A. Сила Лоренца — PhysBook

Сила Лоренца

На проводник с током в магнитном поле действует сила Ампера, модуль которой

\(~ F_A = IB\Delta l \sin \alpha .\)

Существование этой силы Лоренц объяснил тем, что магнитное поле действует на отдельные движущиеся заряженные частицы в проводнике с током. Силу Ампера можно рассматривать как равнодействующую сил, действующих на все свободные заряженные частицы, движущиеся в проводнике при прохождении в нем тока.

Сила, с которой магнитное поле действует на движущуюся в нем заряженную частицу, называется силой Лоренца FL . Модуль силы Лоренца \(~F_L = \frac {F_A}{N}\),

где N — число свободных заряженных частиц в проводнике.

Если заряд одной частицы q, то суммарный заряд всех частиц \(~\Delta q = Nq.\) По определению силы тока \(~ I = \frac {\Delta q}{\Delta t}\), где Δt — время прохождения тока. Тогда \(~ I = \frac {N q}{\Delta t}\). По закону Ампера \(~ F_A = IB\Delta l \sin \alpha = Nq \frac {\Delta l}{\Delta t} B\sin \alpha\). Но \(~\frac {\Delta l}{\Delta t} = v \) — модуль скорости заряженной свободной частицы.

Следовательно, модуль силы Лоренца

\(~F_L = \frac {F_A}{N}, \Rightarrow F_L = qbv \sin \alpha,\)

где α — угол между направлениями скорости \(~ \vec v\) и магнитной индукции \(~ \vec B\).

Направление силы Лоренца определяют по правилу левой руки: ладонь левой руки располагают так, чтобы перпендикулярная к скорости заряженной частицы составляющая магнитной индукции входила в нее, четыре вытянутых пальца были направлены вдоль скорости движения положительно заряженной (против скорости движения отрицательно заряженной частицы), тогда отогнутый на 90° большой палец укажет направление силы Лоренца (рис. 1).

Рис. 1

Поскольку сила Лоренца направлена под углом 90° к скорости движения заряженной частицы в каждой точке траектории, то работа силы Лоренца при движении заряженной частицы в магнитном поле равна нулю\[~A_{F_L} = 0. \]

Согласно теореме о кинетической энергии, изменение кинетической энергии этой заряженной частицы \(~ \Delta W_K = A_{F_A} = 0\). Следовательно, \(~ \Delta W_K \) = const, т.е. кинетическая энергия частицы, движущейся в магнитном поле, не изменяется, а значит, заряженная частица в магнитном поле движется с постоянной по модулю скоростью, а направление скорости изменяется непрерывно.

Действие силы Лоренца наблюдается и в природе, и во многих технических устройствах. Например, сила Лоренца отклоняет заряженные частицы, вторгающиеся из космоса и попадающие в магнитное поле Земли, к полярным областям, где они вызывают полярные сияния. Действие магнитного поля на движущиеся заряженные частицы используется для управления движением электронов в телевизионных трубках, в ускорителях и т.д.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C.324-325.

www.physbook.ru

Сила Лоренца - это... Что такое Сила Лоренца?

Сила Лоренца — сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще

[1], иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2].

Макроскопическим проявлением силы Лоренца является сила Ампера.

Уравнение (единицы СИ)

Заряженная частица

Сила Лоренца f действующая на заряженную частицу (заряда q) при движении (с постоянной скоростью v). E поле и B поле меняются в пространстве и во времени.

Сила F действующая на частицу с электрическим зарядом q, движущуюся с постоянной скоростью v, во внешнем электрическом E и магнитном B полях, такова:

где × векторное произведение. Все величины выделенные жирным являются векторами. Более явно:

где r — радиус-вектор заряженной частицы,

t — время, точкой обозначена производная по времени.

Непрерывное распределение заряда

Сила Лоренца (на единичный 3-объём) f действующая на непрерывное распределение заряда (зарядовая плотность ρ) при движении. 3-плотность потока J соответствует движению заряженного элемента dq в объеме dV .

Для непрерывного распределения заряда, сила Лоренца принимает вид:

где dF — сила, действующая на маленький элемент dq.

Ковариантная запись

4-сила выражается через вектор 4-скорости частицы по формуле

, где  — 4-сила, q — заряд частицы,  — тензор электромагнитного поля,  — 4-скорость.

Частные случаи

Направление движения частицы в зависимости от её заряда при векторе магнитной индукции, перпендикулярном вектору скорости (к нам из плоскости рисунка, перпендикулярно ей)

В однородном магнитном поле, направленном перпендикулярно вектору скорости, под действием силы Лоренца заряженная частица будет равномерно двигаться по окружности постоянного радиуса (называемого также гирорадиусом). Сила Лоренца в этом случае является центростремительной силой:

Работа силы Лоренца будет равна нулю, поскольку векторы силы и скорости всегда ортогональны. При скорости , намного меньшей скорости света, круговая частота не зависит от :

Если заряженная частица движется в магнитном поле так, что вектор скорости составляет с вектором магнитной индукции угол , то траекторией движения частицы является винтовая линия с радиусом и шагом винта :

Применение силы Лоренца

Эксперимент, показывающий воздействие силы Лоренца на заряженные частицы Пучок электронов, движущихся по круговой траектории под воздействием магнитного поля. Свечение вызвано возбуждением атомов остаточного газа в баллоне

В электроприборах

Основным применением силы Лоренца (точнее, её частного случая — силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках, а также в масс-спектрометрии и МГД генераторах.

В ускорителях заряженных частиц

Сила Лоренца также используется в ускорителях заряженных частиц, задавая орбиту, по которой движутся эти частицы.

В вооружении

  • См. рельсотрон, или, как его ещё называют, рэйлган («рельсовая пушка»)

Другие применения

Примечания

  1. Такая двойственность применения термина «сила Лоренца», очевидно, объясняется историческими причинами: дело в том, что сила, действующая на точечный заряд со стороны только электрического поля была известна задолго до Лоренца — Закон Кулона был открыт в 1785 году. Лоренц же получил общую формулу для действия и электрического и магнитного полей, отличающуюся от прежней как раз выражением для магнитного поля. Поэтому то и другое, вполне логично, называют его именем.
  2. Болотовский Б. М. Оливер Хевисайд. — Москва: Наука, 1985. — С. 43-44. — 260 с.

См. также

dal.academic.ru

Сила Лоренца

Действие магнитного поля на проводник с током обусловлена тем, что это поле действует на заряженные подвижные частицы в проводнике. Силу, действующую со стороны магнитного поля на заряженную частицу, называют силой Лоренца в честь голландского физика X. Лоренца, изучал движение заряженных частиц в электрическом и магнитном полях.

Расчеты показывают, что модуль силы Лоренца FЛ = qBsin?, где q — модуль заряда частицы, — модуль ее скорости, В — модуль вектора магнитной индукции, ? — угол между скоростью частицы и вектором магнитной индукции.

Направление силы Лоренца, действующей на положительно заряженную частицу, определяют с помощью правила левой руки:

? если раскрытую ладонь левой руки расположить так, чтобы вектор магнитной индукции входил в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90 ° в плоскости ладони большой палец покажет направление силы, действующей на частицу.

На подвижное отрицательно заряженную частицу (например, электрон) сила Лоренца действует в противоположном направлении.

Поскольку сила Лоренца направлена перпендикулярно скорости частицы и вектора магнитной индукции, то работа силы Лоренца равна нулю.

Если скорость материальной точки перпендикулярна силы, действующей на нее, то эта точка движется по кругу. Получается, электрический заряд в магнитном поле будет двигаться по кругу. Следует подчеркнуть, что магнитная сила при этом является центростремительной силой, так что где R — радиус окружности. Отсюда

Таким образом,

? магнитное поле хотя и действует на частицу с некоторой силой, не меняет кинетическую энергию частицы, но изменяет только направление ее движения.

Действие магнитного поля на движущийся заряд широко используют в современной технике.

Действие магнитного поля применяют и в приборах, позволяющих разделять заряженные частицы по их удельным зарядами (q / m). Зная радиус, по которому движется частица, и ее скорость, можно найти удельный заряд частицы. Такие приборы получили название масс- спектрографов.

Особенность движения частиц: то, что более быстрые частицы движутся по кругу большего радиуса, используют при ускорении заряженных частиц в циклотронах.

Также силу Лоренца можно использовать для определения знака заряда и для исследований в ядерной физике.

категория: Физика

moykonspekt.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *