Содержание

Конспект «Закон Джоуля-Ленца и его применение»

«Закон Джоуля-Ленца и его применение»



Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt.

Учитывая, что U = IR, в результате получаем формулу:

Q = I2Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

Закон Джоуля–Ленца: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

Где применяется закон Джоуля-Ленца ?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии. Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей. Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.


Конспект урока «Закон Джоуля-Ленца и его применение».

Следующая тема: «».

 

Закон Джоуля-Ленца и его применение

5 (100%) 1 vote

uchitel.pro

5. Закон Джоуля — Ленца

Проводник
нагревается, если по нему протекает
электрический ток. Джоуль и Ленц
установили, что количество выделившегося
тепла Q
=
IRt,
(28)

где
I

ток, R

сопротивление,
t

время протекания тока. Легко доказать,
что

Q
=
IRt
= UIt = U
2
t/R = qU
,
(29)

где
q
= It
— электрический заряд.

Если ток изменяется
со временем (т. е. в случае непостоянного
тока), то

Q
==
,
(30)

где
i
— мгновенное значение тока.

Нагревание
проводника происходит за счет работы,
совершаемой силами электричес­кого
поля над носителями заряда. Эта
работа

A
= qU = UIt =I
Rt
= U
t
/ R

. (31)

Работа
А,
энергия W
,

количество тепла
Q
в СИ измеряются в Дж.

Так
как мощность характеризует работу,
совершаемую в единицу времени, т.е. Р
=
,
то

P
= UI = I
R
= U
/
R

. (32)

Мощность
в СИ измеряется в ваттах:
1
Вт

= 1

Дж

/ 1

с;

откуда
1
Дж

= 1

Втс
;

3600
Дж = 1Вт час,
3,6 •10Дж
= 1
кВт час.

Формулы
(31)
и
(32)
позволяют рассчитать полезную работу
и полезную мощность. Затраченная работа
и мощность определяется по формулам

A
= q
=

It
= I


(R
+ r)t =
t.


(33)

P=

=I
= I


(R
+ r)

=
.
(34)

Отношение полезной
работы (мощности) к затраченной
характеризует КПД источника

=


=

=
.
(35)

Из
(35)
следует.что при R0,0;
R,1.Но
при
R


ток
I


0
и поэтому

А


О

и Р


0.

Определим
величину
R
,
при котором выделится максимальная
мощность. Легко по­казать, что это
наступает при R
= r,
тогда PMAКС=IR
=
=
,
(36)

КПД
в этом случае будет
50%.

6. Закон Джоуля — Ленца в дифференциальной форме

Согласно
закону Джоуля

Ленца
(28)
в элементарном цилиндрическом объеме
dV
с площадью поперечного сечения dS
и длиной dl
за время
dt
выделится тепло

dQ
=IRdt=(jdS)=

jdldSdt

=
jdVdt.

Разделив
на dV
и dt,
найдем количество тепла, выделяющееся
в единицу времени в единице объема
Q=
=

j

. (37)

здесь
Q-называется
удельной тепловой мощностью тока,
которая в СИ измеряется в Вт/м3.

С
учетом
(16)
из
(37)
следует, что Q=j=

.
(38)

Формулы
(37)
и
(38)
выражают закон Джоуля

Ленца в дифференциальной форме.

7. Правила Кирхгофа

Току,
текущему к узлу, приписывается один
знак
(«+»
или
«-«), а
току, текущему от узла,

другой знак; таким образом, для направлений
токов в узле электрической схемы, пред-
ставленном на рис.
6, имеем

.

2)
В
ЛЮБОМ ЗАМКНУТОМ КОНТУРЕ АЛГЕБРАИЧЕСКАЯ
СУММА НАПРЯЖЕНИЙ НА ВСЕХ УЧАСТКАХ ЭТОГО
КОНТУРА РАВНА АЛГЕБРАИЧЕСКОЙ СУММЕ
ЭДС, ВСТРЕЧАЮЩИХСЯ В ЭТОМ КОНТУРЕ


(40)

При
этом также следует придерживаться
правила знаков: токи, текущие вдоль
выбран­ного направления обхода
контура считаются положительными, а
идущие против направле­ния обхода

отрицательными. Соответственно
положительными считаются ЭДС тех
источ­ников, которые вызывают ток,
совпадающий по направлению с обходом
контура (см. рис.7), где обозначает
направление обхода контура .

studfiles.net

теория и практика / Школа электрика / Коллективный блог

Во время своего движения по проводнику, ток преодолевает сопротивление материала. Во время этого процесса происходит столкновения атомов и молекул. Механическая энергия движения и сопротивления преобразовывается в тепловую. Ее зависимость от силы тока была впервые выведена двумя учеными Джеймсом Джоулем в 1841 году и Эмилем Ленцем в 1842. Оба действовали отдельно друг от друга, и каждый из них самостоятельно сформулировал этот закон, который теперь носит двойное название.

Он гласит, что количество теплоты, которое выделяется за единицу времени на данном конкретном участке цепи прямо пропорционально произведению квадрата силы на данном участке и его сопротивлению.

Математически это выглядит так:

Q = аI2Rt

где Q – количество вырабатываемой теплоты,

а – коэффициент тепла (чаще всего он берется равным 1 и не учитывается),

I – сила тока,

R – сопротивление материала,

t – время протекания тока по проводнику

Стоит обратить внимание на следующий факт. Если коэффициент теплоты а = 1, то количество теплоты будет измеряться в джоулях. Если же а = 0,24, то количество теплоты будет изменяться в малых калориях.

Материал всегда нагревается, когда через него проходит ток. Но перегрев проводников опасен не только для аппаратуры, но и людей. Особенно этот момент вызывает опасение в случае короткого замыкания. Ведь в такой ситуации перегрев материала настолько велик, что может привести к аварии и вызвать пожар. Поэтому для предотвращения коротких замыканий и больших перегревов в цепь монтируются плавкие предохранители. Для их изготовления используется материала, который плавиться и выводить сеть из строя при достижении током максимальных величин. Плавкие предохранители выбираются в зависимости от площади сечения проводника.

Закон Джоуля-Ленца подходит и для постоянного, и для переменного тока.

Согласно этому закону работает множество нагревательных приборов. Ведь, чем тоньше мы возьмем проводник, и чем больший ток по нему пройдет за более длительный промежуток времени, тем больше тепла выделиться в окружающую атмосферу

При этом необходимо помнить, что сила тока зависит от напряжения. Встает закономерный вопрос, почему ноутбук не нагревается до такой же степени, что и утюг? Дело в том, что в основании утюга находиться стальная спиральная проволока, которая отличается малой сопротивляемостью. Плюс стальная подошва, которая имеет такую же сопротивляемость, что и проволока. Поэтому электроприбор разогревается до высоких температур, и мы можем гладить им белье.

А ноутбук имеет на проводе стабилизатор напряжения, который снижает 220 Вт до 12-19 Вт. Плюс в самой конструкции сопротивление всех схем и деталей достаточно высокое. Дополнительно на охлаждение работает кулер.

Действия закона Джоуля-Ленца активно применяется на практике. Самый известный пример его использования – обыкновенная лампа накаливания, в которой свечение нити достигается путем прохождения по ней тока под высоким напряжением. Она была открыта русским инженером Лодыгиным А.Н. в 1873 году и активно используется в хозяйстве до нынешнего времени.

На принципе закона Джоуля-Ленца работают муфельные печи.

Активно он используется и в сварке. На принципе закона Джоуля-Ленца основана контактная сварка, где создание неразъемного сварного соединения достигается путем нагрева металла, за счет проходящего через него электрического тока и пластической деформации свариваемых деталей путем сжатия.

Последнее время популярностью пользуется и электродуговая сварка, которая также использует закон Джоуля-Ленца. Для совершения сварочных работ электроды разогревают до такой степени, чтобы между ними образовалась дуга. Эффект вольтовой дуги открыл В.В. Петров, используя знание о том, что проходящий по проводнику ток нагревает материал или же закон Джоуля-Ленца.

Кроме математического вывода, этот закон имеет и дифференциальную формулу.

Представим, что по неподвижному металлическому проводнику проходит ток и вся его работа уходит только на нагревание. Тогда, согласно закону сохранения энергии, получаем следующее выражение:

dQ = dA

где dQ – тепловая энергия,

dA – затраченная работа.

Сделав преобразования, получим:

dQ = IUdt = I2RdT = (U2/R)*dt (1)

Кроме того, известно, что удельная тепловая мощность тока – это количество теплоты, которое выделяется за единицу времени в единицу объема. Записывается она так:

w = pj2

Воспользовавшись дифференциальной формулой закона Ома j = γE и соотношением р = 1/γ, получим:

w = jE = γE2 (2)

Формула 1 и 2 являются обобщенным выражением дифференциальной формы закона Джоуля-Ленца. Они подходят для любых полупроводников. Кроме того, его действие распространяется и на электролиты.

Как работает закон Джоуля-Ленца:

ВложениеРазмер
Joule-Lenz_01.jpg44.57 КБ
Joule-Lenz_02.jpg51.63 КБ

44kw.com

Закон Джоуля — Ленца. Основные формулы и применение в быту


Джеймс Прескотт Джоуль (слева) и Эмилий Христианович Ленц (справа)

Электрические нагреватели всевозможных типов используются человечеством уже столетия, благодаря свойству электрического тока выделять тепло при прохождении через проводник. У этого явления есть и негативный фактор – перегретая электропроводка из-за слишком большого тока часто становилась причиной короткого замыкания и возникновения пожаров. Выделение тепла от работы электрического тока изучалось в школьном курсе физики, но многие позабыли эти знания.

Впервые зависимость выделения теплоты от силы электрического тока была сформулирована и математически определена Джеймсом Джоулем в 1841 году, и чуть позже, в 1842 г., независимо от него, Эмилем Ленцем. В честь этих физиков и был назван закон Джоуля-Ленца, по которому рассчитывают мощность электронагревателей и потери на тепловыделение в линиях электропередач.

Определение закона Джоуля – Ленца

В словесном определении, согласно исследований Джоуля и Ленца закон звучит так:

Количество теплоты, выделяемой в определенном объеме проводника при протекании электрического тока прямо пропорционально умножению плотности электрического тока и величины напряженности электрического поля

В виде формулы данный закон выглядит следующим образом:

Выражение закона Джоуля — Ленца

Поскольку описанные выше параметры редко применяются в обыденной жизни, и, учитывая, что почти все бытовые расчеты выделения теплоты от работы электрического тока касаются тонких проводников (кабели, провода, нити накаливания, шнуры питания, токопроводящие дорожки на плате и т. п.), используют закон Джоуля Ленца с формулой, представленной в интегральном виде:

Интегральная форма закона

В словесном определении закон Джоуля Ленца звучит так:

Словесное определение закона Джоуля — Ленца

Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:

Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:

Эквивалентные выражения теплоты согласно закона Ома

Применение и практическое значение закона Джоуля – Ленца

Исследования Джоуля и Ленца в области тепловыделения от работы электрического тока существенно продвинули научное понимание физических процессов, а выведенные основные формулы не претерпели изменений и используются по сей день в различных отраслях науки и техники. В сфере электротехники можно выделить несколько технических задач, где количество выделяемой при протекании тока теплоты имеет критически важное значение при расчете таких параметров:

  • теплопотери в линиях электропередач;
  • характеристики проводов сетей электропроводки;
  • тепловая мощность (количество теплоты) электронагревателей;
  • температура срабатывания автоматических выключателей;
  • температура плавления плавких предохранителей;
  • тепловыделение различных электротехнических аппаратов и элементов радиотехники.


Электроприборы, в которых используется тепловая работа тока

Тепловое действие электрического тока в проводах линий электропередач (ЛЭП) является нежелательным из-за существенных потерь электроэнергии на тепловыделение.

По различным данным в линиях электропередач теряется до 40% всей производимой электрической энергии в мире. Для уменьшения потерь при передаче электроэнергии на большие расстояния, поднимают напряжение в ЛЭП, производя расчеты по производным формулам закона Джоуля – Ленца.

Диаграмма всевозможных потерь электроэнергии, среди которых теплопотери на воздушных линиях составляют львиную долю (64%)

Очень упрощенно тепловую работу тока можно описать следующим образом: двигаются электроны между молекулами, и время от времени сталкиваются с ними, отчего их тепловые колебания становятся более интенсивными. Наглядная демонстрация тепловой работы тока и ассоциативные пояснения процессов показаны на видео ниже:

Расчеты потерь электроэнергии в линиях электропередач

В качестве примера можно взять гипотетический участок линии электропередач от электростанции до трансформаторной подстанции. Поскольку провода ЛЭП и потребитель электроэнергии (трансформаторная подстанция) соединены последовательно, то через них течет один и тот же ток I. Согласно рассматриваемому тут закону Джоуля – Ленца количество выделяемой на проводах теплоты Qw (теплопотерь) рассчитывается по формуле:

Производимая электрическим током мощность (Qc) в нагрузке рассчитывается согласно закону Ома:

Таким образом, при равенстве токов, в первую формулу можно вставить вместо I выражение Qc/Uc, поскольку I = Qc/Uc:

Если проигнорировать зависимость сопротивления проводников от изменения температуры, то можно считать Rw неизменным (константой). Таким образом, при стабильном энергопотреблении потребителя (трансформаторной подстанции), тепловыделение в проводах ЛЭП будет обратно пропорционально квадрату напряжения в конечной точке линии. Другими словами, чем больше напряжение электропередачи, тем меньше потери электроэнергии.

Для передачи электроэнергии высокого напряжения требуются большие опоры ЛЭП

Работа закона Джоуля – Ленца в быту

Данные расчеты справедливы также и в быту при передаче электроэнергии на малые расстояния – например, от ветрогенератора до инвертора. При автономном энергоснабжении ценится каждый Ватт выработанной низковольтным ветряком энергии, и возможно, будет выгодней поднять напряжение трансформатором  прямо у ветрогенератора, чем тратиться на большое сечение кабеля, чтобы уменьшить потери электроэнергии при передаче.

При значительном удалении низковольтного ветрогенератора переменного тока для уменьшения потерь электроэнергии будет выгодней подключение через повышающий трансформатор

В бытовых сетях электропроводки расстояния крайне малы, чтобы уменьшения тепловых потерь поднимать напряжение, поэтому при расчете проводки учитывается тепловая работа тока, согласно закону Джоуля – Ленца при выборе поперечного сечения проводов, чтобы их тепловой нагрев не привел к оплавлению и возгоранию изоляции и окружающих материалов. Выбор кабеля по мощности и расчеты сечения электропроводки проводятся согласно таблиц и нормативных документов ПУЭ, и подробно описаны на других страницах данного ресурса.

Соотношения силы тока и поперечного сечения проводников

При расчете температуры нагрева радиотехнических элементов, биметаллической пластины автоматического выключателя или плавкого предохранителя используется закон Джоуля – Ленца в интегральной форме, так как при росте температуры изменяется сопротивление данных материалов. При данных сложных расчетах также учитываются теплоотдача, нагрев от других источников тепла, собственная теплоемкость и множество других факторов.

Программное моделирование тепловыделения полупроводникового прибора

Полезная тепловая работа электрического тока

Тепловыделяющая работа электрического тока широко применяется в электронагревателях, в которых используется последовательное соединение проводников с различным сопротивлением. Данный принцип работает следующим образом: в соединенных последовательно проводниках течет одинаковый ток, значит, согласно закону Джоуля – Ленца, тепла выделится больше у материала проводника с большим сопротивлением.

Спираль с повышенным сопротивлением накаляется, но питающие провода остаются холодными

Таким образом, шнур питания и подводящие провода электроплитки остаются относительно холодными, в то время как нагревательный элемент нагревается до температуры красного свечения. В качестве материала для проводников нагревательных элементов используются сплавы с повышенным (относительно меди и алюминия электропроводки) удельным сопротивлением — нихром, константан, вольфрам и другие.

Нить лампы накаливания изготовляют из тугоплавких вольфрамовых сплавов

При параллельном соединении проводников тепловыделение будет больше на нагревательном элементе с меньшим сопротивлением, так как при его уменьшении возрастает ток относительного соседнего компонента цепи. В качестве примера можно привести очевидный пример свечения двух лампочек накаливания различной мощности – у более мощной лампы тепловыделение и световой поток больше.

Если прозвонить омметром лампочки, то окажется, что у более мощной лампы сопротивление меньше. На видео ниже автор демонстрирует последовательное и параллельное подключение, но к сожалению, он ошибся в комментарии — будет ярче светить лампа с большим сопротивлением, а не наоборот.

 

infoelectrik.ru

Закон Джоуля – Ленца в физике

При течении электрического тока по проводнику выделяется энергия. Она зависит от рода физических факторов, которые вызывают падение потенциала. Если потенциал изменяется на сопротивлении проводника, то прохождение тока вызывает выделение тепла. Закон был открыт в 1841 г. Джоулем, Ленц провел его исследования.

Формулировка закона Джоуля – Ленца в интегральной форме

Если проводники в цепи не движутся, сила тока является постоянной величиной, то количество тепла (Q), которое выделяется на проводнике за счет тока пропорционально величине силы этого тока (I), времени его течения (t) и падению напряжения (U). В интегральной форме Закон Джоуля — Ленца записывают как:

   

где — напряжение на концах проводника.

Этот же закон, применяя закон Ома для участка цепи можно записать в виде:

   

В том случае, если сила тока в проводнике является переменной, то закон Джоуля — Ленца применяют, разбивая отрезок времени наблюдения на малые части (), когда силу тока можно считать постоянной величиной:

   

Формулировка закона Джоуля – Ленца в дифференциальной форме

Плотность тепловой мощности тока () (или удельное количество тепла или удельная мощность тепловыделения) равна произведению квадрата плотности тока () на удельное сопротивление проводника (). В математическом виде закон Джоуля — Ленца в дифференциальной форме запишем как:

   

где — тепло, которое выделяется в единице объема проводника в единицу времени.

В дифференциальной форме (4) закон Джоуля — Ленца не зависит от рода сил, которые вызывают ток, следовательно, это наиболее общий закон. Если сила, действующая на заряженные частицы, имеет только электрическую природу, то выражение (4) можно представить как:

   

где — удельная проводимость вещества, — вектор напряженности в данной точке поля.

Примеры решения задач

ru.solverbook.com

Закон Джоуля Ленца

Дата публикации: .

В результате опытов было установлено, что количество тепла выделяемого током при прохождении по проводнику, зависит от сопротивления самого проводника, тока и времени его прохождения.

Этот физический закон был впервые установлен в 1841 году английским физиком Джоулем, а несколько позднее (в 1844 году) независимо от него русским академиком Эмилем Христиановичем Ленцем (1804 – 1865).

Количественные соотношения, имеющие место при нагревании проводника током, называются законом Джоуля-Ленца.

Выше было установлено:

откуда

Так как 1 кал = 0,472 кГм, то

Таким образом,

1 Дж = 0,24 кал.

Энергия электрического тока определяется по формуле

A = I2 × r × t Дж .

Так как энергия тока идет на нагрев, то количество тепла, выделяемое током в проводнике, равно:

Q = 0,24 × I2 × r × t кал .

Эта формула, выражающая закон Джоуля-Ленца, показывает и дает определение закону, что количество тепла в калориях, выделяемое током при прохождении по проводнику, равно коэффициенту 0,24, умноженному на квадрат тока в амперах, сопротивление в омах и время в секундах.

Видео – «Закон Джоуля-Ленца, физика 8 класс»:

Пример 1. Определить, сколько тепла выделит ток в 6 А, проходя по проводнику сопротивлением 2 Ом, в течение 3 минут.

Q = 0,24 × I2 × r × t = 0,24 × 36 × 2 × 180 = 3110,4 кал.

Формулу закона Джоуля-Ленца можно написать так:

Q = 0,24 × I × I × r × t ,

а так как I × r = U, то можно написать:

Q = 0,24 × I × U× t кал .

Пример 2. Электрическая плитка включена в сеть напряжением 120 В. Ток, протекающий по спирали плитки, 5 А. Требуется определить, сколько тепла выделит ток за 2 часа.

Q = 0,24 × I × U× t = 0,24 × 5 × 120 × 7200 = 1 036 800 кал = 1036,8 ккал .

Видео – «Нагревание проводников электрическим током»:

Э. Х. Ленц обобщил опыты электромагнитной индукции, изложив это обобщение в виде «правила Ленца». В своих трудах по теории электрических машин Ленц изучил явление «реакции якоря» в машинах постоянного тока, доказал принцип обратимости электрических машин. Ленц, работая с Якоби, исследовал силу притяжения электромагнитов, установил зависимость магнитного момента от намагничивающей силы.

Эмилий Христианович Ленц
12 (24) февраля 1804 — 29 января (10 февраля) 1865 (60 лет)

Ленц был членом Петербургской Академии Наук и ректором Петербургского университета.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

www.electromechanics.ru

Закон Джоуля-Ленца: история возникновения :: SYL.ru

Довольно трудно представить жизнь современного человека без электричества. Оно стало одним из главных и самых ценных атрибутов современного существования. Фактически любой человек, который когда-либо работал с электричеством, знает, что при прохождении по проводам тока у них есть свойство нагреваться. Отчего же это зависит?

Что такое ток

Ток – это упорядоченное движение заряженных частиц, которые называются электронами. И если ток протекает по проводнику, то в нём начинают происходить разные физические процессы, а именно сталкиваются электроны с молекулами.

Молекулы бывают нейтральные или те, которые потеряли свою отрицательно заряженную частицу. В результате столкновений или электроны могут становиться нейтральными молекулами, или при этом выбивается из другой такой же молекулы электрон, образовавший положительно заряженный ион. Во время этих столкновений расходуется кинетическая энергия заряженных частиц. Именно эта энергия и становится теплом.

На тепловой нагрев проводника может влиять и сопротивление. Например, можно взять определённое тело и тащить его по земле. Земля в этом случае — сопротивление. Что же с ним будет? Правильно, между телом и поверхностью будет происходить сила трения, которая, в свою очередь, нагревает тело. Ток в этом случае ведёт себя точно так же.

Зависимость

И, внимая все вышеупомянутое, учёным удалось определить эту зависимость между силой тока, сопротивлением и количеством тепла. Эта зависимость носит название закон Джоуля-Ленца, формула которого известна всем физикам. В 1832—1833 годах русским физиком Эмилием Ленцем было обнаружено, что при тепловом воздействии на металлические проводники их проводимость капитально изменялась. Это фактически усложняло работу учёного и мешало рассчитывать электрические цепи.

Тогда же молодому учёному пришла в голову мысль о том, что, возможно, существует какая-то зависимость между силой тока и температурой проводника. Но как быть? В то время отсутствовали точные электрические приборы, позволяющие измерить силу тока, сопротивление, не было даже источника стабильного ЭДС. Ленца это не остановило, он решил провести опыт.

Опыты русского физика

Суть этого опыта была настолько проста, как и все гениальное, что его может повторить даже школьник. Учёный сконструировал специальный прибор, который служил для измерения количества тепла, выделяемого проводником. Этим прибором оказался обычный сосуд, вовнутрь которого Ленц заливал раствор разбавленного спирта и ставил проводник – платиновую проволоку, на которую подавался электрический ток.

После того как прибор был создан, учёный начал проводить опыты. Он измерял точное количество времени, необходимое для того, чтобы спирт в сосуде был нагрет до 10 оС. На это было потрачено много не только месяцев, но и лет. И в 1843 году, спустя 10 лет, был опубликован закон, суть которого заключалась в том, что нагревание проводника током пропорционально квадрату служащего для нагревания тока.

Джоуль и Ленц

Но не тут-то было! Оказывается, несколько лет назад английский физик Джеймс Прескотт Джоуль проводил аналогичные опыты, и уже опубликовал свои наблюдения. Как быть? Ленц не сдался и внимательно изучил работу Джоуля и пришёл к выводу, что, пусть они и проводили одинаковые эксперименты, опыты Ленца были гораздо точнее. В связи с чем научное сообщество добавило к работе Джоуля поправки Ленца и этот закон стал называться как закон Джоуля-Ленца. Математическая формулировка закона выглядит таким образом:

Q = I*U*t, где:

  • I – сила тока, А;
  • U – напряжение, В;
  • t – время, которое ток затрачивает на прохождение проводника, с.

Сам же закон звучит так: количество тепловой энергии, выделяемой в проводнике, через который течёт электрический ток, равно произведению силы тока, напряжения и времени прохождения тока через проводник.

Закон Ома

Однако будет ли всегда верным это утверждение? Можно попробовать вывести его, используя закон Ома. Судя по нему U = I*R, где R — сопротивление, Ом.

Учитывая закон Ома, можно подставить значение в формулу Q = I*U*t = I2*R*t. Из этого можно сделать вывод, что количество теплоты напрямую зависит и от сопротивления проводника. Также для закона Джоуля-Ленца будет справедливо и это утверждение: I = Q = I*U*t.

Все три формулы будут верны, однако Q = I2*R*t будет верной для любых ситуаций. Две другие тоже являются правильными, однако при определённых обстоятельствах.

Проводники

Теперь о проводниках. Изначально в своих опытах Джоуль и Ленц использовали платиновые проволоки, как и было упомянуто выше. Во всех похожих экспериментах учёные того времени использовали в основном металлические проводники, так как они были довольно недорогими и стабильными. Не удивительно, ведь до сих пор металлические проводники – основной тип проводников, в связи с чем изначально считалось, что закон Джоуля-Ленца был применим только к ним. Однако чуть позже было обнаружено, что этот закон применим не только к металлическим проводникам. Он верен для любых из них. Сами проводники по классификации можно разделить на:

  • Металлические (медь, железо, серебро и т.д.). Главную роль в них играют отрицательно заряженные частицы (электроны), которые протекают по проводнику.
  • Жидкие. В них же за движение зарядов отвечают ионы – это атомы, в которых или слишком много, или слишком мало электронов.
  • Газообразные. В отличие от своих коллег, в таких проводниках ток определяется движением как ионов, так и электронов.

И несмотря на различия, в любом случае при увеличении силы тока или сопротивления увеличится и количество тепла.

Применение закона другими физиками

Открытие закона Джоуля-Ленца сулило огромные перспективы. Ведь, по сути, этот закон позволил создавать своего рода разные электронагревательные приборы и элементы. Например, чуть позже после открытия закона учёные заметили, что при нагревании определённых элементов они начинают светиться. Они захотели поэкспериментировать с ними, используя разные проводники, и в 1874 году русский инженер Александр Николаевич Лодыгин изобрёл современную лампу накаливания, нить которой была сделана из вольфрама.

Применяется закон Джоуля-Ленца и в электротехнике – например, при создании плавких предохранителей. Плавкий предохранитель – это некий элемент электрический цепи, конструкция которого сделана так, что при протекании по нему тока выше допустимого значения (например, при коротком замыкании) он перегревается, плавится и размыкает силовую цепь. Даже обычный электрический чайник или микроволновая печь, которая есть фактически у каждого, работает согласно этому закону.

Заключение

Довольно трудно определить вклад этих учёных в современную электронику и электротехнику, но одно можно сказать точно – появление закона Джоуля-Ленца перевернуло представление людей об электричестве и дало более конкретные знания о том, что такое электрическое поле в проводнике с током.

Без сомнения, открытый этими великими учеными-физиками закон стал определяющей ступенью во всей науке, именно благодаря этому открытию впоследствии были совершены другие более или менее грандиозные достижения других ученых. Вся наука представляет собой тесное переплетение открытий, каких-то разрешенных и неразрешенных задач. Рассмотренный в этой статье закон определенным образом повлиял на многие исследования и оставил неизгладимый и вполне отчетливый след в науке.

www.syl.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о