рекомендуют использовать антикоррозийную смазку. Иногда места соединений обрабатывают жидкой изоляцией.  Еще чаще детали контура заземления подвергаются коррозии при соединении металлов различной валентности. Но и на этот случай есть решение, — использовать специальные биметаллические соединители.

Обратите внимание, степень агрессивности почвенной среды прямым образом влияет на возникновение коррозии в соединениях заземляющего устройства. Поэтому, еще на момент монтажа защитного оборудования следует обдумать методы защиты от разрушений металлических проводников.

Вас могут заинтересовать:

prokommunikacii.ru

Заземление. Заземляющие устройства

На чем основан принцип работы заземляющих устройств?

Защитная функция заземления базируется на том принципе, что части электроустановок, прикосновение к которым в случае нарушения изоляционного слоя крайне опасно для человеческой жизни, необходимо соединять с заземлителями.

При этом данные заземлители должны находиться непосредственно в фунте.

Таким образом создается необходимое сопротивление в электропроводящей сети. Оно получается весьма малое, а падение напряжения на нем не будет достигать критического значения. В итоге удар тока, который получит человек в случае нарушения изоляционного слоя, будет не смертельным. Если человек соприкоснется сданной деталью, он будет в зоне действия пониженного напряжения.

Чем лучше будет изготовлено заземление, тем меньше вероятность того, что на корпусах электроприборов возникнет напряжение. Качество заземлителя зависит, в первую очередь, от того, насколько велико его сопротивление. При этом, чем ниже сопротивление в данной сети, тем заземление качественнее. В этом случае расходы материалов и труда будут несколько большими, нежели без изготовления заземления, однако безопасность конструкции будет в несколько раз выше.

Где найти перечень установок, подлежащих обязательному заземлению?

Электроустановки, которые нужно в обязательном порядке заземлить, подробно перечисляются в СНиПах, правилах технической эксплуатации и инструкциях. Здесь же указываются необходимые расчеты заземлителей, а также напряжения для различных условий функционирования данных электроустановок.

Отличительными чертами данных нормативов, как правило, являются следующие:

—              отход от нормирования заземления по сопротивлению растеканию тока, а также дополнительное ориентирование, касающееся нормирования образующегося напряжения;

—              применение заземлителей естественного типа в случае, если необходимо обеспечить их работоспособность в критических условиях, например в случае протекания достаточно большого тока замыкания;

—              необходимость учитывать коррозионное воздействие грунта для того, чтобы заземлитель и заземляющий проводник могли нормально функционировать.

Для того чтобы соблюсти эти пункты, зачастую прибегают к увеличению размеров элементов, допустим, минимальный диаметр стержневых заземлителей в этом случае делается больше, от 6 до 10 мм.

Нормы проходят постоянное усовершенствование. В них время от времени вносят необходимые дополнения и изменения, которые содержатся как в сборниках, так и в отдельных дополнительных изданиях нормативных документов.

Какие дополнительные функции может выполнять заземлитель?

Достаточно часто заземлитель выступает также в роли грозоотвода, а также может выполнять функцию молниезащиты строения. Если же неподалеку находится вторая электроустановка, мощность которой не превышает 1 кВт, то для ее заземления можно использовать ту же заземляющую систему. С помощью данного конструктивного решения в значительной степени снижаются расходы на сооружение заземления.

В этом случае нормой будет служить наименьшее значение сопротивления растеканию тока. Вычисляют его, исходя из значений наименьшего сопротивления для каждой из объединенных в одном заземлителе электроустановок, причем необходимо взять наименьшее значение.

Что такое заземляющее устройство?

Совокупность заземлителя и заземляющего проводника является заземляющим устройством. С его помощью производят заземление элементов или корпусов электроустановок.

Из чего состоит заземляющее устройство?

Заземляющие устройства представляют собой систему, включающую в себя несколько основных составных частей:

1.              Естественные заземлители, то есть-элементы, которые находятся непосредственно в почве или соприкасаются с ней. Именно через них электрический ток уходит в землю.

2.              Заземляющие проводники, через них заземлители соединяются с заземляемым оборудованием.

3.              Искусственные заземлители. Они схожи с естественными заземлителями, однако их специально размещают в почве для сооружения заземляющей конструкции.

Следует отметить, что каждый из указанных пунктов может быть устроен совершенно по-разному.

www.eti.su

Заземление электроустановок: правила и основные требования

Отсутствие заземления электрооборудования или неправильное его выполнение может привести к производственному травматизму, выходу из строя приборов автоматизации или неправильной их работе, погрешности показаний измерительной техники. Это происходит в результате пробоя изоляции между токоведущими частями и корпусом оборудования. В результате на корпусе появляется напряжение и протекает электрический ток, который может нанести травму человеку и привести к сбоям в работе электрических устройств. Чтобы этого избежать, часть установки, не находящуюся в нормальном состоянии под напряжением, соединяют с заземляющим устройством. Этот процесс называется заземлением.

Заземляющее устройство

Заземляющее устройство – система, состоящая из заземляющего контура и проводников, обеспечивающих безопасное прохождение тока через землю. Исходя из Правил Устройства Электроустановок, естественными заземлителями могут быть:

  1. Каркасы зданий (железобетонные или металлические), которые соединены с землей.
  2. Защитная металлическая оплетка проложенных в земле кабелей (кроме алюминиевой)
  3. Трубы скважин, водопроводов, проложенных в земле (кроме трубопроводов с горючими жидкостями, газами, смесями)
  4. Опоры высоковольтных линий электропередач
  5. Неэлектрифицированные железнодорожные пути (при условии сварного соединения рельсов)

Для искусственных заземлителей, по правилам, используют неокрашенные стальные прутки (с диаметром более 10 мм), уголок (с толщиной полки более 4 мм), листы (с толщиной более 4 мм и сечением в разрезе более 48 мм2). Для создания системы с искусственным заземлением возле сооружения вкапывают или вбивают в землю металлические пруты, уголок или листы с указанными выше толщиной и сечением, но длиной не менее 2,5 м. Затем их сваркой соединяют между собой с помощью прутковой или листовой стали. От поверхности земли данная конструкция должна находиться более 0,5 м. По требованиям, контур заземления здания должен иметь не менее двух соединений с заземлителем.
В зависимости от назначения, заземление оборудования делится на два типа: защитное и рабочее. Защитное заземление служит для безопасности персонала и предотвращает возможность поражения человека электрическим током вследствие случайного прикосновения к корпусу электроустановки. Защитному заземлению подлежат корпуса электроустановок и электрических машин, которые не закреплены на «глухозаземленных» опорах, электрошкафы, металлические ящики распределительных щитов, металлорукав и трубы с силовыми кабелями, металлические оплетки силовых кабелей.
Рабочее заземление используют в том случае, когда для производственной необходимости в случае повреждения изоляции и пробоя на корпус требуется продолжение работы оборудования в аварийном режиме. Таким образом, например, заземляют нейтрали трансформаторов и генераторов. Также, к рабочему заземлению относят подключение к общей сети заземления молниеотводов, которые защищают электроустановки от прямого попадания молний.

Согласно Правилам Устройства Электроустановок обязательно подлежат заземлению электрические сети с номинальным напряжением свыше 42 В при переменном токе и свыше 110 В при постоянном.

Классификация систем заземления

Различают следующие системы заземления:

  • Система ТN (которая в свою очередь разделяется на подвиды TN-C, TN-S, TN-C-S)
  • Система TT
  • Система IT

Буквы в названиях систем взяты из латиницы и расшифровываются так:
Т – (от terre) земля
N – (от neuter) нейтраль
C – (от combine) объединять
S – (от separate) разделять
I – (от isole) изолированный
По буквам в названиях систем заземления можно узнать, как устроен и заземлен источник питания, а также принцип заземления потребителя.

Система ТN

Это наиболее известная и востребованная система заземления. Основным ее отличием является наличие «глухозаземленной» нейтрали источника питания. Т.е. нулевой провод питающей подстанции напрямую соединен с землей.
TN-C – подвид системы заземления, которая характеризуется объединенным заземляющим и нейтральным нулевым проводником. Т.е. они идут одним проводом от питающего трансформатора до потребителя. Отсутствие отдельного РЕ (защитного нулевого) проводника в данной системе однозначно является недостатком. Система TN-C широко использовалась в советских зданиях и непригодна для современных новостроек, т.к. в ней отсутствует возможность выравнивания потенциалов в ванной комнате.
TN-S – система, в которой защитный проводник системы уравнивания потенциалов и рабочий нулевые проводники идут раздельными проводами от источника питания до электроустановки. Эта система только обретает широкое применение при подключении зданий к электроснабжению. Является наиболее безопасной. К недостаткам можно отнести ее дороговизну, т.к. требуется монтаж дополнительного проводника.
TN-C-S – система, в которой нулевой защитный проводник и нейтральный рабочий идут совмещенным проводом, а разделяются на входе в распределительный щит. По требованиям Правил Устройства Электроустановок для этой системы необходимо дополнительное заземление.

Система TT

Это система, в которой питающая подстанция и электроустановка потребителя имеют различные, независимые друг от друга заземлители. Областью применения системы ТТ являются мобильные объекты, имеющие электроустановки потребителей. К ним относят передвижные контейнеры, ларьки, вагончики и т.д. В большинстве случаев для потребителя в системе ТТ применяется модульно-штыревое заземление.

Система IT

Система, в которой источник питания разделен с землей через воздушное пространство или соединен через большое сопротивление, т.е. изолирован. Нейтраль в этой системе соединена с землей через сопротивление большой величины. Система IT используется в лабораториях и медицинских учреждениях, в которых функционирует высокоточное и чувствительное оборудование.

Требования к заземлению электродвигателя

Согласно требованиям и правилам установленный электродвигатель перед пуском должен быть заземлен. Исключением являются те случаи, в которых корпус электродвигателей установлен на металлическую опору, соединенную с землей через металлоконструкцию здания или через проводник заземлителя. В остальных случаях корпус электродвигателя должен быть соединен проводом  с контуром заземления здания, выполненного из полосы металла при помощи сварки.

Это является рабочим заземлением. В противном случае при нарушении изоляции между обмоткой двигателя или токопроводом и корпусом электродвигателя защитное устройство не сработает и не отключит питание. А двигатель продолжит работу.
Каждая электрическая машина должна иметь индивидуальное соединение с заземлителем. Последовательное соединение электродвигателей с контуром заземления запрещено, т.к. при нарушении одного из соединений с заземлителем, вся цепь будет изолирована от земли. Для установки защитного заземления, необходимо наличие дополнительного заземляющего проводника в силовом кабеле, один конец которого подключают к клеммной коробке электродвигателя, а другой к корпусу электрошкафа управления двигателем. Электрошкаф предварительно должен быть соединен с землей. В случае пробоя между токопроводом и этим заземляющим проводником образуется ток короткого замыкания, который разомкнет защитное или коммутирующее устройство (тепловое или токовое реле, защитный автомат).
Сечение заземляющего проводника, удовлетворяющее требованиям Правил Устройства Электроустановок приведено в таблице 1:

Таблица 1

Сечение фазных проводников, мм2Наименьшее сечение защитных проводников, мм2
S≤16S
16 < S≤3516
S>35S/2

Сечение фазных проводников рассчитывается по токовой нагрузке потребителя.

Требования к заземлению сварочных аппаратов

Как и для любого технологического оборудования, потребляющего электрический ток, для сварочных аппаратов существуют правила подключения заземления. Помимо необходимости заземления корпуса сварочной электроустановки с контуром заземления здания, заземляют один вывод вторичной обмотки аппарата, а ко второму, соответственно подключается электрододержатель. При этом вывод вторичной обмотки, требующей заземления, должен быть обозначен графически и иметь стационарное выведенное крепление, для удобного соединения с заземлителем. Переходное сопротивление контура заземления не должно превышать 10 Ом. В случае необходимости увеличения электрической проводимости контура заземления, увеличивают контактную площадь соединения.

Последовательное соединение сварочных аппаратов с заземлителем также запрещено. У каждого аппарата должно быть отдельное соединение с заземленной магистралью здания.
Заземление электроустановок потребителей – это не формальность, а необходимая техническая мера безопасности, которая позволит не только стабилизировать работу оборудования, но и спасти жизнь персоналу, обслуживающему и контактирующему с ним.

electry.ru

Что такое заземляющее устройство? | Элкомэлектро

О компании » Вопросы и ответы » Что такое заземляющее устройство?

Заземление – это намеренное соединение элементов электроустановки с заземляющим устройством. Заземляющее устройство является неотъемлемой составляющей любой электрической установки мощностью 1 кВ и выше. Представляет собой совокупность заземляющих проводников и заземлителя. Заземлитель находится непосредственно в контакте с землей и соединяет с ней части электроустановки. Для того, чтобы обеспечить быстрое стекание на землю замыкания или тока пробоя, сопротивление заземляющего устройства необходимо как можно более низкое. Это также необходимо для быстрого срабатывания защитных реле при их наличии.

В первую очередь условия работы устройства заземления определяются удельным сопротивлением земли, а также электрическими параметрами защитных и заземляющих проводников. Сопротивление земли необходимо тщательно учитывать в каждом отдельном случае, так как разница на тех или иных участках может составлять до 100 тысяч раз.

В зависимости от целевого назначения, заземляющие устройства бывают рабочие, защитные и грозозащитные.

Защитные устройства необходимы для защиты людей от поражающего действия электротока при непредвиденном замыкании фазы на нетоковедущие части электрической установки.

Рабочие устройства предназначены для обеспечения необходимого режима функционирования электроустановки в любых условиях - как в нормальных, так и чрезвычайных.

Грозозащитные заземляющие устройства необходимы для заземления тросовых и стержневых громоотводов. Их задача – отвод тока молнии в землю.

Заземляющие устройства электроустановок во многих случаях могут выполнять одновременно несколько функций – к примеру, быть и рабочим и защитным.

При сдаче в эксплуатацию заземляющего устройства монтажная организация должна предоставить всю необходимую документацию в соответствии с нормами и правилами. Основным документом является паспорт заземляющего устройства – документ, который содержит всю информацию о параметрах ЗУ и в который впоследствии будут заноситься все изменения.

Такие изменения часто касаются результатов обслуживания, когда осуществляется проверка заземляющих устройств

Измерение сопротивления контура заземления проводится многофункциональным прибором MRU-101.

Результаты осмотра и возможного ремонта заносятся в паспорт заземляющего устройства. Также часто необходимо проведение проверки технического состояния устройства с осуществлением замеров сопротивления. По результатам такого обследования составляется протокол заземляющего устройства.

www.megaomm.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *