Содержание

Клещи-приставка AC/DC Holdpeak HP-605A. для больших токов

Тóковые клещи позволяют производить измерение тока бесконтактным способом — просто обхватив этот провод. Клещи для переменного тока делаются как правило на основе тóкового трансформатора, выпускаются уже очень давно и стоят копейки. Клещи для постоянного тока — имеют в своей основе линейные датчик(и) холла, и стали доступны по цене не так давно. В целом, клещи можно поделить на клещи для переменки и клещи для постоянки, а по конструкции — на автономные и приставки. Из автономных недорогих AC/DC могу назвать ut210e, ms2108A, а из приставок — чуть подороже appa 32, hantek cc65/cc650, ну и вот «новый игрок» в нижнем ценовом диапазоне — Holdpeak.


Вообще, изначально клещи предназначены в пару к мультиметру HP890CN — сам есть соответствующее положение на селекторе. Но в принципе могут работать с любым другим тестером или даже осциллографом, потому что выдают напряжение прямо пропорциональное измеряемому току — 1мВ соответствует 1А.

Клещи имеют размеры 175х80мм (без боковой кнопки, открывающей «пасть»), вес около 300г, длина провода 70см.




В комплекте есть бумажка, назвать инструкцией которую язык не поворачивается. Там написано примерно следующее: подключите клещи к тестеру, включите, выберите на тестере режим «клещи», переключите клещи и тестер в соответствующий AC/DC режим, нажмите на тестере кнопку REL — и измеряйте. Никаких цифр, погрешностей, пределов — ничего. Впрочем, инструкция от HP890cn обещает 2.5%/3% +5 для DC и AC соответственно.

На передней панели кнопка питания, светодиод индицирующий включенное состояние и кнопка AC/DC. Забегая вперед, скажу что отличие AC от DC — во включенном последовательно конденсаторе, ну и подстроечники для AC и DC — разные.

Питаются от «кроны», потребляемый ток 4.4мА

Выходной сигнал — 1мВ=1А

Внутренний мир прост и незатейлив — LDO 7550 на 5В, преобразователь из +5В в -5В 7660 и операционный усилитель TL062


с обратной стороны платы — три подстроечных резисторы, кнопки и светодиод питания.

Дополнительная информация

пара фоток с отпаянными микросхемами и переключателем:



схема (если я ничего не напутал):

Названия микросхем, кнопок, разъемов — условные (скажем, вместо 7550 нарисовал 78L05, разъемы взяты тупо по числу контактов и т.д.). Конденсаторы не отпаивал и не прозванивал, для резисторов указаны надписи на них и их перевод в реальное значение (ибо для 0603 с 1% точности уже обозначение не цифра-цифра-множитель, а целая таблица)

Если я правильно понимаю (а с высокой вероятностью я таки ошибаюсь) — VR1 задаёт начальное смещение, то есть регулирует ноль, а VR2 и VR3 — калибровка по постоянке и переменке соответственно.

Режим AC отличается кроме другой выходной цепи и потенциометра — включенным последовательно конденсатором. Нафига это нужно — как по мне тайна великая есть. Видимо, чтобы отсечь постоянное смещение, которое неминуемо в клещах на датчиках холла. Чем это будет отличаться от переключения тестера в режим AC — уж я и не знаю. Как по мне — лучше бы подстроечник для этой цели ввели, оперативно 0 выставлять на постоянке.

Теперь измерения. Как я уже писал в заголовке — клещи рассчитаны на большие токи. Поэтому на малых токах точность будет никакая, но тем не менее попробуем проверить.

постоянка:

переменка:

Как видим, если на постоянке точность еще куда ни шло, то на переменке ну совсем не в дугу. впрочем, измерение переменных токов меня волнуют мало, а таких высоких — не волнуют вовсе, так что лично для меня это проблемой не является, но если я правильно понимаю, можно при желании подстроить (?) при помощи VR2 и VR3, что я и сделал для постоянного тока, хоть и не сфоткал. Но получилось не более +-0.1А с эталонным тестером, на вышеприведенных же токах, что я считаю вполне себе неплохим результатом. Ну не рассчитаны они на такие токи. Им нужны десятки и сотни ампер — там они покажут точнее и «раскроются в полной мере».

Теперь — маленькая доработка. Так как я планировал использовать данные клещи для диагностики, в частности — измерения стартерного тока, то я решил заменить провод на разъем. Ну и сразу скажу, что в этой роли пока не пробовал — не было возможности, времени и желания. 😉

Для этого я отпаял провод, припаял к нему разъем «тюльпан»-папу, а в клещи поставил соответствующее гнездо. Для установки гнезда я просверлил корпус сверлом 10мм, после чего взял пластиковую пластинку размерами примерно 10х20х1.5мм, просверлился в ней диаметром 6мм, прикрутил к ней гнездо и вставил в корпус — между корпусом и бывшим зажимом провода:






Как по мне — стало не хуже, к тому же появилась возможность подключения «штатным» кабелем. Можно, естественно, поставить разъем BNC, ну либо воткнуть в этот разъем переходник. Высоких частот тут не будет, так что необходимости в BNC разъемах как-то и нету.

После этой доработки можно подключиться к осциллографу. Для этого я собрал на каком-то полевике ключик, который запустил от внешнего генератора и нагрузил на мощный резистор. Понятно, что всё это несерьёзно, ну да что есть — то есть:

Как видим, сигнал достаточно шумный, что вообще говоря неудивительно — я вообще как-то слабо понимаю использование преобразователей типа 7660 в схемах с микровольтными/милливольтными сигналами. Полюс полное отсутствие экранирования, так что и внешние наводки исключать никак нельзя.

По частоте — тоже ничего выдающегося.

Для сравнения — сигнал с ut210e в режиме 20А:

Амплитуда выше, сигнал чище.

Подытоживая.

Честно говоря, впечатления неоднозначные. Так и хочется написать «как за свои деньги...». То есть да, это самая дешманская модель на рынке. «Из коробки» достаточно сильно врёт, что, впрочем, скорее всего особенности конкретного экземпляра, да и вроде как поддаётся подстройке.

Хотелось бы видеть хоть минимальное экранирование, также хотелось бы переключение пределов 600/60А — но тут в принципе понятно что переключения такого нет совершенно осознанно, оно ж идёт «комплектом» к тестеру, где в режиме клещей предел 600А. С другой стороны можно было на тестере сделать 60/600А — но не сделали. В результате имеем низкую цену — но и низкую точность «прицепом», а также не сильно красивый сигнал в плане помех.

Подумываю натыкать пару дросселей по питанию, а также раздумываю над введением режима 60А (точнее, до 60 не дотянуть, где-то 40 наверно будет максимум), и тут мне хотелось бы спросить совета у более грамотных схемотехников. потому что как по мне, то самый «незамутнённый» способ — впереть тупо еще один ОУ на выходе с коэффициентом усиления 10 и не запариваться 😉 Как вариант — изменить коэффициент усиления имеющегося ОУ, но что-то у меня с наскоку не прокатило — вероятно нужно еще ноль будет точнее выставлять в этом случае. Короче говоря, с радостью выслушаю в комментах любые советы кроме выкинуть. 😉

К покупке рекомендую, только если вам нужно проверять десятки-сотни ампер, и при этом цена важнее качества, а «руки не для скуки» и вы готовы тратить время на доработки и калибровки клещей за 20 баксов.

mysku.ru

Токовые клещи своими руками - Всё о электрике в доме

Трансформатор тока. Токовые клещи. Расчет онлайн, on-line. Изготовить своими руками. Изготовление. Применение.

Особенности и ошибки проектирования токового трансформатора

Хочу обратить Ваше внимание на то, что напряжение на выходе трансформатора тока будет двуполярным даже если в измеряемой цепи протекает пульсирующий однополярный ток. Трансформатор не может передавать постоянное напряжение. Он передаст на выходную обмотку только переменную составляющую измеряемого тока.

Еще одно замечание. Шунт вторичной обмотки должен пропускать электрический ток в обе стороны. Недопустимо ставить последовательно с выходной обмоткой диод. Это может привести к скачкам напряжения на этой обмотке, насыщению трансформатора, помехам в измеряемой цепи, пробою диода. Можно сначала поставить шунтирующий резистор, а уже потом снять с него напряжение через диод, или поставить мост с включенным в его диагональ шунтирующим резистором. Мост, как известно, обладает двусторонней проводимостью со стороны входов переменного напряжения.

Вашему вниманию подборки материалов:

К онструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

П рактика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

В некоторых случаях полезно измерять сумму токов через несколько проводников. Тогда все эти проводники пропускаются через окно сердечника. Сила тока во вторичной обмотке будет пропорциональна силе суммы токов. Важно направление протекания тока. Если один провод пропущен так, что ток протекает в одном направлении, а второй так, что ток течет навстречу, то на выходе будет разность токов. Как я уже писал, трансформатор тока лучше работает при симметричном измеряемом токе. В некоторых случаях этого можно добиться, пропустив проводники в правильном направлении. Например, в пуш-пульном преобразователе напряжения, для ограничения тока может применяться токовый трансформатор. Можно пропустить проводники, соединенные с коллекторами (стоками) транзисторов так, чтобы ток проходил через трансформатор в одном направлении, но можно пропустить их крест-на-крест, а измеряемое напряжение подать на мост. Тогда трансформатор тока будет работать в более щадящем режиме.

Принцип работы токовых клещей

Токовые клещи представляют собой обычный токовый трансформатор, только разборный. Проводник, силу тока в котором мы измеряем, пропускается внутри сердечника. Далее клещи схлопываются, сердечник замыкается. В ручке токовых клещей размещена вторичная обмотка, намотанная на этом разборном сердечнике.

Такие токовые клещи позволяют измерять силу переменного тока. Для измерения постоянного тока применяется несколько другой принцип. Описание токовых клещей постоянного тока .

Применение трансформатора тока

Посмотрите пример применения токового трансформатора в различных радиоэлектронных устройствах:

  • Лабораторный импульсный блок питания. Зарядное устройство

Онлайн (on-line) расчет токового трансформатора

Главная » Измерение » Токовые клещи постоянного тока — приставка к мультиметру своими руками. Описание

Токовые клещи постоянного тока — приставка к мультиметру своими руками. Описание

Для замера больших токов, как правило, применяют бесконтактный метод, — особыми токовыми клещам. Токовые клещи – измерительное устройство, имеющее раздвижное кольцо, которым охватывают электропровод и на индикаторе прибора отображается величина протекающего тока.

Превосходство подобного метода бесспорно, — чтобы замерить силу тока нет нужды разрывать провод, что в особенности немаловажно при измерении больших токов. В данной статье приводится описание

токовые клещи постоянного тока. которые вполне возможно сделать своими руками.

Описание конструкции самодельных токовых клещей

Для сборки устройства понадобится чувствительный датчик Холла, к примеру, UGN3503. На рисунке 1 изображено устройство самодельной клещи. Необходим, как уже сказано, датчик Холла, а так же, кольцо ферритовое диаметром от 20 до 25 мм и крупный «крокодил», к примеру, подобный как на проводах для запуска (прикуривания) автомобиля.

Ферритовое кольцо необходимо точно и аккуратно распилить либо разломить на 2-е половинки. Для этого ферритовое кольцо необходимо сначала подпилить алмазным надфилем или пилкой для ампул. Далее, поверхности разлома ошкурить мелкой шкуркой.

С одной стороны на первую половинку ферритового кольца приклеить прокладку из чертежного ватман. С другой стороны на другую половинку кольца наклеить датчик Холла. Приклеивать лучше всего эпоксидным клеем, только нужно проследить, чтобы датчик Холла хорошо прилегал к зоне разлома кольца.

Следующий шаг – соединяем обе половинки кольца и обхватываем его «крокодилом» и приклеиваем. Теперь при нажатии на ручки «крокодила» ферритовое кольцо будет расходиться.

Электронная схема токовых клещей

Принципиальная электрическая схема приставки к мультиметру изображена на рисунке 2. При протекании тока по электропроводу, вокруг него появляется магнитное поле, и датчик Холла фиксирует силовые линии, проходящие через него, и формирует некоторое постоянное напряжение на выходе.

Данное напряжение усиливается (по мощности) ОУ А1 и идет на выводы мультиметра. Соотношение напряжения на выходе от протекающего тока: 1 Ампер = 1 мВольт. Подстроечные сопротивления R3 и R6 — многооборотные. Для настройки необходим лабораторный блок питания с минимальным током на выходе около 3А, и встроенным амперметром.

Сперва подсоедините данную приставку к мультиметру и выставьте её на нуль путем изменения сопротивления R3 и среднем положении R2. Далее, перед любым измерением необходимо будет выставлять ноль потенциометром R2. Выставьте на блоке питания наименьшее напряжение и подсоедините к нему большую нагрузку, например, электролампу, применяемую в фарах автомобиля. Затем на один из проводов, подсоединенный к данной лампе, зацепите «клещи» (рисунок 1).

Повышайте напряжение, до тех пор, пока амперметр блока питания не покажет 2 ампера. Подкрутите сопротивление R6 так, чтобы величина напряжения мультиметра (в милливольтах) соответствовала данным амперметра блока питания в амперах. Еще несколько раз проконтролируйте показания, меняя силу тока. Посредством этой приставки возможно мерить ток до 500А.

Источник: Радиоконструктор, 6/2008

Что бы измерить большой ток используют бесконтактный способ, — специальными «токовыми клещами». Это электронный измерительный прибор, чем то похож на мультиметр, у которого сверху торчит своеобразная прищепка. Эту прищепку цепляют на провод и на экране наблюдают показания тока в данном проводе. Короче говоря, измеряют ток потребителя — асинхронного электродвигателя, водонагревателя, электрочайника и т. д. Преимущества такого способа очевидны, — чтобы измерить силу тока не нужно рвать цепь, что особенно важно при измерении больших токов.

«Токовые клещи» для обычного мультиметра можно сделать самостоятельно, если у вас есть чувствительный датчик Холла, например, UGN3503. На рисунке 1 показана конструкция самодельной «клещи». Нужен, как уже сказано, датчик холла, а так же, ферритовое кольцо диаметром 20-25 мм и большой «крокодил», например, для подключения чего-либо к автомобильному аккумулятору. Кольцо нужно точно и аккуратно разломать на две половинки. Для этого кольцо нужно предварительно подпилить медицинской пилкой для ампул. Затем, поверхности слома обработать мелкой шкуркой. С одной стороны на одну из половинок кольца наклеить прокладку из толстой бумаги (чертежный ватман). С другой стороны на одну из половинок кольца наклеить датчик Холла. Клеить удобнее всего эпоксидным клеем, но так, чтобы датчик плотно прилегал к месту разлома кольца. Затем, сложив обе половинки кольца как показано на рисунке 1 их нужно вставить в «пасть крокодила» и приклеить к «челюстям крокодила» тем же эпоксидным клеем.

В результате должна получиться конструкция, схематически показанная на рисунке 1. При нажиме на ручки «крокодила» ферритовое кольцо должно раскрываться вместе с его «челюстями».

Теперь о электронной части.

Принципиальная схема приставки к мультиметру показана на рисунке 2. При прохождении тока по проводу вокруг него возникает магнитное поле, силовые линии которого пронизывают датчик Холла, и на его выходе появляется некоторое постоянное напряжение. Это напряжение усиливается по мощности операционным усилителем А1 и поступает на вход мультиметра. Зависимость выходного напряжения от тока: 1А = 1 mV.

Подстроечные резисторы R3 и R6 должны быть многооборотными.

Для налаживания нужен лабораторный источник питания с выходным током не менее ЗА, со встроенным амперметром.

Сначала подключите приставку к мультиметру и откалибруйте её на нуль подстройкой R3 при среднем положении R2. Затем, перед каждым измерением нужно будет устанавливать ноль переменным резистором R2.

Установите на источнике минимальное напряжение и подключите к нему мощную нагрузку, например, лампу от автомобильной фары.

На один из проводов, идущей к этой лампе, нацепите «клещу» (как показано на рисунке 1). Увеличивайте напряжение пока амперметр источника не покажет 2-2,5А. Подстройте R6 так, чтобы показание мультиметра в милливольтах были равны показанию амперметра источника в амперах. Проверьте показания, изменяя силу тока в ту и другую сторону (уменьшая — увеличивая ток и сравнивая с амперметром источника).

При помощи данной приставки можно измерять ток до 500А. Например, можно измерить ток потребления автомобильным стартером в момент пуска двигателя.

Источники: http://gyrator.ru/current-transformer-on-line, http://fornk.ru/894-tokovye-kleshhi-pristavka-k-multimetru-svoimi-rukami/, http://www.radiopill.net/load/izmeritelnaja_tekhnika/pristavka_tokovye_kleshhi_k_cifrovomu_multimetru/pristavka_tokovye_kleshhi_k_cifrovomu_multimetru/356-1-0-474

electricremont.ru

Токовые клещи/мультиметр MASTECH MS2108S

Всем привет! Ранее у меня не было токовых клещей, но я понимал на какие особенности нужно обратить внимание чтобы в будущем не засматриваться на «правильные» модели. Что тут имеется: TRMS, измерение клещами как переменного, так и постоянного тока от 0.01 до 600А, есть функция отображения минимума/максимума/среднеквадратичного значения, подсветка экрана и области захвата. Всё что связано с классическими щупами — стандартно. Под катом рассмотрим функционал подробнее. Так же я собрал на коленке трансформатор, выдающий более 600А, надеюсь будет интересно =)


Для получения 10% скидки используем купон CHINAFESTBG

Характеристики

Особенности:

Соответствует стандарту IEC61010-1 и IEC61010-032.
Двойная изоляция (класс защиты 600 В CAT III).
Корпус из сверхпрочной резины.
Автоматический диапазон / ручной диапазон.
Сохранение данных.
Измерение максимального / минимального значения.
Авто-выключение.
Подсветка экрана.
Освещение клещей.

Характеристики:

Дисплей: 6600 единиц
Постоянный ток: 66А / 600А ± 3,0%
AC ток: 66A / 600A ± 3,0%
Постоянное напряжение: 660мВ / 6,6 / 66/600 В ± 0,8%
Напряжение переменного тока: 660мВ / 6,6 / 66/600 В ± 1,0%
Сопротивление: 660 / 6.6k / 66k / 660k / 6.6MΩ ± 1.0%, 66MΩ ± 2.0%
Емкость: 6.6μ / 66μ / 660μ / 6.6m / 66mF ± 4.0%
Частота: от 10 до 10 кГц ± 2,0% (При измерении щупами)
Частота: от 10 до 1 кГц ± 2,0% (При измерении клещами)
Рабочий цикл: 10% ~ 95% ± 3,0%
Проверка замыкания с помощью зуммера
Диодный тест
МАКСИМУМ. Диаметр для проводника: 26 мм
Питание: 1,5 В (AAA) x 3 (не входит в комплект)
Размер: 208 мм x 78 мм x 35 мм


Распаковка и внешний вид.

Посылку не пощадили

Сзади набросали особенности и характеристики

Помимо инструкции на 50 страниц на китайском

Подкинули распечатку на английском

Ну и гарантию

Сумочки нет, жаль

В комплект подкинули не самые плохие щупы

Провод 18 AWG, ток 10А. Выглядят внушительнее стандартных комплектных щупов дешевых мультиметров.

Есть колпачки, ограничивающие размер иглы

В нижней части есть 2 стандартных для мультиметров разъема

Над экранчиком расположен ряд кнопок

SEL — Выбор подрежима/дополнительная функция
Min/Max — отображает минимальное и максимальное измеренное значение.
RAN — включает ручной выбор диапазона измерения
Hz/% — выбор отображения частоты или скважности
B.L./Hold — Фиксация текущего значения или включение подсветки зажатием на 2 секунды.
Ну и вверху находится селектор режимов работы, тут всё понятно.

Вся зеленая часть корпуса прорезинена, аккумуляторный отсек сзади. Номер соответствует гарантийному чеку.

Питается устройство от трех батареек типоразмера ААА, никель кушает.

При включении отображаются все элементы экрана. Температуру не измеряет, это лишнее.

При включении подсветки помимо экрана освещаются и клещи, удобненько.

Светодиод довольно яркий

Тестирование.

Для начала посмотрим на сопротивление щупов. Плоховато видно, но там по нулям, видимо откалиброван.

Проверяем Q1. 0.08 Ома, довольно неплохо.

Нарыл резистор на 100 Ом

Сверяем с Q1. Тоже близко.

Пока установил щупы, решил измерить переменное напряжение

Частоту

И скважность

Максимальное

И минимальное значение можно смотреть в том числе после отключения щупов

Эталонных конденсаторов у меня нет, в режиме проверки диодов элементы подсвечиваются, в режиме прозвонки звуковой отклик моментальный, а вот значения на экране отрисовываются не сразу.

Но ведь не на мультиметр мы сюда зашли посмотреть, верно? =)
Так что переходим к измерению тока, при чем сразу к постоянному и небольшим значениям. Для сверки так же буду пользоваться Q1, он показывает неплохую точность. Неплохо, пользовался впервые и думал будет большой разброс в зависимости от расположения проводника, но нет, расхождения небольшие. Кстати, кнопкой SEL в режиме измерения постоянного тока можно обнулить текущее значение чтобы убрать наводки или проследить за изменениями, как с весами.

Для получения точных показаний нужно чтобы клещи были полностью сомкнуты

Так же имеет значение правильное расположение проводника

Иначе получим отрицательные значения.

«Скармливание» двух проводов питания ничего не дает, хотя проскакивали сообщения о таких методах. Вот не знаю, то ли кто-то шутил над новичками, то ли в обсуждаемой модели использовался другой принцип измерения.

Используемая нагрузка рассчитана на 35 Ватт, нам надо что-то больше раз так в 20, так что для начала смастерим трансформатор, который сможет выдать такую мощность, при чем нужно небольшое напряжение и большой ток.
Для начала нужно найти микроволновку, подойдет неисправная — обычно первичная обмотка трансформатора в них живая. Из нее нужно выковырять трансформатор(у меня вроде полтора киловатта), а потом из него выковырять вторичную обмотку.
Вот так.

В гараже наткнулся на старый провод «массы» сварочного аппарата, но изоляция на нем начала осыпаться, жаль.
Придется использовать несколько одножильных медных(это важно) проводов сечением 4 мм².

Провода порезал где-то по метру, сложил по 4 жилы и намотал полтора витка

Надо стараться укладывать как можно плотнее, но мне не на выставку, и так сойдет

Свободные концы зачищаем и фиксируем на каком-нибудь массивном проводнике чтобы он мог рассеивать тепло.
Нашел здоровые болты и притянул провода хомутами, пойдет для тестирования.

Напряжение получилось 1.7 Вольта. Для начала зажал гайку. Плохо видно, но MASTECH показал 300 Ампер.

Надо что-то массивнее. На столе лежал рубль. 400 Ампер. Близко, но всё еще мало.

Перебрал еще кучу железяк, кстати, ржавые раздают неплохие снопы искр, а монетки дугу, похожую на сварочную, так что нужно быть осторожнее. Прогрев как следует провода, замкнул между собой болты и наконец получил что-то похожее на максимум

В первое мгновение после замыкания даже был сигнал о превышении значения, но потом оно начало падать, максимальная зафиксированная цифра — 625 Ампер.

И чем сильнее нагревалась конструкция, тем ниже падал ток, что логично

Подождал пока трансформатор остынет и получил превышение при КЗ. Сабж пищит, на экране «0L».
Q1 забыл переключить на переменное напряжение, не обращайте на него внимания )

Расчлененка.


Ни одной «капли», используются полноценные микросхемы

Правда ни одну опознать не удалось, возможно набивают свою маркировку

Если есть какая-то информация, пишите — дополню обзор

Еще не совсем понимаю предназначение пина S3, похоже можно поставить перемычку, но что даст проверять не стал.

Мелкий шлейф идет на подсветку, восьмиконтактный на контур.

Батарейный отсек экранирован

Итоги.


Получился неплохой инструмент с пределом измерения в 600 Ампер как переменного, так и постоянного тока. Как же удобно измерять нагрузку не разрывая цепь, заодно и искажений из-за вклинивания мультиметра нет. Можно взять для примера из моего опыта зарядку литиевых аккумуляторов типа iMax. Если подключать показометр в разрыв контактной площадки, устройство неверно рассчитывает импеданс, уровень заряда и заряжает элемент совсем другим током. Если использовать клещи, процесс проходит в штатном режиме, к тому же в любое время можно перейти к измерению другой цепи — благодать.
Погрешность на удивление небольшая, учитывая бесконтактное считывание.
Единственное гложет, что не провел полноценные тесты режимов с использованием щупов(нет пенала эталонов), но ведь подобные приборы покупают явно не для того, чтобы проверять емкость конденсаторов, верно?
А еще обидно, что чехольчик зажали — пришлось переселить в чужой.

Если что-то забыл или перепутал, поправляйте в комментариях. Всем добра =)

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Токовые клещи постоянного тока — приставка к мультиметру своими руками. Описание

Для замера больших токов, как правило, применяют бесконтактный метод, — особыми токовыми клещам. Токовые клещи – измерительное устройство, имеющее раздвижное кольцо, которым охватывают электропровод и на индикаторе прибора отображается величина протекающего тока.

Превосходство подобного метода бесспорно, — чтобы замерить силу тока нет нужды разрывать провод, что в особенности немаловажно при измерении больших токов. В данной статье приводится описание токовые клещи постоянного тока, которые вполне возможно сделать своими руками.

Описание конструкции самодельных токовых клещей

Для сборки устройства понадобится чувствительный датчик Холла, к примеру, UGN3503. На рисунке 1 изображено устройство самодельной клещи. Необходим, как уже сказано, датчик Холла, а так же, кольцо ферритовое диаметром от 20 до 25 мм и крупный «крокодил», к примеру, подобный как на проводах для запуска (прикуривания) автомобиля.

Ферритовое кольцо необходимо точно и аккуратно распилить либо разломить на 2-е половинки. Для этого ферритовое кольцо необходимо сначала подпилить алмазным надфилем или пилкой для ампул. Далее, поверхности разлома ошкурить мелкой шкуркой.

С одной стороны на первую половинку ферритового кольца приклеить прокладку из чертежного ватман. С другой стороны на другую половинку кольца наклеить датчик Холла. Приклеивать лучше всего эпоксидным клеем, только нужно проследить, чтобы датчик Холла хорошо прилегал к зоне разлома кольца.

Следующий шаг – соединяем обе половинки кольца и обхватываем его «крокодилом» и приклеиваем. Теперь при нажатии на ручки «крокодила» ферритовое кольцо будет расходиться.

Электронная схема токовых клещей

Принципиальная электрическая схема приставки к мультиметру изображена на рисунке 2. При протекании тока по электропроводу, вокруг него появляется магнитное поле, и датчик Холла фиксирует силовые линии, проходящие через него, и формирует некоторое постоянное напряжение на выходе.

Данное напряжение усиливается (по мощности) ОУ А1 и идет на выводы мультиметра. Соотношение напряжения на выходе от протекающего тока: 1 Ампер = 1 мВольт. Подстроечные сопротивления R3 и R6 — многооборотные. Для настройки необходим лабораторный блок питания с минимальным током на выходе около 3А, и встроенным амперметром.

Сперва подсоедините данную приставку к мультиметру и выставьте её на нуль путем изменения сопротивления R3 и среднем положении R2. Далее, перед любым измерением необходимо будет выставлять ноль потенциометром R2. Выставьте на блоке питания наименьшее напряжение и подсоедините к нему большую нагрузку, например, электролампу, применяемую в фарах автомобиля. Затем на один из проводов, подсоединенный к данной лампе, зацепите «клещи» (рисунок 1).

Повышайте напряжение, до тех пор, пока амперметр блока питания не покажет 2 ампера. Подкрутите сопротивление R6 так, чтобы величина напряжения мультиметра (в милливольтах) соответствовала данным амперметра блока питания в амперах. Еще несколько раз проконтролируйте показания, меняя силу тока. Посредством этой приставки возможно мерить ток до 500А.

Источник: Радиоконструктор, 6/2008

fornk.ru

Для чего нужны токовые клещи? Почему не мультиметр?

Продолжаю раскрывать темы, которые косвенно связаны с микропроцессорами и микроконтроллерами. Обычно все Ардуинеры для измерения силы тока применяют мультиметр, и мало кто знает, что существует еще один прибор. В некоторых случаях этот прибор поможет справиться со своей задачей лучше мультиметра - это токовые клещи.

Ответ на самом деле прост: токовые клещи предназначены для замера больших токов, тогда как простой мультиметр может замерить ток не более 15-20 ампер.

У мультиметра имеются щупы, с помощью которых замеряются токи. При измерении тока мультиметр соединяется в цепь последовательно, при этом ток протекает через провода щупов.

Недостаток такого измерения в том, что при замере больших токов на те же 15 ампер, мультиметр может врать в показаниях из-за проводов, подведенных к щупам, а при длительных замерах провода щупов могут и вовсе сгореть от нагрева.

Токовые клещи замеряют токи несколько иначе чем мультиметр.

Токовые клещи замеряют токи несколько иначе. На одной из сторон прибора находится что-то типа большой прищепки (раздвигающий механизм с магнитопроводом внутри). Представим, что проводка у вас целая, и резать вам ее не хочется, а замер сделать необходимо.

Вы просто обнуляете показания прибора, накидываете токовые клещи на один из проводов, и он практически сразу выдает показания. При этом вам не нужно разрезать провода, подсоединять прибор последовательно, а после замеров еще и восстанавливать разрезанный провод. Это очень долго и неудобно.

А если вы работаете электриком и таких замеров необходимо сделать десяток?

Принцип работы токовых клещей таков. Ток, протекающий через провода, создает электромагнитное поле. Поскольку в токовых клещах находится ферромагнитная катушка, при обхвате провода клещами создается электродвижущая сила (ЭДС) по закону электромагнитной индукции. На основе законов электромагнитной индукции прибор выдает соответствующие показания.

К недостатку прибора можно отнести невысокий класс точности в зависимости от положения самих клещей. Но в основном показания страдают из-за маленьких токов (также могут повлиять на показания блуждающие токи от соседних источников). При замерах больших токов показания высвечиваются более точные.

Часто прибор делают в виде мультиметра с основным его функционалом. Таким образом, можно измерить ток обычным способом (прибор также имеет входа под щупы). С помощью переключателя можно выбирать несколько режимов измерения напряжения цепи и сопротивление отдельных компонентов.

arduinoplus.ru

Токоизмерительные клещи | Практическая электроника

Токоизмерительные клещи — это прибор, который замеряет Силу тока без разрыва цепи.

Честно говоря, мне надоело замерять ток мультиметром. Каждый раз приходится разрывать провод и цепляться к мультику, чтобы замерить всего один единственный параметр: силу тока.

Как с помощью мультиметра замерить силу тока, я писал еще в э той статье.

И тут я вспомнил про токоизмерительные клещи.

— А почему бы и нет? — подумал я про себя. — Удобные, практичные, да и функций левых полно. И самое главное — не надо разрывать провод. Обхватил проводок  клещами — и вуаля!

Для себя сразу же решил брать клещи, которые могут замерять силу тока постоянного напряжения. Клещи, которые замеряют силу тока переменного напряжения сделаны на принципе трансфор матора, поэтому они дешевые. Клещи, которые могут замерять силу тока постоянного напряжения сделаны уже на эффекте Холла  — они в разы дороже.

Первым делом сходил в ближайший радиомагазин. Офигел от цен! Доллар все таки дал о себе знать… Но, как говорится, самое лучшее вложение денег — это в образование и в хобби. Пока был в магазине, присмотрел себе клещики. Пришел домой, залез на Алиэкспресс, нашел их в продаже и заказал, сэкономив тысячу с копейками, разумеется в рублях.

А вот кстати и они:

Выбирайте на Алиэкспрессе на ваш вкус и цвет!

До чего понравился прибор! В руке лежит как литой, да и переключать крутилку очень удобно большим пальчиком

Нажимаем на курок, и губки раздвигаются)

Но на этом ништяки не заканчиваются. В комплекте идет полнофункциональный мультиметр с автоматическим выставлением диапазонов. Блин, и почему я раньше не покупал приборы Mastech? Умеют ведь делать для людей. Скорее всего тогда еще был бедным студентом и выложить пару тыщ за прибор душила жаба :-).

Давайте проверим на работоспособность данный прибор и глянем на сколько он врет. Настало время опытов. Погнали!

Собираем схемку из лампочки на 12 В и и блока питания. На блоке питания тоже выставляем 12 Вольт.

Теперь, сделаем вот что.

ЗамЕряем силу тока постоянного напряжения с помощью блока питания, потом замЕряем силу тока с помощью китайского мультиметра, ну а потом замЕряем силу тока токовыми клещами и сравним показания всех эти трех амперметров, встроенных в наши приборчики.

Итак, сначала у нас силу тока будет мерять сам блок питания:

Лампочка потребляет 1,7 Ампер

Теперь меряем силу тока вот по такой схеме китайским мультиком DT9202

Результат такой же, как и на блоке питания. 1,7 Ампер.

Ну а теперь в дело идут токоизмерительные клещи. Для начала выбираем диапазон измерения постоянного тока:

Потом убираем прибор подальше от разных проводов и других приборчиков, чтобы не было наводок. Потом нажимаем желтую кнопочку «SEL», обнулив наши клещики

Вот теперь полный порядок, можно и замерять 😉

При замере силы тока клещами есть золотое правило: всегда захватываем только один провод!

Слева  — правильный замер, справа — неправильный.

Хватаем проводок, чтобы он у нас был в полости губок. Расположите проводок по центру полости — так измерение будет чуточку точнее.

Получили 1,71 Ампер, что и требовалось доказать ;-).

Но почему значение с минусом, то есть «-1,71 Ампер». В чем прикол?

Если присмотреться, то можно увидеть незамысловатую стрелочку на одной из губок, которая показывает… направление движения электрического тока 😉

Значит, в нашем опыте электрический ток течет в направлении, противоположном стрелочке, так как на дисплее высвечивается значение с минусом. 

А давайте перевернем клещи:

Прибор показывает 1,73 Ампера. Ну вот, сейчас значок «минус» исчез. Значит ток течет по направлению стрелки. Погрешность измерения токовых клещей составила 30 миллиАмпер. Думаю, это вполне нормальная погрешность для такого прибора.

Давайте теперь замеряем силу тока переменного напряжения. Для этого возьмем лампу накаливания на 220 Вольт

и подключим ее к сети 220 Вольт вот по такой схеме, чтобы замерить силу тока переменного напряжения

Ставим на мультике крутилку на значок ~A, что означает измерение силы тока переменного напряжения и смотрим на показания мультика:

Мультик кажет 70 миллиампер.

Ну а теперь замеряем  все это дело с помощью клещей, поставив крутилку на значок ~A, не разрывая цепь:

Тоже 70 миллиампер 😉

Ну вроде бы все сходится). Одно нажатие на курок, и замер сделан! Не прибор, а чудо). 

Есть также еще одна фишка для замера малой силы тока. Но для наглядности я покажу на большой силе тока. Используем всю ту же самую лампу накаливания на 12 вольт и блок питания с выставленным напряжением  12 Вольт.

Делаем первый замер:

Токовые клещи показали 1,75 Ампер. Видать лампа еще на нагрелась, поэтому выдало чуть больше, чем в прошлом опыте.

А теперь знаете что? Давайте сложим замеряемый проводок бубликом в два витка и снова сделаем замеры:

На дисплее высветилось значение 3,54 Ампера.

Добавим еще один виток. Итого стало 3 витка:

Прибор нам показал 5,31 Ампера.

Ну и напоследок добавим еще один виток. Итого стало 4 витка:

Прибор нам показал 7,12 Ампер.

Не заметили никакую закономерность? 😉 А  она до боли простая:

Общий ампераж = количество витков помноженный на ампераж одного витка.

То есть если у нас 4 витка показывает 7,12 Ампер,  то 7,12/4=1,78 Ампер

Если 3 витка показывает 5,31 Ампер, то 5,31/3=1,77 Ампер

И для двух витков, получаем 3,54/2=1,77 Ампер.

То есть по сути, чтобы точнее измерить малые токи, мы наматываем как можно больше витков, замеряем, а потом делим  значение на токовых клещах на количество витков.


В заключении хотелось бы сказать, что токовые клещики мне очень понравились, не только потому что они могут замерять силу тока, но и содержат в себе полноценный мультиметр, с автоматическим определением диапазона. Вот на них документац ия на русском языке. Ну что могу еще сказать? Микроамперы и милиамперы особо не замеряешь. Так что данный класс прибора можно отнести к промышленной электронике, где «гуляют» большие токи. Но в моей домашней лаборатории этот прибор все равно найдет достойное место.

Как я уже сказал, их можно без труда найти на Али и выбрать себе по цене и комплектации.

www.ruselectronic.com

Токовые клещи/мультиметр MASTECH MS2108S

  • Цена: $41.80 (с купоном)

Всем привет! Ранее у меня не было токовых клещей, но я понимал на какие особенности нужно обратить внимание чтобы в будущем не засматриваться на «правильные» модели. Что тут имеется: TRMS, измерение клещами как переменного, так и постоянного тока от 0.01 до 600А, есть функция отображения минимума/максимума/среднеквадратичного значения, подсветка экрана и области захвата. Всё что связано с классическими щупами — стандартно. Под катом рассмотрим функционал подробнее. Так же я собрал на коленке трансформатор, выдающий более 600А, надеюсь будет интересно =)


Для получения 10% скидки используем купон CHINAFESTBG

Характеристики

Особенности:

Соответствует стандарту IEC61010-1 и IEC61010-032.
Двойная изоляция (класс защиты 600 В CAT III).
Корпус из сверхпрочной резины.
Автоматический диапазон / ручной диапазон.
Сохранение данных.
Измерение максимального / минимального значения.
Авто-выключение.
Подсветка экрана.
Освещение клещей.

Характеристики:

Дисплей: 6600 единиц
Постоянный ток: 66А / 600А ± 3,0%
AC ток: 66A / 600A ± 3,0%
Постоянное напряжение: 660мВ / 6,6 / 66/600 В ± 0,8%
Напряжение переменного тока: 660мВ / 6,6 / 66/600 В ± 1,0%
Сопротивление: 660 / 6.6k / 66k / 660k / 6.6MΩ ± 1.0%, 66MΩ ± 2.0%
Емкость: 6.6μ / 66μ / 660μ / 6.6m / 66mF ± 4.0%
Частота: от 10 до 10 кГц ± 2,0% (При измерении щупами)
Частота: от 10 до 1 кГц ± 2,0% (При измерении клещами)
Рабочий цикл: 10% ~ 95% ± 3,0%
Проверка замыкания с помощью зуммера
Диодный тест
МАКСИМУМ. Диаметр для проводника: 26 мм
Питание: 1,5 В (AAA) x 3 (не входит в комплект)
Размер: 208 мм x 78 мм x 35 мм


Распаковка и внешний вид.

Посылку не пощадили

Сзади набросали особенности и характеристики

Помимо инструкции на 50 страниц на китайском

Подкинули распечатку на английском

Ну и гарантию

Сумочки нет, жаль

mysku.me

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *