Содержание

Электродвижущая сила индукции. Закон Фарадея.

В результате многочисленных опытов Фарадею удалось установить, что в замкнутом проводящем контуре возникает индукционный ток и э.д.с. индукции при любом изменении магнитного потока, пронизывающего этот контур.

Для того чтобы понять механизм возникновения э.д.с. индукции и уяснить, как же количественно э.д.с. связана с магнитным полем, решим следующую очень непростую задачу (рис. 10.4.). Здесь по двум параллельным горизонтальным проводникам может скользить перемычка abбез трения и без нарушения электрического контакта. Проводники соединены резисторомR, поэтому они вместе с перемычкой и резистором образуют замкнутый проводящий контур. Этот контур целиком поместим в однородное магнитное поле, перпендикулярное плоскости контура.

Рис. 10.4.

Теперь начнём двигать перемычку с постоянной скоростью

. За времяdtона пройдёт расстояниеdl=Vdt, в результате чего площадь контура возрастёт на величинуdS=LVdt. ЗдесьL— длина перемычки или расстояние между проводниками.

За это же время dtпоток вектора магнитной индукции сквозь контур изменится на величину:

. (10.1)

Отметим, что при заданном направлении нормали к плоскости контура, поток и увеличение потока будут положительными. Направление нормали, совпадающее с направлением вектора, мы выбрали, конечно, произвольно.

Оставив на время наш контур, приглядимся повнимательнее к событиям, развивающимся при движении перемычки внутри этого проводника (рис. 10.5.).

Здесь каждый «свободный электрон» движется вместе с перемычкой со скоростью в магнитном поле

.

Рис. 10.5.

На заряд, движущийся в магнитном поле, будет действовать сила, параллельная перемычке:

. (10.2)

Эта сила не электростатического, амагнитногопроисхождения, то есть это «сторонняя сила», которую можно задать силовым полем с напряжённостью:

.

Циркуляция вектора напряжённости сторонней силы по замкнутому контуру равна э.д.с., действующей в этом контуре (см. лекцию №7):

.

Направление вектора возьмём от «b» к «a», так как при выбранном направлении нормалиобходить контур при расчете циркуляции придётся против часовой стрелки. В этом смешанном произведении осуществим циклическую перестановку сомножителей:

.

Результат разделим и умножим на dt,после чего можно сделать следующие шаги:

.

Здесь мы воспользовались тем, что векторное произведение — есть вектор изменения поверхности контура(рис. 10.6.).

Рис. 10.6.

Но этот вектор противоположен нормали, поэтому мы записали, что:

.

Так мы установили искомую связь э.д.с. индукции и магнитного поля:

. (10.3)

Электродвижущая сила индукции равна скорости изменения магнитного потока, пронизывающего замкнутый контур (закон Фарадея).

Знак «–» в выражении (10.3) напоминает о правиле Ленца. В нашем примере изменение и скорость изменения потока — положительные величины. Тогда, < 0. Индукционный ток,

Iинд.=< 0. Это значит, что он обтекает контур по часовой стрелке (рис. 10.7.). Этот ток создаёт, конечно, своё магнитное поле, которое направлено навстречу исходному полю, то есть «препятствует» тому нарастанию магнитного потока, которое и породило этот индукционный ток.

Рис. 10.7.

Подведём краткий итог.

Движение перемычки приводит к увеличению площади контура (dS), что в свою очередь означает рост потока вектора магнитной индукции через площадь контура (d = BdS). Всякое изменение магнитного потока приводит к возникновению э.д.с. индукции:

.

Теперь, когда всё так понятно, наведём лёгкую тень сомнения.

В нашем контуре работает источник тока, в котором в качестве сторонней силы выступает магнитная сила

. Под действием этой силы электроны приходят в направленное движение вдоль перемычки (рис. 10.8.) со средней скоростью.

Рис.10.8.

Легко видеть, что работа этой силы за время dt:

не равна нулю. И в то же время, не далее как на прошлой лекции было неопровержимо показано, что магнитная сила работы не производит (!).

Это недоразумение легко разрешается, если принять во внимание, что мы вычислили работу не магнитной силы Лоренца, а только одной её составляющей, направленной вдоль перемычки — . Эта составляющая связана со скоростью движения перемычки и электронов в ней со скоростью:=. Но ведь есть и ещё одно движение электронов: вдоль перемычки со скоростью направленного движения

. Это движение приводит к возникновению ещё одной составляющей магнитной силы, перпендикулярной перемычке —=. (Рис. 10.8. Воспользуйтесь правилом левой руки. Учитывайте при этом, что рассматривается движение электрона.)

Полная магнитная сила:

.

И вот работа этой полной магнитной силы над электроном за время dtдействительно равна нулю:

.

В этом легко убедиться, подставив в это уравнение F||=eVBиF=eUB.

Мы рассмотрели механизм возникновения э.д.с. индукции в частном случае, когда в однородном неизменном магнитном поле меняется площадь контура. Опыт свидетельствует о том, что можно обобщить этот результат: при любомизменении магнитного потока, пронизывающего замкнутый контур, в последнем возникает э.д.с. индукции, численно равная скорости изменения магнитного потока (

закон Фарадея).

studfiles.net

Эдс индукции (закон Фарадея)

Фарадей на основе своих опытов показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток. Возникновение индукционного тока указывает на наличие в цепи ЭДС.

Закон можно сформулировать так:

ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром.

. (3.33)

Кпд трансформатора

В трансформаторе нет подвижных частей, поэтому потери энергии в нем идут только на нагревание обмоток и сердечника. КПД зависит от нагрузки и у мощных трансформаторов достигает 98–99%. Наибольший КПД трансформатор имеет при такой нагрузке, когда его потери в меди становятся равными потерям в стали.

, (3.34)

где – КПД,

Р2– активная мощность на выходе трансформатора,

Рст – потери в стали,

Рм – потери в меди.

3.4. Простейшие конструктивные схемы электрических машин с указанием основных элементов конструкции Однофазный двухобмоточный трансформатор

Трансформатор – это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока. Двухобмоточные трансформаторы имеют две гальванически несвязанные обмотки. Передача энергии из первичной цепи трансформатора во вторичную происходит через магнитный поток.

Основными частями трансформатора являются: магнитопровод, обмотки и охладительная система.

Магнитопровод – комплект пластин из электротехнической стали или другого ферромагнитного материала, собранный в определенной геометрической форме, предназначенный для локализации в нем основного магнитного поля трансформатора.

Обмотка – совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведенные в витках, с целью получения высшего, среднего или низшего напряжения, или с другой целью.

В двухобмоточном трансформаторе различают обмотку высшего напряжения, присоединяемую к сети более высокого напряжения, и обмотку низшего напряжения, присоединяемую к сети низшего напряжения (рис. 3.12).

Система охлаждения масляных трансформаторов – бак трансформатора, заливаемый маслом, а для мощных трансформаторов – охладители, вентиляторы, масляные насосы, теплообменники и т.д.

Рис. 3.13. Двухобмоточный трансформатор

Асинхронный двигатель

Статор электрических машин переменного тока несет на себе двух- или трехфазную обмотку, которая подключается соответственно к двух- или трехфазной сети переменного тока. Назначение статора с обмоткой – создание вращающегося магнитного поля.

Для трехфазной обмотки пространственный сдвиг составляет 120°. Для двухфазной обмотки пространственный и временной сдвиг составляет 90°.

Выводы фаз обмоток подключаются к трехфазной сети переменного тока через выводную коробку, расположенную на корпусе электрической машины.

Ротор набирается из пластин электротехнической стали, изолированных друг от друга. В пазах находится обмотка.

Принцип действия асинхронного двигателя с короткозамкнутым ротором: при подключении обмотки статора к сети переменного тока, в статоре практически мгновенно возникает вращающееся магнитное поле.

Вращающееся магнитное поле пересекает проводники обмотки ротора и по закону электромагнитной индукции наводит в них ЭДС Е2. Направление ЭДС Е2 определяем по правилу правой руки. Так как обмотка ротора – короткозамкнутая, в ней возникает ток I

2. В магнитном поле, создаваемом полюсами, появляются проводники с током I2. На них, по закону Ампера, будет действовать сила, направление которой определяется правилом левой руки. За счет пары сил F2 возникает вращающий момент М – вращающий момент на валу двигателя при ω=0. Ротор приходит во вращение в направлении, совпадающем с направлением вращающегося магнитного поля (рис 3.14).

Для нормальной работы асинхронного двигателя необходимо выполнение условия . Данное неравенство характеризуется специальной величиной, которая обозначаетсяS и называется скольжением.

. (3.35)

Рис. 3.14. Асинхронный двигатель

studfiles.net

Закон электромагнитной индукции. Курсы по физике

Тестирование онлайн

  • Электромагнитная индукция. Основные понятия

  • Закон электромагнитной индукции

ЭДС индукции в движущемся проводнике

Взаимосвязь электрических и магнитных явлений всегда интересовала физиков. Английский физик Майкл Фарадей был совершенно уверен в единстве электрических и магнитных явлений. Он рассуждал, что электрический ток способен намагнитить кусок железа. Не может ли магнит в свою очередь вызвать появление электрического тока? Эта задача была решена.

Если в постоянном магнитном поле перемещается проводник, то свободные электрические заряды внутри него тоже перемещаются (на них действует сила Лоренца). Положительные заряды концентрируются в одном конце проводника (провода), отрицательные - в другом. Возникает разность потенциалов - ЭДС электромагнитной индукции. Явление возникновения ЭДС индукции в проводнике, движущемся в постоянном магнитном поле, называется явлением электромагнитной индукции.

Правило определения направления индукционного тока (правило правой руки):

В проводнике, движущемся в магнитном поле, возникает ЭДС индукции, энергия тока в этом случае определяется по закону Джоуля-Ленца:

Работа внешней силы по перемещению проводника с током в магнитном поле

ЭДС индукции в контуре

Рассмотрим изменение магнитного потока через проводящий контур (катушку). Явление электромагнитной индукции было открыто опытным путем:

Закон электромагнитной индукции (закон Фарадея): ЭДС электромагнитной индукции, возникающая в контуре, прямо пропорциональна скорости изменения магнитного потока через него.

Знак "минус" является математическим выражением следующего правила. Направление индукционного тока, возникающего в контуре, определяется по правилу Ленца: возникающий в контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать изменение магнитного потока, вызвавшее данный ток.

fizmat.by

Опыты Фарадея. Закон Фарадея. Правило Ленца. ЭДС индукции в неподвижных проводниках.

1. Опыты Фарадея

а) В соленоид, замкнутый на гальванометр, вдвигается и выдвигается постоянный магнит. На гальванометре будет отклонение стрелки, и оно будет тем больше, чем быстрее происходит вдвижение и выдвижение. При изменении полюсов магнита направление отклонения стрелки изменится.

б) В соленоид, замкнутый на гальванометр, вставлена катушка (другой соленоид), через которую пропускается ток. При включении и выключении (т.е. при любом изменении тока) происходит отклонение стрелки гальванометра. Направление отклонения изменяется при включении – выключении, уменьшении – увеличении тока, вдвигании – выдвигании катушек.

Явление электромагнитной индукции заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает индукционный (наведенный) электрический ток.

Возникновение индукционного тока означает, что в контуре действует электродвижущая сила i – ЭДС индукции.

 

ЭДС индукции, возникающая в проводящем контуре, равна скорости изменения магнитного потока через площадь, ограниченную этим контуром – закон Фарадея.

Правило Ленца: индукционный ток в контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.

Знак минус в законе Фарадея является математическим выражением правила Ленца.

Если контур, в котором индуцируется ЭДС, состоит не из одного витка, а из N витков (например, соленоид), то если витки соединены последовательно, i будет равна сумме ЭДС, индуцируемых в каждом из витков в отдельности:

- потокосцепление или полный магнитный поток.

Если Ф12=…=Фn, то

Т.к. ФB=BScosα,то для того чтобы изменить магнитный поток Ф можно изменить:

1) магнитное поле 2) площадь S3) угол α.

 

Индуктивность соленоида.

Соленоид — длинная, тонкая катушка, то есть катушка, длина которой намного больше, чем её диаметр (также в дальнейших выкладках здесь подразумевается, что толщина обмотки намного меньше, чем диаметр катушки). При этих условиях и без использования магнитного материала плотность магнитного потока (или магнитная индукция) , которая выражается в системе СИ в тесла [Тл], внутри катушки является фактически постоянной и (приближённо) равна

где − магнитная постоянная, − число витков, − ток, записанный в амперах [А] и − длина катушки в метрах [м]. Пренебрегая краевыми эффектами на концах соленоида, получим[16], что потокосцепление через катушку равно плотности потока [Тл], умноженному на площадь поперечного сечения [м2] и число витков :



Отсюда следует формула для индуктивности соленоида (без сердечника):

Если катушка внутри полностью заполнена магнитным материалом (сердечником), то индуктивность отличается на множитель — относительную магнитную проницаемость[17] сердечника:

В случае, когда , можно (следует) под S понимать площадь сечения сердечника [м2] и пользоваться данной формулой даже при толстой намотке, если только полная площадь сечения катушки не превосходит площади сечения сердечника во много раз.

cyberpedia.su

Явление электромагнитной индукции. Закон Фарадея.



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Явление электромагнитной индукции можно обнаружить в таких ситуациях:

1. при относительном движении катушки и магнита;

2. при изменении индукции магнитного поля в контуре, который расположен перпендикулярно линиям магнитного поля.

3. при изменении положения контура, расположенного в постоянном магнитном поле.

Закон Фарадея.

Согласно закону электромагнитной индукции Фарадея (в СИ):

где

— электродвижущая сила, действующая вдоль произвольно выбранного контура,

— магнитный поток через поверхность, ограниченную этим контуром.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

где

— электродвижущая сила,

— число витков,

— магнитный поток через один виток,

— потокосцепление катушки.

 

Векторная формула:

В дифференциальной форме закон Фарадея можно записать в следующем виде:

 

(в системе СИ)

или

(в системе СГС).

В интегральной форме (эквивалентной):

(СИ)

или

(СГС)

Здесь — напряжённость электрического поля, — магнитная индукция, — произвольная поверхность, — её граница. Контур интегрирования подразумевается фиксированным (неподвижным).

Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).

· В этом виде закон Фарадея входит в систему уравнений Максвелла для электромагнитного поля (в дифференциальной или интегральной форме соответственно)[2].

Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца, порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство продолжает соблюдаться, но ЭДС в левой части теперь не сводится к (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).


· Некоторые авторы, например, М. Лившиц в журнале «Квант» за 1998 год[3] отрицают корректность применения термина закон Фарадея или закон электромагнитной индукции и т. п. к формуле в случае подвижного контура (оставляя для обозначения этого случая или его объединения со случаем изменения магнитного поля, например, термин правило потока)[4]. В таком понимании закон Фарадея — это закон, касающийся лишь циркуляции электрического поля (но не ЭДС, создаваемой с участием силы Лоренца), и в этом понимании понятие закон Фарадея в точности совпадает с содержанием соответствующего уравнения Максвелла.

· Однако возможность (пусть с некоторыми оговорками, уточняющими область применимости) совпадающей формулировки «правила потока» с законом электромагнитной индукции нельзя назвать чисто случайной. Дело в том, что, по крайней мере для определенных ситуаций, это совпадение оказывается очевидным проявлением принципа относительности. А именно, например, для случая относительного движения катушки с присоединенным к ней вольтметром, измеряющим ЭДС, и источника магнитного поля (постоянного магнита или другой катушки с током), в системе отсчета, связанной с первой катушкой, ЭДС оказывается равной именно циркуляции электрического поля, тогда как в системе отсчета, связанной с источником магнитного поля (магнитом), происхождение ЭДС связано с действием силы Лоренца на движущиеся с первой катушкой носители заряда. Однако та и другая ЭДС обязаны совпадать, поскольку вольтметр показывает одну и ту же величину, независимо от того, для какой системы отсчета мы её рассчитали.

· Потенциальная форма

При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:

(в случае отсутствия без вихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).

В общем случае, при учёте и без вихревого (например, электростатического) поля имеем:

.

 

 


megapredmet.ru

Закон индукции Фарадея и закон Ленца

Физика > Закон индукции Фарадея и закон Ленца

 

Изучите действие закона электромагнитной индукции Фарадея и закона Ленца – явление, формулировка и формулы: создание электродвижущей силы в магнитном поле.

Созданная переменой магнитного потока 

Задача обучения

  • Перевести закон индукции Фарадея в формулу.

Основные пункты

  • Минус говорит о том, что созданные ток и магнитное поле вступают в противостояние изменению потока – закон Ленца.
  • Закон индукции выступает вторым главным принципом функционирования множества электрических приборов.
  • Согласно закону Фарадея, созданная переменой магнитного поля ЭДС зависит от изменения потока, времени и количества витков на катушке.

Термины

  • Поток – скорость передачи энергии.
  • Соленоид – катушка с намотанным проводом, функционирующая по принципу магнита, когда сквозь нее проходит электрический ток.
  • Электродвижущая сила (ЭДС) – созданное батареей или магнитной силой напряжение.

Закон индукции Фарадея

Это главный закон в электромагнетизме, отображающий принципы контакта магнитного поля и электрической цепи, что приводит к формированию электродвижущей силы (ЭДС). На этом принципе работает много различных механизмов, вроде генераторов, соленоида, индукторов, трансформаторов и т.д.

Фарадей в своих экспериментах смог показать, что созданная при перемене магнитного потока ЭДС зависит от нескольких факторов. Начнем с того, что она выступает в прямой пропорциональности перемене потока, а своего максимума достигает, если изменение времени было незначительным. Если у катушки есть N оборотов, то ЭДС в N раз больше, чем у одиночной катушки. Высчитывается по формуле:

Это выражение закона индукции Фарадея, где единицей служит вольт.

Закон Ленца

Отметьте в формуле знак минус, потому что он играет важную роль. С его помощью мы понимаем, что созданные ЭДС ток и магнитное поле вступают в противостояние с переменой потока – закон Ленца. Заданное минусом направление было именовано в честь Генриха Ленца, который в одиночку занимался исследованием аспектов индукции. Конечно, Фарадей то же знал о направлении, но Ленц заявил об этом первым.

(а) Когда магнитный стержень входит в катушку, сила магнитного поля возрастает. Ток создает еще одно поле, но в противоположном направлении к магниту, чтобы вступить в противостояние увеличению. Это один из аспектов закона Ленца. (b) и (c) – Другие примеры ситуаций. Главное проверить, чтобы направление показывало противостояние перемене магнитного потока и отвечало правилу правой руки

Энергосбережение

Закон Ленца отображает проявление энергетического сбережения. ЭДС создает ток, противостоящий перемене потока. Энергия способна войти или выйти, но это не происходит мгновенно. Закон Ленца выступает следствием. Как только начинается изменение, индукция выступает против. Если бы была положительная обратная связь, то индуцированная ЭДС оказывалась в том же направлении, что и измененный поток.


v-kosmose.com

Работано перемещению проводника и контура с током в магнитом ноле.Явление электромагнитной индукции. Закон Ленца.Закон Фарадея-Максвелла, его вывод из закона сохранения энергии.

 

Работа при перемещении проводника с током в магнитном поле

Пусть прямолинейный проводник длиной l, по которому идёт ток I, движется в однородном магнитном поле. Магнитное поле действует на проводник с силой Ампера . . Работу будет совершать составляющая этой силы, лежащая в плоскости перемещения проводника, , где B⏊ – составляющая вектора магнитной индукции, перпендикулярная плоскости движения проводника. Работа магнитного поля по перемещению проводника на малое расстояние dx(соответствующее перемещению )

где dS– площадь поверхности, ометаемой проводником при малом перемещении dx(заштрихованная область на рисунке), dΦ – магнитный поток сквозь эту поверхность. При перемещении проводника из положения 1 в положение 2

, при I = const работа при перемещении проводника с током

Работа при перемещении контура с током в магнитном поле

Пусть имеется замкнутый проводник с током I, находящийся в магнитном поле. Проводник перемещается из положения 12 в положение 1′2′. Найдём работу магнитного поля по перемещению двух половин этого контура – 12 и 21 по формуле .

, где Φ1 – магнитный поток сквозь поверхность, ограниченную контуром 12, Φ2 – контуром 1′2′, Φ0 – контуром 11′2′2

здесь ΔΦ = Φ2 – Φ1 – разность магнитных потоков сквозь поверхности, натянутые на проводящий контур в начальном и конечном положении.

закон Фарадея-Максвелла; EiЭДС индукции.

Явление электромагнитной индукции – возникновение электрического поля в замкнутом контуре при изменении магнитного потока сквозь поверхность, натянутую на этот контур. ЭДС индукции – энергетическая характеристика этого поля. В замкнутом проводнике, помещённом в переменное магнитное поле, будет создаваться индукционный ток.

Правило Ленца: направление индукционного тока таково, чтобы компенсировать вызвавшее индукционный ток изменение магнитного потока. Правило Ленца выражается знаком «–» в выражении закона Фарадея-Максвелла.

Явление электромагнитной индукции можно трактовать как возникновение вихревого электрического поля при переменном магнитном поле. Получим закон Фарадея-Максвелла из других опытных законов.

Проводник с током I (ток создаётся источником с ЭДС E) движется в однородном магнитном поле с индукцией , перпендикулярной плоскости движения про- водника. Энергия источника расходуется на совершение механической работы и увеличение внутренней энергии проводника – в тепло: . По определению ЭДС, работа источника при прохождении через источник малого заряда dq: механическая работа – работа силы Ампера: Φ – магнитный поток сквозь поверхность, натянутую на замкнутую цепь, содержа-щую источник и движущийся проводник; количество теплоты, выделяющееся в цепи за время dtпрохождения через источник заряда d : R – сопротивление всей цепи.

, dq=Idt,

 

Это обобщённый закон Ома для замкнутой цепи: сумма падений напряжений равна сумме ЭДС. Обозначим

, Это и есть ЭДС индукции.

Явление электромагнитной индукции. Закон Ленца. ЭДС индукции при движении проводника в магнитном ноле. Вывод закона Фарадея-Максвелла на основе электронной теории. Максвелловская трактовка явления электромагнитной индукции. Пepвoe уравнение Максвелла.

закон Фарадея-Максвелла; EiЭДС индукции.

Явление электромагнитной индукции – возникновение электрического поля в замкнутом контуре при изменении магнитного потока сквозь поверхность, натянутую на этот контур. ЭДС индукции – энергетическая характеристика этого поля. В замкнутом проводнике, помещённом в переменное магнитное поле, будет создаваться индукционный ток.

Правило Ленца: направление индукционного тока таково, чтобы компенсировать вызвавшее индукционный ток изменение магнитного потока. Правило Ленца выражается знаком «–» в выражении закона Фарадея-Максвелла.

Явление электромагнитной индукции можно трактовать как возникновение вихревого электрического поля при переменном магнитном поле. Получим закон Фарадея-Максвелла из других опытных законов.

Вывод закона Фарадея-Максвелла из электронных представлений

Пусть металлический проводник длиной l движется в однородном магнитном поле B со скоростью v , перпендикулярной линиям индукции . На свободные

заряды (электроны) в проводнике магнитное поле действует с силой F2 . Из-за этого электроны будут перемещаться по проводнику до тех пор, пока не установится равновесие, т. е. возникшее по этой причине электрическое поле не скомпенсирует воздействие магнитного поля силой F1 .Рассмотрим один электрон в проводнике. Он движется с постоянной скоростью – скоростью проводника v , значит, его ускорение равно нулю. Запишем II закон Ньютона: где –e – заряд электрона, E – напряжённость электрического поля внутри проводника; Поле E внутри проводника однородно. Разность потенциалов между концами проводника, по интегральной связи напряжённости и потенциала электростатического поля, Применим к рассматриваемому проводнику обобщённый закон Ома: (правая часть этого равенства равна нулю, так как тока в проводнике нет). Отсюда Но v=dx/dt, поэтому

(Здесь S = lx– площадь поверхности, ометаемой проводником при его движении; S направлен по нормали к этой поверхности.)


Похожие статьи:

poznayka.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *