Содержание

2. Закон Ома для участка и полной цепи

Закон
Ома для участка цепи: сила
тока
I
на участке электрической цепи прямо
пропорциональна напряжению
U
на концах участка и обратно пропорциональна
его сопротивлению

R.

Формула
закона:

I=.
Отсюда запишем формулыUIR
и R
=
.

Рис.1.Участок
цепи
Рис.2.Полная
цепь

Закон
Ома для полной цепи: сила
тока
I
полной электрической цепи
равна
ЭДС
(электродвижущей силе) источника тока
Е,
деленной на полное сопротивление цепи
(R
+ r).
Полное
сопротивление цепи равно сумме
сопротивлений внешней цепи R
и внутреннего r
источника тока.
Формула
закона I
=


.
На
рис. 1 и 2 приведены схемы электрических
цепей.

3. Последовательное и параллельное соединение проводников

Проводники
в электрических цепях могут соединяться
последовательно
и параллельно.
Смешанное соединение сочетает оба эти
соединения.

Сопротивление,
при
включении которого
вместо всех других проводников,
находящихся между двумя точками цепи,
ток и напряжение остаются неизменными,
называют
эквивалентным
сопротивлением

этих
проводников.

Последовательное соединение

Последовательным
называется соединение, при котором
каждый
проводник соединяется только с одним
предыдущим и одним последующим
проводниками.

Как
следует из первого правила
Кирхгофа
,
при последовательном
соединении проводников сила электрического
тока, протекающего по всем проводникам,
одинакова (на основании закона сохранения
заряда).

1.
При последовательном соединении

проводников
(рис. 1)
сила
тока во всех проводниках одинакова:
I1 = I2 = 
I3
=
I

Рис.
1.
Последовательное
соединение двух проводников.

2.
Согласно закону Ома, напряжения
U1
и
U2
на
проводниках равны U1 = IR1,  U2 = IR2,
U3 = IR3.

Напряжение
при последовательном соединении
проводников равно сумме напряжений на
отдельных участках (проводниках)
электрической цепи.

U = U1
+
U2 + U3

По
закону
Ома, напряжения U1,U2на
проводниках равны
U1 = IR1,  U2 = IR2,
В
соответствии вторым правилом Кирхгофа
напряжение на всем участке:

U = U1
+
U2 =
IR1IR2
=

I(R
1+
R
2)=
I·R.

Получаем:
R =
R1 + R2 

Общее
напряжение
U
на проводниках равно сумме напряжений
U1,
U2
,
U3
равно:
U =
U1 + U2 + U3 = I·(R1 + R2
+ R3)
 = IR

где
RЭКВ


эквивалентное
сопротивление всей цепи. Отсюда: RЭКВ
=
R1 + R2 + R3

При
последовательном соединении эквивалентное
сопротивление цепи равно сумме
сопротивлений отдельных участков цепи:
R
 ЭКВ=
R1 + R2 + R3+…

Этот
результат справедлив для
любого числа

последовательно соединенных проводников.

Из
закона Ома
следует:
при равенстве сил тока при последовательном
соединении:

I = ,I = .
Отсюда
=
 или


=,
т. е. напряжения на отдельных участках
цепи прямо пропорциональны сопротивлениям
участков.

При
последовательном соединении n
одинаковых
проводников общее напряжение равно
произведению напряжению одного U1
на
их количество n:

UПОСЛЕД=
n
·
U1.
Аналогично
для сопротивлений:

RПОСЛЕД
=
n·
R1

При размыкании
цепи одного из последовательно
соединенных потребителей ток исчезает
во всей цепи, поэтому последовательное
соединение на практике не всегда удобно.

studfiles.net

Законы Ома для участка цепи и для полной цепи

В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

I = U/ R

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

U = I*R

R = U / I

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

I = E/ Rвн+r

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

I = U/ Z

  где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.

В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют специальные средства защиты.

Похожие статьи

infoelectrik.ru

Закон Ома

В 1826 величайший немецкий физик Георг Симон Ом публикует свою работу «Определение закона, по которому металлы проводят контактное электричество», где дает формулировку знаменитому закону. Ученые того времени встретили враждебно публикации великого физика. И лишь после того, как другой ученый – Клод Пулье, пришел к тем же выводам опытным путем, закон Ома признали во всем мире.

Закон Ома – физическая закономерность, которая определяет взаимосвязь между током, напряжением и сопротивлением проводника. Он имеет две основные формы.

Закон Ома для участка цепи

Формулировка закона Ома для участка цепи – сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению.

Это простое выражение помогает на практике решать широчайший круг вопросов. Для лучшего запоминания решим задачу.

  Задача 1.1

Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 0,5 мм2, если к концам провода приложено напряжение 12 B.

Задача простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.

Закон Ома для полной цепи

Формулировка закона Ома для полной цепи — сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи , где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

Здесь могут возникнуть вопросы. Например, что такое ЭДС? Электродвижущая сила — это физическая величина, которая характеризует работу внешних сил в источнике ЭДС. К примеру, в обычной пальчиковой батарейке, ЭДС является химическая реакция, которая заставляет перемещаться заряды от одного полюса к другому. Само слово электродвижущая говорит о том, что эта сила двигает электричество, то есть заряд.

В каждом источнике присутствует внутреннее сопротивление r, оно зависит от параметров самого источника. В цепи также существует сопротивление R, оно зависит от параметров самой цепи.

Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

Для закрепления материала, решим две задачи на формулу закона Ома для полной цепи.

  Задача 2.1

Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.

 

Теперь решим задачу посложнее.

  Задача 2.2

Источник ЭДС подключен к резистору сопротивлением 10 Ом с помощью медного провода длиной 1 м и площадью поперечного сечения 1 мм2. Найти силу тока, зная что ЭДС источника равно 12 В, а внутреннее сопротивление 1,9825 Ом.

Приступим.

Мнемоническая диаграмма

Для лучшего запоминания закона Ома существует мнемоническая диаграмма, благодаря которой можно всегда напомнить себе формулу. Пользоваться этой диаграммой очень просто. Достаточно закрыть искомую величину и две другие укажут, как её найти. Потренируйтесь, это может вам пригодится.

Успехов в изучении электричества! Рекомендуем прочесть статью — законы Кирхгофа.

  • Просмотров: 2777
  • electroandi.ru

    Закон Ома для полной цепи

    Закон Ома для полной цепи – эмпирический (полученный из эксперимента) закон, который устанавливает связь между силой тока, электродвижущей силой (ЭДС) и внешним и внутренним сопротивлением в цепи.

    При проведении реальных исследований электрических характеристик цепей с постоянным током необходимо учитывать сопротивление самого источника тока. Таким образом в физике осуществляется переход от идеального источника тока к реальному источнику тока, у которого есть свое сопротивление (см. рис. 1).

    Рис. 1. Изображение идеального и реального источников тока

    Рассмотрение источника тока с собственным сопротивлением обязывает использовать закон Ома для полной цепи.

    Сформулируем закона Ома для полной цепи так (см. рис. 2): сила тока в полной цепи прямо пропорциональна ЭДС и обратно пропорциональна полному сопротивлению цепи, где под полным сопротивлением понимается сумма внешних и внутренних сопротивлений.

    Рис. 2. Схема закона Ома для полной цепи.

    Формула закона Ома для полной цепи

    • R – внешнее сопротивление [Ом];
    • r – сопротивление источника ЭДС (внутреннее) [Ом];
    • I – сила тока [А];
    • ε– ЭДС источника тока [В].

    Рассмотрим некоторые задачи на данную тему. Задачи на закон Ома для полной цепи, как правило, дают ученикам 10 класса, чтобы они могли лучше усвоить указанную тему.

    I. Определите силу тока в цепи с лампочкой, сопротивлением 2,4 Ом и источником тока, ЭДС которого равно 10 В, а внутреннее сопротивление 0,1 Ом.

    По определению закона Ома для полной цепи, сила тока равна:

    II. Определить внутреннее сопротивление источника тока с ЭДС 52 В. Если известно, что при подключении этого источника тока к цепи с сопротивлением 10 Ом амперметр показывает значение 5 А.

    Запишем закон Ома для полной цепи и выразим из него внутреннее сопротивление:

    III. Однажды школьник спросил у учителя по физике: «Почему батарейка садится?» Как грамотно ответить на данный вопрос?

    Мы уже знаем, что реальный источник обладает собственным сопротивлением, которое обусловлено либо сопротивлением растворов электролитов для гальванических элементов и аккумуляторов, либо сопротивлением проводников для генераторов. Согласно закону Ома для полной цепи:

    следовательно, ток в цепи может уменьшаться либо из-за уменьшения ЭДС, либо из-за повышения внутреннего сопротивления. Значение ЭДС у аккумулятора почти постоянный. Следовательно, ток в цепи понижается за счет повышения внутреннего сопротивления. Итак, «батарейка» садится, так как её внутреннее сопротивление увеличивается.

    zakon-oma.ru

    Закон ома для участка цепи и для полной цепи / Школа электрика / Коллективный блог


    Закон Ома – физический закон, который определяет связь между электродвижущей силой источника и напряжением с силой электротока и сопротивляемостью проводника. Экспериментально был доказан в далеком 1826 году и назван в честь его первооткрывателя физика Георга Ома.

    Закон Ома для участка цепи:

    Немецким физиком Георгом Омом в 1826 году было обнаружено, что отношение напряжения между концами проводника сделанного из металла, который является участком электроцепи, к силе тока в цепи является постоянной величиной:

    U / I = R = const.

    Эта величина R называется электросопротивлением проводника. Электрическое сопротивление измеряют в Омах.

    Электрическое сопротивление в 1Ом имеет такой участок цепи, на котором при силе тока равной 1А, напряжение будет ровняться 1В:

    1 Ом = 1 В / 1 А.

    Опыт показывается, что электросопротивление проводника прямо пропорционально его длине и обратно пропорционально его площади поперечного сечения:

    R = r • L / S.

    Параметр r называется электрическим сопротивлением вещества. Удельное сопротивление веществ измеряют в Ом • м.

    Закон Ома для полной цепи:

    Закон Ома для полной цепи определяется значениями тока в реальной электрической цепи, он зависит не только от сопротивления нагрузки, но и от сопротивления источника тока.

    I=E/(r+R)

    I – сила тока в цепи
    E — ЭДС источника напряжения
    r — внутреннее сопротивление источника напряжения
    R – общее сопротивление всех внешних элементов цепи

    Из закона Ома для полной цепи вытекают два следующих следствия:

    1. При r меньше R сила тока в цепи будет обратно пропорциональной ее сопротивлению.
    2. При r больше R сила тока от свойств внешней цепи зависеть не будет.

    Также из него можно выразить значение ЭДС источника напряжения:
    E=I(r+R)

    ВложениеРазмер
    1.png3.28 КБ
    2.gif5.49 КБ
    3.jpg20.64 КБ

    44kw.com

    Закон Ома для полной цепи (DC)

    Рассмотрим Закон Ома (Ohm’s law) для полной электрической цепи постоянного тока. Здесь нас прежде всего интересует его практическое отношение к постоянному току (direct current). Различают две формулировки Закона Ома, одна для участка цепи, а другая для полной цепи. В последней учитывается источник тока, точнее его внутреннее сопротивление.

    Простейшая электрическая цепь постоянного тока состоит из источника тока и одной единственной резистивной нагрузки, а попросту из — активного сопротивления.

    Закон Ома — закон пропорциональности

    Формулировка Закона Ома для полной цепи и для участка цепи — это утверждение пропорциональности. Устанавливается достаточна простая алгебраическая связь между величинами силы тока, суммы сопротивлений (r+R) и ЭДС источника тока.

    Сила тока в электрической цепи, прямо пропорциональна ЭДС источника и обратно пропорциональна сумме внутреннего сопротивления этого источника и общего сопротивления цепи.

    Наиболее понятное и простое применение Закона Ома в такой формулировке — это электрическая цепь с одним источником тока в ветви (контуре). Кроме Закона Ома, для расчёта электрических цепей, необходимо знать правила Кирхгофа, а также иметь базовые представления об элементах цепей, таких как узлы, ветви, контуры, двухполюсники и т. п. Но ограничившись только Законом Ома для полной цепи можно сделать несколько важных выводов.

    Потери на внутреннем сопротивлении источника ЭДС

    Самый простой пример иллюстрирующий влияние внутреннего сопротивления источника тока — это гальванические элементы (батареи) и аккумуляторы. Способность источника тока выдавать большое значение силы тока напрямую зависит от его внутреннего сопротивления. Чем оно больше, тем меньший ток способен выдать источник ЭДС.

    Допустим у нас имеется аккумуляторная батарея на 12 Вольт (В), а в качестве нагрузки мы применяем лампу накаливания мощностью 24 Ватт (Вт). Как узнать сопротивление нагрузки при устоявшемся режиме работы, то есть когда лампа горит в полный накал? Это сделать достаточно просто. Мощность (24 Вт) делим на напряжение (12 В), в итоге мы получаем расчётное значение рабочего тока в 2 Ампер (А).

    Чтобы вычислить сопротивление нагрузки, нужно воспользоваться Законом Ома для участка цепи. В нашем случае падение напряжения на нагрузке, то есть лампе накаливания должно быть 12 В, а рабочий ток для выхода на мощность в 24 Вт будет 2 А. Применяем закон пропорциональности и находим сопротивление нагрузки.

    В итоге мы получаем расчётное рабочее сопротивление нагрузки R равное 6 Ом (12 В/2 А).

    Теперь же вернёмся к нашему источнику ЭДС с его внутренним сопротивлением. Как оно будет влиять на ток в цепи? Допустим, что мы измерили напряжение на клеммах аккумулятора и оно оказалось равным 12,5 Вольт, затем подключили нашу нагрузку — лампочку накаливания 24 Ватт, на номинальное напряжение в 12 Вольт. Вроде бы всё должно работать, но оказывается, что лампа светит тускло, в половину накала. В чём же может быть причина? Вот тут как раз таки можно и нужно применять Закон Ома для полной цепи. Необходимо учитывать внутреннее сопротивление источника. Так как визуально лампа светит тускло, значит не выходит на свою норму в потребления 24 Вт, а значит напряжение и ток на ней недостаточны. Казалось бы, подключили к аккумулятору у которого на выходе 12,5 Вольт, но что-то тут не так. Что именно?

    Нужно провести измерение падения напряжения непосредственно на лампе, тогда окажется, что оно совсем не 12 Вольт, а гораздо меньше, допустим 6 Вольт. Условно предположим, что сопротивление лампы в 6 Ом стабильно и не зависит от нагрева. Тогда мы можем вновь воспользоваться Законом Ома для участка цепи, чтобы найти значение тока. В нашем случае это достаточно просто сделать. Необходимо падение напряжения на лампе в 6 Вольт, разделить на её сопротивление в 6 Ом. В результате мы получим значение тока в цепи равное 1 Ампер. Вот оно что! Для того, чтобы лампа горела как положено и давала все свои 24 Ватт мощности, нужен ток в 2 А, а у нас ровно половина — 1 А. Можно сразу сказать, что на лампе выделяется мощность всего в 6 Ватт, что явно недостаточно.

    Почему же при ЭДС источника — аккумулятора в 12,5 Вольт происходит такое, казалось бы несоответствие? Сумма падений напряжений в контуре, а у нас как раз таки один единственный контур цепи, всегда равно ЭДС источника. Отсюда делаем вывод, что у нас куда-то делось 6,5 Вольт (12,5-6). А делись они вот куда. Внутреннее сопротивление источника тока можно выделить наружу только в схеме, а на практике оно как бы глубоко запрятано в конструкции источника. Разумеется, что разобрав источник на части, мы не обнаружим там никакого внутреннего сопротивления. Оно существует умозрительно, на схемах, для удобства, а в реальности это характеристика сторонних сил, которые создают ту самую ЭДС.

    В итоге, у нас выходит, по вышеприведённому примеру, что сам источник тока съедает мощность на себя, да ещё к тому же она больше, чем полезная нагрузка — лампочка. При токе в 1 А, и при падении напряжения в 6,5 В на внутреннем сопротивлении мы имеем 6,5 Вт бесполезных потерь на источнике тока!!! Выдаёт на нагрузку 6 Вт, а сам кушает чуть больше — 6,5 Вт. Эффективность заведомо меньше 50%. Вот вам и применение Закона Ома для полной цепи.

    Давайте попробуем решить обратную задачу. Какое внутреннее сопротивление источника тока с ЭДС равной 12,5 Вольт должно быть, чтобы падение напряжения на лампе в 24 Вт было равным 12 В?

    Исходя из задачи, можно сразу же вычислить падение напряжения на внутреннем сопротивлении. Оно должно быть в нашем случае равным всего 0,5 В. Но для того, чтобы пользуясь Законом Ома вычислить значение внутреннего сопротивления, нам нужно знать силу тока. Учитывая, что мы хотим получить с нагрузки 24 Вт мощности, то для этого нам необходим ток в 2 Ампер. Для расчёта можно смело брать эту величину. Теперь узнать внутреннее сопротивление источника достаточно просто. Оно будет равно 0,5 В делённые на ток в 2 А, то есть 0,25 Ом. Эта величина значительно меньше той, которая была в примере, когда лампа горела тускло, всего на 6 Вт мощности.

    При внутреннем сопротивлении в 0,25 Ом и при нагрузке в 6 Ом мы получим достаточно эффективное использование источника тока. На нагрузке у нас будет выделятся мощность в 24 Вт, а потери источника на внутреннем сопротивлении составят всего на всего 1 Вт (0,5Х2). Соотношение меньше чем 1 к 10. Однако, если мы с вами к источнику с таким малым внутренним сопротивлением подключим нагрузку в 0,25 Ом, то есть внутреннее сопротивление и сопротивление нагрузки равны, тогда ток в цепи подскочит до значения 25 А (12,5/0,5). На нагрузке будет выделятся мощность равная 156,25 Вт и точно такая же будет расходоваться в самом источнике.

    Выбор источника тока по мощности нагрузки

    Правильное понимание Закона Ома для полной цепи позволяет правильно рассчитать и выбрать источник тока по нагрузке, а также позволяет своевременно выявить дефекты источников тока. Тот источник тока, который не пригоден для низкоомной нагрузки, потому как его внутреннее сопротивление в больше или равно сопротивлению нагрузки, будет вполне пригоден в эксплуатации для питания электрической цепи с нагрузкой в 10 раз большим сопротивлением, чем его собственное.

    Чем большую мощность нужно получить на нагрузке при малом значении ЭДС, тем меньше должно быть внутреннее сопротивление источника. Поэтому самыми лучшими источниками постоянного тока (DC) в настоящее время остаются химические аккумуляторы, хотя вполне возможно, что их могут превзойти в этом полупроводниковые источники тока — солнечные батареи.

    Оптимальным считается, когда падение напряжения на внутреннем сопротивлении, более чем в 10 раз меньше чем падение напряжения на полезной нагрузке. Если говорить языком пропорциональности, то это означает, что зная сопротивление нагрузки или её мощность, нужно выбирать источник тока, где его внутреннее сопротивление (импеданс) будет более чем в 10 раз меньшим.

    Дата: 18.05.2015

    © Valentin Grigoryev (Валентин Григорьев)

    electricity-automation.com

    Закон Ома для участка цепи

    Вся прикладная электротехника базируется на одном догмате – это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам. Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.

    Диаграмма, упрощающая запоминание

    Классическая формулировка

    Этот простой вариант трактовки, известный нам со школы.

    Однородный открытый участок электроцепи

    Формула в интегральной форме будет иметь следующий вид:

    Формула в интегральной форме

    То есть, поднимая напряжение, мы тем самым увеличиваем  ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I».  Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

    В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

    Принятые единицы измерения

    Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:

    • напряжение – в вольтах;
    • ток в амперах
    • сопротивление в омах.

    Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.

    Формулировка для полной цепи

    Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.

    Схема с подключенным с источником

    Учитывая «r» ЭДС, формула предстанет в следующем виде:

    Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.

    Напряжение будет  меньше ЭДС, определить его можно по формуле:

    Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

    Неоднородный участок цепи постоянного тока

    Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.

    Схема неоднородного участка

    Формула для такого участка (обобщенный закон) будет иметь следующий вид:

    Формула для неоднородного участка цепи

    Переменный ток

    Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:

    Где «Z» представляет  собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

    Практическое использование

    Видео: Закон Ома для участка цепи – практика расчета цепей.

    Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.

    Применяем закон к любому участку цепи

    Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
    Находим силу тока
    Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

    • Напряжение – 220 В;
    • R нити накала – 500 Ом.

    Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

    Рассмотрим еще одну задачу со следующими условиями:

    В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
    Вычисление напряжения
    Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

    Преобразуем исходные данные:

    • 20 кОм = 20000 Ом;
    • 10 мА=0,01 А.

    Решение: 20000 Ом х 0,01 А = 200 В.

    Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

    Сопротивление.

    Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

    Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

    Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

    Рассмотрим несколько примеров.

    Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

    Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

    Изображение вольт-амперной характеристики, где R=1 Ом

    Изображение вольт-амперной характеристики

    Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

    Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

    Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется – линейным. Этот же термин используется для обозначения и других параметров.

    Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

    Вывод

    Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

    Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

    Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

    Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.

    www.asutpp.ru

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о