Симисторный диммер

Симисторный диммер с фазоимпульсным регулированием — это тиристорный регулятор мощности, предназначенный, в частности, для регулирования яркости свечения ламп накаливания в бытовых электроосветительных приборах (люстрах, бра, торшерах и т. п.). Его можно встраивать в настенные выключатели в жилых помещениях

Анализ схем промышленно выпускаемых диммеров (в основном китайского производства) показал, что фазосдвигающая цепь в них питается нестабилизированным напряжением. Это приводит к тому, что момент открывания динистора в каждом полупериоде, а значит, и симистора, зависит от напряжения сети, что, в свою очередь, является причиной заметных перепадов мощности нагрузки диммера при колебаниях напряжения сети. Это ограничивает сферу применения подобных устройств.Выручить в этой ситуации мог бы диодный мост, включённый на входе регулятора (диод VD2 придётся изъять), но разместить мощные диодный мост и тринистор в стандартной нише выключателя проблематично, не говоря уже об отсутствии в зоне монтажа активной конвекции воздуха. Наличие в цепи нагрузки пяти элементов надёжности устройству тоже не добавляет.

К тому же лампы в светильниках, перегорая, часто вызывают замыкание цепи, хоть и кратковременное, но вполне достаточное для выведения из строя переключательного элемента. Каждый раз заменять этот элемент и выпрямительный мост весьма накладно как в плане трудозатрат, так и денежных расходов. Фазоимпульсные регуляторы мощности с мощным симистором в качестве переключательного элемента отличают более высокий КПД и малое число элементов в цепи нагрузки. схема показана на рис.

На транзисторах VT1 и VT2 собран аналог динистора, в который введён диод VD1. Это позволило использовать транзистор VT2 в роли замыкателя диагонали теперь уже маломощного выпрямительного моста VD3—VD6, включённого в цепь управляющего электрода симистора VS1. В начале полупериода напряжения сети оба транзистора, диод VD1 и симистор закрыты, а конденсатор С1 разряжен. Увеличивающееся напряжение создаёт ток через резисторы R9, R8, диоды моста, резистор R7 и стабилитрон VD2. Падения напряжения на резисторе R9 пока недостаточно для открывания симистора. Стабилитрон VD2, включённый последовательно с балластным резистором R7, ограничивает напряжение между точками А и Б на уровне 12 В.

Через резисторы R3, R4 начинает заряжаться конденсатор С1. Как только напряжение на нём превысит напряжение на резисторе R6, начнёт открываться транзистор VT1. Падение напряжения на резисторе R2 приоткроет транзистор VT2, из-за чего начнёт уменьшаться напряжение на его коллекторе. В результате этого начинает уменьшаться напряжение на резисторе R6. Возникает положительная ОС, действие которой приводит к лавинообразному открыванию обоих транзисторов аналога динистора. Как только падение напряжения на транзисторе VT2 станет меньше, чем на резисторе R6, откроется диод VD1, ещё более ускоряя открывание аналога динистора и снижая тем самым мощность, рассеиваемую на транзисторе VT2. Оба транзистора в конце процесса входят в насыщение.

Выходная диагональ диодного моста VD3—VD6 оказывается замкнутой, ток через резисторы R8 и R9 увеличивается и открывается симистор VS1, подключая нагрузку к сети на оставшуюся часть полупериода. Скорость зарядки конденсатора С1, а значит, и момент открывания транзистора VT1 зависят от положения движка переменного резистора R4, которым и регулируют мощность, выделяющуюся в нагрузке.

Если сопротивление цепи R3R4 окажется настолько большим, что конденсатор не успеет зарядиться до напряжения, необходимого для открывания аналога динистора, он останется закрытым. Но в конце полупериода конденсатор С1 всё равно разрядится транзистором VT1 вследствие того, что напряжение на резисторе R6 к этому моменту уменьшится до нулевого.

Такая привязка момента начала зарядки конденсатора С1 к началу полупериода необходима для того, чтобы исключить эффект “гистерезиса”. Который может возникнуть при регулировании мощности резистором R4. Этот эффект проявляется в “затягивании” регулировочной характеристики. При повороте ручки регулятора из положения минимальной мощности на малый угол мощность в нагрузке увеличивается скачком. Резистор R1 ограничивает ток разрядки на безопасном для транзисторов уровне, растягивая разрядный импульс во времени для более уверенного открывания симистора, a R8 ограничивает ток через его управляющий электрод. Резистор R2 предотвращает самопроизвольное срабатывание аналога динистора из-за увеличения тока коллектора транзистора VT2 при его разогревании. Резистор R9 удерживает симистор закрытым (если он ещё не был открыт) на пиках сетевого напряжения.

Максимальная мощность нагрузки регулятора при обеспечении эффективного охлаждения симистора и транзистора VТ2 — 1 кВт

Большая часть деталей устройства смонтирована на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертёж платы представлен на рис.

Все резисторы, кроме R4, — МЛТ; R4 — любой малогабаритный, умещающийся в отведённом ему пространстве. Поскольку все детали регулятора находятся под напряжением сети, необходимо при его установке и пользовании учитывать это обстоятельство. В частности, ручка переменного резистора R4 должна быть изготовлена из изоляционного материала.

Резисторы R8, R9 распаивают на выводах симистора, устанавливаемого вне платы. Если мощность нагрузки превышает 600 Вт, симистор следует снабдить теплоотводом в виде пластины размерами 20x20x1 мм из меди. Конденсатор С1 — КМ-6, К73-17 или К73-9

Диоды КД105В можно заменить на КД105Г или другие на обратное напряжение не менее 400 В. Транзистор КТ361В заменим любым из этой серии (с коэффициентом h31E>50), а КТ538А — на КТ6135А или, в крайнем случае, на КТ940А, у которого ограниченный запас по напряжению коллектор—эмиттер (h31E>20). Разъём Х1 — любой малогабаритный, с двумя контактами, рассчитанный на сетевое напряжение; можно использовать два одноконтактных. Подойдут также и винтовые соединительные зажимы.

Налаживания регулятор не требует

, но, возможно, будет целесообразно подобрать точнее резистор R3 по достижению максимальной яркости ламп. В крайнем левом (по схеме) положении движка резистора R4.

Собранную плату устанавливают в нишу предварительно демонтированного стенного выключателя. Снаружи нишу закрывают декоративной лицевой панелью. На которой закрепляют переменный резистор R4 — он будет служить и включателем освещения, и регулятором яркости. Устройство можно смонтировать также в подставке торшера или настольной лампы.

varikap.ru

Симисторный диммер с фазоимпульсным регулированием

Р/л технология

Главная  Радиолюбителю  Р/л технология



Радиолюбители уже не один десяток лет собирают различные варианты тиристорного регулятора мощности. Этот узел, будучи включённым между сетью переменного тока напряжением 220 В и нагрузкой, позволяет в определённых пределах изменять мощность, выделяемую в нагрузке. Если нагрузкой служил бытовой осветительный прибор, такой узел называли темнителем, если паяльник - регулятором температуры его жала. Ныне из-за рубежа пришло не только новое название этих устройств - дим-меры, но поступили в продажу и они сами. По мнению автора публикуемой ниже статьи, эти диммеры далеки от совершенства.

Диммер - это тиристорный регулятор мощности, предназначенный, в частности, для регулирования яркости свечения ламп накаливания в бытовых электроосветительных приборах (люстрах, бра, торшерах и т. п.). Его можно встраивать в настенные выключатели в жилых помещениях.

Анализ схем промышленно выпускаемых диммеров (в основном китайского производства) показал, что фазо-сдвигающая цепь в них питается неста-билизированным напряжением. Это приводит к тому, что момент открывания динистора в каждом полупериоде, а значит, и симистора, зависит от напряжения сети, что, в свою очередь, является причиной заметных перепадов мощности нагрузки диммера при колебаниях напряжения сети. Это ограничивает сферу применения подобных устройств.

В "Радио" было опубликовано описание регулятора мощности [1], в котором указанный недостаток прёодолён. Но, к сожалению, этот регулятор рассчитан на работу с нагрузками, мощность которых не превышает 100 Вт. Попытка приспособить его к работе с более мощными лампами путём замены тринистора VS1 и диода VD2 [2] оказалась неудачной - на минимальной яркости лампы неприятно мерцают из-за однополупе-риодного выпрямления сетевого напряжения диодом VD2.

Выручить в этой ситуации мог бы диодный мост, включённый на входе регулятора (диод VD2 придётся изъять), но разместить мощные диодный мост и тринистор в стандартной нише выключателя проблематично, не говоря уже об отсутствии в зоне монтажа активной конвекции воздуха. Наличие в цепи нагрузки пяти элементов надёжности устройству тоже не добавляет.

К тому же лампы в светильниках, перегорая, часто вызывают замыкание цепи, хоть и кратковременное, но вполне достаточное для выведения из строя переключательного элемента. Каждый раз заменять этот элемент и выпрямительный мост весьма накладно как в плане трудозатрат, так и денежных расходов.

Рис. 1

Фазоимпульсные регуляторы мощности с мощным симистором в качестве переключательного элемента отличают более высокий КПД и малое число элементов в цепи нагрузки, но из-за особенностей управления эти устройства зачастую схемно довольно громоздки [3]. Попытка объединить достоинства упомянутых схемных решений привела к устройству, схема которого показана на рис. 1. Оно, в отличие от описанного в [4], не требует применения импульсного трансформатора.

На транзисторах VT1 и VT2 собран аналог динистора, в который введён диод VD1. Это позволило использовать транзистор VT2 в роли замыкателя диагонали теперь уже маломощного выпрямительного моста VD3-VD6, включённого в цепь управляющего электрода симистора VS1.

В начале полупериода напряжения сети оба транзистора, диод VD1 и сими-стор закрыты, а конденсатор С1 разряжен. Увеличивающееся напряжение создаёт ток через резисторы R9, R8, диоды моста, резистор R7 и стабилитрон VD2. Падения напряжения на резисторе R9 пока недостаточно для открывания симистора. Стабилитрон VD2, включённый последовательно с балластным резистором R7, ограничивает напряжение между точками А и Б на уровне 12 В.

Через резисторы R3, R4 начинает заряжаться конденсатор С1. Как только напряжение на нём превысит напряжение на резисторе R6, начнёт открываться транзистор VT1. Падение напряжения на резисторе R2 приоткроет транзистор VT2, из-за чего начнёт уменьшаться напряжение на его коллекторе.

В результате этого начинает уменьшаться напряжение на резисторе R6. Возникает положительная ОС, действие которой приводит к лавинообразному открыванию обоих транзисторов аналога динистора. Как только падение напряжения на транзисторе VT2 станет меньше, чем на резисторе R6, откроется диод VD1, ещё более ускоряя открывание аналога динистора и снижая тем самым мощность, рассеиваемую на транзисторе VT2. Оба транзистора в конце процесса входят в насыщение.

Выходная диагональ диодного моста VD3-VD6 оказывается замкнутой, ток через резисторы R8 и R9 увеличивается и открывается симистор VS1, подключая нагрузку к сети на оставшуюся часть полупериода. Скорость зарядки конденсатора С1, а значит, и момент открывания транзистора VT1 зависят от положения движка переменного резистора R4, которым и регулируют мощность, выделяющуюся в нагрузке.

Если сопротивление цепи R3R4 окажется настолько большим, что конденсатор не успеет зарядиться до напряжения, необходимого для открывания аналога динистора, он останется закрытым. Но в конце полупериода конденсатор С1 всё равно разрядится транзистором VT1 вследствие того, что напряжение на резисторе R6 к этому моменту уменьшится до нулевого.

Такая привязка момента начала зарядки конденсатора С1 к началу полупериода необходима для того, чтобы исключить эффект "гистерезиса", который может возникнуть при регулировании мощности резистором R4. Этот эффект проявляется в "затягивании" регулировочной характеристики: при повороте ручки регулятора из положения минимальной мощности на малый угол мощность в нагрузке увеличивается скачком.

Резистор R1 ограничивает ток разрядки на безопасном для транзисторов уровне, растягивая разрядный импульс во времени для более уверенного открывания симистора, a R8 ограничивает ток через его управляющий электрод. Резистор R2 предотвращает самопроизвольное срабатывание аналога динистора из-за увеличения тока коллектора транзистора VT2 при его разогревании. Резистор R9 удерживает си-мистор закрытым (если он ещё не был открыт) на пиках сетевого напряжения.

Максимальная мощность нагрузки регулятора при обеспечении эффективного охлаждения симистора и транзистора уТ2 - 1 кВт

Рис. 2

Большая часть деталей устройства смонтирована на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертёж платы представлен на рис. 2. Все резисторы, кроме R4, - МЯТ; R4 - любой малогабаритный, умещающийся в отведённом ему пространстве. Поскольку все детали регулятора находятся под напряжением сети, необходимо при его установке и пользовании учитывать это обстоятельство. В частности, ручка переменного резистора R4 должна быть изготовлена из изоляционного материала.

Резисторы R8, R9 распаивают на выводах симистора, устанавливаемого вне платы. Если мощность нагрузки превышает 600 Вт, симистор следует снабдить теплоотводом в виде пластины размерами 20x20x1 мм из меди. Конденсатор С1 - КМ-6, К73-17 или К73-9

Диоды КД105В можно заменить на КД105Г или другие на обратное напряжение не менее 400 В. Транзистор КТ361В заменим любым из этой серии (с коэффициентом h3іе>50), а КТ538А - на КТ6135А или, в крайнем случае, на КТ940А, у которого ограниченный запас по напряжению коллектор-эмиттер (h31E>20). Разъём Х1 - любой малогабаритный, с двумя контактами, рассчитанный на сетевое напряжение; можно использовать два одноконтактных. Подойдут также и винтовые соединительные зажимы.

Налаживания регулятор не требует, но, возможно, будет целесообразно подобрать точнее резистор R3 по достижению максимальной яркости ламп в крайнем левом (по схеме) положении движка резистора R4.

Собранную плату устанавливают в нишу предварительно демонтированного стенного выключателя. Снаружи нишу закрывают декоративной лицевой панелью, на которой закрепляют переменный резистор R4 - он будет служить и включателем освещения, и регулятором яркости. Устройство можно смонтировать также в подставке торшера или настольной лампы.

Литература:

Нечаев И. Регуляторы температуры жала сетевых паяльников. - Радио, 1992, № 2, 3, с. 22-24.

2. Нечаев И. Регуляторы температуры жала сетевых паяльников (Наша консультация). - Радио, 1993, № 1, с. 45.

3. Бирюков С. Симисторные регуляторы мощности. - Радио, 1996, № 1, с. 44-46.

4. Сорокоумов В. Симисторный регулятор повышенной мощности. - Радио, 2000, №7, с. 41.

Автор: А. Дзанаев, г. Оренбург

Дата публикации: 07.12.2011

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

тиристорные и симисторные регуляторы мощности. Сенсорные диммеры для ламп.

Купить диммер совсем не сложно. Главное – выбрать оптимальную модель. Изучаем спектр предложений производителей и функционал современных диммеров.

На фото:

Управляйте восходом и закатом Наряду с диммерами, которые регулируются вручную, существует большая группа программируемых. К таким моделям относятся сумеречные выключатели. Они по сути повторяют «работу» угасающего солнца&nbsp— постепенно приглушают свет в течение нескольких часов и в конце концов выключают совсем. Можно установить и обратную последовательность. Все что от вас требуется&nbsp— установить нужное время «рассвета» и «заката».

На фото: светорегулятор с таймером от фабрики Busch-Jaeger.

Что такое диммер?

Азы. Диммер (от англ. dim – «затемнять»), или светорегулятор, –устройство, которое позволяет регулировать яркость свечения ламп при изменении потребляемой ими мощности.

Диммер  – это отдельный прибор, монтируемый вместо выключателя, или часть конструкции осветительного прибора. Реже встречаются устройства, напоминающие тройник-удлинитель: светильник подключается к диммеру, а последний – к розетке.

Светорегуляторы позволяют экономить электроэнергию и продлевают срок службы ламп (большинство из них перегорает как раз в момент включения из-за резкого скачка напряжения). Однако при регулировке света лампы накаливания меняется не только ее яркость, но и цветовая температура: чем тусклее горит лампа, тем краснее свет.

Типы диммеров по принципу работы

  • Тиристорные и симисторные регуляторы мощности ламп более пожаробезопасны, но при работе создают помехи, вплоть до радиочастотных. Кроме того, они сгорают, не выдерживая короткого замыкания, возникающего из-за бракованной лампы.

Реостатный диммер (резистор, реостат)&nbsp– самый простой. Он выделяет слишком много тепла, из-за чего быстро выходит из строя. Сегодня реостаты практически не выпускают (они не отвечают нормам пожарной безопасности). Иногда все светорегуляторы именуют реостатами, что принципиально неверно.

На фото: диммер от фабрики Jung.

Такие диммеры можно использовать только в паре со специальным устройством (выпрямителем на четырех диодах), которое удваивает их стоимость.

  • Диммеры на полевых транзисторах – приборы нового поколения, лишенные недостатков предшественников. Они оснащены защитой от короткого замыкания, перегревания и перегрузок. Позволяют изменять яркость освещения еще до включения света. Если повернуть ручку регулятора до предела, свет не вспыхивает сразу на полную мощность, а разгорается постепенно.

Диммеры для разных ламп

Каждой лампочке свое. Диммеры бывают универсальными (под любую лампу), и специальными – например, для ламп накаливания или низковольных галогенных ламп.

В последнем случае светорегулятор работает в паре с электронным трансформатором (электромагнитный трансформатор использовать для диммеров категорически не рекомендуется – оба прибора перегреваются).

Для люминесцентных ламп стандартные диммеры не подходят.

На фото:

Диммеры для разных ламп различаются внутренним устройством. Если не хотите углубляться в технические тонкости, покупайте универсальный светорегулятор.

Конструкции диммеров

  • Кнопочные диммеры делятся на поворотные и поворотно-нажимные. В первом варианте свет зажигается при повороте круглой ручки-кнопки, и яркость освещения регулируют, продолжая ее вращать. Во втором – свет включают, нажав на кнопку, а интенсивность светового потока изменяется при ее вращении. При выключении света прибор запоминает установленный перед этим уровень яркости.

На фото:

  • Клавишные диммеры совершеннее кнопочных. Свет включается и выключается при нажатии на клавишу, а яркость его изменяется при удерживании последней.
  • Комбинированные диммеры имеют две клавиши: одна включает/выключает свет, вторая регулирует яркость.

На фото:

Клавишные диммеры по внешнему виду напоминают традиционные выключатели.

  • Сенсорные диммеры – модное и удобное решение. Ими управляют путем легкого прикосновения к рабочей поверхности светильника или сенсорной панели Touch Pad на стене. Так можно включить или выключить свет. Если же удерживать палец на сенсоре, освещенность будет плавно возрастать, а достигнув максимума, начнет уменьшаться.

На фото:

Управлять яркостью света можно при помощи привычного пульта ДУ. Он же позволяет устанавливать и запоминать несколько световых сценариев.


В статье использованы изображения
busch-jaeger.de, jung.de, siemens.com, abb.com, schneider-electric.com


www.4living.ru

Радиосхемы. - Симисторный светорегулятор

Симисторный светорегулятор

категория

Электроника в быту

материалы в категории

А. РУДЕНКО, г. Харьков, Украина
Радио, 1998 год, №8

Предлагаемый вниманию читателей светорегулятор позволяет регулировать яркость освещения в помещениях, мощность бытовых нагревательных элементов, скорость вращения двигателей переменного тока. Его можно использовать и для уменьшения пускового тока ламп накаливания, что продлевает срок их службы.
Светорегулятор управляется кнопками, что дает возможность включать и выключать нагрузку на заметном расстоянии от управляемого объекта. А чтобы кнопку легко можно было найти в темноте, рядом с ней устанавливается светодиод, который светится только при выключенном освещении.

Этот регулятор выполнен на базе устройства, описанного в статье С. Бирюкова "Симисторные регуляторы мощности" ("Радио", 1996, ╧ 1, с. 44 — 46). В отличие от него, предлагаемый в данной статье светорегулятор не отключается полностью от сети, что потребовало доработать его с целью снижения потребляемого тока. В результате ток снизился до 1,5 мА во всех режимах работы. После доработки расширился и диапазон регулирования мощности. При стоваттной нагрузке он составляет около 99%.

Принципиальная схема светорегулятора показана на рис. 1.

Кликните по изображению для увеличения (откроется в новой вкладке)

Для управления симистором VS1 необходим формирователь коротких импульсов, один из выводов которого соединен с сетевым проводом. Питается формирователь от источника, собранного на элементах С2, R2, VD1 — VD3, С4, С5. Диоды VD1, VD2 выполняют функции выпрямителя. Выпрямленное напряжение стабилизируется на уровне 10 В стабилитроном VD3. Конденсаторы С4, С5 входят в состав сглаживающего фильтра, причем С4 шунтирует в основном высокочастотные сетевые помехи, которые не подавляются оксидным конденсатором С5 из-за его значительной паразитной индуктивности.

При положительном напряжении на аноде большинство симисторов можно открыть импульсами любой (относительно катода) полярности, поступающими на управляющий электрод, а при отрицательном — импульсами только отрицательной полярности. Положительный вывод источника питания описываемого регулятора соединен с катодом симистора. В результате на его управляющем злектроде будут формироваться отрицательные импульсы при любой полярности на аноде.

При использовании фазоимпульсного метода мощность в нагрузке регулируется путем изменения части полупериода сетевого напряжения, в течение которой симистор пропускает ток. Для этого необходимо выделить начало каждого полупериода сетевого напряжения (ему соответствует напряжение, равное или близкое к нулю), а затем в течение 10 мс (длительность половины периода сетевого напряжения частотой 50 Гц) сформировать сам управляющий импульс. Таким образом, чем раньше будет открываться симистор, тем большая мощность станет выделяться на нагрузке.

Формирователь импульсов частотой 100 Гц собран на элементах VT1, VT2, R4, R5, R8. В течение положительного полупериода сетевого напряжения открыт транзистор VT1, в течение отрицательного — транзистор VT2. Резистор R5 ограничивает базовый ток транзисторов. Резистор R8 выполняет функции коллекторной нагрузки обоих транзисторов. Когда сетевое напряжение близко к нулю, оба транзистора закрыты и напряжение на их коллекторах равно напряжению на минусовом выводе источника питания. При этом на входе 1 элемента DD1.1 образуются короткие импульсы отрицательной полярности, соответствующие началу каждого полупериода сетевого напряжения.

Во включенном состоянии регулятора на входе 2 элемента DD1.1 присутствует напряжение, соответствующее высокому логическому уровню, поэтому отрицательные импульсы на входе 1 этого элемента инвертируются им и поступают на базу транзистора VT5, включенного по схеме эмиттерного повторителя. Протекающий через него ток заряжает конденсатор С8 практически до напряжения источника питания. Разряжается конденсатор через цепь R9, R10, R12, VT4. При разрядке его до напряжения, соответствующего пороговому, переключаются элементы DD1.2 и DD1.3. Спад напряжения, возникающий на выходе 11 элемента DD1.3, дифференцируется цепью C9R13 и в виде импульса длительностью около 12 мкс через инвертор DD1.4 поступает на усилитель тока на транзисторе VT6, а затем на управляющий электрод симистора VS1. Переменным резистором R10 регулируют длительность разрядки конденсатора С8, от которой зависят момент включения симистора, а значит, и эффективное напряжение на нагрузке.

Стабилитрон VD5 обеспечивает надежный запуск светорегулирующего устройства. При его отсутствии в первый момент включения регулятора после перерыва в работе через управляющий переход симистора и транзистор VT6 начинает течь ток, не дающий зарядиться конденсатору фильтра С5 и препятствующий росту напряжения источника питания до номинального значения. Резистор R15 ограничивает ток через управляющий переход симистора. Необходимость такого ограничения вызвана не обеспечением безопасности эксплуатации стабилитрона и симистора (столь короткий импульс тока не может вывести их из строя), а возможным ухудшением экономичности светорегулятора.

На инверторе DD2.1 и триггере DD3.1 собрано устройство управления включением и выключением светорегулятора, на транзисторе VT4 — узел плавного включения нагрузки, а на элементах DD2.2, DD2.3, VT7, HL1 — узел подсветки кнопки SB1 (SB2 - SBn).

При начальном включении регулятора или после пропадания сетевого напряжения цепочка C3R3 формирует положительный импульс на входе R триггера DD3.1, устанавливающий его в нулевое состояние, при котором нагрузка выключена. Элемент DD3.1 реагирует на положительный перепад напряжения на входе С и при каждом его появлении изменяет свое состояние на противоположное. Цепочка R1C1 подавляет дребезг контактов кнопки SB1. Через резистор R1 задается также напряжение на входе инвертора DD2.1. При нажатии на кнопку SB1 на выходе этого элемента возникает положительный перепад напряжения, переключающий триггер DD3.1 в единичное состояние. Высокий логический уровень, появляющийся при этом на прямом выходе триггера, разрешает работу логического элемента DD1.1. Одновременно через резистор R6 конденсатор С6 заряжается практически до 10 В. По мере роста напряжения на этом конденсаторе увеличивается напряжение на затворе транзистора VT4 и плавно уменьшается сопротивление его канала, достигая минимума через 5...7 с после начала зарядки конденсатора С6. А поскольку канал транзистора VT4 последовательно с резистором R10 включен в цепь разрядки конденсатора С8, мощность в нагрузке плавно возрастает до уровня, установленного резистором R10.

Резистор R11 создает минимальное отрицательное смещение на затворе транзистора VT4, которое обеспечивает полное выключение светорегулятора при нулевом сопротивлении резистора R10. Это смещение необходимо еще и для того, чтобы при включении светорегулятора сразу включалась нагрузка. Конденсатор С7 шунтирует резистор R11 по переменному напряжению, исключая его из цепи разрядки конденсатора С8.

Низкий уровень напряжения с инверсного входа триггера DD3.1 закрывает транзистор VT3 и запрещает переключение инверторов DD2.2 и DD2.3. В результате транзистор VT7 остается закрытым, ток через него не течет и включенный в его эмиттерную цепь светодиод HL1 не горит.

При следующем нажатии на кнопку SB1 (SB2-SBn) триггер снова переключается в нулевое состояние. Логический нуль с его выхода 13 запрещает переключение элемента DD1.1, и на выходе последнего устанавливается высокий логический уровень, поддерживающий открытое состояние транзистора VT5. В результате конденсатор С8 будет заряжен до максимального напряжения, а нагрузка обесточена. Присутствующий в это время на выходе 12 триггера уровень логического нуля откроет транзистор VT3, через который быстро разрядится конденсатор С6, и светорегулятор будет готов к новому включению. Высокий логический уровень напряжения с выхода 12 триггера поступит также на входы 13 и 9 логических элементов DD2.2, DD2.3 и позволит им пропустить отрицательные импульсы с нагрузки транзисторов VT1, VT2. Эти импульсы откроют на короткое время транзистор VT7, и включенный в его эмиттерную цепь светодиод HL1 загорится. Резистор R14 ограничивает средний ток через светодиод, чтобы не перегружать источник питания, иначе его напряжение начнет падать.

Все детали светорегулятора, кроме симистора VS1 и светодиода HL1, смонтированы на печатной плате из одностороннего фольгированного стеклотекстолита. Чертеж платы показан на рис. 2, а, а расположение на ней деталей — на рис. 2, б.

При монтаже можно использовать постоянные резисторы С2 - ЗЗН или МЛТ и любой переменный резистор указанного на принципиальной схеме сопротивления. Конденсаторы С1, С2, С8 — К73-15, К77 - 3 и другие из серии К70 — К78, конденсатор С2 должен быть рассчитан на напряжение не менее 250 В. Конденсатор СЗ — любой оксидный, С4, С9 — керамические КМ - 5, К10 - 17, С5 - К50 - 24 или К50 - 29, С6, С7 — К53 - 14. На месте диодов могут работать КД510, КД509 с любым буквенным индексом. Стабилитрон VD3 — любой с напряжением стабилизации 10 В. Транзисторы VT1, VT2 могут быть любыми кремниевыми маломощными структуры р-п-р с коэффициентом передачи тока более 100. Транзисторы VT3, VT6, VT7 — маломощные кремниевые, VT5 — серии КТ201 с любым буквенным индексом. Подойдут также кремниевые маломощные транзисторы структуры п-р-п, но в этом случае нужно включить в устройство диод VD4, показанный на схеме штриховой линией. Диод защищает эмиттерный переход от пробоя обратным напряжением, появляющимся на нем каждый раз после закрывания транзистора VT5. Полевой транзистор из серии КП305 с любым буквенным индексом. Предохранитель FU1 должен быть рассчитан на ток не менее тока нагрузки.

Налаживание светорегулятора сводится к подбору резистора R11. Прежде всего разрывают цепь, соединяющую вывод 2 элемента DD1.1 и вывод 13 триггера DD3.1. Затем вывод 2 DD1.1 соединяют с его выводом 1. После этого движок резистора R10 устанавливают в нижнее по схеме положение. На место резистора R11 включают переменный резистор сопротивлением 100 кОм, и устанавливают его движок в такое положение, чтобы включенное в цепь сопротивление равнялось нулю. Далее включают светорегулятор в сеть и ждут пока на выходе источника питания не установится номинальное напряжение 10 В. Затем, контролируя с помощью осциллографа форму импульсов тока в нагрузке, увеличивают сопротивление переменного резистора (R11) до тех пор, пока симистор VS1 не перестанет открываться. После этого несколько раз включают и выключают нагрузку, каждый раз проверяя надежно ли транзистор VT4 закрывает симистор VS1. Затем переменный резистор заменяют постоянным и восстанавливают соединение вывода 2 элемента DD1.1 с выводом 13 триггера DD3.1. При желании установкой и подбором резистора R12 можно добиться, чтобы максимальному сопротивлению резистора R10, работающего как реостат, соответствовало нулевое напряжение на нагрузке.

Чтобы при полном включении нагрузки на симисторе падало возможно меньшее напряжение, он должен открываться возможно быстрее после начала полупериода. Для этого формирователь импульсов перехода сетевого напряжения через нуль должен вырабатывать достаточно короткие импульсы. Их минимизации добиваются подбором резисторов R4 и R8. Уменьшать сопротивление резистора R5 нежелательно, твк как при этом возрастет потребляемая мощность.

Светорегулятор обладает такой хорошей особенностью: если нагрузка была включена, то после кратковременного пропадания напряжения в сети (на время не более 2 мин) она снова включится. Это происходит потому, что конденсатор С5 в фильтре источника питания разряжается очень медленно, так что ни один логический элемент не переключается.

При налаживании светорегулятора и его практическом использовании следует помнить, что все его элементы, включая ось переменного резистора, находятся под напряжением сети.

От редакции. Для ограничения тока через светодиод HL1 резистор R14 целесообразно перенести из базовой цепи транзистора VT7 в цепь его эмиттера, уменьшив сопротивление R14 до 0,5...1 кОм.

radio-uchebnik.ru

Симисторный диммер с фазоимпульсным регулированием

Радиолюбители уже не один десяток лет собирают различные варианты тиристорного регулятора мощности. Этот узел, будучи включенным между сетью переменного тока напряжением 220 В и нагрузкой, позволяет в определенных пределах изменять мощность, выделяемую в нагрузке. Если нагрузкой служил бытовой осветительный прибор, такой узел называли темнителем, если паяльник - регулятором температуры его жала. Ныне из-за рубежа не только пришло новое название этих устройств - диммеры, но и поступили в продажу они сами. Диммер - это тиристорный регулятор мощности, предназначенный, в частности, для регулирования яркости свечения ламп накаливания в бытовых электроосветительных приборах (люстрах, бра, торшерах и т. п.). Его можно встраивать в настенные выключатели в жилых помещениях.

Анализ схем промышленно выпускаемых диммеров (в основном китайского производства) показал, что фазосдвигающая цепь в них питается нестабилизированным напряжением. Это приводит к тому, что момент открывания динистора в каждом полупериоде, а значит, и симистора зависит от напряжения сети, что, в свою очередь, является причиной заметных перепадов мощности нагрузки диммера при колебаниях напряжения сети. Это ограничивает сферу применения подобных устройств. Некоторые схемы регуляторов рассчитаны на работу с нагрузками, мощность которых не превышает 100 Вт. Выручить в этой ситуации мог бы мощный диодный мост и тринистор, но разместить их в стандартном подрозетнике проблематично, не говоря уже об отсутствии в зоне монтажа необходимой для их нормальной работы конвекции воздуха. К тому же лампы в светильниках, перегорая, часто вызывают замыкание, хоть и кратковременное, но вполне достаточное для выведения из строя переключательного элемента. Каждый раз заменять этот элемент и выпрямительный мост весьма накладно как в плане трудозатрат, так и денежных расходов.

Фазоимпульсные регуляторы мощности с мощным симистором в качестве переключательного элемента отличаются более высоким КПД и меньшим числом элементов в цепи нагрузки, но из-за особом ностей управления эти устройства зачастую довольно громоздки.

Попытка объединить достоинства упомянутых схемных решений привела к разработке устройства, схема которого показана на рис. 3.42. Оно не требует применения импульсного трансформатора.

На транзисторах VT1 и VT2 собран аналог динистора, в который введен диод VD1. Это позволило использовать транзистор VT2 в роли замыкателя диагонали теперь уже маломощного выпрямительного моста VD3-VD6, включенного в цепь управляющего электрода симистора VS1. В начале полупериода напряжения сети оба транзистора, диод VD1 и симистор закрыты, а конденсатор С1 разряжен. Увеличивающееся напряжение создает ток через резисторы R9, R8, диоды моста, резистор R7 и стабилитрон VD2. Падения напряжения на резисторе R9 пока недостаточно для открывания симистора. Стабилитрон VD2, включенный последовательно с балластным резистором R7, ограничивает напряжение между точками А и Б на уровне 12 В. Через резисторы R3 и R4 начинает заряжаться конденсатор С1. Как только напряжение на нем превысит напряжение на резисторе R6, начнет открываться транзистор VT1. Падение напряжения на резисторе R2 приоткроет транзистор VT2, из-за чего начнет уменьшаться напряжение на его коллекторе.

В результате этого начинает уменьшаться напряжение на резисторе R6. Возникает положительная обратная связь (ОС), действие которой приводит к лавинообразному открыванию обоих транзисторов аналога динистора. Как только падение напряжения на транзисторе VT2 станет меньше, чем на резисторе R6, откроется диод VD1, еще более ускоряя открывание аналога динистора и снижая тем самым мощность, рассеиваемую на транзисторе VT2. Оба транзистора в конце процесса входят в насыщение. Выходная диагональ диодного моста VD3-VD6 оказывается замкнутой, ток через резисторы R8

Рис. 3.42. Схема симисторного регулятора мощности и R9 увеличивается, и открывается симистор VS1, подключая нагрузку к сети на оставшуюся часть полупериода. Скорость зарядки конденсатора С1, а значит, и момент открывания транзистора VT1 зависят от положения движка переменного резистора R4, которым и регулируют мощность, выделяющуюся в нагрузке.

Если сопротивление цепи R3R4 окажется настолько большим, что конденсатор не успеет зарядиться до напряжения, необходимого для открывания аналога динистора, он останется закрытым. Но в конце полупериода конденсатор С1 все равно разрядится транзистором VT1 вследствие того, что напряжение на резисторе R6 к этому моменту уменьшится до нулевого. Такая привязка момента начала зарядки конденсатора С1 к началу полупериода необходима для того, чтобы исключить эффект гистерезиса, который может возникнуть при регулировании мощности резистором R4. Этот эффект проявляется в затягивании регулировочной характеристики: при повороте ручки регулятора из положения минимальной мощности на малый угол мощность в нагрузке увеличивается скачком. Резистор R1 ограничивает ток разрядки на безопасном для транзисторов уровне, растягивая разрядный импульс во времени для более уверенного открывания симистора, a R8 ограничивает ток через его управляющий электрод. Резистор R2 предотвращает самопроизвольное срабатывание аналога динистора из-за увеличения тока коллектора транзистора VT2 при его разогревании. Резистор R9 удерживает симистор закрытым (если он еще не был открыт) на пиках сетевого напряжения.

Максимальная мощность нагрузки регулятора при обеспечении эффективного охлаждения симистора и транзистора VT2 - 1кВт.

Большая часть деталей устройства смонтирована на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Все резисторы, кроме R4, - МЛТ; R4 - любой малогабаритный, умещающийся в отведенном ему пространстве. Поскольку все детали регулятора находятся под напряжением сети, необходимо при его установке и пользовании учитывать это обстоятельство. В частности, ручка переменного резистора R4 должна быть изготовлена из изоляционного материала. Резисторы R8, R9 распаивают на выводах симистора, устанавливаемого вне платы. Если мощность нагрузки превышает 600 Вт, симистор следует снабдить теплоотводом в виде пластины из меди размерами 20 х 20 х 1 мм. Конденсатор С1 - КМ-6, К73-17 или К73-9. Диоды КД105В можно заменить КД105Г или другими на обратное напряжение не менее 40 В. Тран зистор КТ361В может быть заменен любым из этой серии (с коэффициентом h2lE > 50), а КТ538А - КТ6135А или в крайнем случае КТ940А, у которого ограниченный запас по напряжению коллектор-эмиттер (Л21Е > 20). Разъем XI - любой малогабаритный, с двумя контактами, рассчитанный на сетевое напряжение; можно использовать два одноконтактных. Подойдут также винтовые соединительные зажимы.

Налаживания регулятор не требует, но, возможно, будет целесообразно подобрать точнее резистор R3 по достижении максимальной яркости ламп при крайнем левом (по схеме) положении движка резистора R4.

Собранную плату устанавливают в нишу предварительно демонтированного настенного выключателя. Снаружи нишу закрывают декоративной лицевой панелью, на которой закрепляют переменный резистор R4 - он будет служить и выключателем освещения, и регулятором яркости. Устройство можно смонтировать также в подставке торшера или настольной лампы.

prioritetinvest.ru

Симисторный светорегулятор

Предлагаемый вниманию читателей светорегулятор позволяет регулировать яркость освещения в помещениях, мощность бытовых нагревательных элементов, скорость вращения двигателей переменного тока. Его можно использовать и для уменьшения пускового тока ламп накаливвния, что продлевает срок их службы. Светорегулятор управляется кнопками, что дает возможность включать и выключать нагрузку на заметном расстоянии от управляемого объекта. А чтобы кнопку легко можно было найти в темноте, рядом с ней устанавливается светодиод, который светится только при выключенном освещении.

Этот регулятор выполнен на базе устройства, описанного в статье С. Бирюкова "Симисторные регуляторы мощности" ("Радио", 1996, № 1, с. 44 - 46). В отличие от него, предлагаемый в данной статье светорегулятор не отключается полностью от сети, что потребовало доработать его с целью снижения потребляемого тока. В результате ток снизился до 1,5 мА во всех режимах работы. После доработки расширился и диапазон регулирования мощности. При стоваттной нагрузке он составляет около 99%.

Принципиальная схема светорегулятора показана на рис. 1. Для управления симистором VS1 необходим формирователь коротких импульсов, один из выводов которого соединен с сетевым проводом. Питается формирователь от источника, собранного на элементах С2, R2, VD1 - VD3, С4, С5. Диоды VD1, VD2 выполняют функции выпрямителя. Выпрямленное напряжение стабилизируется на уровне 10 В стабилитроном VD3. Конденсаторы С4, С5 входят в состав сглаживающего фильтра, причем С4 шунтирует в основном высокочастотные сетевые помехи, которые не подавляются оксидным конденсатором С5 из-за его значительной паразитной индуктивности.

(нажмите для увеличения)

При положительном напряжении на аноде большинство симисторов можно открыть импульсами любой (относительно катода) полярности, поступающими на управляющий электрод, а при отрицательном - импульсами только отрицательной полярности. Положительный вывод источника питания описываемого регулятора соединен с катодом симистора. В результате на его управляющем электроде будут формироваться отрицательные импульсы при любой полярности на аноде.

При использовании фазоимпульсного метода мощность в нагрузке регулируется путем изменения части полупериода сетевого напряжения, в течение которой симистор пропускает ток. Для этого необходимо выделить начало каждого полупериода сетевого напряжения (ему соответствует напряжение, равное или близкое к нулю), а затем в течение 10 мс (длительность половины периода сетевого напряжения частотой 50 Гц) сформировать сам управляющий импульс. Таким образом, чем раньше будет открываться симистор, тем большая мощность станет выделяться на нагрузке.

Формирователь импульсов частотой 100 Гц собран на элементах VT1, VT2, R4, R5, R8. В течение положительного полупериода сетевого напряжения открыт транзистор VT1, в течение отрицательного - транзистор VT2. Резистор R5 ограничивает базовый ток транзисторов. Резистор R8 выполняет функции коллекторной нагрузки обоих транзисторов. Когда сетевое напряжение близко к нулю, оба транзистора закрыты и напряжение на их коллекторах равно напряжению на минусовом выводе источника питания. При этом на входе 1 элемента DD1.1 образуются короткие импульсы отрицательной полярности, соответствующие началу каждого полупериода сетевого напряжения.

Во включенном состоянии регулятора на входе 2 элемента DD1.1 присутствует напряжение, соответствующее высокому логическому уровню, поэтому отрицательные импульсы на входе 1 этого элемента инвертируются им и поступают на базу транзистора VT5, включенного по схеме эмиттерного повторителя. Протекающий через него ток заряжает конденсатор С8 практически до напряжения источника питания. Разряжается конденсатор через цепь R9, R10, R12, VT4. При разрядке его до напряжения, соответствующего пороговому, переключаются элементы DD1.2 и DD1.3. Спад напряжения, возникающий на выходе 11 элемента DD1.3, дифференцируется цепью C9R13 и в виде импульса длительностью около 12 мкс через инвертор DD1.4 поступает на усилитель тока на транзисторе VT6, а затем на управляющий электрод симистора VS1. Переменным резистором R10 регулируют длительность разрядки конденсатора С8, от которой зависят момент включения симистора, а значит, и эффективное напряжение на нагрузке.

Стабилитрон VD5 обеспечивает надежный запуск светорегулирующего устройства. При его отсутствии в первый момент включения регулятора после перерыва в работе через управляющий переход симистора и транзистор VT6 начинает течь ток, не дающий зарядиться конденсатору фильтра С5 и препятствующий росту напряжения источника питания до номинального значения. Резистор R15 ограничивает ток через управляющий переход симистора. Необходимость такого ограничения вызвана не обеспечением безопасности эксплуатации стабилитрона и симистора (столь короткий импульс тока не может вывести их из строя), а возможным ухудшением экономичности светорегулятора.

На инверторе DD2.1 и триггере DD3.1 собрано устройство управления включением и выключением светорегулятора, на транзисторе VT4 - узел плавного включения нагрузки, а на элементах DD2.2, DD2.3, VT7, HL1 - узел подсветки кнопки SB1 (SB2 - SBn).

При начальном включении регулятора или после пропадания сетевого напряжения цепочка C3R3 формирует положительный импульс на входе R триггера DD3.1, устанавливающий его в нулевое состояние, при котором нагрузка выключена. Элемент DD3.1 реагирует на положительный перепад напряжения на входе С и при каждом его появлении изменяет свое состояние на противоположное. Цепочка R1C1 подавляет дребезг контактов кнопки SB1. Через резистор R1 задается также напряжение на входе инвертора DD2.1. При нажатии на кнопку SB1 на выходе этого элемента возникает положительный перепад напряжения, переключающий триггер DD3.1 в единичное состояние. Высокий логический уровень, появляющийся при этом на прямом выходе триггера, разрешает работу логического элемента DD1.1. Одновременно через резистор R6 конденсатор С6 заряжается практически до 10 В. По мере роста напряжения на этом конденсаторе увеличивается напряжение на затворе транзистора VT4 и плавно уменьшается сопротивление его канала, достигая минимума через 5...7 с после начала зарядки конденсатора С6. А поскольку канал транзистора VT4 последовательно с резистором R10 включен в цепь разрядки конденсатора С8, мощность в нагрузке плавно возрастает до уровня, установленного резистором R10.

Резистор R11 создает минимальное отрицательное смещение на затворе транзистора VT4, которое обеспечивает полное выключение светорегулятора при нулевом сопротивлении резистора R10. Это смещение необходимо еще и для того, чтобы при включении светорегулятора сразу включалась нагрузка. Конденсатор С7 шунтирует резистор R11 по переменному напряжению, исключая его из цепи разрядки конденсатора С8.

Низкий уровень напряжения с инверсного входа триггера DD3.1 закрывает транзистор VT3 и запрещает переключение инверторов DD2.2 и DD2.3. В результате транзистор VT7 остается закрытым, ток через него не течет и включенный в его эмиттерную цепь светодиод HL1 не горит.

При следующем нажатии на кнопку SB1 (SB2-SBn) триггер снова переключается в нулевое состояние. Логический нуль с его выхода 13 запрещает переключение элемента DD1.1, и на выходе последнего устанавливается высокий логический уровень, поддерживающий открытое состояние транзистора VT5. В результате конденсатор С8 будет заряжен до максимального напряжения, а нагрузка обесточена. Присутствующий в это время на выходе 12 триггера уровень логического нуля откроет транзистор VT3, через который быстро разрядится конденсатор С6, и светорегулятор будет готов к новому включению. Высокий логический уровень напряжения с выхода 12 триггера поступит также на входы 13 и 9 логических элементов DD2.2, DD2.3 и позволит им пропустить отрицательные импульсы с нагрузки транзисторов VT1, VT2. Эти импульсы откроют на короткое время транзистор VT7, и включенный в его эмиттерную цепь светодиод HL1 загорится. Резистор R14 ограничивает средний ток через светодиод, чтобы не перегружать источник питания, иначе его напряжение начнет падать.

Все детали светорегулятора, кроме симистора VS1 и светодиода HL1, смонтированы на печатной плате из одностороннего фольгированного стеклотекстолита. Чертеж платы показан на рис. 2, а, а расположение на ней деталей - на рис. 2, б.

При монтаже можно использовать постоянные резисторы С2 - ЗЗН или МЛТ и любой переменный резистор указанного на принципиальной схеме сопротивления. Конденсаторы С1, С2, С8 - К73-15, К77 - 3 и другие из серии К70 - К78, конденсатор С2 должен быть рассчитан на напряжение не менее 250 В. Конденсатор C3 - любой оксидный, С4, С9 - керамические КМ - 5, К10 - 17, С5 - К50 - 24 или К50 - 29, С6, С7 - К53 - 14. На месте диодов могут работать КД510, КД509 с любым буквенным индексом. Стабилитрон VD3 - любой с напряжением стабилизации 10 В. Транзисторы VT1, VT2 могут быть любыми кремниевыми маломощными структуры p-n-p с коэффициентом передачи тока более 100. Транзисторы VT3, VT6, VT7 - маломощные кремниевые, VT5 - серии КТ201 с любым буквенным индексом. Подойдут также кремниевые маломощные транзисторы структуры n-p-n, но в этом случае нужно включить в устройство диод VD4, показанный на схеме штриховой линией. Диод защищает эмиттерный переход от пробоя обратным напряжением, появляющимся на нем каждый раз после закрывания транзистора VT5. Полевой транзистор из серии КП305 с любым буквенным индексом. Предохранитель FU1 должен быть рассчитан на ток не менее тока нагрузки.

Налаживание светорегулятора сводится к подбору резистора R11. Прежде всего разрывают цепь, соединяющую вывод 2 элемента DD1.1 и вывод 13 триггера DD3.1. Затем вывод 2 DD1.1 соединяют с его выводом 1. После этого движок резистора R10 устанавливают в нижнее по схеме положение. На место резистора R11 включают переменный резистор сопротивлением 100 кОм, и устанавливают его движок в такое положение, чтобы включенное в цепь сопротивление равнялось нулю. Далее включают светорегулятор в сеть и ждут пока на выходе источника питания не установится номинальное напряжение 10 В. Затем, контролируя с помощью осциллографа форму импульсов тока в нагрузке, увеличивают сопротивление переменного резистора (R11) до тех пор, пока симистор VS1 не перестанет открываться. После этого несколько раз включают и выключают нагрузку, каждый раз проверяя надежно ли транзистор VT4 закрывает симистор VS1. Затем переменный резистор заменяют постоянным и восстанавливают соединение вывода 2 элемента DD1.1 с выводом 13 триггера DD3.1. При желании установкой и подбором резистора R12 можно добиться, чтобы максимальному сопротивлению резистора R10, работающего как реостат, соответствовало нулевое напряжение на нагрузке.

Чтобы при полном включении нагрузки на симисторе падало возможно меньшее напряжение, он должен открываться возможно быстрее после начала полупериода. Для этого формирователь импульсов перехода сетевого напряжения через нуль должен вырабатывать достаточно короткие импульсы. Их минимизации добиваются подбором резисторов R4 и R8. Уменьшать сопротивление резистора R5 нежелательно, ТВК как при этом возрастет потребляемая мощность.

Светорегулятор обладает такой хорошей особенностью: если нагрузка была включена, то после кратковременного пропадания напряжения в сети (на время не более 2 мин) она снова включится. Это происходит потому, что конденсатор С5 в фильтре источника питания разряжается очень медленно, так что ни один логический элемент не переключается.

При налаживании светорегулятора и его практическом использовании следует помнить, что все его элементы, включая ось переменного резистора, находятся под напряжением сети.

Для ограничения тока через светодиод HL1 резистор R14 целесообразно перенести из базовой цепи транзистора VT7 в цепь его эмиттера, уменьшив сопротивление R14 до 0,5...1 кОм.

Автор: А.Руденко, г.Харьков, Украина

shema.info

Устройство и принцип работы диммера

Виды и устройство диммера

Различаются регуляторы света по типу регулирования яркости ламп и могут быть поворотными, поворотно прижимными, клавишными, дистанционными и сенсорными. Поворотные регуляторы света имеют ручку, одетую на ось потенциометра, при вращении которой меняется значение управляющего сигнала на входе регулирующего элемента.

Поворотно прижимное устройство диммера может включать и отключать освещение при нажатии на ручку. Этот светорегулятор запоминает уровень яркости при отключении освещения. Сенсорное устройство диммера отличается легким управлением при прикосновении к панели.

Клавишный диммер при длительном нажатии на клавишу меняет яркость ламп. Дистанционные диммеры работают с пульта на ИК излучении или управлении на радиочастотах. Существуют регуляторы яркости с звуковым управлением — хлопком.

Светорегуляторы могут отличаться по способу установки – это накладные, встраиваемые и установка диммера на din-рейку. Нагрузкой регулятора яркости могут быть лампы накаливания, галогенные лампы, люминесцентные и светодиодные лампы. Мощность лампы для регулятора света может достигать 1000 Вт.

Принцип работы диммера

Электронные диммеры представляет собой электронную схему собранную на тиристорах, симисторах или полевых транзисторах. Диммеры работают по принципу электронного ключа, который включается и отключается при переходе через ноль синусоиды напряжения и изменении ее полярности.

Полная синусоида при максимальной яркости лампы и усеченная синусоида при неполной яркости

Переключается ключевой элемент при частоте сети 50 герц 100 раз в секунду. Регулируя яркость, задают задержку управляющего сигнала на входе ключа. При задержке равной нулю, ключ будет выдавать полное напряжение сети, а при уменьшении яркости (с некоторой задержкой включения ключа) на выходе будет не полная синусоида, а с усеченным передним или задним фронтом.

Меняется соотношение напряжения включения и выключения по типу упрощенной широтно-импульсной модуляции, что приводит к изменению яркости лампы. Идеальной нагрузкой регулятора яркости на ключах, считается активная нагрузка — это лампы накаливания. Синусоида имеет большие искажения, что не позволяет работать диммеру с индуктивной или емкостной нагрузкой (светодиодные и люминесцентные лампы).

Как выбрать диммер

Однако на рынке можно найти светасберегающие лампы которые могут хорошо работать с диммерами, это должно отражаться в инструкциях. Если люминесценция лампа собрана на электронном пускорегулирующем устройстве, то скорее всего она будет работать с диммером.

Схема подключения диммера для лампы накаливания и галогенной лампы

В случае галогенных ламп учитывается тип трансформатора. Для электронного трансформатора светорегулятор выбирают с обозначением — С, а для обычного трансформатора диммер должен быть с маркировкой — RL. В последнее время появились универсальные регуляторы света для любых типов ламп.

Для светодиодных лент также существуют регуляторы яркости и программируемые контроллеры с разными спецэффектами. Перед тем как выбрать диммер, обратите внимание на мощности его нагрузки, она должна превышать на 15 — 20% вашу нагрузку.

Тоже интересные статьи

electricavdome.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *