Сопротивление медного провода: таблица

Содержание:
  1. Понятия и значение сопротивления
  2. Как рассчитать сопротивление
  3. Видео: Как выбрать кабель

При проектировании электрических сетей в квартирах или частных домах в обязательном порядке выполняется расчет сечения проводов и кабелей. Для проведения вычислений используются такие показатели, как значение потребляемой мощности и сила тока, которая будет проходить по сети. Сопротивление не принимается в расчет из-за малой протяженности кабельных линий. Однако этот показатель необходим при большой длине ЛЭП и перепадах напряжения на различных участках. Особое значение имеет сопротивление медного провода. Такие провода все чаще используются в современных сетях, поэтому их физические свойства должны обязательно учитываться при проектировании.

Понятия и значение сопротивления

Электрическое сопротивление материалов широко используется и учитывается в электротехнике. Данная величина позволяет установить основные параметры проводов и кабелей, особенно при скрытом способе их прокладки. В первую очередь устанавливается точная длина проложенной линии и материал, использованный для производства провода. Вычислив первоначальные данные, вполне возможно определить диаметр и сечение измеряемого кабеля.

По сравнению с обычной электрической проводкой, в электронике параметрам сопротивления придается решающее значение. Оно рассматривается и сопоставляется в совокупности с другими показателями, присутствующими в электронных схемах. В этих случаях неправильно подобранное сопротивление провода, может вызвать сбой в работе всех элементов системы. Такое может произойти, если для подключения к блоку питания компьютера воспользоваться слишком тонким проводом. Произойдет незначительное снижение напряжения в проводнике, что вызовет некорректную работу компьютера.

Сопротивление в медном проводе зависит от многих факторов, и в первую очередь от физических свойств самого материала. Кроме того, учитывается диаметр или сечение проводника, определяемые по формуле или специальной таблице.

Таблица

На сопротивление медного проводника оказывают влияние несколько дополнительных физических величин. Прежде всего должна учитываться температура окружающей среды. Всем известно, что при повышении температуры проводника, наблюдается рост его сопротивления. Одновременно с этим происходит снижение силы тока из-за обратно пропорциональной зависимости обеих величин. В первую очередь это касается металлов с положительным температурным коэффициентом. Примером отрицательного коэффициента является вольфрамовый сплав, применяющийся в лампах накаливания. В этом сплаве сила тока не снижается даже при очень высоком нагреве.

Как рассчитать сопротивление

Для расчетов сопротивления медного провода существует несколько способов. К наиболее простым относится табличный вариант, где указаны взаимосвязанные параметры. Поэтому, кроме сопротивления, определяется сила тока, диаметр или сечение провода.

Во втором случае используются разнообразные онлайн-калькуляторы. В каждый из них вставляется набор физических величин медного провода, с помощью которых получаются точные результаты. В большинстве подобных калькуляторов используется удельное сопротивление меди в размере 0,0172 Ом*мм

2/м. В некоторых случаях такое усредненное значение может повлиять на точность вычислений.

Наиболее сложным вариантом считаются ручные вычисления, с использованием формулы: R = p x L/S, в которой р – удельное сопротивление меди, L – длина проводника и S – сечение этого проводника. Следует отметить, что сопротивление медного провода таблица определяет, как одно из наиболее низких. Более низким значением обладает лишь серебро.

electric-220.ru

таблица и другие способы его определения

Когда производится расчет сечения кабеля, то в частном домостроении или в квартирах для определения этой величины используются два показателя: потребляемая мощность сети и сила тока, проходящая по разводке. Сопротивление в данном случае роли не играет. Все дело в небольшой длине проводов. А вот если длина линии электропередач достаточно большая, то без определения данного показателя здесь не обойтись. К примеру, на начале участка напряжение будет 220-2240 вольт, а на конце уже заниженное 200-220 вольт. А так как все чаще в проводке используются медные кабели и провода, то наша задача в этой статье рассмотреть сопротивление медного провода (таблица сопротивления проводов будет ниже приложена).

Что нам дает сопротивление в общем? В принципе, с его помощью можно узнать параметры используемого провода или материал, из которого он изготовлен. К примеру, если для прокладки линии электропередачи использовался скрытый способ, то зная сопротивление линии, можно точно сказать, какой она длины. Ведь часто прокладка производится под землей и непрямолинейным способом. Или еще один вариант, зная длину участка и его сопротивление можно подсчитать диаметр используемого кабеля, а через него и его сечение. Плюс, зная данную величину, можно узнать материал, из которого этот провод был изготовлен. Это все говорит о том, что не стоит сбрасывать со счетов данный показатель.

Все это касалось электрической проводки, но когда дело касается электроники, то в этой области без определения сопротивления и сопоставления его с другими параметрами не обойтись. В некоторых случаях данный параметр может сыграть решающую роль, даже неправильный подбор провода по сопротивлению может привести к тому, что подключаемый к такому проводнику прибор просто не будет работать. К примеру, если к блоку питания обычного компьютера подключить очень тонкий провод. Напряжение в таком проводнике станет низким, не намного, но этого будет хватать, чтобы компьютер работал некорректно.

От чего зависит сопротивление

Так как мы говорим о медном проводе, то первое от чего зависит этот физический параметр, это медь, то есть, сырьевой материал. Второе – это размеры проводника, а, точнее, его диаметр или сечение (обе величины связаны между собой формулой).

Конечно, есть дополнительные физические величины, которые влияют на сопротивление проводника. К примеру, температура окружающей среды. Ведь известно, что при повышении температуры самого провода, его сопротивление увеличивается. А так как этот показатель находится в обратной зависимости от силы (плотность) тока, соответственно ток при повышении сопротивления, наоборот, снижается. Правда, это относится к тем металлам, которые являются обладателями положительного температурного коэффициента. Для примера можно привести сплав вольфрама, который используется для нити накала лампочки. Такому материалу изменения силы (плотность) тока не страшны при высоком нагреве, потому что этот металл обладает отрицательным температурным коэффициентом.

Расчет сопротивления

Сегодня все сделано для человека. И даже такой простой расчет можно сделать несколькими способами. Есть простые, есть сложные. Начнем с простых.

Первый вариант табличный. В чем его простота? К примеру, таблица на нижнем рисунке.

Здесь все четко показано и взаимосвязано. Зная определенные размеры медного провода, можно определить его сопротивление и силу тока, которую провод может выдержать. Или, наоборот, имея в наличие показатели сопротивления или силы (плотность) тока, которые, кстати, можно определить мультиметром, можно легко определить сечение или диаметр проводника. Данный вариант самый удобный, таблицы можно найти в свободном доступе в интернете.

Второй способ определения – с помощью калькулятора (онлайн). Таких интернетовских приспособлений великое множество, работать с ними удобно и легко. Можно в такой калькулятор вставлять физические величины медного проводника и получать размерные показатели, или, наоборот. Правда, основная масса таких калькуляторов в своей программе имеет одно стандартное значение – это удельное сопротивление меди, равное 0,0172 Ом·мм²/м.

И самый сложный вариант расчета – это провести его своими руками, используя формулу. Вот она: R=pl/S, где:

  • р – это то самое удельное сопротивление меди;
  • l – длина медного провода;
  • S – его сечение.

Хотелось бы отметить, что медь обладает одним из самых низких удельных сопротивлений. Ниже него только серебро – 0,016.

Определить сечение проводника можно через формулу, где основным параметром является его диаметр. А вот определить диаметр можно разными способами, кстати, такая статья на нашем сайте есть, можете прочитать и получить полную и достоверную информацию.

Заключение о теме

Подводим итог всему вышесказанному. Конечно, никто не будет учитывать сопротивление электрической разводки медным кабелем в доме или квартире. Но если дело касается прокладки воздушных или подземных линий электропередач, к примеру, от подстанции до дачного участка, то данный показатель придется учитывать обязательно. Ведь именно он повлияет на качество напряжения в сети дома. А вот рассчитать параметры укладываемых кабелей можно будет разными способами, где показатель сопротивления медного провода (таблица приложена) является одним из основных.

onlineelektrik.ru

Электрическое сопротивление r (Ом) 1м проволоки (провода...) в зависимости от ее диаметра d и материала.

Электрическое сопротивление r (Ом) 1м проволоки (провода...) в зависимости от ее диаметра d или сечения и материала при 20 °С.

Электрическое сопротивление r (Ом) 1м проволоки (провода...) в зависимости от ее диаметра d и материала при 20 °С..
d, мм

сечение, мм2

Материал проволоки

алюминиевая

медная

вольфрамовая

стальная

никелиновая

нихромовая

0,05

0,001963

13,68

8,66

28

51

204

510

0,10

0,00785

3,42

2,16

7,0

12,7

51

128

0,30

0,0707

0,379

0,240

0,778

1,41

5,41

14,14

0,50

0,1963

0,137

0.087

0,280

0,51

2,04

5,10

0.70

0,3847

0,0695

0,044

0,143

0,260

1,04

2,60

1,0

0,785

0,0341

0,0216

0,070

0,127

0,51

1,28

1,2

1,130

0,0237

0,0150

0,0486

0,088

0,354

0,884

1,4

1,539

0,0174

0,0110

0,0357

0,065

0,260

0,650

1,6

2,0

0,0134

0,0085

0,0273

0,0497

0,199

0,498

1,8

2,54

0,0106

0,0067

0,0216

0,0393

0,157

0,393

2,0

3,14

0,0085

0,0054

0,0175

0,0318

0,127

0,318

2,6

5,31

0,0055

0,0035

0,0112

0,0204

0,081

0,204

3,0

7,07

0,0038

0,0024

0,078

0,0141

0,057

0,142

tehtab.ru

Активное и индуктивное сопротивление кабелей + таблица

Содержание:

  1. Особенности активного сопротивления
  2. Таблица и формулы для расчета
  3. Действие индуктивного сопротивления кабельных линий
  4. Видео

В любых электрических сетях имеет место потеря напряжения под влиянием различных факторов. В основном это такие параметры, как проводимость и сопротивление, которые следует учитывать при выполнении расчетов. Для цепей постоянного тока можно обойтись обычными характеристиками. Однако, при использовании переменного тока потребуется вычислить активное и индуктивное сопротивление кабелей, которые специальная таблица отображает с высокой точностью в разных вариантах. Для того чтобы правильно ориентироваться в этих параметрах, необходимо хорошо представлять себе особенности каждого из них.

Особенности активного сопротивления

Сопротивление в электротехнике является важнейшим параметром, с помощью которого какая-то часть электрической цепи оказывает противодействие проходящему по ней току. Образованию данной величины способствуют изменения электроэнергии и ее переход в другие виды энергетических состояний.

Подобное явление характерно лишь для переменного тока, под действием которого образуются активные и реактивные сопротивления кабелей. Этот процесс представляет собой необратимые изменения энергии или передачу и распределение ее между отдельными элементами цепи. Если изменения электроэнергии принимают необратимый характер, то такое сопротивление будет активным, а если имеют место обменные процессы, оно становится реактивным. Например, электрическая плита выделяет тепло, которое обратно в электрическую энергию уже не превращается.

Данное явление в полной мере затрагивает любые виды провода и кабеля. При одинаковых условиях, они будут по-разному сопротивляться прохождению постоянного и переменного тока. Подобная ситуация возникает из-за неравномерного распределения переменного тока по сечению проводника, в результате чего образуется так называемый поверхностный эффект.

Таблица и расчет по формуле

Как показывает таблица, поверхностный эффект не критично влияет на проводники, состоящие из цветных металлов и работающие при переменном напряжении с частотой 50 Гц. Поэтому для выполнения расчетов, сопротивления таких кабелей под действием постоянного и переменного тока принимаются условно равными.

Кроме таблицы, для расчетов проводников из алюминия и меди используется специальная формула r = (l * 103)/ γ3 * S = r0 * l, в которой l – длина (км), γ – удельное значение проводимости конкретного материала (м/ом * мм2), r0 – активное сопротивление 1 км кабеля (Ом/км), S – поперечное сечение (мм2).

Значение активного сопротивления кабелей зависит также от температуры окружающей среды. Для того чтобы вычислить r0 при точной температуре Θ, необходимо воспользоваться еще одной формулой r0 = r20 * [l + α * (Θ - 20)] = (l * 103)/ γ20 * S * [l + α * (Θ - 20)]. Здесь α является температурным коэффициентом сопротивления, r20 – активное сопротивление при t 200C, γ20 – удельная проводимость при этой же температуре. Эти расчеты необходимы, когда определяется точное активное и индуктивное сопротивление какого-либо проводника.

Активное сопротивление стальных проводов существенно превышает аналогичный показатель проводников из цветных металлов. Это связано с более низкой удельной проводимостью и наличием поверхностного эффекта, выраженного намного ярче по сравнению с медными и алюминиевыми проводами. Кроме того, в линиях со стальными проводами активная энергия значительно теряется на перемагничивание и вихревые токи, поэтому такие потери становятся дополнительным компонентом активного сопротивления.

У стальных проводников существует зависимость активного сопротивления от величины протекающего тока, поэтому в расчетах неприемлемо использование постоянного значения удельной проводимости.

Действие индуктивного сопротивления кабельных линий

Полное сопротивление электрической цепи разделяется на активное и индуктивное сопротивление. Из них последнее является составной частью реактивного сопротивления, возникающего во время прохождения переменного тока через элементы, относящиеся к реактивным. Индуктивность считается основной характеристикой катушек, не учитывая активное сопротивление их обмоток. Как правило, реактивное сопротивление возникает под влиянием ЭДС самоиндукции. При ее росте, в зависимости от частоты тока, происходит одновременное увеличение сопротивления.

Таким образом, активное и реактивное сопротивление кабелей образуют полное сопротивление, которое есть ни что иное, как сумма квадратов каждой составляющей. Графически это отображается в виде прямоугольного треугольника, в котором гипотенуза является полным сопротивлением, а катеты – его составными элементами.

Очень быстро вычислить активное и индуктивное сопротивление кабелей помогает таблица, в которой отражаются основные характеристики наиболее распространенных проводников. Однако довольно часто требуется определить индуктивное сопротивление Х кабельной линии с определенной протяженностью. Для этого применяется простая первоначальная формула Х = Х0l, где Х0 является индуктивным сопротивлением 1 км проводника, а l – длина этого проводника. Полученный результат измеряется в единицах Ом/км.

В свою очередь Х0 определяется по другой формуле X0 = 0,145lg * (2Dср/d) + 0,0157 μт, в которой 2Dср является средним расстоянием между проводниками или центрами кабельных жил, d – диаметр этих проводников или жил, μт – отражает относительную магнитную проницаемость металла проводника. Таким образом, при увеличении сечения проводника реактивное сопротивление Х0 будет незначительно уменьшаться.

electric-220.ru

Таблица удельных сопротивлений проводников — Zygar

Электрическое сопротивление 1 метра провода (в Ом), сечением 1 мм², при температуре 20 С°. Формула: ρ = Ом · мм²/м.

Материал проводникаУдельное сопротивление  ρ в Ом
Серебро0.015
Медь0.0175
Золото0.023
Латунь0,025... 0,108
Хром0,027
Алюминий0.028
Натрий0.047
Иридий0.0474
Вольфрам0.05
Цинк0.054
Молибден0.059
Никель0.087
Бронза0,095... 0,1
Железо0.1
Сталь0,103... 0,137
Олово0.12
Свинец0.22
Никелин (сплав меди, никеля и цинка)0.42
Манганин (сплав меди, никеля и марганца)0,43... 0,51
Константан (сплав меди, никеля и алюминия)0,44-0,52
Копель ( медно-никелевый сплав с 43% никеля и 0,5% марганца)0.5
Титан0.6
Ртуть0.94
Хромель (хром 8,7—10 %; никель 89—91 %; кремний, медь, марганец, кобальт — примеси)1.01
Нихром (сплав никеля, хрома, железа и марганца)1,05... 1,4
Фехраль1,15... 1,35
Висмут1.2
Хромаль (Сплав 4.5 – 6% алюминия, 17%-30% хрома, остальное железо)1,3... 1,5

Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм².

zygar.ru

Таблица сопротивления алюминиевых и медных кабелей и проводов

Стабильность работы кабелей и проводов зависит от точности выбора сечения, который необходим при проектировании и монтаже электроустановок или прокладке силовых сетей.

Ключевой параметр расчетов — максимально допустимая нагрузка по току, обеспечивающая рабочую температуру жилы, отсутствие перегрева и безопасность эксплуатации линии и электрооборудования. Сила тока для однофазной и трехфазной сети рассчитывается, исходя из суммарной мощности всех подключаемых приборов, аппаратов и установок.

Для правильного определения сечения медной и алюминиевой жилы воспользуйтесь таблицей, в которой сведены основные характеристики — номинальное напряжение, мощность и допустимая токовая нагрузка.

Сечение жил, ммМедные жилы проводов и кабелейСечение жил, ммАлюминиевые жилы проводов и кабелей
Напряжение 220 ВНапряжение 380 ВНапряжение 220 ВНапряжение 380 В
Ток, АМощность, кВтТок, АМощность, кВтТок, АМощность, кВтТок, АМощность, кВт
1,5194,11610,51,5
2,5275,92516,52,5224,41912,5
4388,33019,84286,12315,1
64610,14026,46367,93019,8
107015,450331050113925,7
168518,77549,5166013,25536,3
2511525,39059,4258518,77046,2
3513529,711575,935100228556,1
5017538,514595,75013529,711072,6
7021547,3180118,87016536,314092,4
9526057,2220145,29520044170112,2
12030066260171,612023050,6200132
150150
185185
240240

www.cabinvest.ru

Краткий справочник по проводам. - Эл. справочники - Справочники - Каталог статей

При изготовлении любого электронного устройства одним из основных материалов становятся различные провода, монтажные, обмоточные и другие. Здесь приведены таблицы наиболее широко применяемых проводов в радиолюбительской практике, даны краткие характеристики проводов необходимые для расчётов, так же даны краткие пояснения относительно применения различных проводов.

 

 

 

Основные электрические параметры проводников - удельное электрическое сопротивление и температурный коэффициент сопротивления.
Удельное электрическое сопротивление - сопротивление провода длиной 1 м с постоянным по длине поперечным сечением 1 мм2. Температурный коэффициент сопротивления (ТКС) - относительное изменение сопротивления при изменении температуры на 1 °С. ТКС зависит от температуры.

 

Сопротивление провода определяется по формуле:

где R - сопротивление, Ом; r - удельное сопротивление, Ом-мм2/м; l - длина провода, м; S - поперечное сечение провода, мм2; d - диаметр провода, мм.

Сопротивление провода зависит от температуры:

где RT - сопротивление при заданной температуре; R20 - сопротивление при 20 °С; а - ТКС, %/ °С; T - заданная температура, °С.

 

Основные параметры некоторых проводников низкого сопротивления приведены в табл. П1, а высокого сопротивления - в табл. П2.

 

Таблица П1. Основные параметры проводников низкого сопротивления

 

МатериалУдельное сопротивление при 20 °С, Ом?мм2ТКС,
%/°С
Температура плавления,
°С
Плотность,
г/см3
Алюминий0,0280,496602,7
Бронза0,1150,49008,8
Золото0,0240,37106019,3
Латунь0,03-0,060,29008,5
Медь0,01750,410808,9
Никель0,070,614508,8
Олово0,1150,422307,3
Никель0,070,614508,8
Олово0,1150,422307,3
Серебро0,0160,3896010,5
Сталь0,0980,6215207,8
Уголь0,33-1,850,06--
Хром0,027--6,6
Цинк0,0590,354207,0

 

 

Таблица П2. Основные параметры проводников высокого сопротивления

 

МатериалУдельное сопротивление при 20 °С, Ом?мм2ТКС (в интервале 0-100 °С), %/°СМаксимальная рабочая температура, °СТемпература плавления, °СПлотность, г/см3
Константан0,44-0,520,000550012708,9
Манганин0,4-0,50,00510012008,4
Нейзильбер0,28-0,350,0315010008,4
Никелин0,39-0,450,002150--
Нихром1,0-1,10,01590014008,2
Реотан0,45-0,520,04150--
Фехраль1,1-1,30,0190014607,2
Хромаль1,450,005100015007,1

 

 

 

Медные обмоточные провода применяют для намотки катушек колебательных контуров, трансформаторов, дросселей, электромагнитных реле (табл. П3). Диаметр провода определяется плотностью тока, сопротивлением обмоток, соображениями удобства намотки и надежностью. Очень тонкие провода (диаметром менее 0,07 мм) не так надежны, значительно дороже и усложняют намотку.

 

Таблица П3. Медные обмоточные провода

 

МаркаХарактеристика изоляцииДиаметр медной жилы,
мм
Максималь-
ная рабочая
температура,
°С
ПЭВ-1Один слой высокопрочной эмали0,02-2,44120
ПЭВ-2Два слоя высокопрочной эмали0,06-2,44120
ПЭВДОдин слой высокопрочной эмали с дополни­тельным термопластичным покрытием0,2-0,5-
ПЭВКЛВысокопрочная эмаль с покрытием на основе капроновой смолы0,1-0,15105
ПЭВЛОВысокопрочная эмаль и обмотка из шелка с лавсаном0,06-1,3105
ПЭВТЛ-1Один слой высокопрочной теплостойкой эмали0,06-1,56120
ПЭВТЛ-2Два слоя высокопрочной теплостойкой эмали0,06-1,56120
ПЭВШОВысокопрочная эмаль и обмотка из искус­ственного шелка0,07-0,51105
ПЭЛЛакостойкая эмаль0,03-2,44105
ПЭЛКОЛакостойкая эмаль и обмотка из капронового волокна0,2-2,1105
ПЭЛОЛакостойкая эмаль и обмотка из шелка с лавсаном0,05-2,1105
ПЭЛР-1Один слой высокопрочной полиамидной эмали0,1-2,44120
ПЭЛР-2Два слоя высокопрочной полиамидной эмали0,1-2,44120
ПЭЛУЛакостойкая эмаль (утолщенный слой)0,05-2,44105
ПЭЛШКОЛакостойкая эмаль и обмотка из капронового волокна0,1-1,56105
ПЭЛШОЛакостойкая эмаль и обмотка из натураль­ного шелка0,05-1,56105
ПЭМ-1Один слой высокопрочной эмали «металвин»0,1-2,44105
ПЭМ-2Два слоя высокопрочной эмали «металвин»0,1-2,44105
ПЭМ-3Три слоя высокопрочной эмали «металвин»0,1-2,44105
ПЭПЛОВысокопрочная теплостойкая эмаль и обмотка из шелка с лавсаном0,06-1,3120
ПЭТВВысокопрочная теплостойкая эмаль0,06-2,44130
ПЭТКТеплостойкая эмаль0,05-0,51-
ПЭТЛОВысокопрочная теплостойкая эмаль и обмотка из шелка с лавсаном0,06-1,3130

 

Основные параметры некоторых медных обмоточных проводов, применяемых при изготовлении и ремонте электрорадиотехнических устройств, приведены в табл. П4.

 

Таблица П4. Характеристики медных обмоточных проводов

 

Диаметр медной жилы,
мм
Сечение медной жилы,
мм2
Рабочий ток,
А
ПЭЛ, ПЭВ-1, ПЭЛР-1
витков на длине
1 см
витков в сечении
1 см2
0,050,001960,004912813200
0,060,002830,007111210150
0,070,003850,00961008020
0,080,005020,0125906500
0,090,006360,0159815370
0,100,007850,0196734360
0,120,01130,0282633220
0,150,01760,0441522190
0,160,02010,0502471800
0,170,02270,0566451620
0,180,02540,0635421470
0,190,02830,0708401340
0,200,03140,0784391220
0,250,004910,12331770
0,310,07540,18825530
0,330,08550,21324474
0,350,09620,2423427
0,380,1130,28321368
0,410,1320,32920320
0,440,1520,37918282
0,470,1730,43317249
0,490,1880,47116230
0,510,2040,51016207
0,530,2210,55115193
0,550,2370,59315180
0,570,2550,63714169
0,590,2730,68214158
0,620,3020,75313144
0,640,3220,80313136
0,670,3520,88012125
0,690,3740,93312118
0,720,4071,0211106
0,740,4301,0711101
0,800,5021,251087
0,860,5811,45978
0,900,6361,59970
0,930,6791,69966
0,960,7231,81862
1,000,7851,96855
1,080,9162,29748
1,120,9852,46745
1,201,132,82739
1,251,233,06636

 

*Примечание: число витков в сечении 1 см2 зависит от плотности намотки, числа и толщины межслойных прокладок.

 

Вид изоляции провода выбирают в зависимости от рабочей температуры обмотки, требуемой электрической прочности, допускаемого коэффициента заполнения окна магнитопровода. В приборах и трансформаторах полупроводниковой аппаратуры, предназначенных для работы в нормальных условиях, обычно используют провода в эмалевой изоляции (марки ПЭЛ, ПЭВ и др.). При высоких требованиях к надежности аппаратуры рекомендуются провода с двухслойной изоляцией (ПЭВ-2, ПЭВТЛ-2, ПЭЛР-2 и др.). Провода с комбинированной изоляцией применяются при повышенных механических нагрузках в процессе намотки или эксплуатации аппаратуры. Провода марки ПЭВТЛ отличаются сравнительно высокой стойкостью к нагреванию и большим сопротивлением изоляции. Их можно залу-живать, погружая в расплавленный припой, а также при помощи паяльника без предварительной зачистки и применения флюсов.

 

Для изготовления бескаркасных обмоток используются провода марки ПЭВД с дополнительным термопластичным покрытием из лаков на поливинилацетатной основе. Но помните, что при нагреве до температуры 160-170 °С в течение 3-4 ч витки склеиваются.

 

Как видно из табл. П3, провода могут иметь покрытие (изоляцию) из эмали, волокнистых материалов или комбинированное. Эмаль обладает лучшими электроизоляционными свойствами, чем волокнистые материалы, кроме того, диаметр эмалевых проводов намного меньше.

 

Электроизоляционные свойства капронового волокна и натурального шелка несколько выше, чем хлопчатобумажного волокна. Капроновое волокно превосходит натуральный шелк по стойкости к истиранию и воздействию растворителей (бензин, бензол, минеральные масла и т.п.).

 

 

 

Обмоточные провода высокого сопротивления (табл. П5) используются для изготовления проволочных резисторов и шунтов. Последняя буква марки провода обозначает материал: М - мягкий, Т -твердый. Термостойкость этих проводов, так же, как и медных, определяется материалом изоляции. Основные характеристики некоторых обмоточных проводов высокого сопротивления приведены в табл. П6.

 

Таблица П5. Обмоточные провода высокого сопротивления

 

МаркаХарактеристика изоляцииДиаметр жилы, мм
Константановые
ПШДКДва слоя обмотки из шелка0,05-1,0
ПЭВКМ-1Один слой высокопрочной эмали0,1-0,8
ПЭВКМ-2Два слоя высокопрочной эмали0,1-0,8
ПЭВКТ-1Один слой высокопрочной эмали0,03-0,8
ПЭВКТ-2Два слоя высокопрочной эмали0,03-0,8
ПЭКЛакостойкая эмаль0,03-1,0
ПЭШОКЭмаль и один слой обмотки из шелка0,05-1,0
Манганиновые
ПШДММДва слоя обмотки из шелка0,05-1,0
ПШДМТДва слоя обмотки из шелка0,05-1,0
ПЭВММ-1Один слой высокопрочной эмали0,05-0,8
ПЭВММ-2Два слоя высокопрочной эмали0,05-0,8
ПЭВМТ-1Один слой высокопрочной эмали0,02-0,8
ПЭВМТ-2Два слоя высокопрочной эмали0,02-0,8
ПЭММЛакостойкая эмаль0,05-1,0
ПЭМТЛакостойкая эмаль0,03-1,0
ПЭМСВысокопрочная эмаль0,05-0,8
ПЭШОММЭмаль и один слой обмотки из шелка0,05-1,0
ПЭШОМТЭмаль и один слой обмотки из шелка0,05-1,0
Нихромовые
ПЭВНХ-1Один слой высокопрочной эмали0,02-0,4
ПЭВНХ-2Два слоя высокопрочной эмали0,02-0,4
ПЭНХЛакостойкая эмаль0,03-0,4

 

 

Таблица П6. Сопротивление проводов высокого сопротивления длиной 1 м, Ом

 

Диаметр,
мм
Материал
МанганинКонстантанНихром
МТМТХ15Н60Х20Н80
0,02-1370---3374
0,025-876---2160
0,0360665565569315281500
0,04342369369390857>844
0,05220237237250550535
0,06152164164173386379
0,07112121121127281278
0,0885,492,592,597,5216213
0,0937,673,173,177170168
0,154,859,259,262,4138136
0,1238,141,141,143,695,794,7
0,1524,326,326,327,761,160,5
0,1816,91818194342,1
0,213,714,814,815,635,334,1
0,2211,3-12,112,929,228,2
0,258,769,59,59,9822,621,8
0,28--7,557,961817,4
0,36,066,66,66,9315,315,2
0,32----13,813,3
0,354,474,834,835,0911,311,1
0,383,81-4,14,32--
0,43,423,73,73,98,598,52
0,452,712,922,923,096,986,73
0,52,22,372,372,55,665,45
0,551,821,961,962,06--
0,61,521,651,651,734,073,82
0,651,361,41,41,49--
0,71,121,211,211,272,912,84
0,750,975-1,051,12--
0,80,8540,9250,9250,9752,232,17
0,85--0,820,864--
0,90,6750,7310,7310,771,761,72
1,00,5480,5920,5920,6241,421,39

 

Манганиновые провода выпускаются двух классов. ТКС проводов класса А составляет от +3·10-5 до -4·10-5, класса Б - от +6·10-5 до -6·10-5. Для малогабаритных высокоомных резисторов высокой стабильности выпускаются провода диаметром 6-10 мкм в сплошной стеклянной оболочке, обладающей хорошими изоляционными свойствами. Эти провода сортируют по их сопротивлению на единицу длины.

 

 

 

Высокочастотные обмоточные провода (литцендраты) предназначены для изготовления высокочастотных катушек индуктивности с большой добротностью. Эти провода представляют собой пучок эмалевых проволок диаметром 0,05; 0,07; 0,1 или 0,2 мм, перевитых особым способом. Весь пучок обычно покрывают волокнистой изоляцией (табл. П7). Благодаря определенному расположению проволок в пучке ослабляется поверхностный эффект (вытеснение тока к поверхности провода под воздействием магнитного поля, возникающего при протекании тока) и, следовательно, уменьшается сопротивление провода токам высокой частоты.

 

 

Таблица П7. Высокочастотные обмоточные провода

 

МаркаХарактеристика изоляции
ЛЭЛБез дополнительной изоляции
ЛЭЛДС обмоткой из шелка с лавсаном в два слоя
ЛЭЛОС обмоткой из шелка с лавсаном в один слой
ЛЭПБез дополнительной изоляции
ЛЭПКОС обмоткой из капронового волокна
ЛЭШДС обмоткой из натурального шелка в два слоя
ЛЭШОС обмоткой из натурального шелка в один слой

 

Провода марок ЛЭП и ЛЭПКО перед лужением не требуют зачистки и применения каких-либо травильных составов. Основные параметры некоторых высокочастотных обмоточных проводов приведены в табл. П8.

 

 

Таблица П8. Основные параметры высокочастотных обмоточных проводов

 

0,05100,250,320,38--0,01961012
160,310,380,44--0,0314634
200,340,410,47--0,0392507
50--0,71--0,098209
0,063---0,2-0,00852300
5---0,25-0,01421380
0,077-0,34---0,0269760
80,290,360,420,350,40,0308624
100,330,40,460,390,440,0385499
12-0,420,480,420,470,0462416
16-0,470,540,470,520,0616312
20-0,520,590,530,570,077249
27-0,580,65--0,104190
32-0,630,7--0,123161
50-0,820,89--0,19385,6
0,190,440,510,580,480,530,0707276
120,50,570,640,540,590,0942207
140,540,610,680,580,630,11177
160,570,640,710,610,660,126155
190,60,670,74--0,149131
210,640,710,780,690,730,165118
240,680,750,820,740,780,188103
280,740,810,880,80,840,2291,3

 

 

 

Монтажные провода выпускаются в полихлорвиниловой (ПВХ), полиэтиленовой (ПЭ), фторопластовой и волокнистой изоляции. Провода с волокнистой изоляцией применяются в аппаратуре, работающей в нормальных условиях (при невысокой влажности воздуха и температуре), когда исключена возможность конденсации воды в аппаратуре и отсутствуют резкие климатические изменения. Наиболее термостойки провода с фторопластовой изоляцией (до 250 °С).
По конструкции токопроводящей жилы различают однопроволочные (негибкие) и многопроволочные (гибкие) монтажные провода. У последних токопроводящая жила свита из тонких медных проволок (голых или луженых).
Основные параметры некоторых монтажных проводов приведены в табл. П9.

 

Таблица П9. Основные характеристики монтажных проводов

 

МаркаКонструкцияНоминальное сечение жилы,
мм2
Макс.
напря-
жение,
В
Интервал температур,
°С
МГВМногопроволочный, изоли­рован­ный ПВХ0,1; 0,2; 0,35; 0,5; 0,75; 1,0220?60…+70
МГВЭМГВ экранированный0,1; 0,2; 0,35; 0,5; 0,75; 1,0220?60…+70
МГШМногопроволочный, изоли­рован­ный одним слоем оплетки из искусственного шелка0,05; 0,07; 0,124?60…+90
МГШДМногопроволочный, изоли­рован­ный двумя слоями оплетки из искусственного шелка0,05; 0,07; 0,1; 0,2; 0,35; 0,560?60…+90
МГШДЛМногопроволочный, изоли­рован­ный двумя слоями оплетки из искусственного шелка, лакированный0,05; 0,1; 0,2; 0,35; 0,5250?60…+100
МГШДОМногопроволочный, изоли­рован­ный двойной обмоткой и оплет­кой из искусственного шелка0,05; 0,07; 0,1; 0,2; 0,35; 0,5; 0,75; 1,0; 1,5; 2,5100?60…+90
МПММногопроволочный, изоли­рован­ный ПЭ0,12; 0,2; 0,35; 0,5; 0,75; 1,0; 1,5250?50…+100
МШВМногопроволочный, изоли­рован­ный двойной обмоткой из шелка0,07 0,2; 0,5; 0,75; 1,5380 1000?50…+70
МШПОднопроволочный, изоли­рован­ный обмоткой из шелка и ПЭ0,07 0,2; 0,5; 1,75;1,0380 1000?50…+70
ПМВОднопроволочный, изоли­рован­ный ПВХ0,2; 0,5; 0,75380?60…+70
ПМВГМногопроволочный, изоли­рован­ный обмоткой из х/б пряжи или стекловолокна и ПВХ0,2; 0,35; 0,5; 0,75380?60…+70
ПМОВОднопроволочный, изоли­рован­ный обмоткой из х/б пряжи или стекловолокна и ПВХ0,2; 0,35; 0,5; 0,75380?60…+70
ПМПОднопроволочный, изоли­рован­ный ПЭ0,24; 0,5380?60…+70

 

inmanus.3dn.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *