Содержание

Высшие гармоники в электросетях

Высшие гармоники в сети.

           В связи с быстрым ростом применения устройств использующих в своей схеме тиристоры, которые часто генерируют в сеть гармоники, появилось достаточно большое количество возмущений в электросетях.

            Эти возмущения приводят к систематическому недопроизводству, а то и сбоям производственного оборудования. Поэтому, необходимо использовать фильтры гармоник для предотвращения роста уровня нелинейных искажений в сети, поглощения (тепловыделения) гармоник, а также для рационального использования электроэнергии.

Что такое гармоники?

            Искаженная кривая тока или напряжения может быть разложена на фундаментальную синусоиду (50 Гц) и сумму  определенного количества частот кратных 50 Гц. Например 250 Гц – 5-я гармоника и 350 Гц  — 7-я гармоника.

            Сумма  определенного количества частот, которые могут быть добавлены к синусоиде 50 Гц для получения существующей  формы тока или напряжения и называется гармониками. Соответственно при изменении их амплитуды, фазы и частоты изменяется  кривая тока или напряжения как результат синтеза гармоник.

            Нелинейные искажения проявляются как изменение синусоидальности кривой тока или напряжения. Частоты выше фундаментальной (50 Гц) называются гармониками, частоты ниже фундаментальной называются  субгармониками.

            Для примера на рисунке ниже искаженная кривая представлена как сумма фундаментальной частоты 50 Гц и суммы гармоник 5-ой (250 Гц) и 7-ой (350 Гц).

Искаженная кривая = 50 Гц основная частота + 5-я гармоника (250 Гц) + 7-я гармоника (250 Гц)

Источники (усилители) гармоник
  • Тиристорные контроллеры
  • Частотные приводы
  • Устройства плавного пуска двигателя
  • Конденсаторные установки для компенсации реактивной мощности (без фильтров)
  • Полупроводники
  • Дуговая сварка
  • Трансформаторы, реакторы
  • Нелинейная нагрузка искажающая форму кривой тока, что генерирует гармоники

Процесс инжиниринга для подавления гармоник
  • Сбор данных (состояние системы, гармонический спектр, THD предел)
  • Построение карты импедансов системы
  • Расчет импеданса гармоникам и определение порядка фильтра
  • Расчет перетоков гармоник
  • Отработка на специализрованном ПО
  • Проверка возможных ненормальных резонансов в системе, и вероятности усиления гармоник
  • Разработка и производство системы подавления гармоник
  • Проверка системы после инсталляции
  • Отчет о проделанных измерениях и внедренном оборудовании

Искажения (возмущения) вносимые гармониками

           Гармоники генерируемые источниками не остаются в системе а проявляются в соседних связанных электросетях и могут приводить к катастрофическим последствиям в других системах.

  • Перегрев и выход из строя трансформаторов
  • Увеличение тока, или перегрузка током конденсаторов и шум
  • Сбои в работе систем контроля
  • Изменение напряжения
  • Перегрузка вращающихся устройств
  • Ошибки срабатывания автоматических выключателей
  • Ошибки в коммуникационном оборудовании
  • Большой ток в нейтрали и низкое напряжение между фазой и PE

Что такое фильтр гармоник?

           Фильтр гармоник – устройство, которое подавляет и потребляет гармоники генерируемые различным оборудованием. Он состоит из резистора, катушки индуктивности (реактора ) и конденсатора.

           Типовой фильтр гармоник состоит из одиночных шунтирующих фильтров для гармоник низкого порядка (3-15 я). Эти фильтры настроены на частоту гармоники, которую они подавляют. Для гармоник более высокой частоты, устанавливаются дополнительные фильтры.

Эффективность фильтров гармоник.

  • Улучшение cos (φ) в сети (уменьшаются перетоки реактивной мощности, улучшается эффективность использования электроэнергии и как следствие снижаются затраты)
  • Подавление (вытягивание) гармоник из сети
  • Решение проблемы резонанса между индуктивностями и емкостями в системе
  • Увеличение производительности и срока службы оборудования на производстве вследствие контроля за качеством напряжения

Эти эффекты подавления гармоник тока фильтрами поясняются следующими схемами:

In  —  Генерируемый гармонический ток                                                        Zfn

Ifn —  Гармонический ток на входе в фильтрующую систему

Isn — Гармонический ток поступающий в цепь трансформатора (генератора) – источника

       питания

Zfn – Входной импеданс фильтра (по отношению к гармоникам)

Zfn – Входной импеданс трансформатора (по отношению к гармоникам)

 

Европейский стандарт содержания гармоник в сети
Напряжение системыменее 35 кВБолее 35 кВ
THD U[%]3%1,5%

  

Предельные значения  THDI %, в зависимости от тока короткого замыкания Iкз и максимального потребляемого тока I п. макс.

 

Iкз / I п. макс. *<11 **11≤h<1717≤h<2323≤h<3535≤hTHD
<20***4,02,01,50,60,35,0
20<507,03,52,51,00,58,0
50<10010,04,54,01,50,712,0
100<100012,05,55,02,01,015,0
>100015,07,06,02,51,420,0

 

* — Максимальное искажение по току в % I п. макс. (первой гармоники = 50 Гц)

** — Порядок гармоники (нечетные)

*** — Все энергогенерирующее оборудование ограничивается значениями нелинейных искажений по току в зависимости величины отношения тока короткого замыкания Iкз и максимального потребляемого тока I п. макс. 

Примечание

— Четные гармоники лимитируются на уровне 25% от величины нечетной гармоники

— Нелинейные искажения по току могут проявляться как появление постоянной составляющей в синусоиде, что приводит к перегреву (перенасыщению) силовых трансформаторов постоянным током, поэтому применение однополупериодных схем выпрямления (конвертеров) не допустимо.

Предельные значения  нелинейных искажений по напряжению (IEEE Std 519-1992)
Напряжение на шинахНелинейные искажения по гармоникам,  %THD, %
69 кВ и ниже3,05,0
от 69,001 кВ до 161кВ1,52,5
свыше 161,001 кВ1,01,5

www.matic.ru

Блог » Высшие гармоники в электросетях

Постоянный рост количества нелинейных потребителей в наших электрических сетях приводит к повышенному «загрязнению электросетей». Обратное воздействие на сеть является для энергетики такой же проблемой, как загрязнение воды и воздуха для экологии.

В идеальном случае на выходных клеммах генераторы выдается чисто синусоидальный ток. Синусоидальное напряжение рассматривается как идеальная форма переменного напряжения, любое отклонение от него считается сетевой помехой.

Рис.1 Обратные воздействия на сеть, вызванные преобразователями частоты.

Все больше потребителей получают из сети несинусоидальный ток. Быстрое преобразование Фурье (БПФ) этих «загрязненных» токовых волн показывает наличие широкого спектра колебаний с гармониками различного порядка, которые обычно называют высшими гармониками.

Рис.2 Анализ высших гармоник (Быстрое преобразование Фурье)

Высшие гармоники наносят вред электрическим сетям, они опасны для подключенных потребителей так же, как загрязненная вода вредна для организма человека. Они приводят к перегрузкам, снижают срок службы и, при определенных условиях могут вызывать преждевременный выход из строя электрических и электронных потребителей.

Нагрузка высшими гармониками является основной причиной невидимых проблем с качеством напряжения, приводящих к огромным расходам на ремонт или покупку нового оборудования взамен поврежденного. Недопустимо высокое обратное воздействие на сеть и вызванное им низкое качество напряжения могут, таким образом, вызвать сбои производственного процесса вплоть до остановки производства.

Высшие гармоники – это токи или напряжения, частота которых превышает основное колебание 50/60 Гц и кратна этой частоте основного колебания. Высшие гармоники тока не вносят вклад в активную мощность, но оказывают только термическую нагрузку на сеть. Поскольку токи высших гармоник протекают в дополнение к «активным» синусоидальным колебаниям, они обеспечивают электрические потери в рамках электроустановки, что может привести к термической перегрузке. Дополнительные потери в потребителе электроэнергии приводят, кроме того к нагреву и перегреву, а также к сокращению срока службы оборудования.

Оценка нагрузки высшими гармониками, как правило, выполняется в точке подключения (или передачи в сеть электроснабжения общего пользования) соответствующей организации по энергоснабжению. Все чаще эти точки называют Point of Common Coupling (PCC). При определенных условиях может потребоваться определение и анализ нагрузки высшими гармониками со стороны определенного оборудования или групп оборудования для выявления внутренних проблем с качеством электрической сети и их причин, их вызывающих.

Рис.3 Поврежденные высшими гармониками конденсаторы

Для оценки нагрузки высшими гармониками используются следующие параметры:

Коэффициент суммарных гармонических искажений (THD)

Коэффициент суммарных гармонических искажений (THD) или общее гармоническое искажение позволяет квалифицировать размер долей, возникающих в результате нелинейного искажения электрического сигнала. Это отношение эффективного значения высших гармоник к эффективному значению первой гармоники. Значение THD используется в сетях низкого, среднего и высокого напряжения. Обычно для искажения тока используется коэффициент THDi , а для искажения напряжения – коэффициент THDu.

Коэффициент искажения для напряжения
  • M = порядковый номер высшей гармоники
  • M = 40 (UMG 604, UMG 508, UMG 96RM)
  • M = 63 (UMG 605, UMG 511)
  • Основная гармоника fund соответствует n = 1

Коэффициент искажения для тока
  • M = порядковый номер высшей гармоники
  • M = 40 (UMG 604, UMG 508, UMG 96RM)
  • M = 63 (UMG 605, UMG 511)
  • Основная гармоника fund соответствует n = 1

Общее искажение тока (TDD)

Особенно в Северной Америке термин TDD регулярно используется в связи с проблемами, вызванными высшими гармониками. Это величина, связанная с THDi, но в этом случае определяется отношение доли высших гармоник к доле основных колебаний номинального значения тока. Таким образом, TDD определяет отношение между высшими гармониками тока (аналогично THDi) и возникающим на протяжении определенного периода эффективным значением тока при полной нагрузке. Обычно период равен 15 или 30 минутам.

TDD (I)
  • TDD определяет отношение между высшими гармониками тока (THDi) эффективным значением
  • тока при полной нагрузке.
  • IL = полный ток нагрузки
  • M = 40 (UMG 604, UMG 508, UMG 96RM)
  • M = 63 (UMG 605, UMG 511)

Анализ гармоник (тока и напряжения) могут проводить практически все анализаторы ПКЭ Janitza, за исключением UMG 96L.

neokip.ru

Высшие гармоники — это… Что такое Высшие гармоники?



Высшие гармоники

Высшие гармоники оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трнсформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях; уменьшение коэффициента мощности за счет мощности искажения, вызванной протеканием токов высших гармоник, а также ограниченное применение батарей конденсаторов для компенсации реактивной мощности. Источниками высших гармонических тока и напряжения являются электроприемники с нелинейными нагрузками. Например электродуговые сталеплавильные печи, установки электродуговой сварки, газоразрядные лампы и др.

Wikimedia Foundation.
2010.

  • Высшее театральное училище имени Б.В. Щукина
  • Высшие Женские Курсы

Смотреть что такое «Высшие гармоники» в других словарях:

  • высшие гармоники — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN upper harmonics …   Справочник технического переводчика

  • коэффициент мощности, не учитывающий высшие гармоники — [Интент] EN displacement power factor DPF The displacement power factor is the power factor due to the phase shift between voltage and current at the fundamental line frequency. For sinusoidal (non distorted) currents, the displacement power… …   Справочник технического переводчика

  • коэффициент мощности, учитывающий высшие гармоники — [Интент] EN apparent power factor APF The apparent power factor (APF) is the ratio of real power to apparent power, including harmonics. This includes all harmonics. Harmonic currents decrease the power factor, even when there is no phase angle… …   Справочник технического переводчика

  • высшие пространственные гармоники — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN high space excitation harmonics …   Справочник технического переводчика

  • ЗВУК И АКУСТИКА — Звук это колебания, т.е. периодическое механическое возмущение в упругих средах газообразных, жидких и твердых. Такое возмущение, представляющее собой некоторое физическое изменение в среде (например, изменение плотности или давления, смещение… …   Энциклопедия Кольера

  • Авиационный тренажёр — Информацию об игровых авиатренажерах смотрите в статье Авиасимулятор. Авиационный (пилотажный) тренажер это имитатор полета, предназначенный для наземной подготовки пилотов. В авиационном тренажере имитируется динамика полета и работа систем ВС с …   Википедия

  • Жежеленко И. В. — Игорь Владимирович Жежеленко Дата рождения: 1930 Место рождения: Мариуполь Гражданство: СССР, Украина Научная сфера: электроснабжение промышленных предприятий Место работы: Ждановский металлургический институт / Приазовский государственный… …   Википедия

  • Жежеленко, Игорь Владимирович — Игорь Владимирович Жежеленко Дата рождения: 1930 год(1930) Место рождения: Мариуполь Страна: СССР, Украина Научная сфера: электроснабжение промышленны …   Википедия

  • Жежеленко Игорь Владимирович — Игорь Владимирович Жежеленко Дата рождения: 1930 Место рождения: Мариуполь Гражданство: СССР, Украина Научная сфера: электроснабжение промышленных предприятий Место работы: Ждановский металлургический институт / Приазовский государственный… …   Википедия

  • Жежеленко, И. В. — Игорь Владимирович Жежеленко Дата рождения: 1930 Место рождения: Мариуполь Гражданство: СССР, Украина Научная сфера: электроснабжение промышленных предприятий Место работы: Ждановский металлургический институт / Приазовский государственный… …   Википедия

dic.academic.ru

Высшие гармоники в трехфазных цепях

Напряжения трехфазных источников
энергии часто бывают существенно
несинусоидальными (строго говоря, они
несинусоидальны всегда). При этом
напряжения на фазах В и С повторяют
несинусоидальную кривую
напряжения
на фазе А со сдвигом на треть периода Т
основной гармоники:

.

Пусть для фазы А к-я гармоника напряжения

.

Тогда с учетом, что
,
для к-х гармонических напряжений фаз В
и С соответственно можно записать:

Всю совокупность гармоник к от 0 до
можно
распределить по трем группам:

1.

гармоники данной группы образуют
симметричные системы напряжений,
последовательность которых соответствует
последовательности фаз первой гармоники,
т.е. они образуют симметричные системы
напряжений прямой последовательности.

Действительно,

и

.

2.
.
Для этих гармоник имеют место соотношения:

т.е. гармоники данной группы образуют
симметричные системы напряжений обратной
последовательности.

3.
.
Для этих гармоник справедливо

Таким образом, векторы напряжений данной
группы во всех фазах в любой момент
времени имеют одинаковые модули и
направления, т.е. эти гармоники образуют
системы нулевой последовательности.

Рассмотрим особенности работы трехфазных
систем, обусловленные наличием гармоник,
кратных трем.

1.
Если фазы генератора соединены в
треугольник, то при несинусоидальных
фазных ЭДС сумма ЭДС, действующих в
контуре (см. рис. 7) не равна нулю, а
определяется гармониками, кратными
трем. Эти гармоники вызывают в замкнутом
треугольнике генератора ток, даже когда
его внешняя цепь разомкнута:

,

где
,
а-
сопротивление фазы генератора для i-й
гармоники, кратной трем.

2. Если фазы генератора соединить в
открытый треугольник (см. рис. 8), то на
зажимах 1-2 будет иметь место напряжение,
определяемое суммой ЭДС гармоник,
кратных трем:

.

Таким образом, показание вольтметра в
цепи на рис. 8

.

3. Независимо от способа соединения –
в звезду или в треугольник – линейные
напряжения не содержат гармоник, кратных
трем.

При соединении в звезду это объясняется
тем, что гармоники, кратные трем, как
указывалось, образуют нулевую
последовательность, ввиду чего исчезают
из линейных напряжений, равных разности
фазных.

При соединении в треугольник составляющие
фазных ЭДС, кратные трем, не выявляются
в линейных (фазных) напряжениях, так как
компенсируются падениями напряжений
на собственных сопротивлениях фаз
генератора.

Таким образом, при соединении в треугольник
напряжение генератора 

и ток

.

В свою очередь при соединении в звезду

.

4. При симметричной нагрузке ток в
нейтральном проводе определяется
гармоническими, кратными трем, поскольку
они образуют нулевую последовательность:

.

5. При соединении в звезду и отсутствии
нейтрального провода фазные токи
нагрузки не содержат гармоник, кратных
трем (в соответствии с первым законом
Кирхгофа сумма токов равна нулю, что
невозможно при наличии этих гармоник).
Соответственно нет этих гармоник и в
фазных напряжениях нагрузки, связанных
с токами законом Ома. Таким образом, при
наличии гармоник, кратных трем, в фазных
напряжениях генератора напряжение
смещения нейтрали в симметричном режиме
определяется этими гармониками

.

studfiles.net

что это и чем они опасны

В идеальном случае в электрической сети должно быть переменное напряжение, которое изменяется по синусоидальному закону с частотой 50 Гц (50 раз в секунду), если речь идет об отечественных сетях. На практике дело обстоит иначе – напряжение далеко от синусоидальной формы, оно искажено, не только по фронтам, но и по всей длине наполнено различными всплесками и помехами. Данное явление называется гармоники в электрических сетях. В этой статье мы подробнее рассмотрим, что это такое и чем опасны гармоники для оборудования, подключенного к сети.

Определение гармоник

График сигнала, который изменяется по синусоидальному закону, имеет вид:

Но это значительно отличается от реальной формы напряжения в электрической сети:

Эти зазубрины и всплески и вызваны гармониками. Мы попытаемся рассказать об этом явлении простыми словами. Изображенный выше график можно представить как сумму сигналов различной частоты и величины. Если всё это сложить, то в результате получится именно такой сигнал. Пример и результат сложения сигналов изображен на графике ниже:

Гармоники различают по номерам, где первая гармоника — это та составляющая, у которой самая большая величина. Однако такое описание слишком кратко. Поэтому давайте приведем формулу определения величины гармоники. Это возможно при гармоническом анализе и разложении в ряд Фурье:

Из этой формулы можно выделить и величины частот и фаз гармонических составляющих электрической сети и любого другого синусоидального сигнала.

Источники помех

К источникам помех можно отнести целый ряд оборудования, начиная от бытовых приборов, заканчивая мощными промышленными электрическими машинами. Для начала давайте кратко рассмотрим причины их возникновения.

Гармоники в электрической сети переменного тока возникают из-за особенностей электрооборудования, например из-за нелинейности их характеристик, или характера потребления тока.

Например, в трёхфазных сетях в магнитопроводах трансформаторов длины магнитных путей средних и крайних фаз различаются почти в 2 раза, поэтому и токи их намагничивания различаются до полутора раз. Отсюда возникают гармоники в трёхфазных сетях.

Другой источник помех в электротехнике — это электродвигатели, как трёхфазные синхронные и асинхронные, так и однофазные, в том числе и универсальные коллекторные двигатели. Последний тип двигателей используется в большей части бытовой техники, например:

  • стиральные машины;
  • кухонные комбайны;
  • дрели, болгарки, перфораторы и пр.

В результате работы импульсных блоков питания возникают высокочастотные гармоники (помехи) в электрической сети. Чтобы понять как они образуются, нужно иметь сведения об их внутреннем устройстве. Это связано с тем, что ток первичной обмотки ИБП отличается от непрерывного, он протекает только тогда, когда открыт силовой полупроводниковый ключ. А последний открывается и закрывается с частотой выше 20 кГц.

Интересно: Рабочая частота некоторых современных импульсных блоков питания достигает 150 кГц.

Для уменьшения этих гармоник используют фильтры электромагнитных помех, например, синфазный дроссель и конденсаторы. Для улучшения графика потребления тока относительно питающего однофазного напряжения используют активные корректоры коэффициента мощности (рус. ККМ, англ. PFC).

Такие блоки питания установлены в:

  • светодиодных лампах;
  • ЭПРА для люминесцентных ламп;
  • компьютерные блоки питания;
  • современные зарядные устройства для мобильных телефонов;
  • телевизоры и прочая техника.

Также к этим источникам питания можно отнести и преобразователи частоты.

Последствия гармонических помех

Наличие гармоник в электрической сети переменного тока вызывает определенные проблемы. Среди них – повышенный нагрев электродвигателей и питающих проводов. Последствия влияния гармоник – это вибрация двигателей. Дальнейшие последствия могут быть различными – начиная от ускоренного износа подшипников ротора двигателя, заканчивая пробоем на корпус обмоток от повышенного нагрева.

В электрике встречаются ложные срабатывания коммутационной и защитной аппаратуры – автоматических выключателей, контакторов и магнитных пускателей. В звуковой аппаратуре и технике для связи из-за гармоник возникают помехи. С ними борются аналогично – установкой фильтров электромагнитных помех.

На видео ниже рассказывается, что такое гармоники и интергармоники в электросети:

В заключение хотелось бы отметить, что гармоники в электрических сетях в принципе не несут никакой пользы. Они лишь вызывают неисправности, ложные срабатывания коммутационной аппаратуры и прочие проявления нестабильности в работе. Это может нести не только неудобства в эксплуатации, но и экономические проблемы, убытки и аварийные ситуации, которые могут быть опасны для жизни.

Материалы по теме:

samelectrik.ru

Гармоники тока и напряжения в электросетях

Проблема гармоник….

Любые приборы и оборудование с нелинейными характеристиками являются источниками гармоник в своей сети. Если вы сталкиваетесь с таким оборудованием или имеете опыт работы в сетях с гармониками, тогда дроссели с конденсаторами или фильтрокомпенсирующие установки (ФКУ) могут прийти вам на помощь. Гармонические искажения  и связанные с этим проблемы в электрических сетях, становятся все более превалирующими в распределительных сетях.

Проблемы создаваемые гармониками.
  • дополнительный нагрев и выход из строя конденсаторов, предохранителей конденсаторов, трансформаторов, электродвигателей, люминесцентных ламп и т.п.;

  • ложные срабатывания автоматических выключателей и предохранителей;

  • наличие третьей гармоники и ее производных 9,12 и т.д. в нейтрали может потребовать увеличения сечения ее проводника;

  • гармонический шум (частые переходы через 0) может служить причиной неправильной работой компонентов систем контроля;

  • повреждение чувствительного электронного оборудования;

  • интерференция систем коммуникации.

 

Следующие разделы являются описанием гармоник, характеризацией проблемы и поиском решения.

Происхождение гармонических искажений

Постоянно увеличивающиеся требования промышленности и народного хозяйства к стабильности, приспосабливаемости и точности контроля в электрическом оборудовании привело к появлению относительно дешевых силовых диодов, тиристоров, SCR (Silicon Controlled Rectifier) и других силовых полупроводников.

Сейчас, широко используемые в выпрямительных цепях UPS полупроводники, статические преобразователи переменного напряжения в постоянное, устройства плавного пуска пришедшие на смену устаревшим устройствам изменили картину формы тока и напряжения в электросетях. Хотя твердотельные реле, такие как тиристоры привнесли существенные изменения в схемотехнику систем контроля, они, также, создали проблему генерации гармоник тока. Гармоники тока могут сильно влиять на энергоснабжающие сети, а также перегружать косинусные конденсаторы служащие для компенсации реактивной мощности (при увеличении частоты, снижается сопротивление конденсатора и растет ток через него).

Мы сфокусировали наше внимание на таких источниках гармоник, как твердотельные элементы силовой электроники, однако существует много других источников гармонических токов. Эти источники могут быть сгруппированы в трех основных типах:

  1. Силовое электронное оборудование: частотные привода переменного тока, привода постоянного тока, источники бесперебойного питания UPS, выпрямители (шестифазные, по схеме Ларионова), конвертеры, тиристорные системы, диодные мосты, плавильные печи высокой частоты.

  2. Сварочное, дуговое оборудование: дуговые плавильные печи, сварочные автоматы, освещение (ДРЛ-ртутные лампы, люминесцентные лампы)

  3. Насыщаемые устройства: Трансформаторы, двигатели, генераторы, и т.д. Гармонические амплитуды на этих устройствах являются обычно незначительна по сравнению с элементами силовой электроники и сварочным оборудованием, при условии что насыщение не происходит.

Форма синусоиды тока

Гармоники – это синусоидальные волны суммирующиеся  с фундаментальной (основной) частотой 50 Гц (т.е 1-я гармоника=50 Гц, 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена  на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.

Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.

Переходные возмущения обычно решаются путем установки подавляющих или разделяющих (изолирующих) устройств, таких как импульсных конденсаторов, изолирующих (разделяющих) трансформаторов. Эти устройства помогают устранить переходные возмущения, но они не помогают устранить гармоники низких порядков или устранить проблемы резонанса в связи с присутствием гармоник в сети.

 

Гармоническое содержание синусоиды

Тиристоры и SCR выпрямители обычно проявляются числом пульсаций постоянного тока которые они производят каждый период. Обычно это 6-и или 12-пульсные выпрямители. Есть много факторов, которые могут влиять на гармоническое содержание, но типичные гармонические токи, показанные как процент от фундаментального тока 50 Гц, показаны в таблице. Другие номера гармоник также будут присутствовать, в небольшой степени, но из практических соображений они не приводятся.

Номер гармоники

Типичное содержание в % гармоник тока

6-ти пульсный

выпрямитель

12-ти пульсный

выпрямитель

1

100

100

5

20

7

14

11

9

9

12

8

8

17

6

19

5

23

4

4

23

4

4

Разложение формы кривой тока на гармонические составляющие

Перегрузка конденсаторов гармониками

Согласно закону Ома сопротивление цепи определяет протекающий по ней ток. Так как сопротивление источника энергии является индуктивным, кроме того, импеданс сети увеличивается с частотой, в то время как сопротивление конденсатора с ростом частоты уменьшается. Это вызывает рост тока через конденсаторы и оборудование содержащее их. При определенных обстоятельствах, гармонические потоки могут превысить ток фундаментальной гармоники 50 Гц протекающей через конденсатор. Эти гармонические проблемы могут также вызвать увеличение напряжения на конденсаторе, которое может превысить максимально допустимое значение и привести к пробою конденсатора.

Гармонический резонанс

Резонанс в сети достигается когда сопротивление конденсатора равно сопротивлению источника. Когда мы применяем конденсаторы для компенсации реактивной мощности в распределительных сетях, которые содержат и емкостную и индуктивную (индуктивность линии, силовых трансформаторов) составляющую, всегда существует частота на которой возможно явление параллельного резонанса конденсатора с источником.

Если это происходит, или частота близка к частоте резонанса, то гармоники генерируемые силовыми полупроводниками (большие токи гармоник) начинают циркулировать между генерирующей сетью  и конденсаторным оборудованием. Эти токи ограничиваются только сопротивлением линии. Такие токи приводят к возмущениям и искажениям напряжения в сети. Как результат: повышенное напряжение на конденсаторах, и повышенный ток через них, Резонанс может произойти на любой частоте, но в основном это 5-я, 7-я, 11-я и 13-я гармоники которые генерируются 6-пульсными системами выпрямления трехфазного напряжения.

Предотвращение резонанса в электросетях

Есть несколько путей, чтобы избежать явлений резонанса в распределительных сетях где установлены конденсаторы. В больших распределительных сетях, есть возможность установки их в части сети, которая не имеет параллельного резонанса с индуктивностью трансформатора. Изменяя выходную мощность конденсаторной установки, мы можем отстроиться от опасной резонансной частоты. Резонансная частота с включением каждого шага конденсаторной установки изменяется.

Резонансные явления при использовании конденсаторов в электросетях с нелинейными потребителями

Сдвиг резонансной частоты

Если резонанса нельзя избежать вышеприведенным методом, необходимо альтернативное решение. Последовательно с каждым конденсатором ставится реактор (трехфазный дроссель)  таким образом, чтобы система конденсатор-дроссель имела индуктивный характер на критических частотах, и емкостной характер на основной частоте 50 Гц. Для этого система конденсатор-дроссель должна иметь резонансную частоту ниже наименьшего частоты гармоники присутствующей в сети, которая обычно бывает 5-ой (250 Гц). Это означает, что частота настройки системы конденсатор дроссель д.б. между значениями 175…270 Гц. В системе конденсатор дроссель напряжение основной частоты на дросселе повышается, соответственной мы должны использовать конденсаторы на повышенное напряжение.

Снижение гармонических искажений

Гармонические искажения могут подавляться в электрических системах при использовании гармонических фильтров. В классическом виде фильтр представляет собой последовательно соединенные конденсатор и индуктивность и настроенные на определенную гармоническую частоту. В теории сопротивление фильтра равно нулю на частоте резонанса, поэтому гармонический ток абсорбируется фильтром. Этот эффект вместе с сопротивлением линии означает, что таким образом можно хорошо подавлять гармоники в сети.

Типы фильтров гармоник

Эффективность фильтра любой формы зависит от его реактивной мощности, точности настройки, и импеданса сети в точке подключения. Гармоники ниже частоты резонанса фильтра будут усиливаться. Схемотехника фильтра важна, чтобы быть уверенным в том что искажения не будут усиливаться до неприемлемых уровней. Когда несколько различных порядков гармоник присутствуют в сети мы можем подавлять одни в то же время усиливая другие. Фильтр 7-ой гармоники создает параллельный резонанс на частоте 5-ой и усиливает ее, поэтому к фильтру 7-ой гармоники необходим фильтр 5-ой гармоники. Поэтому часто необходимо использовать несколько фильтров, настроенных каждый на свою частоту.

Анализ и измерение гармоник в сети

Прежде чем приступать к внедрению конденсаторных установок для компенсации реактивной мощности на предприятии, а также фильтров гармоник необходимо провести всесторонние измерения параметров сети: активную реактивную, полную мощность, величину и уровни  гармоник тока и напряжения, провалы и перенапряжения в линии, фликкер. Для этих целей компания Матик электро имеет в своем штате профессиональных инженеров с анализаторами сети и ноутбуками для обработки информации на месте съема. Мы проводим выездные измерения по всей России, предоставляем отчет и рекомендации с последующим внедрением энергосберегающего оборудования (конденсаторных установок для компенсации реактивной мощности) и фильтров гармоник.

www.matic.ru

высшая гармоника — это… Что такое высшая гармоника?



высшая гармоника


  1. harmonique supérieur

 

высшая гармоника
Гармоника, номер которой больше единицы.
[ГОСТ 24346-80]

Негативное воздействие высших гармоник
Высшие гармонические составляющие приводят к негативным, а иногда и катастрофическим последствиям.

  • Возможен перегрев и разрушение нулевых рабочих проводников кабельных линий;
  • Искажение синусоидальности питающего напряжения
  • Гармоники, генерируемые нелинейной нагрузкой, создают дополнительные потери в трансформаторах;
  • В условиях несинусоидальности тока ухудшаются условия работы батарей конденсаторов;
  • Сокращение срока службы электрооборудования из—за интенсификации теплового и электрического старения изоляции.
  • Необоснованное срабатывание предохранителей и автоматических выключателей вследствие дополнительного нагрева внутренних элементов защитных устройств.
  • Возникновение помех в телекоммуникационных сетях при относительно близком расположении силовых кабелей

Тематики

  • вибрация
  • качество электрической энергии

Синонимы

  • гармоника высшего порядка

EN

  • additional wave
  • high harmonic
  • higher harmonic
  • higher-order harmonic
  • upper harmonic

DE

FR

Русско-французский словарь нормативно-технической терминологии.
academic.ru.
2015.

  • высушенный ил
  • высшая пара

Смотреть что такое «высшая гармоника» в других словарях:

  • высшая гармоника — Гармоника, номер которой больше единицы. [ГОСТ 24346 80] Негативное воздействие высших гармоник Высшие гармонические составляющие приводят к негативным, а иногда и катастрофическим последствиям. Возможен перегрев и разрушение нулевых рабочих… …   Справочник технического переводчика

  • Высшая гармоника — 45. Высшая гармоника Гармоника, номер которой больше единицы Источник: ГОСТ 24346 80: Вибрация. Термины и определения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • высшая гармоника — aukštesnioji harmonika statusas T sritis automatika atitikmenys: angl. higher harmonic; upper harmonic vok. höhere harmonische, f; Oberschwingung, f; Oberwelle, f rus. высшая гармоника, f pranc. harmonique élevé, m …   Automatikos terminų žodynas

  • высшая гармоника — aukštesnioji harmonika statusas T sritis Standartizacija ir metrologija apibrėžtis Harmonika, kurios dažnis yra aukštesnis už pagrindinės harmonikos dažnį. atitikmenys: angl. higher harmonic vok. höhere Harmonische, f rus. высшая гармоника, f… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • высшая гармоника — aukštesnioji harmonika statusas T sritis fizika atitikmenys: angl. higher harmonic; upper harmonic vok. höhere Harmonische, f rus. высшая гармоника, f pranc. harmonique élevé, m; harmonique supérieur, m …   Fizikos terminų žodynas

  • высшая гармоническая составляющая — высшая гармоника — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы высшая гармоника EN higher harmonic… …   Справочник технического переводчика

  • ГОСТ 24346-80: Вибрация. Термины и определения — Терминология ГОСТ 24346 80: Вибрация. Термины и определения оригинал документа: 112. Автоколебания Колебания системы, возникающие в результате самовозбуждения Определения термина из разных документов: Автоколебания 137. Активная виброзащита… …   Словарь-справочник терминов нормативно-технической документации

  • Стоячая волна — (чёрная) изображена в виде суммы двух волн (красная и синяя), распространяющихся в противоположных направлениях. Красные точки обозначают узлы Стоячая волна  колебания в распределённых колебательных системах с характерным расположением… …   Википедия

  • Oberschwingung — aukštesnioji harmonika statusas T sritis automatika atitikmenys: angl. higher harmonic; upper harmonic vok. höhere harmonische, f; Oberschwingung, f; Oberwelle, f rus. высшая гармоника, f pranc. harmonique élevé, m …   Automatikos terminų žodynas

  • Oberwelle — aukštesnioji harmonika statusas T sritis automatika atitikmenys: angl. higher harmonic; upper harmonic vok. höhere harmonische, f; Oberschwingung, f; Oberwelle, f rus. высшая гармоника, f pranc. harmonique élevé, m …   Automatikos terminų žodynas

  • aukštesnioji harmonika — statusas T sritis automatika atitikmenys: angl. higher harmonic; upper harmonic vok. höhere harmonische, f; Oberschwingung, f; Oberwelle, f rus. высшая гармоника, f pranc. harmonique élevé, m …   Automatikos terminų žodynas

normative_ru_fr.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о