Содержание

5.1.1.Устройство теплового реле типа трп.

Рис.3. Устройство теплового реле типа ТРП:

1 - Биметаллическая пластина; 2 - регулировочная ручка;3 - прыгающий контактный мостик; 4 - кнопка возврата;5 - нагреватель.

Биметаллическая пластина теплового реле ТРП имеет комбинированную систему нагрева. Пластина 1 нагревается как за счет нагревателя 5, так и за счет прохождения тока через саму пластину. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик 3.

Тепловое реле ТРП позволяет иметь плавную регулировку тока срабатывания в пределах (±25% номинального тока уставки). Эта регулировка осуществляется ручкой 2, меняющей первоначальную деформацию пластины. Такая регулировка позволяет резко снизить число потребных вариантов нагревателя.

Возврат реле ТРП в исходное положение после срабатывания производится кнопкой 4. Возможно исполнение и с самовозвратом после остывания биметалла.

Высокая температура срабатывания (выше 200°С) уменьшает зависимость работы реле от температуры окружающей среды.

Установка теплового реле ТРП меняется на 5% при изменении температуры окружающей среды на КУС. Высокая ударо- и вибростойкость теплового реле ТРП позволяют использовать его в самых тяжелых условиях.

5.2.Тепловые реле ртл.

Реле тепловое РТЛ предназначено для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от не симметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0.1 до 86 А. Тепловые реле РТЛ могут устанавливаться как непосредственно на пускатели ПМЛ, так и отдельно от пускателей (в последнем случае они должны быть снабжены клеммниками КРЛ). Разработаны и выпускаются реле РТЛ и клеммники КРЛ которые имеют степень защиты ІР20 и могут устанавливаться на стандартную рейку. Номинальный ток контактов равен 10 А.

5.3.Тепловые реле ртт.

Реле тепловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от несимметрии в фазах. Реле РТТ предназначены для применения в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660В частотой 50 или 60Гц, в целях постоянного тока напряжением 440В.

5.3.1.Выбор теплового реле

Так как пускатель мы выбирали с тепловым реле, то тепловое реле у нас уже выбрано и автоматически выполняются все условия для нормальной работы реле.

Тепловое реле пускателя проверяется по времени tср срабатывания при пусковом токе двигателя, а номинальный ток нагревательного элемента Iн.нагрев теплового реле должен быть не меньше номинального тока двигателя. Для нормального пуска и защиты двигателя 1.5 tп >= tср > tп

6.Реле электротепловые токовые серии ртт

6.1.Общие сведения

Реле электротепловые токовые серии РТТ предназначены для защиты трехфазных электродвигателей с короткозамкнутым ротором от длительных перегрузок, а также от перегрузок, возникающих при обрыве одной из фаз.

Реле имеют исполнение для установки на металлических изоляционных панелях, рейках комплектного устройства и специальное исполнение для установки с пускателями серии ПМА (ТУ16 – 644.005 – 84). Трехполюсное исполнение реле, применение несменных нагревательных элементов и ускоренное срабатывание при обрыве фазы повышают надежность защиты электродвигателей по сравнению с однополюсными и двухполюсными исполнения реле.

studfiles.net

Тепловые реле ТРП, ТРН, РТЛ и РТТ.

26.01.2014

Тепловые реле - это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле - ТРП, ТРН, РТЛ и РТТ.

Принцип действия тепловых реле

Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. Эта зависимость представлена на рисунке (кривая 1).

При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой продолжительности жизни оборудования. Чем короче его жизнь, тем большие перегрузки допустимы.

Время-токовые характеристики теплового реле и защищаемого объекта

При идеальной защите объекта зависимость tср (I) для теплового реле должна идти немного ни-же кривой для объекта.

Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной.

Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим. Именно это явление используется в тепловых реле.

Широкое распространение в тепловых реле получили материалы инвар (малое значение a) и немагнитная или хромоникелевая сталь (большое значение a).

Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки.

Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле.

Время-токовые характеристики теплового реле

Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика). В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластину до температуры qо.

При проверке времятоковых характеристик тепловых реле следует учитывать, из какого состояния (холодного или перегретого) происходит срабатывание реле.

При проверке тепловых реле надо иметь в виду, что нагревательные элементы тепловых реле термически неустойчивы при токах короткого замыкания.

Выбор тепловых реле

Номинальный ток теплового реле выбирают исходя из номинальной нагрузки электродвигателя. Выбранный ток теплового реле составляет (1,2 - 1,3) номинального значения тока электродвигателя (тока нагрузки), т. е.тепловое реле срабатывает при 20- 30% перегрузке в течении 20 минут.

Постоянная времени нагрева электродвигателя зависит от длительности токовой перегрузки. При кратковременной перегрузке в нагреве участвует только обмотка электродвигателя и постоянная нагрева 5 - 10 минут. При длительной перегрузке в нагреве участвует вся масса электродвигателя и постоянна нагрева 40-60 минут. Поэтому применение тепловых реле целесообразно лишь тогда, когда длительность включения больше 30 минут.

Влияние температуры окружающей среды на работу теплового реле

Нагрев биметаллической пластинки теплового реле зависит от температуры окружающей среды, поэтому с ростом температуры окружающей среды ток срабатывания реле уменьшается.

При температуре, сильно отличающейся от номинальной, необходимо либо проводить дополнительную (плавную) регулировку теплового реле, либо подбирать нагревательный элемент с учетом реальной температуры окружающей среды.

Для того чтобы температура окружающей среды меньше влияла на ток срабатывания теплового реле, необходимо, чтобы температура срабатывания выбиралась возможно больше.

Для правильной работы тепловой защиты реле желательно располагать в том же помещении, что и защищаемый объект. Нельзя располагать реле вблизи концентрированных источников тепла — нагревательных печей, систем отопления и т. д. В настоящее время выпускаются реле с температурной компенсацией (серии ТРН).

Конструкция тепловых реле

Прогиб биметаллической пластины происходит медленно. Если с пластиной непосредственно связать подвижный контакт, то малая скорость его движения, не сможет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устройство. Наиболее совершенным является «прыгающий» контакт.

В обесточенном состоянии пружина 1 создает момент относительно точки 0, замыкающий контакты 2. Биметаллическая пластина 3 при нагреве изгибается вправо, положение пружины изменяется. Она создает момент, размыкающий контакты 2 за время, обеспечивающее надежное гашение дуги. Современные контакторы и пускатели комплектуются с тепловыми реле ТРП (одно-фазное) и ТРН (двухфазное).

Тепловые реле ТРП

Тепловые токовые однополюсные реле серии ТРП с номинальными токами тепловых элементов от 1 до 600 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей, работающих от сети с номинальным напряжением до 500 В при частоте 50 и 60 Гц. Тепловые реле ТРП на токи до 150 А применяют в сетях постоянного тока с номинальным напряжением до 440 В.

Устройство теплового реле типа ТРП

Биметаллическая пластина теплового реле ТРП имеет комбинированную систему нагрева. Пластина 1 нагревается как за счет нагревателя 5, так и за счет прохождения тока через саму пластину. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик 3.

Тепловое реле ТРП позволяет иметь плавную регулировку тока срабатывания в пределах (±25% номинального тока уставки). Эта регулировка осуществляется ручкой 2, меняющей первоначальную деформацию пластины. Такая регулировка позволяет резко снизить число потребных вариантов нагревателя.

Возврат реле ТРП в исходное положение после срабатывания производится кнопкой 4. Возможно исполнение и с самовозвратом после остывания биметалла.

Высокая температура срабатывания (выше 200°С) уменьшает зависимость работы реле от температуры окружающей среды.

Уставка теплового реле ТРП меняется на 5% при изменении температуры окружающей среды на КУС.

Высокая ударо- и вибростойкость теплового реле ТРП позволяют использовать его в самых тяжелых условиях.

Тепловые реле  РТЛ

Реле тепловое РТЛ предназначено для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от не симметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0.1 до 86 А.

Тепловые реле РТЛ могут устанавливаться как непосредственно на пускатели ПМЛ, так и отдельно от пускателей (в последнем случае они должны быть снабжены клеммниками КРЛ). Разработаны и выпускаются реле РТЛ и клеммники КРЛ которые имеют степень защиты ІР20 и могут устанавливаться на стандартную рейку. Номинальный ток контактов равен 10 А.

Тепловые реле РТТ

Реле топловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от несимметрии в фазах.

Реле РТТ предназначены для применения в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660В частотой 50 или 60Гц, в целях постоянного тока напряжением 440В.

alt-group.org

РТИ и РТТ, принцип действия температурного, устройство и работа, ремонт и назначение, как выглядит

Для защиты электрического двигателя от лишней нагрузки током следует использовать тепловое реле Тепловое реле – это электрическое приспособление, которое выполняет функцию защиты электрического двигателя от лишней нагрузки током и тем самым защищает от возможности выхода системы из строя. В современном мире существует разнообразие видов данного устройства, но назначение у них одно. Применение теплового реле – это необходимый момент, поскольку любое оборудование не вечно и со временем выходит из строя, а использование теплового реле позволяет избежать лишних нагрузок, которые приводят к постепенному повреждению изоляции и как следствия выхода системы из строя. Таким образом, тепловое реле способно продлить срок эксплуатации любого оборудования.

Особенности реле теплового РТ

Электротепловое реле модели РТИ является устройством включения и отключения тока и имеет самостоятельное потребление электроэнергии.

Прямое назначение реле серии РТИ:

  • Защита электрических двигателей от излишней нагрузки;
  • Предупреждение дисгармонии фаз;
  • Предотвращение заклинивания ротора.

Устанавливается на контакторах серии КМИ. Под воздействием токового потока термобиметаллическая пластинка выгибается тем интенсивнее, чем большей силы ток по ней проходит. Существует конечная точка, которая достигается под воздействием определенной силы тока, когда радиус изгиба пластины достигает размеров, влекущих за собой размыкание контактов, которые подают напряжение питания катушки, удержания контактов. Происходит отключение нагрузки от сети.

Особенности строения данного устройства:

  1. Повторное включение может запускаться как вручную, так и автоматически.
  2. На внешней панели, спереди, имеется индикатор, который предоставляет актуальную информацию о состоянии контактов.
  3. Аппарат оборудован кнопкой тест, включив которую имеется возможность просмотреть устройство в действии, еще до подключения в силовую сеть.
  4. Устройство имеет поверхность, позволяющую делать пометки, маркировки, что значительно упрощает процесс монтажа.

В целом тепловые реле серии РТТ являются комплектующими частями в управляющих схемах электроприводов и в магнитных пускателях.

Технические показатели: тепловое реле РТТ

Тепловое реле серии РТТ выполняет функцию защиты движков с тремя фазами от различных видов перегрузки, начиная от разрыва фаз и до недопустимой продолжительности.

Делится токовый ряд термореле этого вида по величинам токов. Всего на данный момент существует три таких величины: РТТ1, РТТ2, РТТ3.

Такие устройства давно служат верой и правдой в схемах управления электрическими двигателями и заслужили свое признание, благодаря простоте в использовании, неприхотливости и надежности. Диапазон силы тока, на которую рассчитаны все три величины теплового реле серии РТТ, колеблется о 0,2 до 150-ти ампер.

Ознакомиться с техническими показателями теплового реле можно самостоятельно, используя интернет

Устройство имеет следующие технические показатели:

  1. Для них допустимой нормой считается от -5 процентов по токам несработки, и до +10 процентов по токам сработки.
  2. Данное устройство может отлично функционировать при температурном разбеге от -40 оС, до жары в +55 градусов.
  3. Контактную группу вернуть в исходное положение собственноручно можно по истечении более минуты после срабатывания.
  4. К выводам центральной сети не рекомендуется цеплять более одного внешнего провода, а к дополнительной сети не более двух.

Необходимо знать, что такие устройства не поддаются ремонту, они сконструированы таким образом, что просто не предназначены для этого, поэтому не рекомендуется их разбирать.

Области применения: реле температурное

Температурным реле называют устройство, позволяющее регулировать работу оборудования на понижение, либо повышение температуры в помещении. В роли датчика, который воспринимает изменение температурного режима, выступает биметаллическое устройство, элемент, в котором происходит изменение давление в равном соотношении с изменением температуры в окружающей среде.

Применяется температурное реле в следующих областях:

  1. В системах кондиционирования и отопления. Для проверки исправности данного прибора, для начала на нем выставляют температуру, которая ниже комнатной. Через несколько минут биметаллический элемент нагревается до температуры, которая его окружает, в этот момент необходимо сдвинуть рычаг аппарата вверх и если все в порядке, то контакты замкнутся, без присутствия напряжения.
  2. В холодильных установках. В таком случае биметаллический элемент, которым выступает термочувствительный баллон, заполненный специальной охлаждающей жидкостью. Проверка аппарата осуществляется точно так же, как и в случае с системами отопления и кондиционирования.
  3. В теплонасосных установках. Зачастую его устанавливают под крышей строения с внешней стороны, продумывая при этом защиту от неблагоприятных погодных условий.

Для того чтобы температурное реле работало без перебоев, при его установке необходимо учитывать место его расположения. Монтировать рекомендуется его на уровне около двух метров от пола на внутренней стороне здания. Важно постараться исключить попадание на устройство любых источников нагрева, таких как солнце, светильники и т.д.

Принцип действия теплового реле

На любом электрическом двигателе имеется табло с указание паспортных характеристик, где в том числе указывается номинальный рабочий ток. Есть такие приборы, во время рабочего процесса которых возможно повышение тока, как и при запуске. Если механизм в течение длительного времени испытывает подобного рода перегрузки, это приводит к разрушению изоляции и поломке двигателя.

Тепловое реле не только контролирует силу проходящего тока, но воздействует на цепи правления и замыкает контакты

Так вот реле тепловой защиты как раз и исполняет роль защитника:

  • Контролирует силу проходящего тока;
  • Воздействует на цепи правления;
  • Вырубает схему;
  • Замыкает контакты.

Установку показателей осуществляют в большую сторону от номинального тока двигателя на величину до двадцати процентов согласно характеристикам паспорта прибора. Неверно установленный параметр, станет следствием выхода аппаратуры из строя.

Устройство теплового реле

Для электрочайника нужно простое устройство. Почему оно срабатывает, рассмотрим далее. Реле цепи управления состоит из двух основных элементов.

А именно:

  • Элемента, чувствительного к изменениям температуры;
  • Большого количества контактных цепочек.

В случае если прибор оснащен защитой, цепь управления прокладывает свой путь через контакты реле.

Если механизм подвергся перегрузке, датчик тепла реле переключается к тепловым реле перегрузки, а от них уже сигнал подается к основным источникам питания прибора.

Так называемый чувствительный элемент дает понимание о количественном составе отдельных контуров, управляющихся переключателем. Переключатели теплового реле в основном оснащены одним, двумя, тремя либо четырьмя полюсами. Механизм спуска дает движение вспомогательному переключателю реле, который разрывает цепи катушки и в этот момент индикатор выдает информацию о том, что механизм сработал.

Качественное тепловое реле: устройство и принцип действия

Насколько долго прослужит энергетическое оборудование на прямую зависит от того, насколько часто подвергается устройство перегрузкам. При номинальном токе длительность протекания тока упирается в бесконечность, при протекании же тока с большей температурой, приводит к изнашиванию изоляционной системы и к выводу из строя тем самым оборудования. Для того, что избежать подобных случаев, широко используются реле с биметаллической пластиной, для защиты механизма.

Биметаллическая пластина состоит из двух пластин:

  • Одна с большим показателем температурного расширения;
  • Другая с наименьшим.

В том месте, где пластины соединяются, они надежно зафиксированы с помощью сварки. Если подобную пластину закрепить и нагреть, то пластина изогнется в сторону материала с наименьшим показателем температурного расширения. Вот по какому принципу построена работа реле.

Изготавливаются биметаллические пластины из двух материалов, либо из инвара, либо из хромоникелевой стали.

Когда пластина прогибается, она надавливает своим окончанием на систему контактов теплового реле, что приводит к срабатыванию системы и размыканию электрической цепи. В таком реле температура нагревания которого, достаточна для того, чтобы прошел процесс срабатывания, будет поддерживаться биметаллической пластиной до тех пор, пока ток не придет к показателям, соответствующим норме. Когда сила напряжения тока уменьшается, биметаллические пластины становятся холодными и тем самым приводят рычаги в начальное положение. Если тепловое реле оснащено функцией пуска на автомате, то группы контактов тоже на автомате переключаться в начальное положение, в противном случае возникнет необходимость вручную включать реле после каждого его срабатывания.

Что такое тепловое реле (видео)

Теперь необходимость установки теплового реле стала понятна. Принцип работы не сложен, но грамотно продуман до мелочей. Как работает, устроено, выглядит, что такое обозначение ТРП, РТЭ, РТЛ – было рассмотрено выше. Характеристики, виды и конструкция – это основа, которую нужно знать каждому.



Добавить комментарий

6watt.ru

Тепловые реле — ТПО ТехПромМаш

Тепловые реле — это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле — ТРП, ТРН, РТЛ и РТТ.

Принцип действия тепловых реле

Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. Эта зависимость представлена на рисунке (кривая 1).

При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой продолжительности жизни оборудования. Чем короче его жизнь, тем большие перегрузки допустимы.

Время-токовые характеристики теплового реле и защищаемого объекта

При идеальной защите объекта зависимость tср (I) для теплового реле должна идти немного ни-же кривой для объекта.

Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной.

Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим. Именно это явление используется в тепловых реле.

Широкое распространение в тепловых реле получили материалы инвар (малое значение a) и немагнитная или хромоникелевая сталь (большое значение a).

Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки.

Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле.

Устройство теплового реле: а — чувствительный элемент, б — прыгающий контакт, 1 — контакты, 2 — пружина, 3 — биметаллическая пластина, 4 — кнопка, 5 — мостик

Время-токовые характеристики теплового реле

Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика). В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластину до температуры qо.

При проверке времятоковых характеристик тепловых реле следует учитывать, из какого состояния (холодного или перегретого) происходит срабатывание реле.

При проверке тепловых реле надо иметь в виду, что нагревательные элементы тепловых реле термически неустойчивы при токах короткого замыкания.

Выбор тепловых реле

Номинальный ток теплового реле выбирают исходя из номинальной нагрузки электродвигателя. Выбранный ток теплового реле составляет (1,2 — 1,3) номинального значения тока электродвигателя (тока нагрузки), т. е.тепловое реле срабатывает при 20- 30% перегрузке в течении 20 минут.

Постоянная времени нагрева электродвигателя зависит от длительности токовой перегрузки. При кратковременной перегрузке в нагреве участвует только обмотка электродвигателя и постоянная нагрева 5 — 10 минут. При длительной перегрузке в нагреве участвует вся масса электродвигателя и постоянна нагрева 40-60 минут. Поэтому применение тепловых реле целесообразно лишь тогда, когда длительность включения больше 30 минут.

Влияние температуры окружающей среды на работу теплового реле

Нагрев биметаллической пластинки теплового реле зависит от температуры окружающей среды, поэтому с ростом температуры окружающей среды ток срабатывания реле уменьшается.

При температуре, сильно отличающейся от номинальной, необходимо либо проводить дополнительную (плавную) регулировку теплового реле, либо подбирать нагревательный элемент с учетом реальной температуры окружающей среды.

Для того чтобы температура окружающей среды меньше влияла на ток срабатывания теплового реле, необходимо, чтобы температура срабатывания выбиралась возможно больше.

Для правильной работы тепловой защиты реле желательно располагать в том же помещении, что и защищаемый объект. Нельзя располагать реле вблизи концентрированных источников тепла — нагревательных печей, систем отопления и т. д. В настоящее время выпускаются реле с температурной компенсацией (серии ТРН).

Конструкция тепловых реле

Прогиб биметаллической пластины происходит медленно. Если с пластиной непосредственно связать подвижный контакт, то малая скорость его движения, не сможет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устройство. Наиболее совершенным является «прыгающий» контакт.

В обесточенном состоянии пружина 1 создает момент относительно точки 0, замыкающий контакты 2. Биметаллическая пластина 3 при нагреве изгибается вправо, положение пружины изменяется. Она создает момент, размыкающий контакты 2 за время, обеспечивающее надежное гашение дуги. Современные контакторы и пускатели комплектуются с тепловыми реле ТРП (одно-фазное) и ТРН (двухфазное).


Тепловые реле ТРП

Тепловые токовые однополюсные реле серии ТРП с номинальными токами тепловых элементов от 1 до 600 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей, работающих от сети с номинальным напряжением до 500 В при частоте 50 и 60 Гц. Тепловые реле ТРП на токи до 150 А применяют в сетях постоянного тока с номинальным напряжением до 440 В.

Устройство теплового реле типа ТРП

Биметаллическая пластина теплового реле ТРП имеет комбинированную систему нагрева. Пластина нагревается как за счет нагревателя, так и за счет прохождения тока через саму пластину. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик.

Тепловое реле ТРП позволяет иметь плавную регулировку тока срабатывания в пределах (±25% номинального тока уставки). Эта регулировка осуществляется ручкой, меняющей первоначальную деформацию пластины. Такая регулировка позволяет резко снизить число потребных вариантов нагревателя.

Возврат реле ТРП в исходное положение после срабатывания производится кнопкой. Возможно исполнение и с самовозвратом после остывания биметалла.

Высокая температура срабатывания (выше 200°С) уменьшает зависимость работы реле от температуры окружающей среды.

Уставка теплового реле ТРП меняется на 5% при изменении температуры окружающей среды на КУС.

Высокая ударо- и вибростойкость теплового реле ТРП позволяют использовать его в самых тяжелых условиях.


Тепловые реле РТЛ

Реле тепловое РТЛ предназначено для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от не симметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0.1 до 86 А.

Тепловые реле РТЛ могут устанавливаться как непосредственно на пускатели ПМЛ, так и отдельно от пускателей (в последнем случае они должны быть снабжены клеммниками КРЛ). Разработаны и выпускаются реле РТЛ и клеммники КРЛ которые имеют степень защиты ІР20 и могут устанавливаться на стандартную рейку. Номинальный ток контактов равен 10 А.


Тепловые реле РТТ

Реле топловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от несимметрии в фазах.

Реле РТТ предназначены для применения в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660В частотой 50 или 60Гц, в целях постоянного тока напряжением 440В.

 

td36.ru

Ремонт теплового реле - Всё о электрике в доме

Тепловые реле — устройство, принцип действия, технические характеристики

Тепловые реле — это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле — ТРП, ТРН, РТЛ и РТТ.

Принцип действия тепловых реле

Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. Эта зависимость представлена на рисунке (кривая 1).

При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой продолжительности жизни оборудования. Чем короче его жизнь, тем большие перегрузки допустимы.

Время-токовые характеристики теплового реле и защищаемого объекта

При идеальной защите объекта зависимость tср (I) для теплового реле должна идти немного ни-же кривой для объекта.

Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной.

Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим. Именно это явление используется в тепловых реле.

Широкое распространение в тепловых реле получили материалы инвар (малое значение a) и немагнитная или хромоникелевая сталь (большое значение a).

Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки.

Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле.


Устройство теплового реле: а — чувствительный элемент, б — прыгающий контакт, 1 — контакты, 2 — пружина, 3 — биметаллическая пластина, 4 — кнопка, 5 — мостик

Время-токовые характеристики теплового реле

Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика). В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластину до температуры qо.

При проверке времятоковых характеристик тепловых реле следует учитывать, из какого состояния (холодного или перегретого) происходит срабатывание реле.

При проверке тепловых реле надо иметь в виду, что нагревательные элементы тепловых реле термически неустойчивы при токах короткого замыкания.

Выбор тепловых реле

Номинальный ток теплового реле выбирают исходя из номинальной нагрузки электродвигателя. Выбранный ток теплового реле составляет (1,2 — 1,3) номинального значения тока электродвигателя (тока нагрузки), т. е.тепловое реле срабатывает при 20- 30% перегрузке в течении 20 минут.

Постоянная времени нагрева электродвигателя зависит от длительности токовой перегрузки. При кратковременной перегрузке в нагреве участвует только обмотка электродвигателя и постоянная нагрева 5 — 10 минут. При длительной перегрузке в нагреве участвует вся масса электродвигателя и постоянна нагрева 40-60 минут. Поэтому применение тепловых реле целесообразно лишь тогда, когда длительность включения больше 30 минут.

Влияние температуры окружающей среды на работу теплового реле

Нагрев биметаллической пластинки теплового реле зависит от температуры окружающей среды, поэтому с ростом температуры окружающей среды ток срабатывания реле уменьшается.

При температуре, сильно отличающейся от номинальной, необходимо либо проводить дополнительную (плавную) регулировку теплового реле, либо подбирать нагревательный элемент с учетом реальной температуры окружающей среды.

Для того чтобы температура окружающей среды меньше влияла на ток срабатывания теплового реле, необходимо, чтобы температура срабатывания выбиралась возможно больше.

Для правильной работы тепловой защиты реле желательно располагать в том же помещении, что и защищаемый объект. Нельзя располагать реле вблизи концентрированных источников тепла — нагревательных печей, систем отопления и т. д. В настоящее время выпускаются реле с температурной компенсацией (серии ТРН).

Конструкция тепловых реле

Прогиб биметаллической пластины происходит медленно. Если с пластиной непосредственно связать подвижный контакт, то малая скорость его движения, не сможет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устройство. Наиболее совершенным является «прыгающий» контакт.

В обесточенном состоянии пружина 1 создает момент относительно точки 0, замыкающий контакты 2. Биметаллическая пластина 3 при нагреве изгибается вправо, положение пружины изменяется. Она создает момент, размыкающий контакты 2 за время, обеспечивающее надежное гашение дуги. Современные контакторы и пускатели комплектуются с тепловыми реле ТРП (одно-фазное) и ТРН (двухфазное).

Тепловые реле ТРП

Тепловые токовые однополюсные реле серии ТРП с номинальными токами тепловых элементов от 1 до 600 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей, работающих от сети с номинальным напряжением до 500 В при частоте 50 и 60 Гц. Тепловые реле ТРП на токи до 150 А применяют в сетях постоянного тока с номинальным напряжением до 440 В.

Устройство теплового реле типа ТРП

Биметаллическая пластина теплового реле ТРП имеет комбинированную систему нагрева. Пластина нагревается как за счет нагревателя, так и за счет прохождения тока через саму пластину. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик.

Тепловое реле ТРП позволяет иметь плавную регулировку тока срабатывания в пределах (±25% номинального тока уставки). Эта регулировка осуществляется ручкой, меняющей первоначальную деформацию пластины. Такая регулировка позволяет резко снизить число потребных вариантов нагревателя.

Возврат реле ТРП в исходное положение после срабатывания производится кнопкой. Возможно исполнение и с самовозвратом после остывания биметалла.

Высокая температура срабатывания (выше 200°С) уменьшает зависимость работы реле от температуры окружающей среды.

Уставка теплового реле ТРП меняется на 5% при изменении температуры окружающей среды на КУС.

Высокая ударо- и вибростойкость теплового реле ТРП позволяют использовать его в самых тяжелых условиях.

Тепловые реле РТЛ

Реле тепловое РТЛ предназначено для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от не симметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0.1 до 86 А.

Тепловые реле РТЛ могут устанавливаться как непосредственно на пускатели ПМЛ, так и отдельно от пускателей (в последнем случае они должны быть снабжены клеммниками КРЛ). Разработаны и выпускаются реле РТЛ и клеммники КРЛ которые имеют степень защиты ІР20 и могут устанавливаться на стандартную рейку. Номинальный ток контактов равен 10 А.

Тепловые реле РТТ

Реле топловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от несимметрии в фазах.

Реле РТТ предназначены для применения в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660В частотой 50 или 60Гц, в целях постоянного тока напряжением 440В.

Статьи и схемы

Полезное для электрика

Основная функция таких аппаратов – меры профилактики для предотвращения последствий резких колебаний тока. Конструктивное устройство теплового реле самых разных модификаций остается оптимальным для продления срока службы установок. Многие негативные моменты нивелируются, и достигается значительный положительный эффект.

Схема устройства теплового реле.

Практически на всех объектах обнаруживается закономерность соответствия времени протекания тока от его параметров, которые напрямую способны обеспечить длительный период надежной эксплуатации данного объекта. Кривая 1 демонстрирует подобную предрасположенность.

Длительность периода перемещения тока с рабочим значением равняется бесконечности. Старение изоляционного слоя из-за повышения температуры происходит в случае превышения номинальных параметров. Следовательно, допустимость перегрузки по времени обратно пропорциональна ее величине. Требуемая продолжительность эксплуатационного периода оборудования – фактор установки на рисунке кривой 1. Можно сделать однозначный вывод, что небольшая длительность жизни обуславливает допустимость значительных перегрузок.

Время-токовые характеристики

Зависимость tcp для реле при оптимальной защите объекта всегда должна располагаться чуть ниже кривой для него. Модели с биметаллической пластиной – самые распространенные для противодействия перегрузкам.
Сама конструкция имеет две пластины с разным коэффициентом температурного расширения. Между собой эти элементы имеют жесткое сцепление за счет горячего проката или сварки. При неподвижном креплении одной из пластин ее нагревание приводит к изгибу в сторону элемента с меньшей температурой. Этот принцип и положен в основу функционирования теплового реле. Для большего значения чаще всего используется хромникелевая сталь, а меньшего – инвар.

Выделяемый в пластине ток приводит к повышению температуры биметаллического элемента. Довольно популярны конструкции с нагреванием биметалла от нагревателя, предназначенного для протекания тока. Идеальным на практике остается метод комбинированного нагрева. В этом случае на пластину воздействует тепло нагрева биметалла в сочетании с таким же показателем, исходящим от нагревателя. Свободный конец пластины во время прогибания касается контактной системы.

Характеристики теплового реле

Зависимость временного отрезка срабатывания от тока нагрузки – главный показатель любого подобного устройства. В нормальном состоянии можно говорить о протекании через реле тока io, способного нагревать материал пластины до температуры qo.

При ознакомлении с параметрами отдельно взятого элемента обязательно обращайте внимание на специфику его срабатывания – в перегретом или холодном состоянии.

Также очень важно в процессе проверки учитывать термическую неустойчивость тепловых реле в ситуациях с токами короткого замыкания .

Особенности выбора

Номинальная нагрузка самого двигателя – приоритетный фактор, влияющий на выбор аналогичного тока устройства. Этот показатель реле в пределах 1,2-1,3 обозначает срабатывание при перегрузке в 20-30% на отрезке времени в 20 минут. Длительность самой перегрузки обуславливает характеристику постоянной времени нагрева.

На коротком отрезке данного параметра в процедуре нагрева принимает участие обмотка двигателя, и он равен 5-10 минут. А вот более продолжительное время постоянная равна 40-60 минут, и вся масса электродвигателя подвергается нагреву. Следовательно, можно говорить о целесообразности использования тепловых реле при длительности включения не менее получаса.

Влияние наружной температуры на работу

Устройство теплового реле ТРТ.

Ток срабатывания устройства уменьшается по мере роста температуры воздуха вокруг прибора, так как нагрев пластины зависит и от данного параметра. Резкие колебания этого значения требуют подбора элемента, способного выполнять свои функции с учетом реальных показателей, или же производить соответствующую регулировку теплового реле.

В подобной ситуации уменьшить влияние наружных факторов на ток срабатывания можно подбором возможно большей заданной температуры для самого устройства.

Обеспечить идеальную работу поможет установка защиты в одном помещении с объектом. Запрещается расположение рядом с концентрированными источниками теплового излучения.

Стоит отметить выпуск современных модификаций с компенсацией температурного вида серии ТРН.

Конструкция ТР

Сам процесс прогибания – процедура довольно растянутая и медлительная. Непосредственное соединение подвижного контакта с этим элементом приводит к тому, что незначительная скорость не в состоянии выполнить своевременное гашение при отключении цепи образующейся дуги. Следовательно, требуется применение ускоряющего устройства. Одним из самых распространенных вариантов является «прыгающая» модель контакта.

Пружина реле 1 относительно точки 0, замыкающей контакты 2, создает определенный момент. Положение пружины изменится при изгибе биметаллического элемента 3 вправо. Создается размыкающий контакты момент, способный обеспечить идеальное гашение дуги. Последние модификации пускателей и контакторов укомплектованы двух- и однофазными реле теплового типа.

Однополюсные токовые модели со значением номинального тока 1-600 А применяются для асинхронных трехфазных двигателей с параметрами частоты 50 и 60 Гц и напряжением до 500 В. При токах до 150 А подобные реле можно использовать в сетях с протеканием постоянного тока с рабочим напряжением до 440 В.

Тепловое реле ТРН: 1 — нагревательный элемент; 2 — кнопка возврата; 3 — контакты теплового реле; 4 — биметаллическая пластина; 5 — шкала регулировочного рычага; 6 — рычаг-регулятор.

Одна из главных особенностей – наличие пластины с комбинированной системой. Во время нагревания конец данного элемента оказывает воздействие на прыгающий мостик 3.

Присутствует плавная регулировка тока, составляющая ±25% от номинальных установочных параметров. Это значительно минимизирует количество ненужных срабатываний. Есть варианты возвращения в исходное положение после остывания материала пластины.

Превышающая 200°С температура срабатывания снижает зависимость от влияния окружающей среды.

Схема принципа работы теплового реле РТТ.

Эти образцы служат для защиты от перегрузок с большой продолжительностью. Диапазон тока – 0,1-86 А.
Клеммники и реле обустроены защитой степени IP20устанавливаются на рейках стандартного типа.

Главная функция – работа с асинхронными трехфазными двигателями. Применяются как комплектующие в управлении электроприводами и в конструкциях магнитных пускателей.

Очень часто приходится встречать в электрохозяйствах в качестве максимальной токовой защиты электротепловые реле типов ТРН, ТРП. Подробно об этих реле я уже писал ранее. Однако, в данных реле необходимо периодически проводить настройку и регулировку уставок срабатывания. Именно об этом сегодня и поговорим.

Перед проверкой и регулировкой тепловых реле необходимо:

– произвести ревизию тепловых реле;

– создать необходимые температурные условия (не ниже +20 о С) в помещении, где они установлены. В случае невозможности создания нормальных температурных условий в помещении, где установлены тепловые реле, проверку данных реле необходимо проводить в лабораторных условиях.

Произвести внешний осмотр тепловых реле. При осмотре проверяют:

1) надежность затяжки контактов, присоединения тепловых элементов;

2) исправное состояние нагревательных элементов, состояние биметаллических пластин;

3) четкость работы механизма, связанного с контактами реле и самих контактов, отсутствие заеданий, задержек;

4) чистоту контактов и биметаллических пластин, условия охлаждения реле;

5) отсутствие вблизи реле реостатов, нагревательных приборов, возможность обдувания от вентиляторов.

При регулировке необходимо учитывать, что тепловые элементы на заводе изготовителе калибруются при температуре 20 о ± 5 о С для тепловых реле серии ТРН и при температуре 40 о С для тепловых реле серии ТРП, поэтому при испытании реле необходимо скорректировать подаваемый на реле номинальный ток с учетом окружающей температуры.

Реле серии ТРН – двухполюсные с температурной компенсацией, выпускаются на ток 0,32 – 40 А с регулятором тока уставки; для реле типа ТРН-10а в пределах от –20 до +25%, для реле ТРН-10, ТРН-25 – в пределах от –25 до +30%.

Реле имеют только ручной возврат, осуществляемый нажатием на кнопку через 1 – 2 мин. после срабатывания реле. Благодаря температурной компенсации ток уставки практически не зависит от температуры воздуха и может изменяться в пределах +3% на каждые 10 о С изменения температуры окружающего воздуха от +20 о С.

Реле серии ТРП – однофазные, без температурной компенсации, выпускаются на ток 1-600 А, с регулятором тока уставки. Механизм имеет шкалу, на которой нанесено по пять делений в обе стороны от нуля.

Цена деления 5% для открытого исполнения и 5,5% – для защищенного. При температуре окружающей среды +30 о С вносится поправка в пределах шкалы реле: одно деление шкалы соответствует изменению температуры на 10 о С. При отрицательных температурах стабильность защиты нарушается.

Деление шкалы, соответствующее току защищаемого электродвигателя и окружающей температуре, выбирают следующим образом; определяется деление шкалы уставок тока без температурной поправки по выражению:

где: Iэл – номинальный ток электродвигателя, А;

Io – ток нулевой уставки реле, А;

с – цена деления, равная 0,05 для открытых пускателей и 0,055 – для защищенных.

Дополнительно по этой теме: Энергетический паспорт. Требования к энергетическому паспорту, составленному по результатам энергетического обследования и энергетическому паспорту, составленному на основании проектной документации.

Затем, для реле без температурной компенсации вводится поправка на окружающую температуру:

где: tокр – температура окружающей среды, о С.

Поправка на температуру вводится только при понижении температуры от номинальной (+40 о С) на величину более 10 о С.

Результирующее расчетное деление шкалы ±N=(±N1)+(±N2), если оказывается дробным числом, его следует округлить до целого в большую или меньшую сторону, в зависимости от характера нагрузки.

Для реле с температурной компенсацией N2 отсутствует.

Самовозврат реле осуществляется пружиной после остывания биметалла или вручную (ускоренный возврат) рычагом с кнопкой.

Согласно требованиям ГОСТов настройка тепловых реле серии ТРН и ТРП производиться следующим образом:

1. Для включения реле в главную цепь должны применяться медные или алюминиевые проводники длиной не менее 1,5 м с сечением, соответствующим номинальному току. Применяемые приборы должны быть классом не ниже 1,0 и подбираются так, чтобы значение измеряемой величины находилось в пределах от 20 до 35 о шкалы прибора.

2. Проверяют срабатывание реле при нагреве с холодного состояния при 6-и кратном номинальном токе уставки теплового реле.

Время срабатывания реле при нагреве с холодного состояния 6-и кратным номинальному току несрабатывания реле, при любом положении регулятора уставки и температуре окружающего воздуха, равной 40 о С – для реле без температурной компенсации и 20 о С – для реле с температурной компенсацией должно быть в пределах: от 0,5 до 4 секунд – для реле малой инертности, свыше 4 до 25 секунд – для реле большой инерционности.

Время срабатывания реле (каждого типа) должно указываться в стандартах или ТУ на данное изделие.

3. Через последовательно включенные полюса реле пропускают ток несрабатывания элементов, равный 1,05*Iном. двигателя в течении 40 минут для реле ТРН, 50 минут – для реле серии ТРП, для приведения реле в установившееся тепловое состояние.

4. Затем, ток повышают до 1,2Iном двигателя и проверяют время срабатывания. Реле должно сработать в течении 20 минут. Если через 20 минут со времени повышения тока реле не сработает, то следует постепенным снижением уставки найти такой положение, при котором реле сработает.

Для контроля полученной уставки испытание рекомендуется повторить.

Сдача тепловых реле после проверки.

Данные настройки должны заноситься в протокол с указанием:

– места установки;

– технические данные защищаемого оборудования;

– рабочая уставка;

– кратность тока прогрузки;

– время срабатывания теплового реле.

На механизме регулировки тока уставки наносится красной краской метка, соответствующая рабочей уставке теплового реле, согласно вышеуказанного протокола.

Источники: http://electricalschool.info/spravochnik/apparaty/295-teplovye-rele-ustrojjstvo-princip.html, http://jelektro.ru/covety-elektrika/устройство-теплового-реле.html, http://www.nov-electro.com/2011/progruzka_trn_trp

electricremont.ru

Тепловое реле | Заметки электрика

Здравствуйте, уважаемые посетители и гости сайта «Заметки электрика».

В этой статье я расскажу Вам про назначение, устройство, схему подключения теплового реле на примере LR2 D1314 от фирмы «Schneider Electric». Тепловой компонент рассматриваемого реле имеет номинальный ток 10 (А), а токовый диапазон уставок его составляет от 7 до 10 (А). Об остальных технических характеристиках поговорим чуть позже. А теперь давайте перейдем к определению и назначению теплового реле.

Как Вы уже знаете, тепловое реле, или другими словами реле перегрузки, устанавливается в схемах магнитного пускателя, как нереверсивного типа, так и реверсивного.

Более подробно об этом Вы можете ознакомиться здесь:

Назначение теплового реле

Тепловое реле — это электрический коммутационный аппарат, который предназначен для защиты трехфазных двигателей от токовой перегрузки недопустимой продолжительностью (например, при заклинивании ротора или механической его перегрузки), а также от обрыва любой из фаз питающего напряжения (по функции аналогично реле контроля фаз).

Вот список самых распространённых (известных) серий тепловых реле: ТРП, ТРН, РТТ, РТИ (аналог LR2 D13), РТЛ

О каждой серии тепловых реле я постараюсь написать отдельную статью, подписывайтесь на рассылку новостей сайта «Заметки электрика».

Прошу заметить, что тепловое реле не защищает электродвигатель от коротких замыканий по причине того, что оно срабатывает с выдержкой времени, т.е. не мгновенно — это отчетливо можно увидеть по графику (кривой) срабатывания теплового реле. Для защиты двигателя от короткого замыкания в силовую цепь перед магнитным пускателем устанавливаются автоматические выключатели или предохранители.

 

Технические характеристики теплового реле LR2 D1314

Вот его внешний вид:

Вид сбоку:

Я уже говорил выше, что тепловое реле LR2 D1314 имеет конструктивное исполнение один в один, как у теплового реле РТИ.

Ниже я приведу основные технические характеристики, рассматриваемого в данной статье, теплового реле LR2 D1314 от компании «Schneider Electric»:

  • номинальный ток теплового компонента — 10 (А)
  • предел регулирования тока уставки теплового расцепителя — 7-10 (А)

  • напряжение силовой (главной) цепи — 220 (В), 380 (В) и 660 (В)

  • два вспомогательных контакта — нормально-замкнутый NC (95-96) и нормально-разомкнутый NO (97-98)

  • коммутируемая мощность вспомогательных контактов — около 600 (ВА)
  • порог срабатывания — 1,14±0,06 от номинального тока
  • чувствительность к асимметрии фаз — срабатывает при 30% от номинального тока по одной фазе, при условии, что по другим фазам протекает номинальный ток
  • класс отключения — 20 (см. график кривой срабатывания теплового реле)

Кривая срабатывания теплового реле с классом отключения 20 — показывает среднее время срабатывания реле в зависимости от кратности тока уставки:

Согласно ГОСТ 30011.4.1-96 (п.4.7.3, таблица 2) время срабатывания теплового реле (класс 20) при кратности тока уставки реле 7,2 составляет 6 — 20 секунд.

Рассмотрим устройство передней панели теплового реле LR2 D1314

Рассмотрим устройство передней панели.

На ней имеется кнопка-переключатель (синего цвета) режима повторного взвода (включения) реле:

  • «А» — автоматический взвод
  • «Н» — ручной взвод

На данный момент выставлен автоматический режим повторного взвода — синяя кнопка-переключатель утоплена. Это значит, что при срабатывании теплового реле схему питания двигателя можно беспрепятственно и повторно включить.

Чтобы переключиться на ручной режим, нужно открыть защитное стекло и повернуть синюю кнопку-переключатель влево — он выступит наружу. В ручном режиме после срабатывания теплового реле необходимо в ручную нажать синюю кнопку-переключатель, иначе нормально-замкнутый контакт NC (95-96) останется разомкнутым, тем самым не даст собрать схему питания и управления электродвигателя.

Также на передней панели теплового реле LR2 D1314 располагается красная кнопка «Тест» («Test»). С помощью нее имитируется работа внутренних механизмов реле и его вспомогательных контактов.

Кнопку «Test» я нажимаю с помощью небольшой отвертки.

У данного типа теплового реле имеется индикация срабатывания в виде желтого (оранжевого) флажка в окошке. Также по этому флажку можно ориентироваться о текущем состоянии вспомогательных контактов реле. Когда в окошке находится желтый флажок, то значит нормально-замкнутый контакт NC (95-96) находится в разомкнутом состоянии, а нормальный-разомкнутый контакт NO (97-98) — в замкнутом.

Ну вот мы плавно подобрались к красной кнопке «Стоп». Красная кнопка «Стоп» выполнена в виде выступающего «грибка» и нужна для принудительного размыкания нормально-замкнутого контакта NC (95-96). При этом катушка магнитного пускателя теряет питание и двигатель отключается от сети.

Еще на передней панели теплового реле LR2 D1314 имеется регулятор уставки, с помощью которого регулируется и настраивается уставка срабатывания теплового реле. В нашем случае ток уставки реле находится в пределах от 7 до 10 (А). Регулировка производится путем поворота регулятора до совмещения нужной уставки реле и риски-треугольника.

После всех настроек и регулировок защитная крышка теплового реле закрывается и пломбируется. Для этого на ней имеется специальное «ушко». Таким образом, доступ к регулировке уставок реле будет закрыт и никто из посторонних в процессе эксплуатации не сможет их изменить.

Схема подключения теплового реле LR2 D1314

Представляю Вашему вниманию схему теплового реле LR2 D1314:

Входные силовые цепи (медные выводы) не маркируются и подключаются непосредственно к пускателю или контактору. Маркировка выходных главных (силовых) цепей теплового реле имеют маркировку: T1 (2), Т2 (4), Т3 (6) и к ним подключается электродвигатель.

У данного типа реле существует две пары вспомогательных контактов:

  • нормально-замкнутый NC (95-96)
  • нормально-разомкнутый NO (97-98)

Нормально-замкнутый контакт используется в схеме управления магнитным пускателем и подключается, например, перед кнопкой «Стоп». Нормально-разомкнутый контакт чаще всего используется в цепях сигнализации для вывода световой индикации на панель оператору или диспетчеру при срабатывании теплового реле.

Для примера я подключил тепловое реле на выводы T1 (2), Т2 (4), Т3 (6) магнитного пускателя ПМЛ-1100. Вот так это выглядит:

Крепится тепловое реле к пускателю с помощью силовых выводов и специального крючка, который плотно фиксирует корпус реле в неподвижном состоянии.

В зависимости от величины и типа пускателей или контакторов выводы («ножки») теплового реле регулируются путем изменения своего межосевого расстояния.

На корпусе есть «подсказка» с рекомендациями по выставлению «ножек» теплового реле в зависимости от типа пускателя или контактора.

 

Конструкция и внутреннее устройство теплового реле LR2 D1314

Ну чтож, заглянем внутрь реле.

Для этого открутим 3 крепежных винта.

Затем тонкой отверточкой очень аккуратно вскроем защелки по периметру корпуса. Почему аккуратненько — да потому что корпус выполнен из пластика, который очень хрупкий и можно с необычайной легкостью сломать крепежные защелки.

Снимаем верхнюю крышку реле.

На фотографии видны три биметаллические пластины, которые установлены в каждом полюсе (фазе).

Откручиваем винты выходных клемм и вытаскиваем из корпуса биметаллические пластины.

Затем снимаем спусковой механизм теплового реле.

Принцип работы системы рычагов спускового механизма.

Вот так выглядит тепловое реле LR2 D1314 без биметаллических пластин и спускового механизма.

Чтобы добраться до контактной системы теплового реле, нужно снять регулятор уставок и выкрутить винт.

На фотографии ниже изображены контакты теплового реле в режиме готовности.

А сейчас показаны контакты при срабатывании теплового реле:

Я уже упоминал в начале статьи, что при нажатии на кнопку «Стоп» принудительно размыкается нормально-замкнутый контакт NC (95-96), при этом нормально-разомкнутый контакт не изменяет своего положения. Вот подтверждение моих слов.

А вот фотография всех деталей теплового реле LR2 D1314.

 

Принцип работы теплового реле LR2 D1314

Несколько слов о конструкции биметаллической пластины.

Биметаллическая пластина состоит из 2 пластин разных материалов, у которых коэффициент линейного теплового расширения значительно отличается друг от друга. Например:

  • сплав железа с никелем (инвар) со сталью
  • ниобий со сталью

Соединяются эти две пластины с помощью сварки или клепки.

Один конец биметаллической пластины закреплен (неподвижный), а другой — подвижный и соприкасается со спусковым механизмом теплового реле. Когда биметаллическая пластина нагревается от проходящего через нее тока, она начинает изгибаться в сторону материала, у которого коэффициент линейного теплового расширения меньше.

А теперь рассмотрим принцип работы теплового реле LR2 D1314.

В нормальном режиме работы электродвигателя через биметаллические пластины трех полюсов (трех фаз) протекает ток нагрузки электродвигателя — пластины нагреваются до определенной начальной температуры, которая не вызывает их изгиб. Предположим, что по некоторой причине ток нагрузки двигателя увеличился, соответственно, по биметаллическим пластинам будет протекать ток больше номинального, который и вызовет их подогрев (температура станет больше начальной). При этом подвижная часть биметаллических пластин начнет изгибаться и приведет в действие спусковой механизм теплового реле.

После срабатывания теплового реле нужно подождать определенное время, пока не остынут биметаллические пластины и не разогнутся в нормальное положение. Да и включать сразу же электродвигатель в сеть после срабатывания теплового реле совершенно нецелесообразно, ведь в первую очередь нужно определить причину и устранить ее.

P.S. Пожалуй на этом я закончу статью о тепловом реле LR2 D1314 от фирмы «Schneider Electric». В следующих статьях я расскажу Вам как правильно выбрать тепловое реле, а также покажу как его настроить и проверить на стенде. Если у Вас имеются вопросы по материалу статьи, то готов выслушать Вас — форма комментариев всегда открыта.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

2.Время-токовые характеристики теплового реле.

Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика). В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластину до температуры qо. При проверке времятоковых характеристик тепловых реле следует учитывать, из какого состояния (холодного или перегретого) происходит срабатывание реле. При проверке тепловых реле надо иметь в виду, что нагревательные элементы тепловых реле термически неустойчивы при токах короткого замыкания.

3.Выбор тепловых реле.

Номинальный ток теплового реле выбирают исходя из номинальной нагрузки электродвигателя. Выбранный ток теплового реле составляет (1,2 - 1,3) номинального значения тока электродвигателя (тока нагрузки), т. е.тепловое реле срабатывает при 20- 30% перегрузке в течении 20 минут. Постоянная времени нагрева электродвигателя зависит от длительности токовой перегрузки. При кратковременной перегрузке в нагреве участвует только обмотка электродвигателя и постоянная нагрева 5 - 10 минут. При длительной перегрузке в нагреве участвует вся масса электродвигателя и постоянна нагрева 40-60 минут. Поэтому применение тепловых реле целесообразно лишь тогда, когда длительность включения больше 30 минут.

4.Влияние температуры окружающей среды на работу теплового реле.

Нагрев биметаллической пластинки теплового реле зависит от температуры окружающей среды, поэтому с ростом температуры окружающей среды ток срабатывания реле уменьшается. При температуре, сильно отличающейся от номинальной, необходимо либо проводить дополнительную (плавную) регулировку теплового реле, либо подбирать нагревательный элемент с учетом реальной температуры окружающей среды. Для того чтобы температура окружающей среды меньше влияла на ток срабатывания теплового реле, необходимо, чтобы температура срабатывания выбиралась возможно больше.

Для правильной работы тепловой защиты реле желательно располагать в том же помещении, что и защищаемый объект. Нельзя располагать реле вблизи концентрированных источников тепла — нагревательных печей, систем отопления и т. д. В настоящее время выпускаются реле с температурной компенсацией (серии ТРН).

5.Работа тепловых реле.

Прогиб биметаллической пластины происходит медленно. Если с пластиной непосредственно связать подвижный контакт, то малая скорость его движения, не сможет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устройство. Наиболее совершенным является «прыгающий» контакт. В обесточенном состоянии пружина создает момент относительно точки 0, замыкающий контакты . Биметаллическая пластина при нагреве изгибается вправо, положение пружины изменяется. Она создает момент, размыкающий контакты за время, обеспечивающее надежное гашение дуги. Современные контакторы и пускатели комплектуются с тепловыми реле ТРП (одно-фазное) и ТРН (двухфазное).

5.1.Тепловые реле трп.

Тепловые токовые однополюсные реле серии ТРП с номинальными токами тепловых элементов от 1 до 600 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей, работающих от сети с номинальным напряжением до 500 В при частоте 50 и 60 Гц. Тепловые реле ТРП на токи до 150 А применяют в сетях постоянного тока с номинальным напряжением до 440 В.

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *