Второй закон Кирхгофа

Господа, всем привет!

Сегодня мы рассмотрим второй закон Кирхгофа. Он чуть сложнее, чем первый закон Кирхгофа, который мы уже рассматривали ранее, поэтому я сперва дам общую формулировку, а потом мы постараемся аккуратно разобраться во всем этом деле. 

Итак, второй закон Кирхгофа гласит, что алгебраическая сумма ЭДС, действующих в контуре равна алгебраической сумме падений напряжения в ветвях контура. Может быть сложновато для восприятия, если вы читаете это в первый раз, не спорю. Но сейчас попробуем разобраться более детально во всем этом. Для начала давайте определим, что же такое контур электрической цепи, где эти самые ЭДС действуют. Пожалуй, это тот случай, когда проще нарисовать картинку, чем объяснять словами. Взглянем на рисунок 1.

Рисунок 1 – Контура в схеме

На нем мы можем видеть три контура: я обозначил их красным, оранжевым и синим цветами. То есть контур –  это некоторая замкнутая часть электрической цепи, состоящая из нескольких ветвей.

То есть что говорит второй закон Кирхгофа? У нас есть большая и сложная электрическая схема. В ней много различных контуров. Будем рассматривать подробно один из этих контуров, любой на выбор. И вот если мы в этом контуре сложим ЭДС всех источников, какие там есть, то их сумма будет равна сумме падений напряжения на всех сопротивлениях этого контура. И это верно для любого контура в нашей схеме. Довольно интересный факт. И если про первый закон Кирхгофа можно говорить, что он интуитивно очевиден, то здесь, вообще говоря, это не совсем так. А поскольку он не очевиден на первый взгляд, тем больше поводов показать его верность математически.

Господа, прошу обратить внимание на рисунок 2. На нем изображен один из контуров какой-то сложной электрической схемы.

Рисунок 2 – Контур схемы

Почему он именно такой, можете вы спросить? Да просто так! Я рисовал его так, как подскажет фантазия в тот момент. Вы можете смело заявить, что ваша фантазия лучше и нарисовать какой-либо другой контур с другими компонентами. Потом повторите все действия, которые я буду производить над этим контуром, и в конечном счете у вас должен получиться точно такой же результат, как и у меня.

Первым делом давайте зададимся направлением обхода контура. Это некоторое направление в контуре, которое мы принимаем за положительное. Можно в какой-то степени назвать это аналогом осей координат в математике. Направление обхода контура у нас по часовой стрелке, и я показал его синей стрелочкой на рисунке 2.

Следующим шагом нам надо расставить предполагаемое направление токов в каждой ветви. Тут опять же все целиком отдается вашей фантазии. На данном этапе можно рисовать любое направление токов. Если мы угадали – отлично, если нет – в конце всех расчетов получим ток с другим знаком. Я расставил на рисунке 2 все токи черными стрелками и рядом с ними подписал их величины (I1…I4).

А теперь внимание, господа. Пришло время вспомнить то выражение, ради получения которого я написал предыдущую статью. На всякий случай, если вдруг кто забыл, напоминаю его

Оно означает, что если потенциалы на концах ветви равны φ1 и φ2, то их разность равна ЭДС источника в ветви минус произведение тока в ветви на сопротивление в ветви.

Применим это выражение для каждой ветви нашего контура, изображенного на рисунке 2. Поскольку у нас в контуре четыре ветви, то всего мы получим четыре уравнения. Резонный вопрос – а как быть со знаками при записи этих уравнений? Правила тут два.

  • Если направление работы источника напряжения совпадает с направлением обхода контура, то берем его со знаком плюс. Если не совпадает – со знаком минус. Совсем просто: если стрелка в источнике напряжения совпадает со стрелкой обхода, то Е в уравнении пишется без изменения знака, если стрелки в разные стороны – то надо поставить минус перед E.
  • Если направление тока, которое мы сами выбрали чуть раньше, совпадает с направлением обхода, то в нашем уравнении перед произведением тока на сопротивление так и остается знак минус. Если они направлены в разные стороны, то знак минус меняем на плюс.

Пользуясь этими простыми правилами, запишем уравнения для каждой ветви.

Очевидно, что если в цепи нет источника ЭДС, то у нас не будет первого слагаемого в правой части. А если нет сопротивления, то не будет второго слагаемого в правой части. Собственно, это и видно из составленных уравнений.

Господа, надеюсь вы помните, что с уравнениями в одной системе можно творить всякие интересные штуки? Например, можно все их сложить между собой (правые и левые части). Легко заметить, что при сложении всех этих четырех уравнений в левой части будет нолик, то есть все потенциалы волшебным образом самоликвидируются. Сделаем это! Получим

А теперь давайте перенесем все слагаемые с ЭДС в одну сторону, а с током и сопротивлением – в другую. Имеем

А имеем мы, собственно, второй закон Кирхгофа. Все честно, как я и писал в начале – алгебраическая сумма ЭДС, действующих в контуре равна алгебраической сумме падений напряжения в ветвях контура. Надеюсь, господа, после статьи про закон Ома у вас не возникает вопросов, почему произведение тока на сопротивление – это падение напряжения на сопротивлении?  Если возникает – срочно, очень срочно, прямо сейчас пройдитесь по этой ссылке и разрешите эти вопросы!

А что же все-таки тут понимается под словом алгебраическая сумма? Это словосочетание нам уже встречалось. Это значит, что складывать надо с учетом знака. А как выбирать правильно этот самый знак? Господа, взгляните еще разок на рисунок 2. Там у нас задано направление обхода контура и направление токов. Все это мы выбирали (я бы даже сказал придумывали) сами. Ну и направление работы источника еще видно по его графическому изображению.

Так вот, если направление работы источника ЭДС совпадает с направлением обхода контура, то мы ему приписываем знак плюс, а если не совпадает – минус. Аналогично и для правой части. Если направление тока совпадет с направлением обхода, то мы пишем произведение тока на сопротивление со знаком плюс. Иначе – со знаком минус.

Специально для труЪ-математиков привожу запись второго закона Кирхгофа с использованием хитрых значков суммирования. Вне всякого сомнения, если вы будете использовать эту запись, то произведете впечатление человека, который шарит в теме!

Здесь у нас N источников c ЭДС Ei и M ветвей с сопротивлениями Rj и токами Ij. Разумеется, суммирование идет все так же с учетом знаков.

Может возникнуть резонный вопрос: «Как же так? Получается, я сам все придумываю: и направление обхода, и направление токов и это значит, что знак может получиться любой. Поверну стрелку тока в другую сторону и сразу знак у слагаемого поменяется! Но ведь в реальной схеме токи всегда текут в своем направлении вне зависимости от того, что я там нарисую на листочке! Какое-то противоречие!» Господа, вопрос весьма справедливый. Но предлагаю разобраться в нем в следующей статье. Сохраним некоторую интригу на текущий момент, как принято во всяких этих сериальчиках . А сейчас – спасибо, что прочитали статью, огромной вам всем удачи, и пока!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.


myelectronix.ru

Второй закон Кирхгофа - Основы электроники

Второй закон Кирхгофа или закон напряжений Кирхгофа формулируется так: полная ЭДС, действующая в замкнутом контуре, равна сумме падений напряжения на всех резисторах в этом контуре.

Рассмотрим схему на рисунке. 1, состоящую из одного контура.

Здесь полная ЭДС Е1 + Е2, действующая внутри контура, равна сумме падений напряжения на резисторах R1 и R2:

E1 + E2 = UR1 + UR2

Если изменить полярность Е2 на противоположную (рис. 2), то она будет иметь то же направление (против часовой стрелки), что и UR1 и UR2

E1- Е2 = UR1 + UR2 или E1 = Е2 + UR1 + UR2

Рассмотрим схему, имеющую несколько контуров (рис. 3).

Для кон­тура ABEF можно записать

E1= UR1 + UR2,

а для контура ACDF

E12 = UR1 + UR3

Обходя контур BCDE, видим, что ЭДС Е2 имеет то же направление (про­тив часовой стрелки), что и UR3:

Е2 + U

R3 = UR2

В цепи с одним контуром второй закон Кирхгофа является частным случаем закона Ома.

ДРУГИЕ СТАТЬИ ПО ТЕМЕ:

Первый и второй законы Кирхгофа - статья в интернет-журнале ЭЛЕКТРОН, где подробно с примерами расчетов и моделирования на компьютере изложены эти основопологающие законы элеектротехники.

Видеоурок по расчету цепей с помощью первого и второго закона Кирхгофа.

 

Хотите подробностей? Посмотрите это видео, поясняющее второй закон Кирхгофа:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

 

Добавить комментарий

www.sxemotehnika.ru

1.2. Законы Кирхгофа

Ранее были рассмотрены законы Ома для участка цепи и замкнутой цепи с одним источников э.д.с.

Сложная электрическая цепь, содержащая несколько источников э.д.с. и замкнутых контуров, не может быть рассчитана только с использованием законов Ома. Рассчитать и проанализировать сложную цепь можно с помощью двух законов Кирхгофа (сам Кирхгоф и некоторые современные специалисты называют эти законы «правилами», поскольку они являются следствием закона сохранения энергии применительно к электрическим цепям).

Для понимания формулировок и использования этих законов необходимо напомнить основные термины, относящиеся к электрическим цепям.

Электрическая цепь – это совокупность элементов, создающих пути для протекания электрических токов. Основными элементами электрической цепи являютсяисточники электроэнергии, преобразующие механическую, химическую и другие виды энергии в электрическую, иприемники, преобразующие электрическую энергию в другие виды: тепловую (резисторы), механическую (электродвигатели), химическую (зарядка аккумуляторов) и др. Кроме источников и приемников, элементами электрической цепи являются соединительные провода, электроизмерительные приборы, коммутирующие (переключающие) устройства, аппаратура защиты, автоматики и др.

Электрический узел – это часть электрической цепи, в которой сходится не менее трех ветвей (токов).

Ветвьучасток цепи между двумя узлами, на всем протяжении которого ток один и тот же.

Контурзамкнутая часть схемы, которая представляет собой неразветвленную цепь, если отключить все не входящие в нее ветви.

Первый закон Кирхгофа

На рисунке 5 показан электрический узел, в котором сходятся n= 5 ветвей с токами, часть из которых направлены к узлу, а часть – от него.

Первый закон Кирхгофав первой редакции читается следующим образом:алгебраическая сумма токов в узле равна нулю, то есть

(8)

.

Вуравнении (8) токи, направленные к узлу, подставляют обычно со знаком «+», а от узла – со знаком «» (можно и наоборот).

Применительно к узлу, показанному на рисунке 5, равенство (8) записывается в свернутом виде:

или в развернутом:

.

Е

(9)

сли перенести в последнем равенстве отрицательные токи в правую часть, то получим:

.

Из равенства (9) вытекает вторая редакция первого закона Кирхгофа:

Сумма токов, входящих в узел, равна сумме токов, выходящих из узла.

Справедливость первого закона Кирхгофа можно подтвердить рассуждением «от противного». Если предположить, что в узел в каждый момент времени притекает больше зарядов, чем вытекает (или наоборот), то электрические потенциалы узлов все время будут изменяться, а, следовательно, будет изменяться и распределение токов в элементах схемы, что практически не наблюдается и противоречит здравому смыслу.

Второй закон Кирхгофа

На рисунке 6 показана часть сложной электрической цепи в виде замкнутого контура, состоящего из m= 5 ветвей и содержащегоn= 3 источников э.д.с.

Второй закон Кирхгофачитается следующим образом:в замкнутом электрическом контуре алгебраическая сумма напряжений равна нулю (первая редакция).

В этой формулировке следует различать напряжение как падение напряжения, создаваемое током Ik k-той ветви в сопротивлении Rk этой ветви, и напряжение источника ЭДС, которое равно величине этой ЭДС, но направлено (как разность электрических потенциалов внутри источника) от положительного зажима к отрицательному, то есть встречно с направлением ЭДС.

В показанном на рисунке 6 контуре токи ветвей создают падения напряженияIkRk, которые при заданном направлении обхода берутся со знаком «+», если направление токаIkсовпадает с направлением обхода, и со знаком «», если направление тока встречно с направлением обхода. Что касается напряжений (разностей потенциалов) на зажимах источников ЭДС Еk, то необходимо учитывать, что потенциал на положительном зажиме источника выше, чем на входном, а величина этихнапряжений(а непадений напряжений!) равна по абсолютному значению соответствующей э.д.с. Еk. С учетом этогонапряжение источникаберется со знаком «», если направление э.д.с. совпадает с направлением обхода, и со знаком «+», если направление обхода направлено встречно с направлением э.д.с.

Рис. 6

П

(10)

рименительно к контуру (рис. 6), согласно приведенной выше формулировке второго закона Кирхгофа, можно записать:

П

(10а)

еренесем напряжения источников э.д.с. в правую часть равенства (10):

В правой части равенства (10а) оказалась алгебраическая сумма э.д.с., а не напряжений источников. В результате получается вторая редакция второго закона Кирхгофа: в замкнутом контуре алгебраическая сумма э.д.с. равна алгебраической сумме падений напряжения в ветвях, образующих этот замкнутый контур, то есть:

(11)

Применительно к контуру (рс. 6) равенство (11) примет вид

(11а)

В такой формулировке, где напряжения источников заменены на э.д.с. источников, при обходе контура э.д.с. берется со знаком «+», если она совпадает с направлением обхода, и со знаком «-», если она действует встречно (как это следует из равенства (10а)).

Вторая формулировка закона Кирхгофа (10а) и (11) получила наибольшее применение на практике по сравнению с первой (10).

studfiles.net

Электротехника: Второй закон Кирхгофа.

  Второй закон (правило) Кирхгофа - алгебраическая сумма напряжений на элементах контура электрической цепи равна нулю.
Контур электрической цепи - замкнутый проводящий ток путь образованный элементами электрической цепи.
Рассмотрим схему на рисунке 1:

Рисунок 1 - Схема с одним контуром

В этой схеме присутствуют: источник ЭДС и резисторы R1, R2 и R3; эти элементы образуют замкнутый путь проводящий ток т.е. контур. Напряжение на источнике ЭДС равно E и направлено так как показано на рисунке 1 стрелочкой справа от источника. Стрелка на условном обозначении источника направлена в сторону противоположную направлению напряжения на источнике ЭДС (иногда это запутывает при расчёте схем но так принято обозначать источник ЭДС). Направления падений напряжений на резисторах указаны стрелками (рис. 1). Для составления уравнения, по второму закону Кирхгофа, необходимо выбрать направление обхода контура (по часовой стрелке или против). В схеме на рисунке показано направление по часовой стрелке. Запишем уравнение по второму закону Кирхгофа:

Напряжения резисторов вошли в левую часть уравнения со знаком плюс т.к. направление обхода контура совпадает с направлениями напряжений на резисторах. Напряжение источника ЭДС E вошло в правую часть со знаком плюс т.к. направление обхода контура не совпадает с направлением напряжения источника. Можно также записать напряжение источника в левой части уравнения со знаком минус (что, в принципе, тоже самое):

Уравнение (2) больше подходит для определения второго закона Кирхгофа приведенного выше.

Напряжения совпадающие по направлению с обходом контура записаны со знаком плюс а напряжение источника не совпадающее с обходом контура - со знаком минус и вся эта алгебраическая сумма равна нулю. Теперь, из выражения (2), зная три каких либо напряжения можно найти четвёртое. Обычно расчёт цепи сводится к нахождению токов во всех ветвях или потенциалов всех узлов т.к. зная эти величины (токи ветвей или потенциалы узлов), сопротивления всех элементов и напряжения источников ЭДС (и токи всех источников тока) можно найти напряжение на любом элементе и ток любого элемента. В схеме на рисунке 1 для определения напряжений U1, U2 и U3 достаточно знать ток I т.к. он одинаков для всех элементов цепи (R1, R2, R3, E). Умножением тока I на сопротивление R1 находится напряжение U1, умножением тока I на сопротивление R2 находится напряжение U2, умножением тока I на сопротивление R3 находится напряжение U3. Учитывая это можно привести уравнение (1) к виду:

Из уравнения (3) можно найти ток I. Т.к. контур один то и ток в уравнении один но если схема содержит больше одно контура то и токов будет больше. Вынеся ток I за скобки и поделив обе части уравнения на сумму сопротивлений R1, R2 и R3 получаем уравнение для нахождения тока I, но этот ток можно найти и другим способом например заменой последовательного соединения резисторов R1, R2 и R3 одним резистором R123 и делением напряжения E на сопротивление резистора R123.

Сопротивление резистора R123 равно сумме сопротивлений резисторов R1, R2 и R3. Ток находится из уравнения:

     Если в контуре содержится больше одного источника ЭДС то уравнение, по второму закону (правилу) Кирхгофа, составляется аналогично.

Рисунок 2 - Схема с двумя источниками ЭДС

Запишем уравнение, по второму закону Кирхгофа, для контура в схеме на рисунке 2:

Напряжение E2 источника E2 записано в правой части уравнения со знаком минус т.к. оно совпадает по направлению с обходом контура. Заменяя напряжения на резисторах произведениями тока I на сопротивления резисторов получим уравнение:

Из уравнения (6) может быть найден ток I.

Если схема имеет больше одного контура то Закон (правило) Кирхгофа все равно выполняется для всех контуров. Уравнения по второму закону Кирхгофа, в таком случае, составляются аналогично тому как в примерах выше. Отличие будет только в том что необязательно для всех элементов будет один и тот же ток. В случае если схема имеет больше одного контура можно считать что через каждый элемент течет свой ток. Напряжение на элементе, в таком случае, находится умножением сопротивления этого элемента (если этот элемент например резистор) на ток данного элемента.

Рисунок 3 - Часть схемы имеющей больше одного контура

Рисунок 4 - Часть схемы имеющей больше одного контура и ветвь из двух элементов

Рисунок 4 - Часть схемы имеющей больше одного контура, ветвь из двух элементов и элементы напряжения на на которых имеют направления не совпадающие с выбранным направлением обхода контура

При составлении уравнений по второму закону Кирхгофа не стоит слишком много времени уделять выбору направлений обходов контуров и направлений токов (они (направления обходов и токов) выбираются произвольно) так как реальные направления токов определяются при решении этих уравнений.

Пример:

Направление напряжения на элементе R1 такое же как и направление тока этого элемента по тому что принято считать что ток течёт от большего потенциала к меньшему а напряжение направлено также (от большего потенциала к меньшему).

electe.blogspot.com

Второй закон Кирхгофа, теория и примеры

Большое количество электрических цепей на практике являются сложными. Однако в цепь любого уровня сложности имеет элементы двух простейших видов. Это узлы и замкнутые контуры. Узел – это любая точка разветвления цепи, в которой сошлось три или более проводников, по которым текут токи.

Второе правило (закон) Кирхгофа является следствием обобщенного закона Ома. Так, если в изолированной замкнутой цепи есть один источник ЭДС, то сила тока в цепи будет такой, что сумма падения напряжения на внешнем сопротивлении и внутреннем сопротивлении источника будет равна сторонней ЭДС источника. Если источников ЭДС несколько, то берут их алгебраическую сумму. Знак ЭДС выбирается положительным, если при движении по контуру в положительном направлении первым встречается отрицательный полюс источника. (За положительное направление обхода контура принимают направление обхода цепи либо по часовой стрелке, либо против нее).

Формулировка второго закона Кирхгофа

Произведение алгебраической величины силы тока (I) на сумму вешних и внутренних сопротивлений всех участков замкнутого контура равно сумме алгебраических значений сторонних ЭДС () рассматриваемого контура:

   

Каждое произведение определяет разность потенциалов, которая существовала бы между концами соответствующего участка, если бы ЭДС в нем была равно нулю. Величину называют падением напряжения, которое вызывается током.

Второй закон Кирхгофа иногда формулируют следующим образом:

Для замкнутого контура сумма падений напряжения есть сума ЭДС в рассматриваемом контуре.

Правила Кирхгофа служат для того, чтобы составить систему уравнений, позволяющих найти силу тока для сложной цепи. Направление положительного обхода выбирают для всех контуров одинаковым. При составлении уравнений, используя правила Кирхгофа необходимо внимательно следить за расстановкой знаков токов и ЭДС.

Система уравнений, которая получается при использовании первого и второго закона Кирхгофа является полной и дает возможность отыскать все токи. При составлении уравнений, используя правила Кирхгофа, надо следить за тем, чтобы новое уравнение имело хотя бы одну величину, которая еще не вошла в предыдущие уравнения. Кроме того, необходимо, чтобы система уравнений имела число уравнений равное количеству неизвестных.

Второй закон Кирхгофа следует из того, что электрическое напряжение по замкнутому контуру равно нулю, то есть это правило является следствием основного свойства электростатического поля, которое заключается в том, что работа поля при движении заряда по замкнутой траектории равна нулю.

Примеры решения задач

ru.solverbook.com

Ответы@Mail.Ru: 2-ой закон кирхгофа

2-й закон Кирхгофа - сумма падений напряжения равна сумме ЭДС. не слушай верхнего !! "сушествует мнение", "бытует мнение"! I*R1 + R2*I = Uo U1+U2=Uo в основном применяется для расчёта сопротивления на том участке цепи где необходимо снизить напряжение U1= Uо-U2, U2= Uо-U1,

Второй закон (ЗНК, Закон напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю: Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве, то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи. Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений. Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными. Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно) , перепад напряжения считается положительным, в противном случае — отрицательным. Законы Кирхгофа, записанные для узлов и контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и напряжения. Существует мнение, согласно которому «Законы Кирхгофа» следует именовать «Правилами Кирхгофа» , ибо они не отражают фундаментальных сущностей природы (и не являются обобщением большого количества опытных данных) , а могут быть выведены из других положений и предположений. [

Второй закон (ЗНК, Закон напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю. Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве mi, то она описывается m-mi-(p-1) уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Лучше говорить: 2-е Правило Кирхгофа, потому что Закон Кирхгофа - это из области теории излучения. 2-е правило Кирхгофа: В любом замкнутом контуре, произвольно выбранном в разветвлённой электрической цепи, алгебраическая сумма произведений сил токов в отдельных участках контура на электрические сопротивления этих участков равна алгебраической сумме ЭДС всех источников электрической энергии, включённых в контур. Все токи, совпадающие с направлением обхода контура, считаются положительными. ЭДС считаются положительными, если они вызывают ток, совпадающий по направлению с обходом контура.

touch.otvet.mail.ru

Второй закон Кирхгофа. Второе правило Киргофа для расчета цепей постоянного тока

Второй закон Кирхгофа

  • Алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре.
  • Алгебраическая сумма падений напряжений в замкнутом контуре равна сумме действующих ЭДС в этом контуре. Если в контуре нет источников электродвижущей силы, то суммарное падение напряжений равно нулю.
  • Алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю.
  • Алгебраическая сумма падений напряжений на пассивных элементах равна алгебраической сумме ЭДС и напряжений источников тока, действующих в этом контуре.

Т.е. падение напряжения на R1 со своим знаком плюс падение напряжения на R2 со своим знаком равно напряжение источника эдс 1 со своим знаком  плюс напряжение на источнике электродвижущей силы 2 со своим знаком. Алгоритм расстановки знаков в уравнениях по закону Кирхгофа описан на отдельной странице.

Уравнение для второго закона Кирхгофа

Составлять уравнения по второму закону Кирхгофа можно разными способами. Самым удобным считается первая формула.

Так же можно уравнения писать в таком виде.

Физический смысл второго закона Кирхгофа

Второй закон устанавливает связь между падением напряжения на замкнутом участке электрической цепи и действием источников ЭДС на этом же замкнутом участке. Он связан с понятием работы по переносу электрического заряда. Если перемещение заряда выполняется по замкнутому контуру, возвращаясь в ту же точку, то совершенная работа равна нулю. Иначе бы не выполнялся закон сохранения энергии. Это важное свойство потенциального электрического поля описывает 2 закон Кирхгофа для электрической цепи.

www.kurstoe.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *