определение, формула, применение на практике

«Самоиндукция останавливает рост напряжения в индуктивных цепях». Если ваша работа или увлечение связаны с электричеством вы наверняка слышали подобные высказывания. На самом деле это явление присуще индуктивным цепям, как в явном виде, например, катушек, так и в неявном, такие как паразитные параметры кабеля. В этой статье мы простыми словами расскажем о том, что такое самоиндукция и где она применяется.

Определение

Самоиндукцией называется появление в проводнике электродвижущей силы (ЭДС), направленной в противоположную сторону относительно напряжения источника питания при протекании тока. При этом оно возникает в момент, когда сила тока в цепи изменяется. Изменяющийся электрической ток порождает изменяющееся магнитное поле, оно в свою очередь наводит ЭДС в проводнике.

Это похоже на формулировку закона электромагнитной индукции Фарадея, где сказано:

При прохождении магнитного потока через проводник, в последнем возникает ЭДС. Она пропорциональна скорости изменения магнитного потока (мат. производная по времени).

То есть:

E=dФ/dt,

Где E – ЭДС самоиндукции, измеряется в вольтах, Ф – магнитный поток, единица измерения – Вб (вебер, он же равен В/с)

Индуктивность

Мы уже сказали о том, что самоиндукция присуща индуктивным цепям, поэтому рассмотрим явление самоиндукции на примере катушки индуктивности.

Катушка индуктивности – это элемент, который представляет собой катушку из изолированного проводника. Для увеличения индуктивности увеличивают число витков или внутрь катушки помещают сердечник из магнитомягкого или другого материала.

Единица измерения индуктивности – Генри (Гн). Индуктивность характеризует то, насколько сильно проводник противодействует электрическому току. Так как вокруг каждого проводника, по которому протекает ток, образуется магнитное поле, и, если поместить проводник в переменное поле – в нем возникнет ток. В свою очередь магнитные поля каждого витка катушки складываются. Тогда вокруг катушки, по которой протекает ток, возникнет сильное магнитное поле. При изменении его силы в катушке будет изменяться и магнитный поток вокруг неё.

Согласно закону электромагнитной индукции Фарадея, если катушку будет пронизывать переменный магнитный поток, то в ней возникнет ток и ЭДС самоиндукции. Они будут препятствовать току, который протекал в индуктивности от источника питания к нагрузке. Их еще называют экстратоки ЭДС самоиндукции.

Формула ЭДС самоиндукции на индуктивности имеет вид:

То есть чем больше индуктивность, и чем больше и быстрее изменился ток – тем сильнее будет всплеск ЭДС.

При возрастании тока в катушке возникает ЭДС самоиндукции, которая направлена против напряжения источника питания, соответственно возрастание тока замедлится. То же самое происходит при убывании – самоиндукция приведет к появлению ЭДС, которое будет поддерживать ток в катушке в том же направлении, что и до этого. Отсюда следует, что напряжение на выводах катушки будет противоположным полярности источника питания.

На рисунке ниже вы видите, что при включении/отключении индуктивной цепи ток не резко возникает, а изменяется постепенно. Об этом говорят и законы коммутации.

Другое определение индуктивности звучит так: магнитный поток пропорционален току, но в его формуле индуктивность выступает в качестве коэффициента пропорциональности.

Ф=L*I

Трансформатор и взаимоиндукция

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда дроссель (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к образованию дуги при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Напоследок рекомендуем просмотреть полезное видео по теме, на которых кратко и подробно рассматривается явление самоиндукции:

Надеемся, теперь вам стало понятно, что такое самоиндукция, как она проявляется и где ее можно использовать. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

samelectrik.ru

Эдс индукции

Причиной
электродвижущей силы может стать
изменение магнитного
поля в
окружающем пространстве. Это явление
называетсяэлектромагнитной
индукцией.
Величина ЭДС индукции в контуре
определяется выражением

где — поток
магнитного поля через
замкнутую поверхность ,
ограниченную контуром. Знак «−» перед
выражением показывает, что индукционный
ток, созданный ЭДС индукции, препятствует
изменению магнитного потока в контуре
(см. правило
Ленца).

41. Индуктивность, ее единица СИ.
Индуктивность длинного соленоида.

Индукти́вность (или коэффициент
самоиндукции
) —
коэффициент пропорциональности между
электрическим током,
текущим в каком-либо замкнутом контуре,
и магнитным
потоком
,
создаваемым этим током через поверхность[1],
краем которой является этот контур.[2][3][4].

В
формуле


магнитный
поток, —
ток в контуре, —
индуктивность.

  • Нередко
    говорят об индуктивности прямого
    длинного провода(см.).
    В этом случае и других (особенно — в не
    отвечающих квазистационарному
    приближению) случаях, когда замкнутый
    контур непросто адекватно и однозначно
    указать, приведенное выше определение
    требует особых уточнений; отчасти
    полезным для этого оказывается подход
    (упоминаемый ниже), связывающий
    индуктивность с энергией магнитного
    поля.

Через
индуктивность выражается ЭДС
самоиндукции
 в
контуре, возникающая при изменении в
нём тока[4]:

.

Из
этой формулы следует, что индуктивность
численно равна ЭДС
самоиндукции
,
возникающей в контуре при изменении
силы тока на 1 А за 1 с.

При
заданной силе тока индуктивность
определяет энергию магнитного
поля, создаваемого этим током[4]:

.

Обозначение и единицы измерения

В
системе единиц СИ индуктивность
измеряется в генри[7],
сокращенно Гн, в системе СГС —
в сантиметрах (1 Гн = 109см)[4].
Контур обладает индуктивностью в один
генри, если при изменении тока на
один ампер в
секунду на выводах контура будет
возникать напряжение в один вольт.
Реальный, не сверхпроводящий, контур
обладает омическим сопротивлением R,
поэтому на нём будет дополнительно
возникать напряжение U=I*R, где I — сила
тока,
протекающего по контуру в данное
мгновение времени.

Символ ,
используемый для обозначения индуктивности,
был взят в честь Ленца
Эмилия Христиановича (Heinrich
Friedrich Emil Lenz)[источник не указан 1017 дней].
Единица измерения индуктивности названа
в честь Джозефа
Генри (Joseph
Henry)[8].
Сам термин индуктивность был
предложен Оливером
Хевисайдом (Oliver
Heaviside) в феврале 1886
года[источник не указан 1017 дней].

Электрический
ток, который течет в замкнутом контуре,
создает вокруг себя магнитное поле,
индукция которого, согласно закону
Био-Савара-Лапласа, пропорциональна
току. Сцепленный с контуром магнитный
поток Ф поэтому прямо пропорционален
току I в контуре: 

(1) 

где
коэффициент пропорциональности L
называетсяиндуктивностью
контура

При
изменении в контуре силы тока будет
также изменяться и сцепленный с ним
магнитный поток; значит, в контуре будет
индуцироваться э.д.с. Возникновение
э.д.с. индукции в проводящем контуре при
изменении в нем силы тока
называетсясамоиндукцией

Из
выражения (1) задается единица
индуктивности генри (Гн):
1 Гн — индуктивность контура, магнитный
поток самоиндукции которого при токе
в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В

·c/А . 

Вычислим
индуктивность бесконечно длинного
соленоида. Полный магнитный поток сквозь
соленоид (потокосцепление) равен
μ0μ(N2I/l)S
. Подставив в (1), найдем 

(2) 

т.
е. индуктивность соленоида зависит от
длиныl солениода,
числа его витков N, его , площади S и
магнитной проницаемости μ вещества, из
которого изготовлен сердечник
соленоида. 

Доказано, что
индуктивность контура зависит в общем
случае только от геометрической формы
контура, его размеров и магнитной
проницаемости среды, в которой он
расположен, и можно провести аналог
индуктивности контура с электрической
емкостью уединенного проводника, которая
также зависит только от формы проводника,
его размеров и диэлектрической
проницаемости среды. 

Найдем,
применяя к явлению самоиндукции закон
Фарадея, что э.д.с. самоиндукции
равна 

Если
контур не претерпевает деформаций и
магнитная проницаемость среды остается
неизменной (в дальнейшем будет показано,
что последнее условие выполняется не
всегда), то L = const и(3) 

где
знак минус, определяемый правилом Ленца,
говорит о том, чтоналичие
индуктивности в контуре приводит к
замедлению изменения тока в нем

Если
ток со временем увеличивается, то
(dI/dt<0) и ξs>0
т. е. ток самоиндукции направлен навстречу
току, обусловленному внешним источником,
и замедляет его увеличение. Если ток со
временем уменьшается, то (dI/dt>0) и ξs<0
т. е. индукционный ток имеет такое же
направление, как и уменьшающийся ток в
контуре, и замедляет его уменьшение.
Значит, контур, обладая определенной
индуктивностью, имеет электрическую
инертность, заключающуюся в том, что
любое изменение тока уменьшается тем
сильнее, чем больше индуктивность
контура.

 

42. Ток при размыкании и замыкании цепи.

При
всяком изменении силы тока в проводящем
контуре возникает э. д. с. самоиндукции,
в результате чего в контуре появляются
дополнительные токи, называемые экстратоками
самоиндукции
.
Экстратоки самоиндукции, согласно
правилу Ленца, всегда направлены так,
чтобы препятствовать изменениям тока
в цепи, т. е. направлены противоположно
току, создаваемому источником. При
выключении источника тока экстратоки
имеют такое же направление, что и
ослабевающий ток. Следовательно, наличие
индуктивности в цепи приводит к замедлению
исчезновения или установления тока в
цепи.

Рассмотрим
процесс выключения тока в цепи, содержащей
источник тока с э.д.с. ,
резистор сопротивлением R и
катушку индуктивностью L. Под
действием внешней э. д. с. в цепи течет
постоянный ток

(внутренним
сопротивлением источника тока
пренебрегаем).

В
момент времени t=0
отключим источник тока. Ток в катушке
индуктивностью L начнет
уменьшаться, что приведет к возникновению
э.д.с. самоиндукции препятствующей,
согласно правилу Ленца, уменьшению
тока. В каждый момент време­ни ток в
цепи определяется законом Ома I=s/R, или

(127.1)

Разделив
в выражении (127.1) переменные,
получим Интегрируя
это уравнение по I (от I0 до I)
и t (от
0 до t),
находим ln (I /I0)
Rt/L, или

(127.2)

где =L/R  постоянная,
называемая временем
релаксации.
 Из
(127.2) следует, что  есть
время, в течение которого сила тока
уменьшается в е раз.

Таким
образом, в процессе отключения источника
тока сила тока убывает по экспоненциальному
закону (127.2) и определяется кривой 1 на
рис. 183. Чем больше индуктивность цепи
и меньше ее сопротивление, тем больше  и,
следовательно, тем медленнее уменьшается
ток в цепи при ее размыкании.

При
замыкании цепи помимо внешней э. д.
с.  возникает
э. д. с. самоиндукции препятствующая,
согласно правилу Ленца, возрастанию
тока. По закону Ома, или

Введя
новую переменную преобразуем
это уравнение к виду

где  —
время релаксации.

В
момент замыкания (t=0)
сила тока I =
0 и u =
–.
Следовательно, интегрируя по и (от
– до IR)
и t (от
0 до t),
находим ln[(IR)]/–= t/, или

(127.3)

где 
установившийся ток (при t).

Таким
образом, в процессе включения источника
тока нарастание силы тока в цепи задается
функцией (127.3) и определяется кривой 2
на рис. 183. Сила тока возрастает от
начального значения I=0
и асимптотически стремится к установившемуся
значению . Скорость
нарастания тока определяется тем же
временем релаксации =L/R, что
и убывание тока. Установление тока
происходит тем быстрее, чем меньше
индук­тивность цепи и больше ее
сопротивление.

Оценим
значение э.д.с. самоиндукции , возникающей
при мгновенном увеличении сопротивления
цепи постоянного тока от R0 до R.
Предположим, что мы размыкаем контур,
когда в нем течет установившийся ток .
При размыкании цепи ток изменяется по
формуле (127.2). Подставив в нее выражение
дляI0 и ,
получим

Э.д.с.
самоиндукции

т.
е. при значительном увеличении
сопротивления цепи (R/R0>>1),
обладающей боль­шой индуктивностью,
э.д.с. самоиндукции может во много раз
превышать э.д.с. источника тока, включенного
в цепь. Таким образом, необходимо
учитывать, что контур, содержащий
индуктивность, нельзя резко размыкать,
так как это (возникнове­ние значительных
э.д.с. самоиндукции) может привести к
пробою изоляции и выводу из строя
измерительных приборов. Если в контур
сопротивление вводить постепенно, то
э.д.с. самоиндукции не достигнет больших
значений.

43. Явление взаимной индукции. Трансформатор.

Рассмотрим
два неподвижных контура (1 и 2), которые
расположены достаточно близко друг от
друга (рис. 1). Если в контуре 1 протекает
ток I1,
то магнитный поток, который создавается
этим током (поле, создающее этот поток,
на рисунке изображено сплошными линиями),
прямо пропорционален I1.
Обозначим через Ф21 часть
потока,пронизывающая контур 2.
Тогда 

 (1) 

где
L21 —
коэффициент пропорциональности. 

Рис.1

Если
ток I1 меняет
свое значение, то в контуре 2 индуцируется
э.д.с. ξi2 ,
которая по закону Фарадея будет равна
и противоположна по знаку скорости
изменения магнитного потока Ф21,
который создается током в первом контуре
и пронизыващет второй: 

 

Аналогичным
образом, при протекании в контуре 2 тока
I2 магнитный
поток (его поле изображено на рис. 1
штрихами) пронизывает первый контур.
Если Ф12 —
часть этого потока, который пронизывает
контур 1, то 

 

Если
ток I2 меняет
свое значение, то в контуре 1 индуцируется
э.д.с. ξi1 ,
которая равна и противоположна по знаку
скорости изменения магнитного потока
Ф12,
который создается током во втором
контуре и пронизывает первый: 

 

Явление
возникновения э.д.с. в одном из контуров
при изменении силы тока в другом
называется взаимной
индукцией
.
Коэффициенты пропорциональности L21 и
L12 называются взаимной
индуктивностью контуров
.
Расчеты, которые подтверждены опытом,
показывают, что L21 и
L12 равны
друг другу, т. е. 

 (2) 

Коэффициенты
пропорциональности L12 и
L21 зависят
от размеров, геометрической формы,
взаимного расположения контуров и от
магнитной проницаемости среды, окружающей
контуры. Единица взаимной индуктивности
та же, что и для индуктивности, — генри
(Гн). 

Найдем
взаимную индуктивность двух катушек,
которые намотаны на общий тороидальный
сердечник. Этот случай имеет большое
практическое значение (рис. 2). Магнитная
индукция поля, которое создавается
первой катушкой с числом витков N1,
током I1 и
магнитной проницаемостью μ сердечника,
B = μμ0(N1I1/l)
где l —
длина сердечника по средней линии.
Магнитный поток сквозь один виток второй
катушки Ф2 =
BS = μμ0(N1I1/l)S 

Значит,
полный магнитный поток (потокосцепление)
сквозь вторичную обмотку, которая
содержит N2 витков, 

 

Поток
Ψ создается током I1,
поэтому, используя (1), найдем 

 (3) 

Если
рассчитать магнитный поток, который
создавается катушкой 2 сквозь катушку
1, то для L12 получим
выражение в соответствии с формулой
(3). Значит, взаимная индуктивность двух
катушек, которые намотаны на общий
тороидальный сердечник, 

 

Трансформа́тор (от лат. transformo —
преобразовывать) — это статическое
электромагнитное устройство, имеющее
две или более индуктивно связанных
обмоток на каком-либо магнитопроводе и
предназначенное для преобразования
посредствомэлектромагнитной
индукции
 одной
или нескольких систем (напряжений)
переменного тока в одну или несколько
других систем (напряжений) переменного
тока без изменения частоты системы
(напряжения) переменного тока

studfiles.net

Самоиндукция

Как мы помним, контур «сопротивляется» изменению магнитного потока. Но если подать на контур напряжение, через него пойдёт ток, и будет порождать магнитный поток. Контур будет этому «сопротивляться», порождая такой ток, который хотя бы частично скомпенсирует изменение потока. На практике это выглядит следующим образом. Допустим, мы сделали схему из последовательно подключенных катушки и лампы.

Мы подаём напряжение на входные контакты. Лампа зажжётся не мгновенно, я постепенно, плавно.

Причина тому – индукционный ток, который возникает в катушке в ответ на изменение потока магнитного поля.

Если мы замкнём контур, как показано на картинке ниже, то есть исключим из него источник напряжения, но оставим проходимым для тока, то лампа так же медленно погаснет – катушка будет сопротивляться изменению магнитного потока.

Это явление – возникновение индукционного противотока, компенсирующего изменение входного тока – называется самоиндукцией.

Предлагаю полминуты поразмышлять, что будет, если мы не просто исключим из контура источник напряжения, а разорвём цепь, когда через катушку уже идёт ток. Ведь индукционный ток пропорционален скорости изменения магнитного потока, а скорость изменения потока в данной ситуации приближается к бесконечности.

На самом деле, некоторые люди проводили такой эксперимент. Они брали большую катушку, подключали её к мощному источнику напряжения, ждали, когда в катушке установится ток, а затем быстро отрывали одну клемму от источника. И получали длинную и продолжительную «молнию» от источника до контакта катушки! Наверное, это очень красиво. И смертельно опасно.

Ну а мы введём такое понятие как индуктивность или коэффициент самоиндукции. Разные контуры в разной степени сопротивляются изменению потока, и в разной степени замедляют зажигание лампочки (и выдают молнию разной длины и длительности). Так вот, чем больше индуктивность, тем более наш контур склонен сопротивляться изменениям тока, более длинные искры выдаёт и сильнее тормозит зажигание/угасание лампочки. Индуктивность измеряется в Генри (Гн) и обозначается буквой L.

Обычно контур с высокой индуктивностью – это катушка. Вообще, любой контур можно свести к катушке – пусть даже одновитковой.

Так вот, на индуктивность влияют:

— число витков в катушке. Чем больше, тем индуктивность выше

— размеров катушки. Чем больше площадь сечения витка, тем индуктивность выше

— материал внутри катушки. Если внутри катушки будет сердечник из железа, индуктивность будет выше, чем если там будет воздух

— длина катушки. Чем катушка короче, тем больше индуктивность

Вообще, из эксперимента с медленно гаснущей лампочкой (и особенно из эксперимента с красивой электрической искрой) следует, что внутри катушки запасается энергия, которая потом может быть на что-то израсходована. Эта энергия запасается внутри магнитного поля.

Эта энергия определяется по формуле:

E = L * I/ 2, где L – индуктивность, I — сила тока.

Редактировать этот урок и/или добавить задание и получать деньги постоянно*

Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

uchilegko.info

Самоиндукция — это… Что такое Самоиндукция?

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :

.

Коэффициент пропорциональности называется коэффициентом самоиндукции или индуктивностью контура (катушки).

Самоиндукция и синусоидальный ток

В случае синусоидальной зависимости тока, текущего через катушку, от времени, ЭДС самоиндукции в катушке отстает от тока по фазе на (то есть на 90°), а амплитуда этой ЭДС пропорциональна амплитуде тока, частоте и индуктивности (). Ведь скорость изменения функции — это её первая производная, а .

Для расчета более или менее сложных схем, содержащих индуктивные элементы, то есть витки, катушки итп устройства, в которых наблюдается самоиндукция, (особенно, полностью линейных, то есть не содержащих нелинейных элементов[4]) в случае синусоидальных токов и напряжений применяют метод комплексных импедансов или, в более простых случаях, менее мощный, но более наглядный его вариант — метод векторных диаграмм.

Заметим, что всё описанное применимо не только непосредственно к синусоидальным токам и напряжениям, но и практически к произвольным, поскольку последние могут быть практически всегда разложены в ряд или интеграл Фурье и таким образом сведены к синусоидальным.

В более или менее непосредственной связи с этим можно упомянуть о применении явления самоиндукции (и, соответственно катушек индуктивности) в разнообразных колебательных контурах, фильтрах, линиях задержки и других разнообразных схемах электроники и электротехники.

Самоиндукция и скачок тока

За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом (при резком размыкании) величина ЭДС самоиндукции может в этот момент значительно превышать ЭДС источника.

Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение зажигания при напряжении питающей батареи 12В составляет 7-25 кВ. Впрочем, превышение ЭДС в выходной цепи над ЭДС батареи здесь обусловлено не только резким прерыванием тока, но и коэффициентом трансформации, поскольку чаще всего используется не простая катушка индуктивности, а катушка-трансформатор, вторичная обмотка которой как правило имеет во много раз большее количество витков (то есть, в большинстве случаев схема несколько более сложна, чем та, работа которой полностью объяснялось бы через самоиндукцию; однако физика ее работы и в таком варианте отчасти совпадает с физикой работы схемы с простой катушкой).

Это явление применяется и для поджига люминесцентных ламп в стандартной традиционной схеме (здесь речь идет именно о схеме с простой катушкой индуктивности — дросселем).

Кроме того, его надо учитывать всегда при размыкании контактов, если ток течет по нагрузке с заметной индуктивностью: возникающий скачок ЭДС может приводить к пробою межконтактного промежутка и/или другим нежелательным эффектам, для подавления которых в этом случае, как правило, необходимо принимать разнообразные специальные меры.

Примечания

  1. Контур может быть и многовитковым — то есть, в частности, катушкой. В этом случае, так же как и в случае одиночного контура, строго говоря, контур должен быть замкнутым (например, через вольтметр, измеряющий ЭДС), но на практике при (очень) большом количестве витков различие ЭДС в полностью замкнутом контуре и в контуре с разрывом (геометрически даже большим по сравнению с размером катушки) может быть пренебрежимым.
  2. Поскольку магнитный поток через контур пропорционален току в контуре. Для тонкого жесткого контура (для какового случая это утверждение и является точным) точная пропорциональность очевидна исходя из закона Био-Савара, так как исходя из него вектор магнитной индукции просто пропорционален току, а поток этого вектора (что и называется магнитным потоком) через фиксированную (она не меняется при жестком контуре) поверхность тогда тоже пропорционален току. Формально это записывается в виде равенства: магнитный поток = коэффициент самоиндукции• ток в контуре.
  3. В случае сложной формы контура, например, если контур многовитковый (катушка), поверхность, ограниченная контуром (или, как говорят, «натянутая на контур») оказывается достаточно сложной, что ничуть не меняет сути описываемого явления. Для упрощения понимания случая многовитковых контуров (катушек) можно (приближенно) считать поверхность, натянутую на такой контур, состоящей из множества (стопки) поверхностей, каждая из которых натянута на свой отдельный единичный виток.
  4. Сами индуктивные элементы являются линейными, то есть подчиняются линейному дифференциальному уравнению, приведенному в статье выше. Впрочем, это уравнение в реальности выполняется лишь приближенно, так что индуктивные элементы являются линейными также лишь приближенно (хотя иногда и с крайне хорошей точностью). Также в реальности встречаются отклонения от идеального уравнения, носящие линейный характер (например, связанные с упругими деформациями катушки в линейном приближении).

Ссылки

dic.academic.ru

Эдс индукции

Причиной
электродвижущей силы может стать
изменение магнитного
поля в
окружающем пространстве. Это явление
называетсяэлектромагнитной
индукцией.
Величина ЭДС индукции в контуре
определяется выражением

где — поток
магнитного поля через
замкнутую поверхность ,
ограниченную контуром. Знак «−» перед
выражением показывает, что индукционный
ток, созданный ЭДС индукции, препятствует
изменению магнитного потока в контуре
(см. правило
Ленца).

41. Индуктивность, ее единица СИ.
Индуктивность длинного соленоида.

Индукти́вность (или коэффициент
самоиндукции
) —
коэффициент пропорциональности между
электрическим током,
текущим в каком-либо замкнутом контуре,
и магнитным
потоком
,
создаваемым этим током через поверхность[1],
краем которой является этот контур.[2][3][4].

В
формуле


магнитный
поток, —
ток в контуре, —
индуктивность.

  • Нередко
    говорят об индуктивности прямого
    длинного провода(см.).
    В этом случае и других (особенно — в не
    отвечающих квазистационарному
    приближению) случаях, когда замкнутый
    контур непросто адекватно и однозначно
    указать, приведенное выше определение
    требует особых уточнений; отчасти
    полезным для этого оказывается подход
    (упоминаемый ниже), связывающий
    индуктивность с энергией магнитного
    поля.

Через
индуктивность выражается ЭДС
самоиндукции
 в
контуре, возникающая при изменении в
нём тока[4]:

.

Из
этой формулы следует, что индуктивность
численно равна ЭДС
самоиндукции
,
возникающей в контуре при изменении
силы тока на 1 А за 1 с.

При
заданной силе тока индуктивность
определяет энергию магнитного
поля, создаваемого этим током[4]:

.

Обозначение и единицы измерения

В
системе единиц СИ индуктивность
измеряется в генри[7],
сокращенно Гн, в системе СГС —
в сантиметрах (1 Гн = 109см)[4].
Контур обладает индуктивностью в один
генри, если при изменении тока на
один ампер в
секунду на выводах контура будет
возникать напряжение в один вольт.
Реальный, не сверхпроводящий, контур
обладает омическим сопротивлением R,
поэтому на нём будет дополнительно
возникать напряжение U=I*R, где I — сила
тока,
протекающего по контуру в данное
мгновение времени.

Символ ,
используемый для обозначения индуктивности,
был взят в честь Ленца
Эмилия Христиановича (Heinrich
Friedrich Emil Lenz)[источник не указан 1017 дней].
Единица измерения индуктивности названа
в честь Джозефа
Генри (Joseph
Henry)[8].
Сам термин индуктивность был
предложен Оливером
Хевисайдом (Oliver
Heaviside) в феврале 1886
года[источник не указан 1017 дней].

Электрический
ток, который течет в замкнутом контуре,
создает вокруг себя магнитное поле,
индукция которого, согласно закону
Био-Савара-Лапласа, пропорциональна
току. Сцепленный с контуром магнитный
поток Ф поэтому прямо пропорционален
току I в контуре: 

(1) 

где
коэффициент пропорциональности L
называетсяиндуктивностью
контура

При
изменении в контуре силы тока будет
также изменяться и сцепленный с ним
магнитный поток; значит, в контуре будет
индуцироваться э.д.с. Возникновение
э.д.с. индукции в проводящем контуре при
изменении в нем силы тока
называетсясамоиндукцией

Из
выражения (1) задается единица
индуктивности генри (Гн):
1 Гн — индуктивность контура, магнитный
поток самоиндукции которого при токе
в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В

·c/А . 

Вычислим
индуктивность бесконечно длинного
соленоида. Полный магнитный поток сквозь
соленоид (потокосцепление) равен
μ0μ(N2I/l)S
. Подставив в (1), найдем 

(2) 

т.
е. индуктивность соленоида зависит от
длиныl солениода,
числа его витков N, его , площади S и
магнитной проницаемости μ вещества, из
которого изготовлен сердечник
соленоида. 

Доказано, что
индуктивность контура зависит в общем
случае только от геометрической формы
контура, его размеров и магнитной
проницаемости среды, в которой он
расположен, и можно провести аналог
индуктивности контура с электрической
емкостью уединенного проводника, которая
также зависит только от формы проводника,
его размеров и диэлектрической
проницаемости среды. 

Найдем,
применяя к явлению самоиндукции закон
Фарадея, что э.д.с. самоиндукции
равна 

Если
контур не претерпевает деформаций и
магнитная проницаемость среды остается
неизменной (в дальнейшем будет показано,
что последнее условие выполняется не
всегда), то L = const и(3) 

где
знак минус, определяемый правилом Ленца,
говорит о том, чтоналичие
индуктивности в контуре приводит к
замедлению изменения тока в нем

Если
ток со временем увеличивается, то
(dI/dt<0) и ξs>0
т. е. ток самоиндукции направлен навстречу
току, обусловленному внешним источником,
и замедляет его увеличение. Если ток со
временем уменьшается, то (dI/dt>0) и ξs<0
т. е. индукционный ток имеет такое же
направление, как и уменьшающийся ток в
контуре, и замедляет его уменьшение.
Значит, контур, обладая определенной
индуктивностью, имеет электрическую
инертность, заключающуюся в том, что
любое изменение тока уменьшается тем
сильнее, чем больше индуктивность
контура.

 

42. Ток при размыкании и замыкании цепи.

При
всяком изменении силы тока в проводящем
контуре возникает э. д. с. самоиндукции,
в результате чего в контуре появляются
дополнительные токи, называемые экстратоками
самоиндукции
.
Экстратоки самоиндукции, согласно
правилу Ленца, всегда направлены так,
чтобы препятствовать изменениям тока
в цепи, т. е. направлены противоположно
току, создаваемому источником. При
выключении источника тока экстратоки
имеют такое же направление, что и
ослабевающий ток. Следовательно, наличие
индуктивности в цепи приводит к замедлению
исчезновения или установления тока в
цепи.

Рассмотрим
процесс выключения тока в цепи, содержащей
источник тока с э.д.с. ,
резистор сопротивлением R и
катушку индуктивностью L. Под
действием внешней э. д. с. в цепи течет
постоянный ток

(внутренним
сопротивлением источника тока
пренебрегаем).

В
момент времени t=0
отключим источник тока. Ток в катушке
индуктивностью L начнет
уменьшаться, что приведет к возникновению
э.д.с. самоиндукции препятствующей,
согласно правилу Ленца, уменьшению
тока. В каждый момент време­ни ток в
цепи определяется законом Ома I=s/R, или

(127.1)

Разделив
в выражении (127.1) переменные,
получим Интегрируя
это уравнение по I (от I0 до I)
и t (от
0 до t),
находим ln (I /I0)
Rt/L, или

(127.2)

где =L/R  постоянная,
называемая временем
релаксации.
 Из
(127.2) следует, что  есть
время, в течение которого сила тока
уменьшается в е раз.

Таким
образом, в процессе отключения источника
тока сила тока убывает по экспоненциальному
закону (127.2) и определяется кривой 1 на
рис. 183. Чем больше индуктивность цепи
и меньше ее сопротивление, тем больше  и,
следовательно, тем медленнее уменьшается
ток в цепи при ее размыкании.

При
замыкании цепи помимо внешней э. д.
с.  возникает
э. д. с. самоиндукции препятствующая,
согласно правилу Ленца, возрастанию
тока. По закону Ома, или

Введя
новую переменную преобразуем
это уравнение к виду

где  —
время релаксации.

В
момент замыкания (t=0)
сила тока I =
0 и u =
–.
Следовательно, интегрируя по и (от
– до IR)
и t (от
0 до t),
находим ln[(IR)]/–= t/, или

(127.3)

где 
установившийся ток (при t).

Таким
образом, в процессе включения источника
тока нарастание силы тока в цепи задается
функцией (127.3) и определяется кривой 2
на рис. 183. Сила тока возрастает от
начального значения I=0
и асимптотически стремится к установившемуся
значению . Скорость
нарастания тока определяется тем же
временем релаксации =L/R, что
и убывание тока. Установление тока
происходит тем быстрее, чем меньше
индук­тивность цепи и больше ее
сопротивление.

Оценим
значение э.д.с. самоиндукции , возникающей
при мгновенном увеличении сопротивления
цепи постоянного тока от R0 до R.
Предположим, что мы размыкаем контур,
когда в нем течет установившийся ток .
При размыкании цепи ток изменяется по
формуле (127.2). Подставив в нее выражение
дляI0 и ,
получим

Э.д.с.
самоиндукции

т.
е. при значительном увеличении
сопротивления цепи (R/R0>>1),
обладающей боль­шой индуктивностью,
э.д.с. самоиндукции может во много раз
превышать э.д.с. источника тока, включенного
в цепь. Таким образом, необходимо
учитывать, что контур, содержащий
индуктивность, нельзя резко размыкать,
так как это (возникнове­ние значительных
э.д.с. самоиндукции) может привести к
пробою изоляции и выводу из строя
измерительных приборов. Если в контур
сопротивление вводить постепенно, то
э.д.с. самоиндукции не достигнет больших
значений.

43. Явление взаимной индукции. Трансформатор.

Рассмотрим
два неподвижных контура (1 и 2), которые
расположены достаточно близко друг от
друга (рис. 1). Если в контуре 1 протекает
ток I1,
то магнитный поток, который создавается
этим током (поле, создающее этот поток,
на рисунке изображено сплошными линиями),
прямо пропорционален I1.
Обозначим через Ф21 часть
потока,пронизывающая контур 2.
Тогда 

 (1) 

где
L21 —
коэффициент пропорциональности. 

Рис.1

Если
ток I1 меняет
свое значение, то в контуре 2 индуцируется
э.д.с. ξi2 ,
которая по закону Фарадея будет равна
и противоположна по знаку скорости
изменения магнитного потока Ф21,
который создается током в первом контуре
и пронизыващет второй: 

 

Аналогичным
образом, при протекании в контуре 2 тока
I2 магнитный
поток (его поле изображено на рис. 1
штрихами) пронизывает первый контур.
Если Ф12 —
часть этого потока, который пронизывает
контур 1, то 

 

Если
ток I2 меняет
свое значение, то в контуре 1 индуцируется
э.д.с. ξi1 ,
которая равна и противоположна по знаку
скорости изменения магнитного потока
Ф12,
который создается током во втором
контуре и пронизывает первый: 

 

Явление
возникновения э.д.с. в одном из контуров
при изменении силы тока в другом
называется взаимной
индукцией
.
Коэффициенты пропорциональности L21 и
L12 называются взаимной
индуктивностью контуров
.
Расчеты, которые подтверждены опытом,
показывают, что L21 и
L12 равны
друг другу, т. е. 

 (2) 

Коэффициенты
пропорциональности L12 и
L21 зависят
от размеров, геометрической формы,
взаимного расположения контуров и от
магнитной проницаемости среды, окружающей
контуры. Единица взаимной индуктивности
та же, что и для индуктивности, — генри
(Гн). 

Найдем
взаимную индуктивность двух катушек,
которые намотаны на общий тороидальный
сердечник. Этот случай имеет большое
практическое значение (рис. 2). Магнитная
индукция поля, которое создавается
первой катушкой с числом витков N1,
током I1 и
магнитной проницаемостью μ сердечника,
B = μμ0(N1I1/l)
где l —
длина сердечника по средней линии.
Магнитный поток сквозь один виток второй
катушки Ф2 =
BS = μμ0(N1I1/l)S 

Значит,
полный магнитный поток (потокосцепление)
сквозь вторичную обмотку, которая
содержит N2 витков, 

 

Поток
Ψ создается током I1,
поэтому, используя (1), найдем 

 (3) 

Если
рассчитать магнитный поток, который
создавается катушкой 2 сквозь катушку
1, то для L12 получим
выражение в соответствии с формулой
(3). Значит, взаимная индуктивность двух
катушек, которые намотаны на общий
тороидальный сердечник, 

 

Трансформа́тор (от лат. transformo —
преобразовывать) — это статическое
электромагнитное устройство, имеющее
две или более индуктивно связанных
обмоток на каком-либо магнитопроводе и
предназначенное для преобразования
посредствомэлектромагнитной
индукции
 одной
или нескольких систем (напряжений)
переменного тока в одну или несколько
других систем (напряжений) переменного
тока без изменения частоты системы
(напряжения) переменного тока

studfiles.net

формула. Измерение индуктивности. Индуктивность контура

Кто в школе не изучал физику? Для кого-то она была интересна и понятна, а кто-то корпел над учебниками, пытаясь выучить наизусть сложные понятия. Но каждый из нас запомнил, что мир основан на физических знаниях. Сегодня мы поговорим о таких понятиях, как индуктивность тока, индуктивность контура, и узнаем, какие бывают конденсаторы и что такое соленоид.

Электрическая цепь и индуктивность

Индуктивность служит для характеристики магнитных свойств электрической цепи. Ее определяют как коэффициент пропорциональности между текущим электрическим током и магнитным потоком в замкнутом контуре. Поток создается этим током через поверхность контура. Еще одно определение гласит, что индуктивность является параметром электрической цепи и определяет ЭДС самоиндукции. Термин применяется для указания элемента цепи и приходится характеристикой эффекта самоиндукции, который был открыт Д. Генри и М. Фарадеем независимо друг от друга. Индуктивность связана с формой, размером контура и значением магнитной проницаемости окружающей среды. В единице измерения СИ эта величина измеряется в генри и обозначается как L.

Самоиндукция и измерение индуктивности

Индуктивностью называется величина, которая равна отношению магнитного потока, проходящего по всем виткам контура к силе тока:

Индуктивность контура находится в зависимости от формы, размеров контура и от магнитных свойств среды, в которой он находится. Если в замкнутом контуре протекает электрический ток, то возникает изменяющееся магнитное поле. Это впоследствии приведет к возникновению ЭДС. Рождение индукционного тока в замкнутом контуре носит название «самоиндукция». По правилу Ленца величина не дает изменяться току в контуре. Если обнаруживается самоиндукция, то можно применять электрическую цепь, в которой параллельно включены резистор и катушка с железным сердечником. Последовательно с ними подсоединены и электрические лампы. В этом случае сопротивление резистора равно сопротивлению на постоянном токе катушки. Результатом будет яркое горение ламп. Явление самоиндукции занимает одно из главных мест в радиотехнике и электротехнике.

Как найти индуктивность

Формула, которая является простейшей для нахождения величины, следующая:

где F – магнитный поток, I – ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

«Катушка ниток»

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк – это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется электродвижущей силой самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

где I характеризует силу тока, U – показывает напряжение, R – сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь «катушка – источник тока», то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

  • L = 10µ0ΠN2R2 : 9R + 10l.

А вот уже для многослойной другая формула:

  • L= µ0N2R2 :2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от «витков в квадрате».
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Соленоид

Под этим понятием понимается цилиндрическая обмотка из провода, который может быть намотан в один или несколько слоев. Длина цилиндра значительно больше диаметра. За счет такой особенности при подаче электрического тока в полости соленоида рождается магнитное поле. Скорость изменения магнитного потока пропорциональна изменению тока. Индуктивность соленоида в этом случае рассчитывается следующим образом:

Еще эту разновидность катушек называют электромеханическим исполнительным механизмом с втягиваемым сердечником. В данном случае соленоид снабжается внешним ферромагнитным магнитопроводом – ярмом.

В наше время устройство может соединять в себе гидравлику и электронику. На этой основе созданы четыре модели:

  • Первая способна контролировать линейное давление.
  • Вторая модель отличается от других принудительным управлением блокировки муфты в гидротрансформаторах.
  • Третья модель содержит в своем составе регуляторы давления, отвечающие за работу переключения скоростей.
  • Четвертая управляется гидравлическим способом или клапанами.

Необходимые формулы для расчетов

Чтобы найти индуктивность соленоида, формула применяется следующая:

где µ0 показывает магнитную проницаемость вакуума, n – это число витков, V – объем соленоида.

Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:

где S – это площадь поперечного сечения, а l – длина соленоида.

Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.

Работа на постоянном и переменном токе

Магнитное поле, которое создается внутри катушки, направлено вдоль оси, и равно:

где µ0 – это магнитная проницаемость вакуума, n – это число витков, а I – значение тока.

Когда ток движется по соленоиду, то катушка запасает энергию, которая равна работе, необходимая для установления тока. Чтобы вычислить в этом случае индуктивность, формула используется следующая:

где L показывает значение индуктивности, а E – запасающую энергию.

ЭДС самоиндукции возникает при изменении тока в соленоиде.

В случае работы на переменном токе появляется переменное магнитное поле. Направление силы притяжения может изменяться, а может оставаться неизменным. Первый случай возникает при использовании соленоида как электромагнита. А второй, когда якорь сделан из магнитомягкого материала. Соленоид на переменном токе имеет комплексное сопротивление, в которое включаются сопротивление обмотки и ее индуктивность.

Самое распространенное применение соленоидов первого типа (постоянного тока) — это в роли поступательного силового электропривода. Сила зависит от строения сердечника и корпуса. Примерами использования являются работа ножниц при отрезании чеков в кассовых аппаратах, клапаны в двигателях и гидравлических системах, язычки замков. Соленоиды второго типа применяются как индукторы для индукционного нагрева в тигельных печах.

Колебательные контуры

Простейшей резонансной цепью является последовательный колебательный контур, состоящий из включенных катушек индуктивности и конденсатора, через которые протекает переменный ток. Чтобы определить индуктивность катушки, формула используется следующая:

где XL показывает реактивное сопротивление катушки, а W — круговая частота.

Если используется реактивное сопротивление конденсатора, то формула будет выглядеть следующим образом:

Xc = 1 : W х C.

Важными характеристиками колебательного контура являются резонансная частота, волновое сопротивление и добротность контура. Первая характеризует частоту, где сопротивление контура имеет активный характер. Вторая показывает, как проходит реактивное сопротивление на резонансной частоте между такими величинами, как емкость и индуктивность колебательного контура. Третья характеристика определяет амплитуду и ширину амплитудно-частотных характеристик (АЧХ) резонанса и показывает размеры запаса энергии в контуре по сравнению с потерями энергии за один период колебаний. В технике частотные свойства цепей оцениваются при помощи АЧХ. В этом случае цепь рассматривается как четырехполюсник. При изображении графиков используется значение коэффициента передачи цепи по напряжению (К). Эта величина показывает отношение выходного напряжения к входному. Для цепей, которые не содержат источников энергии и различных усилительных элементов, значение коэффициента не больше единицы. Оно стремится к нулю, когда на частотах, отличающихся от резонансной, сопротивление контура имеет высокое значение. Если же величина сопротивления минимальна, то коэффициент близок к единице.

При параллельном колебательном контуре включены два реактивных элемента с разной силой реактивности. Использование такого вида контура подразумевает знание, что при параллельном включении элементов нужно складывать только их проводимости, но не сопротивления. На резонансной частоте суммарная проводимость контура равна нулю, что говорит о бесконечно большом сопротивлении переменному току. Для контура, в котором параллельно включены емкость (C), сопротивление (R) и индуктивность, формула, объединяющая их и добротность (Q), следующая:

При работе параллельного контура за один период колебаний дважды происходит энергетический обмен между конденсатором и катушкой. В этом случае появляется контурный ток, который значительно больше значения тока во внешней цепи.

Работа конденсатора

Устройство представляет собой двухполюсник малой проводимости и с переменным или постоянным значением емкости. Когда конденсатор не заряжен, сопротивление его близко к нулю, в противном случае оно равно бесконечности. Если источник тока отсоединить от данного элемента, то он становится этим источником до своей разрядки. Использование конденсатора в электронике заключается в роли фильтров, которые удаляют помехи. Данное устройство в блоках питания на силовых цепях применяются для подпитки системы при больших нагрузках. Это основано на способности элемента пропускать переменную составляющую, но непостоянный ток. Чем выше частота составляющей, тем меньше у конденсатора сопротивление. В результате через конденсатор глушатся все помехи, которые идут поверх постоянного напряжения.

Сопротивление элемента зависит от емкости. Исходя из этого, правильнее будет ставить конденсаторы с различным объемом, чтобы улавливать разного рода помехи. Благодаря способности устройства пропускать постоянный ток только в период заряда его используют как времязадающий элемент в генераторах или как формирующее звено импульса.

Конденсаторы бывают многих типов. В основном используется классификация по типу диэлектрика, так как этот параметр определяет стабильность емкости, сопротивление изоляции и так далее. Систематизация по данной величине следующая:

  1. Конденсаторы с газообразным диэлектриком.
  2. Вакуумные.
  3. С жидким диэлектриком.
  4. С твердым неорганическим диэлектриком.
  5. С твердым органическим диэлектриком.
  6. Твердотельные.
  7. Электролитические.

Существует классификация конденсаторов по назначению (общий или специальный), по характеру защиты от внешних факторов (защищенные и незащищенные, изолированные и неизолированные, уплотненные и герметизированные), по технике монтажа (для навесного, печатного, поверхностного, с выводами под винт, с защелкивающимися выводами). Также устройства можно различить по способности к изменению емкости:

  1. Постоянные конденсаторы, то есть у которых емкость остается всегда постоянной.
  2. Подстроечные. У них емкость не меняется при работе аппаратуры, но можно ее регулировать разово или периодически.
  3. Переменные. Это конденсаторы, которые допускают в процессе функционирования аппаратуры изменение ее емкости.

Индуктивность и конденсатор

Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:

где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f – это частота, L – индуктивность.

Значение индуктивности всегда должно учитываться при работе с силовыми конденсаторами. Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида – апериодический и колебательный.

Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:

где Lk показывает индуктивность устройства, Lp –пакета, Lm – главных шин, а Lb – индуктивность выводов.

Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:

  • Lk = Lc : n + µ0 l х d : (3b) + Lb,

где l – длина шин, b – ее ширина, а d – расстояние между шинами.

Чтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.

fb.ru

Индуктивность

Индуктивность — это физическая (электрическая) величина, которая характеризует магнитные свойства электрической цепи. Как известно электрический ток, протекающий через проводящий контур, создает вокруг него магнитное поле. Это происходит потому, что ток изначально несет в себе энергию. Проходя через проводник, он частично отдает ее, и она превращается в энергию магнитного поля. Индуктивность, по сути, является коэффициентом пропорциональности между протекающим током и возникающим при этом магнитным полем.

Чем выше индуктивность проводника, тем больше будет магнитное поле при одном и том же значении электрического тока. Физически индуктивность в электрической цепи – это катушка, состоящая из пассивного (диэлектрик) или активного (ферромагнитный материал, железо) сердечника и намотанного на него электрического провода. Это один из самых обсуждаемых электрических компонентов на форумах любителей электроники.

Если протекающий ток изменяет свою величину во времени, то есть является не постоянным, а переменным, то в индуктивном контуре меняется магнитное поле, вследствие чего возникает ЭДС (электродвижущая сила) самоиндукции. Эта ЭДС также как и электрическое напряжение измеряется в вольтах (В).

Единицей измерения индуктивности является Гн (генри). Она названа в честь Джозефа Генри – американского ученого, открывшего явление самоиндукции. Считается, что контур (катушка индуктивности) имеет величину 1 Гн, если при изменении тока в 1 А (ампер) за одну секунду в нем возникает ЭДС величиною в 1 В (вольт). Обозначается индуктивность буквой L, в честь Эмиля Христиановича Ленца – знаменитого российского физика. Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году.

< Предыдущая   Следующая >

scsiexplorer.com.ua

Отправить ответ

avatar
  Подписаться  
Уведомление о