Закон Кулона: единица измерения электрического заряда

 

Закон Кулона очень напоминает закон всемирного тяготения, только применимо к зарядам, а не к массам тел. Открыт он был экспериментально в 1785 году французским ученым Шарлем Кулоном.

Позднее он получил блестящее экспериментальное подтверждение. Для формулирования закона Кулона вначале надо ввести такое понятие как «точечный заряд».

Введение понятия «точечный заряд»

Точечными зарядами можно считать заряженные тела, в случае, когда их форма и размеры не оказывают сколько-нибудь существенного влияния на взаимодействие между этими телами.

Такое возможно, когда речь идет о телах, удаленных друг от друга на расстояния, много большие их размеров. Также следует учитывать, что закон Кулона применим в случае, когда среда, в которую помещены оба тела вакуум.

В случае, когда мы имеем воздух вместо вакуума, можно приближенно считать закон Кулона выполняющимся, так как воздух оказывает очень малое влияние на силу взаимодействия точечных зарядов.

Формулировка закона Кулона

Итак, закон Кулона гласит: сила взаимодействия двух точечных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Можно записать закон Кулона в виде формулы:

F=k |q_1 ||q_2 | / r^2,

где |q_1 |  и |q_2 | модули зарядов, 

r расстояние между зарядами,

k коэффициент пропорциональности, зависящий от принятой системы единиц, численно он равен силе взаимодействия единичных зарядов на расстоянии, принятом за единицу длины.

Силу взаимодействия между точечными зарядами называют кулоновской.

Формула закона Кулона имеет тот же вид, что и закон всемирного тяготения, только вместо масс стоят модули зарядов, а вместо гравитационной постоянной коэффициент пропорциональности.

Стоит также отметить, что, как и в случае с законом тяготения, кулоновские силы действуют вдоль прямой, соединяющей эти заряды.

Единица измерения заряда - Кулон

За единицу заряда приняли кулон (1 Кл) в честь Шарля Кулона. Так как существует известная величина единичного элементарного заряда заряда электрона (протона), то можно было принять величину заряда, равной ей.

Но это слишком маленькая величина, и она не подходит для многих бытовых и промышленных расчетов, так как расчеты могли бы стать слишком громоздкими и неудобными. Такая величина принята и пригодна в ядерной физике.

Для классической же физики требовалось ввести иную величину. Поэтому, исходя из уже известных и используемых величин, приняли величину заряда в 1 Кл, равную заряду, проходящему через поперечное сечение проводника за 1 с при силе тока в 1 А.

Заряд в 1 Кл очень большая величина. В случае, когда два точечных заряда обладают каждый таким зарядом, сила их взаимодействия будет примерно равна силе, с которой Земля притягивает груз весом в 1 т.

Поэтому придать такой заряд маленькому телу невозможно, так как по закону Кулона одноименные заряды будут отталкивать кулоновскими силами.

Однако в проводнике протекание такого заряда возможно. Например, через спираль лампочки мощностью 60 Вт за 1 с проходит заряд чуть меньший 1 Кл.

Поэтому всегда следует помнить, что электричество это не шутка, а мощная сила, и относиться с предосторожностями к электроприборам под напряжением. 

Нужна помощь в учебе?



Предыдущая тема: Закон сохранения электрического заряда: формулировка, подтверждение
Следующая тема:&nbsp&nbsp&nbspБлизкодействие и действие на расстоянии: теории взаимодействия тел

Все неприличные комментарии будут удаляться.

www.nado5.ru

формула, определение, применение на практике

В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними. Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил. В этой статье мы расскажем простым языком закон Кулона и его применение на практике.

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле. Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы. Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия. Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы. Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна. Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике. Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н22/Кл2. Он равен:

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Здесь Е0= 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F21 и R21.

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Напоследок рекомендуем просмотреть видео, на котором предоставлено подробное объяснение Закона Кулона:

Полезное по теме:

samelectrik.ru

Закон Кулона. Измерение электрического заряда.

В результате долгих наблюдений учеными было установлено, что разноименно заряженные тела притягиваются, а одноименно заряженные наоборот – отталкиваются. Это значит, что между телами возникают силы взаимодействия. Французский физик Ш. Кулон опытным путем исследовал закономерности взаимодействия металлических шаров и установил, что сила взаимодействия между двумя точечными электрическими зарядами будет прямопропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними:

Где k – коэффициент пропорциональности, зависящий от выбора единиц измерений физических величин, которые входят в формулу, а также и от среды, в которой находятся электрические заряды q1 и q2. r – расстояние между ними.

Отсюда можем сделать вывод, что закон Кулона будет справедлив только точечных зарядов, то есть для таких тел, размерами которых вполне можно пренебречь по сравнению с расстояниями между ними.

В векторной форме закон Кулона будет иметь вид:

Где q1 и q2 заряды, а r – радиус-вектор их соединяющий; r = |r|.

Силы, которые действуют на заряды, называют центральными. Они направлены по прямой, соединяющей эти заряды, причем сила, действующая со стороны заряда q2 на заряд q1, равна силе, действующей со стороны заряда q1 на заряд q2, и противоположна ей по знаку.

Для измерения электрических величин могут использоваться две системы счисления – система СИ (основная) и иногда могут использовать систему СГС.

В системе СИ одной из главных электрических величин является единица силы тока – ампер (А), то единица электрического заряда будет ее производной (выражается через единицу силы тока). Единицей определения заряда в СИ является кулон. 1 кулон (Кл) – это количество «электричества», проходящего через поперечное сечение проводника за 1 с при токе в 1 А, то есть 1 Кл = 1 А·с.

Коэффициент k в формуле 1а) в СИ принимается равным:

И закон Кулона можно будет записать в так называемой «рационализированной» форме:

Многие уравнения, описывающие магнитные и электрические явления, содержат множитель 4π. Однако, если данный множитель ввести в знаменатель закона Кулона, то он исчезнет из большинства формул магнетизма и электричества, которые очень часто применяют в практических расчетах. Такую форму записи уравнения называют рационализированной.

Величина ε0 в данной формуле – электрическая постоянная.

Основными единицами системы СГС являются механические единицы СГС (грамм, секунда, сантиметр). Новые основные единицы дополнительно к вышеперечисленным трем в системе СГС не вводятся. Коэффициент k в формуле (1) принимается равным единице и безразмерным. Соответственно закон Кулона в не рационализированной форме будет иметь вид:

В системе СГС силу измеряют в динах: 1 дин = 1 г·см/с2, а расстояние в сантиметрах. Предположим, что q = q1 = q2, тогда из формулы (4) получим:

Если r = 1см, а F = 1 дин, то из этой формулы следует, что в системе СГС за единицу заряда принимают точечный заряд, который (в вакууме) действует на равный ему заряд, удаленный от него на расстояние 1 см, с силой в 1 дин. Такая единица заряда называется абсолютной электростатической единицей количества электричества (заряда) и обозначается СГС

q. Ее размерность:

Для вычисления величины ε0, сравним выражения для закона Кулона, записанные в системе СИ и СГС. Два точечных заряда по 1 Кл каждый, которые находятся на расстоянии 1 м друг от друга, будут взаимодействовать с силой (согласно формуле 3):

В СГС данная сила будет равна:

Сила взаимодействия между двумя заряженными частицами зависит от среды, в которой они находятся. Чтобы характеризовать электрические свойства различных, сред было введено понятие относительной диэлектрической проницательности ε.

Значение ε это различная величина для разных веществ – для сегнетоэлектриков ее значение лежит в пределах 200 – 100 000, для кристаллических веществ от 4 до 3000, для стекла от 3 до 20, для полярных жидкостей от 3 до 81, для неполярных жидкостей от 1,8 до 2,3; для газов от 1,0002 до 1,006.

Также от температуры окружающей среды зависит и диэлектрическая проницаемость (относительная).

Если учесть диэлектрическую проницаемость среды, в которую помещены заряды, в СИ закон Кулона примет вид:

Диэлектрическая проницаемость ε – величина безразмерная и она не зависит от выбора единиц измерения и для вакуума считается равной ε = 1. Тогда для вакуума закон Кулона примет вид:

Поделив выражение (6) на (5) получим:

Соответственно относительная диэлектрическая проницаемость ε показывает, во сколько раз сила взаимодействия между точечными зарядами в какой-то среде, которые находятся на расстоянии r друг относительно друга меньше, чем в вакууме, при том же расстоянии.

Для раздела электричества и магнетизма систему СГС иногда называют системой Гаусса. До появления системы СГС действовали системы СГСЭ (СГС электрическая) для измерения электрических величин и СГСМ (СГС магнитная) для измерения магнитных величин. В первой равной единице принималась электрическая постоянная ε0, а второй магнитная постоянная μ0.

В системе СГС формулы электростатики совпадают соответствующими формулами СГСЭ, а формулы магнетизма, при условии, что они содержат только магнитные величины – с соответствующими формулами в СГСМ.

Но если в уравнении одновременно будет содержаться и магнитные, и электрические величины, то данное уравнение, записанное в системе Гаусса, будет отличаться от этого же уравнения, но записанного в системе СГСМ или СГСЭ множителем 1/с или 1/с2. Величина с равна скорости света (с = 3·1010 см/с) называется электродинамической постоянной.

Закон Кулона в системе СГС будет иметь вид:

Пример

На двух абсолютно идентичных каплях масла недостает по одному электрону. Силу ньютоновского притяжения уравновешивает сила кулоновского отталкивания. Нужно определить радиусы капель, если расстояния между ними значительно превышает их линейные размеры.

Решение

Поскольку расстояние между каплями r значительно больше их линейных размеров, то капли можно принять за точечные заряды, и тогда сила кулоновского отталкивания будет равна:

Где е – положительный заряд капли масла, равный заряду электрона.

Силу ньютоновского притяжения можно выразить формулой:

Где m – масса капли, а γ – гравитационная постоянная. Согласно условию задачи Fк = Fн, поэтому:

Масса капли выражена через произведение плотности ρ на объем V, то есть m = ρV, а объем капли радиуса R равен V = (4/3)πR3, откуда получаем:

В данной формуле постоянные π, ε0, γ известны; ε = 1; также известен и заряд электрона е = 1,6·10-19 Кл и плотность масла ρ = 780 кг/м3 (справочные данные). Подставив числовые значения в формулу получим результат: R = 0,363·10-7 м.

elenergi.ru

Закон Кулона | Все формулы

Закон Кулона — Сила взаимодействия между двумя точечными электрическими зарядами пропорциональна величинам этих зарядов и обратно пропорциональна квадрату расстояния между ними.


Силы взаимодействия подчиняются третьему закону Ньютона:. Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Отметим, чтоб выполнялся закон Кулона необходимо 3 условия:

1 условие : Точечность зарядов — то есть расстояние между заряженными телами много больше их размеров

2 условие : Неподвижность зарядов. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд

3 условие : Взаимодействие зарядов в вакууме

В формуле мы использовали :

— Сила Кулона

— Электрический заряд тела

— Расстояние между зарядами

— Электрическая постоянная

— Диэлектрическая проницаемость среды

— Коэффициент пропорциональности в законе Кулона

xn--b1agsdjmeuf9e.xn--p1ai

Закон Кулона

Закон Кулона количественно описывает взаимодействие заряженных тел. Он является фундаментальным законом, то есть установлен при помощи эксперимента и не следует ни из какого другого закона природы. Он сформулирован для неподвижных точечных зарядов в вакууме. В реальности точечных зарядов не существует, но такими можно считать заряды, размеры которых значительно меньше расстояния между ними. Сила взаимодействия в воздухе почти не отличается от силы взаимодействия в вакууме (она слабее менее чем на одну тысячную).

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

На основании многочисленных опытов Кулон установил следующий закон:

Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Она направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

Если обозначить модули зарядов через |q1| и |q2|, то закон Кулона можно записать в следующей форме:

\[ F = k \cdot \dfrac{\left|q_1 \right| \cdot \left|q_2 \right|}{r^2} \]

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц.

\[ k=\frac{1}{4\pi \varepsilon _0} \]

Полная формула закона Кулона:

\[ F = \dfrac{\left|q_1 \right|\left|q_2 \right|}{4 \pi \varepsilon_0 \varepsilon r^2} \]

Где :

\( F \) — Сила Кулона

\( q_1 q_2 \) — Электрический заряд тела

\( r \) — Расстояние между зарядами

\( \varepsilon_0 = 8,85*10^{-12} \) — Электрическая постоянная

\( \varepsilon \) — Диэлектрическая проницаемость среды

\( k = 9*10^9 \) — Коэффициент пропорциональности в законе Кулона

Силы взаимодействия подчиняются третьему закону Ньютона: \( \vec{F}_{12}=\vec{F}_{21} \) . Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными.

  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Отметим, чтоб выполнялся закон Кулона необходимо 3 условия:

  • Точечность зарядов — то есть расстояние между заряженными телами много больше их размеров.
  • Неподвижность зарядов. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд .
  • Взаимодействие зарядов в вакууме.

В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Поделитесь с другими:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

calcsbox.com

1.2. Закон Кулона

Основной закон взаимодействия электрических зарядов был найден Шарлем Кулоном в 1785 г. экспериментально. Кулон установил, что сила взаимодействия между двумя небольшими заряженными металлическими шариками обратно пропорциональна квадрату расстояниямежду ними и зависит от величины зарядови:

,

где -коэффициент пропорциональности .

Силы, действующие на заряды, являются центральными, то есть они направлены вдоль прямой, соединяющей заряды.

  • Для одноименных зарядов произведение и силасоответствует взаимному отталкиванию зарядов,

  • для разноимнных зарядов , и силасоответствует взаимному притяжению зарядов.

Закон Кулона можно записать в векторной форме:,

где -вектор силы, действующей на заряд со стороны заряда,

- радиус-вектор, соединяющий заряд с зарядом;

- модуль радиус-вектора.

Сила, действующая на заряд со стороныравна,.

Закон Кулона в такой форме

  • справедлив только для взаимодействия точечных электрических зарядов, то есть таких заряженных тел, линейными размерами которых можно пренебречь по сравнению с расстоянием между ними.

  • выражает силу взаимодействия между неподвижными электрическими зарядами, то есть это электростатический закон.

Формулировка закона Кулона:

Сила электростатического взаимодействия между двумя точечными электрическими зарядами прямо пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними.

Коэффициент пропорциональности в законе Кулоназависит

  1. от свойств среды

  2. выбора единиц измерения величин, входящих в формулу.

Поэтому можно представить отношением,

где -коэффициент, зависящий только от выбора системы единиц измерения;

- безразмерная величина, характеризующая электрические свойства среды, называется относительной диэлектрической проницаемостью среды. Она не зависит от выбора системы единиц измерения и равна единице в вакууме.

Тогда закон Кулона примет вид:,

для вакуума ,

тогда -относительная диэлектрическая проницаемость среды показывает, во сколько раз в данной среде сила взаимодействия между двумя точечными электрическими зарядами и, находящимися друг от друга на расстоянии, меньше, чем в вакууме.

В системе СИ коэффициент , и

закон Кулона имеет вид:.

Это рационализированная запись закона Кулона.

- электрическая постоянная, .

В системе СГСЭ ,.

В векторной форме закон Кулона принимает вид

где -вектор силы, действующей на заряд со стороны заряда ,

- радиус-вектор, соединяющий заряд с зарядом

(рис. 1.2),

r –модуль радиус-вектора .

Всякое заряженное тело состоит из множества точечных электрических зарядов, поэтому электростатическая сила, с которой одно заряженное тело действует на другое, равна векторной сумме сил, приложенных ко всем точечным зарядам второго тела со стороны каждого точечного заряда первого тела.

1.3.Электрическое поле. Напряженность.

Пространство, в котором находится электрический заряд, обладает определенными физическими свойствами.

  1. На всякий другой заряд, внесенный в это пространство, действуют электростатические силы Кулона.

  2. Если в каждой точке пространства действует сила, то говорят, что в этом пространстве существует силовое поле.

  3. Поле наряду с веществом является формой материи.

  4. Если поле стационарно, то есть не меняется во времени, и создается неподвижными электрическими зарядами, то такое поле называется электростатическим.

Электростатика изучает только электростатические поля и взаимодействия неподвижных зарядов.

Для характеристики электрического поля вводят понятие напряженности. Напряженностью в каждой точке электрического поля называется вектор , численно равный отношению силы, с которой это поле действует на пробный положительный заряд, помещенный в данную точку, и величины этого заряда, и направленный в сторону действия силы.

Пробный заряд, который вносится в поле, предполагается точечным и часто называется пробным зарядом.

- Он не участвует в создании поля, которое с его помощью измеряется.

- предполагается, что этот заряд не искажает исследуемого поля, то есть он достаточно мал и не вызывает перераспределения зарядов, создающих поле.

Если на пробный точечный заряд поле действует силой, то напряженность.

Единицы напряженности:

СИ:

СГСЭ:

В системе СИ выражение для поля точечного заряда:

.

В векторной форме:

Здесь – радиус-вектор, проведенный из зарядаq , создающего поле, в данную точку.

Таким образом,векторы напряженности электрического поля точечного заряда q во всех точках поля направлены радиально (рис.1.3)

- от заряда, если он положительный, «исток»

- и к заряду, если он отрицательный «сток»

Для графической интерпретации электрического поля вводят понятие силовой линии или линии напряженности. Это

  • кривая, касательная в каждой точке к которой совпадает с вектором напряженности.

  • Линия напряженности начинается на положительном заряде и заканчивается на отрицательном.

  • Линии напряженности не пересекаются, так как в каждой точке поля вектор напряженности имеет лишь одно направление.

studfiles.net

Закон Кулона

Компьютерная программа является иллюстрацией по теме «Закон Кулона».

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:

где ε0 – электрическая постоянная.

Модель может быть использована в режиме ручного переключения кадров и в режиме автоматической демонстрации (Фильм).

files.school-collection.edu.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *