Билет №16.Постоянный электрический ток. Электрическая цепь. Электрическое сопротивление. Закон Ома для участка электрической цепи.

Электрическим током называется упорядоченное движение заряженных частиц. Электрический ток имеет определенное направление. За направление тока принимают направление движения положительно заряженных частиц.

Условия существования электрического тока:

1. электрическая цепь была замкнута;

2. наличие свободных электрических зарядов;

3. наличие источника электрического поля, внутри которого происходит разделение зарядов.

В металлах носителями тока являются электроны, в растворах и расплавах – положительные и отрицательные ионы, в газах – ионы и электроны.

Электрическая цепь — совокупность различных устройств и соединяющих их проводников (или элементов электропроводящей среды), по которым может протекать электрический ток.

Обязательными элементами электрической цепи являются:

1. источник тока;

2. соединительные провода;

3. замыкающее устройство;

4. потребитель.

Для характеристики электрического тока используются физические величины: сила тока, напряжение, сопротивление.

Сила тока - это физическая величина, характеризующая величину электрического заряда, проходящего через сечение проводника за единицу времени. Обозначается I, измеряется в Амперах [А]. По определению: I=q/t.

Если сила тока постоянна по модулю и направлению, ток называют постоянным.

Напряжение характеризует работу, совершаемую электрическим полем по перемещению единичного положительного заряда. Обозначается U, измеряется в Вольтах [В]. По определению: U=A/q.

Электрическое сопротивление возникает в проводнике при протекании тока из-за взаимодействия свободных зарядов с ионами кристаллической решетки. Обозначается R, измеряется в Омах (Ом).

Сопротивление проводника зависит от материала, из которого он изготовлен, площади сечения и длины проводника. Сопротивление можно рассчитать по формуле: , где ρ - удельное электрическое сопротивление (измеряется в Ом·м), S – площадь сечения проводника (измеряется в м2), L – длина проводника (измеряется в м).

Чем выше напряжение, тем больше сила тока в проводнике. Чем больше сопротивление проводника, тем меньше сила тока. По графику видно, что чем больше сопротивление, тем меньше угол наклона графика к оси напряжения. Для измерения силы тока используется амперметр, который подключается в цепь последовательно. Для измерения напряжения используется вольтметр, который подключается в цепь параллельно участку, на котором его измеряем.  
Закон Ома для участка цепи связывает эти величины: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

Формула: .

I, A

 

 

0 U, В

В последовательной цепи сила тока на всех его участках одинакова, а напряжение и сопротивления складываются. I=I1=I2; U=U1+U2; R=R1+R2.

В параллельной цепи напряжение на всех участках одинаково, а сила тока складывается. Также складываются величины, обратные сопротивлению. I=I1+I2; U=U1=U2; 1/R=1/R1+1/R2.

 

cyberpedia.su

Постоянный электрический ток

 на главную   

 

Официальный сайт АНО ДО Центра "Логос", г.Глазов

http://logos-glz.ucoz.net/

 

ГОТОВИМСЯ К УРОКУ

Кинематика

Динамика

МКТ

Термодинамика 

Электростатика

Электрический ток

Электрический ток в средах

Магнитное поле Электромагнитная индукция

Оптика

Методы познания

постоянный электрический ток                                                      немного о физике:   

 

Что называют электрическим током?

 

Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

 

Условия существования постоянного электрического тока.

 

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают  при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

 

Основные понятия.

 

Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I - сила тока, q - величина заряда (количество электричества), t - время прохождения заряда.

Плотность тока - векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность токаS - площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение - скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A - полная работа сторонних и кулоновских сил,  q - электрический заряд.

Электрическое сопротивление - физическая величина, характеризующая  электрические свойства участка цепи.

где ρ - удельное сопротивление проводника, l - длина участка проводника,  S - площадь поперечного сечения проводника.

 

Проводимостью называется величина, обратная сопротивлению

где  G - проводимость.

 

 

Законы Ома.

 

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка  и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U - напряжение на участке,  R - сопротивление участка.

 

 

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где   φ1- φ2 + ε = U напряжение на заданном участке цепи, R - электрическое сопротивление  заданного участка цепи.

 

 

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R - электрическое сопротивление внешнего участка цепи,  r - электрическое сопротивление внутреннего участка цепи.

 

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи  с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением  R<< r, то тогда только  ЭДС источника тока и его сопротивление будут определять  значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания. 

 

Последовательное и параллельное

соединение проводников.

 

Электрическая цепь включает в себя источника тока и проводники (потребители, резисторы и др), которые могут соединятся  последовательно или параллельно.

 

При последовательном соединении конец предыдущего проводника соединяется с началом следующего.

 

 

Во всех  последовательно соединенных проводниках сила тока одинакова:

I1= I2=I

 

Сопротивление всего участка равно сумме сопротивлений всех отдельно взятых проводников:

R = R1+ R2

 

 

 

Падение напряжения на всем участке равно сумме паданий напряжений на всех отдельно взятых проводниках:

U= U1 +U2

 

Напряжения на последовательно соединенных проводниках пропорциональны их сопротивлениям.

При параллельном соединении проводники подсоединяются к одним и тем же точкам цепи.

Сила тока в неразветвленной части цепи равна сумме токов, текущих в каждом проводнике:

I = I1+ I2

 

Величина, обратная сопротивлению разветвленного участка,  равна сумме обратных величин обратных сопротивлениям каждого отдельно взятого проводника:

 

    

Падение напряжения во всех проводниках одинаково:

U= U1 = U2

 

 

Силы тока в проводниках обратно пропорциональны их сопротивлениям

 

 

Смешанное соединение - комбинация  параллельного и последовательного  соединений.

 

 

Правила Кирхгофа.

Для расчета разветвленных цепей, содержащих неоднородные участки, используют правила Кирхгофа. Расчет сложных цепей состоит в отыскании токов в различных участках цепей.

Узел - точка разветвленной цепи, в которой сходится более двух проводников.

1 правило Кирхгофа: алгебраическая сумма сил токов, сходящихся в узле, равна нулю;

где n - число проводников, сходящихся в узле, Ii- сила тока в проводнике.

токи, входящие в узел считают положительными, токи, отходящие из узла - отрицательными.

2 правило Кирхгофа: в любом произвольно выбранном замкнутом контуре разветвленной цепи алгебраическая сумма произведений сил токов и сопротивлений каждого из участков этого контура равна алгебраической сумме ЭДС в контуре.

 

Чтобы учесть знаки сил токов и ЭДС выбирается определенное направление обхода контура(по часовой стрелке или против нее). Положительными считают токи, направление которых совпадает с направлением обхода контура, отрицательными считают  токи противоположного направления. ЭДС источников  электрической энергии считают положительными если они создают токи, направление которых совпадает с направлением обхода контура, в противном случае - отрицательными.

 

Порядок расчета сложной цепи постоянного тока.

  1. Произвольно выбирают направление токов во всех участках цепи.

  2. Первое правило Кирхгофа  записывают  для  (m-1)  узла, где m - число узлов в цепи.

  3. Выбирают произвольные замкнутые контуры, и после выбора направления обхода записывают второе правило Кирхгофа.

  4. Система из составленных уравнений должна быть разрешимой: число уравнений должно соответствовать количеству неизвестных.

Шунты и добавочные сопротивления.

Шунт - сопротивление, подключаемое параллельно к амперметру (гальванометру), для расширения его шкалы при измерении силы тока.

Если  амперметр рассчитан на силу тока I0, а с помощью него необходимо измерить силу тока, превышающую в n раз допустимое значение, то сопротивление, подключаемого шунта должно удовлетворять следующему условию:

 

 

Добавочное сопротивление - сопротивление, подключаемое последовательно с вольтметром (гальванометром),  для расширения его шкалы при измерении напряжения.

Если  вольтметр рассчитан на напряжение U0, а с помощью него необходимо измерить напряжение, превышающее в n раз допустимое значение, то добавочное сопротивление должно удовлетворять следующему условию:

 

 

nika-fizika.narod.ru

Закон Ома для участка цепи. Закон Джоуля - Ленца. Работа и мощность электрического тока. Виды соединения проводников.

Количество теплоты, выделившееся при прохождении электрического тока по проводнику, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого шел ток: 

Последовательное соединение.

1. Сила тока во всех последовательно соединенных участках цепи одинакова:

I1=I2=I3=...=In=...

2. Напряжение в цепи, состоящей из нескольких последовательно соединенных участков, равно сумме напряжений на каждом участке:

U=U1+U2+...+Un+...

3. Сопротивление цепи, состоящей из нескольких последовательно соединенных участков, равно сумме сопротивлений каждого участка:

R=R1+R2+...+Rn+...

Если все сопротивления в цепи одинаковы, то:

R=R1. N

При последовательном соединении общее сопротивление увеличивается (больше большего).

Параллельное соединение.

1. Сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках.

I=I1+I2+...+In+...

2. Напряжение на всех параллельно соединенных участках цепи одинаково:    

U1=U2=U3=...=Un=...

 3. При параллельном соединении проводников проводимости складываются (складываются величины, обратные сопротивлению):

Если все сопротивления в цепи одинаковы, то: 

При параллельном соединении общее сопротивление уменьшается (меньше меньшего).

4. Работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках:

A=A1+A2+...+An+...  

т.к.  A=I2Rt=I2(R1+R2+...+Rn+...)t.

5. Мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участках:

P=P1+P2+...+Pn+...  

6. Т.к. силы тока во всех участках одинаковы, то:       U1:U2:...:Un:...  = R1:R2:...:Rn:...

Для двух резисторов:  - чем больше сопротивление, тем больше напряжение.

4. Работа электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме работ на отдельных участках:

A=A1+A2+...+An+...   

т.к.     .

 

5. Мощность электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме мощностей на отдельных участках:

P=P1+P2+...+Pn+...  

6. Т.к. напряжения на всех участках одинаковы, то:

I1R1= I2R2=...= I3R3=...

Для двух резисторов:  - чем больше сопротивление, тем меньше сила тока.

www.eduspb.com

Закон Ома для электрической цепи

Электрический ток, как и любой процесс, подчиняется законам физики. Знаменитый немецкий физик Георг Симон Ом, именем которого названа единица измерения сопротивления, в 1826 году эмпирически вывел формулы, связывающие между собой ток, напряжение и сопротивление. Поначалу закон вызвал недоверие и критику в научных кругах. Затем правильность его рассуждений была подтверждена французом Клодом Пулье и труды Ома получили заслуженное признание.

Закон Ома для электрической цепи (полной)

Частный случай – закон Ома для участка цепи:

Обозначение

Единица измерения

Физический смысл

IАмперСила тока в цепи
ԑВольтЭлектродвижущая сила (э.д.с.) источника питания
rОмВнутреннее сопротивление источника питания
RОмСопротивление нагрузки, подключенной и источнику
UВольтПадение напряжения на сопротивлении нагрузки
Поясняющая схема к закону Ома

Добавим к этим формулам еще и электрическую мощность, выделяемую при прохождении тока:

В результате получается ряд формул, которые выводятся математически. Они связывают между собой все перечисленные физические величины.

Электродвижущая сила и внутреннее сопротивление

Электродвижущая сила источника напряжения характеризует его способность обеспечивать постоянную разность потенциалов на выводах. Эта сила имеет неэлектрическую природу: химическую у батареек, механическую – у генераторов.

Какова роль внутреннего сопротивления источника питания и что это такое? Допустим, вы замкнули накоротко выводы автомобильного аккумулятора медным проводником небольшого сечения. В физическом смысле вы подключили к источнику постоянного тока сопротивление, близкое к нулю. Если воспользоваться формулой для участка цепи, то через аккумулятор и проволоку должен пойти ток бесконечно большой величины. На деле этого не происходит, но проволока сгорит.

Теперь замкнем этой же проволокой батарейку. Ток через нее пойдет меньший. Это объясняется большим, чем у аккумулятора, значением внутреннего сопротивления. При малом сопротивлении нагрузки формула закона для полной цепи превращается в

В итоге ток через замкнутую накоротко батарейку будет иметь конечное значение, а мощность приведет к нагреву батарейки. Если бы мы замкнули аккумулятор более толстым проводом, выдержавшим ток короткого замыкания, то он ощутимо нагрел бы источник изнутри.

Э.Д.С. источника можно с некоторой точностью измерить вольтметром с высоким входным сопротивлением. Внутреннее же сопротивление источника нельзя измерить напрямую, а только рассчитать.

Закон Ома для переменного тока

На переменном токе в формуле закона Ома используется не активное, а полное сопротивление (Z).

Эта величина учитывает и активное, и реактивное сопротивление нагрузки, которое в свою очередь имеет индуктивную

и емкостную

составляющие.

Общее реактивное сопротивление цепи:

Знак (-) означает, что индуктивный и емкостной токи находятся в противофазе и друг друга компенсируют.

Оцените качество статьи. Нам важно ваше мнение:

electric-tolk.ru

Изучения применения закона ома для цепей постоянного тока

 

 

Цель   работы:

   Углубление знаний о законе Ома для участков цепи и о законе Ома для полной цепи. Применения правил Кирхгофа для расчета цепей постоянного тока.

 

Оборудование:  учебно-лабораторный стенд «Законы постоянного тока»,  мультиметр,  три-четыре резистора с известными сопротивлениями,  два гальванических элемента  разных типов,  соединительные провода.

Введение

   Постановка задачи о расчете цепи постоянного тока: «Зная величины действующих в цепи э.д.с., внутренние сопротивления источников тока и сопротивления всех элементов цепи, рассчитать силы токов на каждом участке цепи и падение напряжения на каждом элементе».

   При решении этой задачи используются:

закон Ома для участка цепи

   ,                                                                 (1)

I – сила тока, U – напряжение на участке цепи, R – сопротивление участка;

закон Ома для полной цепи

 ,                                                                 (2)

I – сила тока, e - э.д.с. источника тока, R – сопротивление внешней цепи, r – внутреннее сопротивление источника тока.

   Непосредственный расчет разветвленных цепей, содержащих несколько замкнутых контуров и несколько источников тока, производится с помощью двух правил  Кихгофа. 

    Любая точка в разветвленной цепи, в которой сходится не менее трех проводников с током, называется узлом. При этом ток, входящий в узел, считается положительным, а ток, выходящий из узла, - отрицательным.

  Первое правило Кирхгофа: алгебраическая сила токов, сходящихся в узле, равна нулю:

                                                                (3)

 Второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме э.д.с., встречающихся в контуре:

                                                            (4)

Описание стенда «Законы постоянного тока»

  В работе используется  стенд, состоящий из двух источников тока (гальванических элементов),  набора из четырёх резисторов  с известными сопротивлениями,  мультиметра и набора соединительных проводов.

1.     При сборке электрических цепей необходимо обеспечить хороший контакт в каждом соединении.

2.     Соединительные провода закручиваются под клеммы по часовой стрелке.

3.     При измерении сил токов и напряжений щупы мультиметра должны быть плотно прижаты к клеммам.

4.     Измерения производятся при кратковременном замыкании цепи кнопкой.

5.     Не следует длительное время оставлять цепь в собранном состоянии.

  Прежде всего, изучите правила измерений с помощью универсального электроизмерительного прибора – мультиметра.

 

Измерение, обработка и представление результатов измерений

Задание 1. Определение э.д.с.  источников тока

  

Э.д.с. источника тока можно с достаточно большой степенью точности измерить непосредственно с помощью вольтметра. Но при этом следует иметь в виду, что при этом измеряемое напряжение меньше истинного значения э.д.с. на величину падения напряжения на самом источнике тока.

,                                                  (5)

где U – показания вольтметра.

   Разница между истинным значением э.д.с. и измеренным напряжением при этом равна:

.                                                    (6)

   При этом относительная погрешность измерения э.д.с. равна:

                                                 (7)

  Обычно сопротивление источника тока (гальванического элемента) равно несколько Ом (например, 1Ом). Если даже  сопротивление вольтметра мало (например, 100 Ом), то и в этом случае погрешность прямого измерения э.д.с. составляет всего » 1%. Хороший вольтметр, в том числе используемый в мультиметре, имеет сопротивление порядка 106 Ом. Ясно, что при использовании такого вольтметра можно считать, что показание вольтметра практически равно измеряемой э.д.с источника тока.

1. Подготовьте мультиметр к измерению постоянного напряжения до 2 В.

2. Не вынимая гальванические элементы из креплений, измерьте и запишите их э.д.с. с точностью до сотых долей вольта.

3. Э.д.с. величина всегда положительная. Соблюдайте полярность при подключении мультиметра к источникам тока. Красный щуп мультиметра присоединяется к  «+» источника тока.

 

Задание 2. Измерение внутреннего сопротивления источников тока

    Внутреннее сопротивление источника тока можно вычислить с помощью закона Ома:

  .                                                            (8)

1. Подготовьте мультиметр для измерения силы постоянного тока до 10(20) А.                                                             

2. Составьте электрическую цепь из последовательно соединенного источника тока, резистора (одного из набора)  и амперметра.

3. Измерьте силу тока в цепи.

4. Рассчитайте и запишите величину внутреннего сопротивления источника.

5. Аналогичные измерения проделайте для другого элемента.

 

Задание 3. Расчёт  электрической  цепи  постоянного тока

1. Соберите электрическую цепь по схеме, предложенной преподавателем (схемы 1-7).

2. Зачертите схему в отчет по работе и укажите номиналы выбранных резисторов.

3. С помощью правил Кирхгофа рассчитайте силы токов во всех ветвях цепи. Вычислите падения напряжений на каждом резисторе.

4. С помощью мультимета измерьте силу тока в доступном для измерения месте. Измерьте падение напряжения на каждом резисторе.

5. В выводе сравните измеренные и расчетные значения и укажите причины возможных расхождений.

 

Задание 4. Соединение источников тока в батареи

1. Источники тока могут соединятся в батареи двумя основными способами: параллельно и последовательно. Если источники соединяются последовательно, то их э.д.с. и внутренние сопротивления складываются:

                                       (9)

   При параллельном соединении одинаковых источников тока общая э.д.с. батареи равна э.д.с. одного источника, а внутреннее сопротивление батареи в n раз меньше внутреннего сопротивления одного источника тока:

                                                    (10)

  Соберите цепи по схемам 8, 9, в которых реализуются обе схемы соединения. Рассчитайте и измерьте силу тока в цепи при этих соединениях. В выводе сравните расчетные и измеренные значения.

 

Отчет по лабораторной работе № 3

Изучение применения закона Ома для расчета цепей постоянного тока

выполненной учащимся школы «Поиск»

 

…………………………………………………………………………………

«…….»………….. 200….

 

Задание 1. Определение э.д.с.  источников тока

 

Первый источник тока e1 = ……… В

 

Второй источник тока e2 = ……… В

 

Задание 2. Измерение внутреннего сопротивления источников тока

 

Первый источник тока

 

R = ……… Ом,      I = ………  А,  r1 = ……… Ом

 

Второй источник тока

 

R = ……… Ом,      I = ………  А,  r2 = ……… Ом

 

Таблица 1

 

 

I1, А

 

I2, А

 

I3, А

 

U1, В

 

U2, В

 

U3, В

 

Вчисленные значения

 

 

 

 

 

 

Измеренные

значения

 

 

 

 

 

 

 

Вывод: ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

www.referatmix.ru

Законы Ома и Кирхгофа для цепей постоянного и переменного тока

Подробности
Категория: Электротехника и электроника

Формулировка закона Ома:

            Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению: I = U / R; [A = В / Ом]

 

 

            Ом установил, что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника. R = ρl / S,

 где ρ - удельное сопротивление, l - длина проводника, S - площадь поперечного сечения проводника.

            Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига.

            Если ток является синусоидальным с циклической частотой , а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

 

U=I*Z  где:

U = U0eiωt — напряжение или разность потенциалов,

I — сила тока,

Z = Re−iδ — комплексное сопротивление (импеданс),

R = (Ra2 + Rr2)1/2 — полное сопротивление,

Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),

Rа — активное (омическое) сопротивление, не зависящее от частоты,

δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.

 

1’ый закон Кирхгофа (применяется к узлам эл.цепи):

-в ветвях, образующих узел эл. цепи, алгебраическая сумма токов ровна нулю (-I1+I4-I2-I3-I5=0)

-сумма токов, входящих в узел, равна сумме токов, исходящих из узла (-I1+I4=I2+I3+I5)

2'ой закон Кирхгофа (применяется к контурам эл. цепи):

-в контуре эл. цепи алгебраическая сумма напряжений на его ветвях ровна нулю (∑U=0)

-в контуре эл. цепи алгебраическая сумма ЭДС этого контура равно алгебраической сумме падений напряжений в пассивных эл-тах (∑E=∑IR)

 

 

Смотрите также:

 

 

 

eksdan.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *