Содержание

Светодиодная лампа smartbuy с драйвером на SM2082D

В led лампе smartbuy установлено 30 последовательно включенных светодиодов, балластный конденсатор отсутствует, а ток светодиодов поддерживается драйвером с запатентованной технологией управления током стабилизации. Такие лампы можно диммировать.

Светодиоды многокристальные с общим падением до 300В, по три светодиода в каждом корпусе. Таким образом падение напряжения и, соответственно, рассеиваемая мощность на SM2082D минимальные.

&nbsp &nbsp &nbsp

Колба из матового пластика приклеена к основанию белым герметиком, разборка путем многократного прорезания по кругу канцелярским ножом, а затем тонкой отверткой. Микросхема драйвера тока установлена на плате со светодиодами, которая снимается после отпайки двух контактов и сдвига в сторону, теплоотвод из алюминия.

&nbsp &nbsp &nbsp

Микросхема SM2082D - одноканальный стабилизатор постоянного тока. Внутри, похоже, полевик с резистором от стока к затвору, устанавливающим минимальный ток без внешнего резистора. Кроме этого встроена защита от перегрева

&nbsp &nbsp &nbsp

Резистор R1 разряжает конденсатор С1 после отключения схемы.

Рабочий выходной ток устанавливается внешним резистором Rext в пределах 5 – 60 mA и не изменяется при небольших изменениях входного напряжения в обе стороны. При значительном уменьшении входного напряжения питающей сети переменного тока (до 180 -190 вольт) лампа погаснет, а при увеличении стабилизатор будет греться сильнее и начнет работать температурная защита.
Когда внутренняя температура лампы (чипа) превышает 110 ° C, начинает работать температурная компенсация, выходной ток будет уменьшаться и температура в колбе лампы автоматически понизится.
Чем больше последовательно включенных светодиодов установлено в цепи стабилизатора, тем выше эффективность работы. Такая оптимизация должна учитывать уровень колебаний питающего напряжения. Светодиоды в лампе могут быть подключены последовательно или последовательно-параллельно.

&nbsp &nbsp &nbsp

При небольшом количестве последовательно включенных светодиодов в схему устанавливается высоковольтный керамический конденсатор С1 (от 0 до 4,7 мкф), который снижает входное напряжение на стабилизаторе тока. Когда количество светодиодов достаточно велико, C1 не нужен.

Пример схемы на 18 Вт. В цепочке 80 светодиодов, включенных последовательно.

&nbsp &nbsp &nbsp

Для увеличения мощности светильника, микросхемы можно включать параллельно

С2 - электролитический конденсатор, который используется для снижения пульсации входного напряжения. Чем больше емкость С2, тем меньше пульсации напряжения. Величина С2 определяется суммарным рабочим током через цепочку LED. Чем выше этот ток, тем больше величина С2 (от 4.7 мкф/400В до 22мкф/400В). Rext используется для установки рабочего тока светодиодной цепочки.

SM2082D в схеме может быть подключена на массу, внутри цепочки или перед ней. Это улучшает возможности компоновки платы светильника.

&nbsp &nbsp &nbsp

Зависимость тока стабилизации от сопротивления внешнего резистора Rext.

Описание sm2082d, все параметры, схемы включения, формулы, графики можно посмотреть в SM2082D datasheet.

  • Схема светодиодной лампы на 220в
  • Как паять светодиодную ленту
  • Светодиодная лента на 220 в
  • Простое зарядное устройство
  • Разрядное устройство для автомобильного аккумулятора
  • Напряжение на светодиоде
  • Схема драйвера светодиодов на 220
  • Подсветка для кухни из ленты
  • Подсветка рабочей зоны кухни
  • LED лампа Selecta g9 220v 5w
  • Светодиодная лампа ASD LED-A60
  • Схема светодиодной ленты
  • Схема диодной лампы 5 Вт 220в
  • Простой цифровой термометр своими руками с датчиком на LM35
  • Общедомовой учет тепла
  • firstelectro.ru

    Схема светодиодной лампы на 220 В, ремонт светодиодных ламп

    Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

    Светодиодные светильники на 220 В

    Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

    Типы светодиодов

    Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

    Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

    Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

    1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
    2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
    3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
    4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

    Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

    Устройство LED-лампы

    В состав лампы входят:

    • корпус;
    • цоколь;
    • рассеиватель;
    • радиатор;
    • блок светодиодов LED;
    • бестрансформаторный драйвер.

    Устройство LED-лампы на 220 вольт

    На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

    По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

    Под общее освещение выбираются светильники с цветовой температурой 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

    Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

    Простейшая схема подключения LED-лампы в сеть 220 вольт

    Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

    На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

    Классическая схема включения LED-лампы в сеть 220 В

    На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

    Ремонт своими руками

    В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

    Лампа светодиодная на 220 вольт

    Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

    Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

    Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

    Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену.

    Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

    Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

    Драйвер LED-лампы

    Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

    Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

    Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно.

    Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

    Настольная лампа на светодиодах

    Лампа на 220 В. Видео

    Об изготовлении светодиодной лампы на 220 В своими руками можно узнать из этого видео.

    Правильно изготовленная самодельная схема светодиодной лампы позволит эксплуатировать ее многие годы. Для нее бывает возможным ремонт. Источники питания могут быть любые: от обычной батарейки до сети на 220 вольт.

    Оцените статью:

    elquanta.ru

    Подробная схема светодиодной лампы на 220В

    Устройство светодиодной лампы на 220В значительно сложнее, чем у аналогичной лампы накаливания. Пытаясь сохранить привычную грушевидную форму, инженерам пришлось немало потрудиться. И, как оказалось, не зря! Новые осветительные приборы практически не греются, потребляют малое количество электроэнергии и стали значительно менее хрупкими. Но чего же особенного в светодиодной лампе и в чем сложность ее схемы? Давайте разберемся.

    Конструктивная схема

    Конструктивно схема светодиодной лампы на 220В состоит из трех основных частей: корпуса, электронной части и системы охлаждения. Сетевое напряжение через цоколь поступает на драйвер, где преобразуется в сигнал постоянного тока, необходимый для свечения светодиодов. Свет от излучающих диодов обладает широким углом рассеивания и поэтому не требует установки дополнительных линз. Достаточно обойтись рассеивателем. В процессе работы детали драйвера и светодиоды нагреваются. Поэтому в конструкции лампы обязательно должен быть продуман отвод тепла. К корпусной части светодиодной лампы относится цоколь, оболочка из пластика, внутри которой размещен драйвер, и полупрозрачная крышка в виде полусферы, по совместительству являющаяся рассеивателем света. В дорогих моделях ламп большую часть корпуса занимает ребристый радиатор из алюминия или специального теплопроводящего пластика. В лампочках бюджетного класса радиатор либо вовсе отсутствует, либо расположен внутри, а по окружности корпуса сделаны отверстия. Дешёвая китайская продукция мощностью до 7 Вт вовсе имеет сплошной корпус, без какого-либо отвода тепла.

    В фирменных светодиодных лампах на 220В печатная плата с SMD светодиодами крепится к радиатору через термопасту для эффективного отвода тепла. В дешевых китайских моделях эта плата либо просто вставлена в пазы корпуса, либо прикреплена саморезами к металлической пластине для охлаждения кристаллов. Эффективность такого охлаждения крайне низкая, так как пластина имеет малую площадь, да и наносить термопасту китайские производители, как правило, забывают. Вывод излучения происходит через рассеиватель, как правило, из матового пластика. А в дешевых светодиодных лампах на 220В такой корпус ещё надёжно скрывает недостатки китайской сборки от любопытных глаз потребителя. Крепится рассеиватель к основанию либо герметиком, либо резьбовым соединением.

    Электрическая схема

    Касательно электрической части между светодиодными лампами на 220В разных ценовых категорий также много отличий. В этом можно убедиться сразу после демонтажа рассеивателя. Достаточно рассмотреть качество пайки SMD элементов и соединительных проводов.

    Недорогой китайской лампы на 220В

    В лампочках стоимостью 2-3$ отсутствует какая-либо симметрия на плате со светодиодами, что свидетельствует о ручной пайке, а провода выбраны с минимально возможным сечением. Вместо надежного драйвера в них собрана простая схема бестрансформаторного питания с конденсаторами и выпрямителем. Напряжение сети сначала снижается неполярным металлопленочным конденсатором, выпрямляется, а затем сглаживается и повышается до нужного уровня. Ток нагрузки ограничивается обычным SMD резистором, который расположен на печатной плате со светодиодами. При диагностике и ремонте светодиодных ламп такого типа важно соблюдать технику безопасности, т.к. все элементы электрической цепи потенциально находятся под высоким напряжением. Прикоснувшись пальцем к токоведущей части схемы по неосторожности можно получить электрический удар, а соскользнувший щуп мультиметра может закоротить провода с неприятными последствиями.

    Фирменной светодиодной лампы

    Фирменная светодиодная продукция отличается не только приятным внешним видом, но и качеством элементной базы. Непосредственно драйвер имеет более сложное устройство и зачастую собирается одним из двух способов. Первый предусматривает наличие импульсного трансформатора, импульсного преобразователя напряжения с последующей стабилизацией тока нагрузки.

    Во втором случае обходятся без трансформатора, а основная функциональная нагрузка ложится на специальную микросхему – сердце драйвера. Её универсальность в том, что она стабилизирует входное напряжение, поддерживает выходной ток с заданной частотой (ЧИМ) или шириной импульса (ШИМ), допускает возможность диммирования, имеет систему отрицательной обратной связи. В качестве примера можно назвать, например, CPC9909. Светодиоды в лампе на 220В с токовым драйвером надёжно защищены от перепадов напряжения и помех в сети, ток через них соответствует номинальному паспортному значению, а радиатор обеспечивает качественный теплоотвод. Такие лампочки прослужат намного дольше дешёвых китайских аналогов, тем самым доказывая преимущество светодиодов на деле.

    Читайте так же

    ledjournal.info

    Светодиодная лампа на основе SM2082ED

    Приехала лампочка из КНР. Мощность была указана как 35 ватт. На самом деле измеренная мощность составила 6-6,5 ватт. Такой наглости при указании параметров я и не припомню даже в прошлом. Видно наметился какой-то новый виток

    Внутри схема организации следующая — ИМС SM2082ED в корпусе  SOP-8 с небольшой обвязкой. Мощность задают два резистора 1-3 и 1-4 ножки ИМС.

    Стандартно там было установлено в резистора по 68 ом. На схеме они имеют номинал 30ом, так как схема 12-ти ваттного источника света

    Даташит на микросхему на китайском, но суть понятна, мощность обратно пропорциональна сопротивлению резисторов. Драйвер исполнен без разделительного дросселя. Что компенсировано использованием прозрачного колпака для светодиодов.

    Я поменял резисторы на  2*220ом что уменьшило мощность лампы до реальных 1,8…2,0 ватт.

    Это значительно увеличит срок службы такой лампы.

    Видео про переделку:

    Выводы из всего сказанного простые. Если вы не держали в руках паяльник то покупка подобной светодиодной лампочки может оказаться для вас печальным опытом. А если вы не боитесь паяльника, ваши взаимоотношения с этим прибором лучше начинать с подгонки мощности до результирующей температуры на корпусе лампы не больше чем +20 С от температуры среды.

    Запись опубликована автором admin в рубрике Всячина. Добавьте в закладки постоянную ссылку.

    publikz.com

    Схема светодиодной лампы на 220 в

    Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.

    С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:

    Список номиналов:

    • C1 – значение емкости по таблице, 275 В или больше
    • C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
    • R1 – 100 Ом
    • R2 – 1 MОм (для разряда конденсатора C1)
    • VD1 .. VD4 – 1N4007

    Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.

    Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.

    количество светодиодов последовательно, шт11020305070
    напряжение на сборке из светодиодов, В3,53570105165230
    ток через светодиоды, мА (С1=1000нФ)645749423220
    ток через светодиоды, мА (С1=680нФ)443934292214
    ток через светодиоды, мА (С1=470нФ)3027242015
    ток через светодиоды, мА (С1=330нФ)21191714
    ток через светодиоды, мА (С1=220нФ)141311

    Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.

    По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.

    Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.

    Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.

    Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.

    Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.

    Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.

    hardelectronics.ru

    Схема и устройство светодиодной лампы на 220 вольт

    Светодиодная лампа на 220в, частота сети 50Гц, мощность 3Вт, тип LED3-JDR, производитель Camelion, цоколь E14, потребляемый ток 26mA, световой поток 235Лм. Температура свечения 4500 К. Это параметры заявленные производителем.

    Внимание! Соблюдайте правила электробезопасности. Электротравмы, могут быть смертельными, а неправильный ремонт пожароопасным.

    Яркость свечения светильника визуально сопоставима с энергосберегающей лампой на 7-9 Вт. Разобрать лампу оказалось не просто. Защитное стекло приклеено на совесть, прорезал склейку по контуру, но снять его без потерь не получилось – стекло плафона очень хрупкое.

    На плате с наружной стороны установлены 6 smd светодиодов неизвестного типа. На обратной стороне «драйвер». Схема питания светодиодов этой лампы не удивила: для гашения избыточного напряжения используется реактивное сопротивление конденсатора С2, далее выпрямительный мост и сглаживающий конденсатор С3, а не импульсный драйвер, как в светодиодной лампе GL5,5.

    Принципиальная электрическая схема светодиодной лампы LED3-JDR во многом совпадает со схемой лампы Selecta-G9-220v-5w.

    Конденсатор С2 полистирольный металлопленочный типа CBB22 рассчитан на использование в цепях постоянного тока и импульсных схемах, обладает эффектом самовосстанавления, хорошей изолирующей способностью и минимальными потерями на высокой частоте. Советские аналоги - конденсаторы типов К73-17, К73-44, К71-7

    Десятиомный резистор ограничивает пиковый ток заряда С3 для исключения перегрузки выпрямительного диодного моста при включении. Через резистор R1 разряжается конденсатор С3 после выключения. С1 на плате не установлен, предназначен для увеличения тока через светодиоды при необходимости. При обрыве в цепи светодиодов напряжение на С3 без резистора R2 может достигнуть 350 вольт, а с этим резистором оно хоть и превысит номинальное для конденсатора, но не настолько, чтобы тот вышел из строя.

    При напряжении в сети 237 вольт напряжение на всей цепочке диодов составило 93 В, на каждом светодиоде 15,3 вольта соответственно. Корпуса излучателей на плате типоразмера 6730 (6,7х3 мм), похоже, в каждом корпусе находится матрица из 4-х последовательно включенных светодиодов. Для светодиодов белого свечения падение напряжения при номинальном токе порядка 3,5 вольт. В нашем случае получается 3,8 вольта на каждом диоде, т.е. диоды работают в жестком режиме. Об этом говорит и то, что их температура при работе составляет 50-60 градусов Цельсия. В таком режиме диоды подвержены усиленной деградации и срок их службы будет в разы меньше, чем при номинальных токах. Производитель никогда не будет делать «вечную» лампу, иначе он разорится.

    В схеме светодиодной лампы с гасящим конденсатором и выпрямительным мостом, за которым стоит конденсатор для сглаживания пульсаций ток будет очень отличаться от синусоидальной формы. Но это отдельная тема.

    На этом фото, для сравнения, показаны однокристальные светодиоды 3528 (3,5х2,8 мм) у которых номинальный ток 20 мА.

    Более эффективные (но больших габаритов) светодиодные светильники на 220 вольт можно сделать своими руками из диодной ленты. Для этого нужно взять 20 отрезков ленты 3528 на 12 вольт и спаять их последовательно, соблюдая полярность. Конденсаторы С1, С2 и резисторы R1, R2 исключаются из схемы. Вместо R1 надо поставить перемычку, а С3 должен быть на напряжение не менее 310 вольт. В данной схеме 10-тиомный резистор будет служить еще и предохранителем в случае короткого замыкания моста. На такой светильник понадобиться 1 метр открытой ленты с 60 диодами (20 отрезков по 5 сантиметров) или 0,5 метра с 120 диодами (20 отрезков по 2,5 см). Конструкция и размеры могут быть различными, главное соблюдать технику безопасности и, конечно, такой светильник должен иметь корпус с хорошей изоляцией.

  • Напряжение на светодиоде
  • Схема диодной лампы 5 Вт 220в
  • Лампа ЭРА А65 13Вт
  • Как паять светодиодную ленту
  • Светодиодная лента на 220 в
  • Простое зарядное устройство
  • Разрядное устройство для автомобильного аккумулятора
  • Схема драйвера светодиодов на 220
  • Подсветка для кухни из ленты
  • Подсветка рабочей зоны кухни
  • LED лампа Selecta g9 220v 5w
  • Светодиодная лампа ASD LED-A60
  • Схема светодиодной ленты
  • Простой цифровой термометр своими руками с датчиком на LM35
  • Общедомовой учет тепла
  • firstelectro.ru

    Схема драйвера для светодиодной лампы на 220В

    Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

    От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

    Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

    Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

    Схема питания светодиодов на основе конденсаторного делителя

    К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация. Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

    В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

    Схема драйвера на CPC9909

    Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

    Общие сведения

    Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

    Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

    Назначение выводов

    Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

    1. VIN. Предназначен для подачи напряжения питания.
    2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
    3. GND. Общий вывод драйвера.
    4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
    5. PWMD. Низкочастотный диммирующий вход.
    6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
    7. LD. Предназначен для задания аналогового диммирования.
    8. RT. Предназначен для подключения время задающего резистора.

    Схема и ее принцип работы

    Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа. Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – RS – «-диодного моста». За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L. Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты. Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на RS. Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

    Расчет внешних элементов

    Частотозадающий резистор

    Длительность паузы выставляют внешним резистором RT и определяют по упрощенной формуле:

    tпаузы=RT/66000+0,8 (мкс).

    В свою очередь время паузы связано с коэффициентом заполнения и частотой:

    tпаузы=(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

    Рекомендованный производителем диапазон рабочих частот составляет 30-120 кГц. Таким образом, сопротивление RT можно найти так: RT=(tпаузы-0,8)*66000, где значение tпаузы подставляют в микросекундах.

    Датчик тока

    Номинал сопротивления RS задает амплитудное значение тока через светодиод и рассчитывается по формуле: RS=UCS/(ILED+0.5*IL пульс), где UCS – калиброванное опорное напряжение, равное 0,25В;

    ILED – ток через светодиод;

    IL пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*ILED.

    После преобразования формула примет вид: RS=0,25/1.15*ILED (Ом).

    Мощность, рассеиваемая датчиком тока, определяется формулой: PS=RS*ILED*D (Вт).

    К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

    Дроссель

    Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

    L=(USLED*tпаузы)/ IL пульс, где ULED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

    Фильтр питания

    В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

    Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

    Выпрямитель

    Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: IAC=(π*ILED)/2√2, А.

    Полученное значение необходимо умножить на два для повышения надежности схемы.

    Выбор остальных элементов схемы

    Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

    Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: IQ1=ID1= D*ILED, А.

    Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

    Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

    IFUSE=5*IAC, А.

    Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

    RTH=(√2*220)/5*IAC, Ом.

    Другие варианты включения CPC9909

    Плавный пуск и аналоговое диммирование

    При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

    Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

    Импульсное димирование

    Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

    Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

    Читайте так же

    ledjournal.info

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о