Содержание

Высоковольтные изоляторы в ассортименте недорого

Главная » Продукция » Изоляторы

Основное назначение изоляторов воздушных линий — изолировать провода от опор и других несущих конструкций.

Этот тип защиты применяется при креплении токопроводов, грозозащитных тросов на воздушных линиях электропередачи , а так же в распределительных устройствах различных электростанций и подстанций.

Изоляторы воздушных линий изготовляют из не проводящих ток материалов, таких как фарфор, специальное стекло и полимерные композиты.

Компания "ЭнергоКомплект" ООО предлагает со своих складов широкий выбор изоляторов различных видов и типов.
предназначены для изоляции проводов от опор. Опорные изоляторы работают на сжатие, растяжение или изгиб и подразделяеются на штыревые (насаживаемые на опорные штыри или крючки) и стержневые, которые прикрепляются у основания болтами или винтами.
ОПОРНЫЕ
ШТЫРЕВЫЕ
СТЕРЖНЕВЫЕ
ФАРФОРОВЫЕ СТЕКЛЯННЫЕ ПОЛИМЕРНЫЕ ФАРФОРОВЫЕ СТЕКЛЯННЫЕ ПОЛИМЕРНЫЕ

ШФ 10Г, ШФ 20Г, ШФ 20Г1

ШС 10, ШС 20, ШТИЗ 10, ШТИЗ 20

ШПУ-10, ШПУ-20, ШПУ-35, НП-18, ТП-20, ОНШП-10-20, ОНШП-20-10, ОНШП-35-10, ОНШП-35-20

ИОР10-7,5-III-УХЛ, И4-80 УХЛ, Т2

ИШОС-10-8 (С4-80 II), ИШОС-10-20, ИШОС-20-10

ОСК 4-10, ОСК 6-10, ОСК 12,5-10, ОСК 8-35, ОСК 10-35, ОСК 12,5-35, ОСК 10-110
ОТК 20-110
СТАН-6-110, СТАН-10-110
ОНШП-10-20, ОНШП-20-10, ОНШП-35-20
ИОРП-10

Для крепления изоляторов, в качестве комплектующих изделий предлагаем:
КРЮКИ типа КН-16, КН-18, КН-22, КВ-22.
КОЛПАЧКИ типа К-4, К-5, К-6, К-7, К-9, К-10, КП-16, КП-18, КП-22.

используются на ВЛ напряжением 35 кВ и выше. Они состоят из фарфоровой или стеклянной изолирующей части, шапки из ковкого чугуна, металлического стержня и цементной связки. Подвесные изоляторы собирают в гирлянды, которые бывают поддерживающими (на промежуточных опорах) и натяжными (на анкерных опорах). Число изоляторов в гирлянде определяется напряжением линии; 35 кВ – 3-4 изолятора, 110 кВ – 6-8.
Изоляторы из полимерных материалов представляют собой стержневой элемент из стеклопластика, на котором размещено защитное покрытие с ребрами из фторопласта или кремнийорганической резины.
ПОДВЕСНЫЕ
нормального исполнения с увеличенным вылетом ребра с двойным ребром специального исполнения

ПС-40, ПС-40А, ПС-70Е, ПС-120Б, ПС-160Д, ПС-210В, ПС-300В

ПСВ-40В, ПСВ-120Б, ПСВ-160А, ПСВ-210А

ПСД-70Е

ПСС 120Б, ПСС 210Б, ПСК 300А

получили свое название по более узкому предназначению. Данный тип обеспечивает прохождение токоведущих элементов линий электропередачи сквозь различные препятствия, подобные металлическим корпусам трансформаторов, стены КТП, КРУ, с изоляцией их от земли.
ПРОХОДНЫЕ
с токопроводом без токопровода полимерные

ИП-10/630, ИП-10/1000, ИП-10/1600, ИПУ-10/630, ИПУ-10/1000, ИПУ-10/1600, ИПУ-10/2000, ИПУ-10/3150

ПМА 10 1УХЛ 2

ИППУ-35/400, ИППУ-35/630, ИППУ-35/1000, ИППУ-35/1600, ИППУ-10/4000, ИППУ-20/2000, ИППУ-20/3150

Предлагаемые нами изоляторы допущены к применению во всех энергетических системах как продукция, прошедшая аттестацию, согласно требованиям ОАО «ФСК ЕЭС».

www.ekomplect.ru

Изоляторы ЛЭП, воздушные линии электропередач изоляторы

Изоляторы ЛЭП

Классификация изоляторов ЛЭП

Предлагаем к реализации изоляторы ЛЭП различного назначения, конструктивного исполнения и условий эксплуатации. Конструкцией и назначением отличаются, к примеру, опорные, такелажные, защитные и проходные устройства. Различие между штыревыми и подвесными изоляторами заключается в способе крепления их к опорам.

В промышленной электротехнике особого акцента удостоилась стандартизация буквенных обозначений, относящихся к изоляторам:

  • Первая буква по конструкции изоляторов: П – подвесные, Ш – штыревые.
  • Вторая по их материалу: С – стеклянные, Ф – фарфоровые, П – полимерные.

Цифры, идущие вслед за буквенными обозначениями, являются показателями номинального напряжения электротока (измеряемого в киловольтах) для конкретного изолятора.

Стеклянные, полимерные и фарфоровые изоляторы ЛЭП

Для производства высоковольтных изоляторов используют фарфор, техническое стекло или полимеры. Стеклянные изоляторы выпускают из закаленного стекла. Они в сравнении с другими видами изделий компактны, обладают небольшой массой, меньшим электрическим сопротивлением, внушительной механической прочностью, подлежат длительной эксплуатации.

В изоляционном теле стеклянных устройств отсутствуют скрытые дефекты и внутренние напряжения. Они обладают стабильными электроизоляционными свойствами. Изоляторы из стекла не стареют, в них не возникают микротрещины. Вышедшие из строя устройства на линии быстро идентифицируются.

Высоковольтные полимерные изоляторы для ЛЭП, выпускаемые из высокомолекулярных пластмасс самые распространенные, ими часто оснащают линии электропередач. Конструкция полимерных композитных изоляторов состоит из полимерной оболочки и стеклопластикового стрежня с оконцевателями. Чтобы повысить изолирующие свойства у фарфоровых изоляторов, их покрывают глазурью и обжигают.

Штыревые изоляторы ЛЭП

Штыревые изоляторы фиксируют на опорах при помощи специальных крюков или штырей. Их используют, как правило, для линий электропередач с напряжением, не превосходящим 35 киловольт. С помощью этих устройств подвешивают сравнительно легкие провода. При этом выбор типа крепления провода обуславливается условиями трассы.

Провода к промежуточным опорам крепятся за головки штыревых изоляторов, а к анкерным и угловым опорам их фиксируют на шейках изоляторов. Если провода монтируют к угловым опорам, их располагают так, чтобы они оказались на наружной стороне изолятора.

Изоляторы этого вида укрепляются на опорах благодаря использованию штырей или крюков. На траверсах из дерева, железобетона или металла устанавливаются штыри, а в деревянные опоры ввертываются крюки. Изоляторы, снабженные штырями или крюками, крепятся с применением переходных полиэтиленовых колпачков. Сначала колпачок разогревают, затем плотно надвигают его до упора на штырь, и только после этого выполняют навинчивание изолятора.

Подвесные изоляторы ЛЭП

Линии с напряжением свыше 35 киловольт оборудуют подвесными изоляторами, собранными в гирлянды. Их комплектуют из стеклянных и фарфоровых тарелок (изолирующих деталей), стержня и шапки, выполняемой из ковкого чугуна. При комплектовании гирлянд получают шарнирное сферическое крепление изоляторов, которое обеспечивает конструкция головки стержня и гнезда шапки. Собранные гирлянды подвешивают к опорам, чем и достигают требуемую изоляцию проводов.

У подвесных изоляторов, собранных из стеклянных или фарфоровых изолирующих тарелок, оголовок либо шапок, изготовленных из ковкого чугуна со стальным стержнем в виде пестика довольно сложная конструкция. Для того чтобы закрепить в тарелке стержень и шапку, применяют высокомарочный цемент. Сферическая форма головок стержней и шляпок изоляторов позволяет смонтировать из них надежные гирлянды, в которых изоляторы прочно соединены меж собой.

В гирлянды входит разное количество изоляторов, их число определяется видом самих устройств, образующимся в ЛЭП напряжением и тем, насколько загрязнена окружающая среда. Если электротехнических показателей одной гирлянды не хватает, то провода скрепляются двумя гирляндами, которые подвешиваются параллельно.

Продукция

Новости

28.12.2018  С Новым годом!

Дорогие друзья, партнеры!

Мы с огромной радостью вступаем в новый 2019 год вместе с вами! От всей души поздравляем и желаем, что бы ваш дом наполнился светом, добротой и счастьем! Мы хотим, чтобы новый год только укреплял наши добрые дела! Дорогие наши, пусть год Кабана станет для нас всех годом активного роста, развития и процветания!

Здоровья, счастья, любви и благополучия!

Эти теплые слова мы говорим и для всего коллектива компании «ГК «ЭлПромЭнерго»!

С Новым годом! Ура!

Смотреть все новости

Рассылка

Подписаться на рассылку

uralseti.ru

1.5. ЛИНЕЙНЫЕ ИЗОЛЯТОРЫ. Справочник по строительству и реконструкции линий электропередачи напряжением 0,4–750 кВ

1.5. ЛИНЕЙНЫЕ ИЗОЛЯТОРЫ

Линейные изоляторы предназначаются для подвески проводов и грозозащитных тросов к опорам линий электропередачи. В зависимости от напряжения линий электропередачи применяются штыревые или подвесные изоляторы, изготовленные из стекла, фарфора или полимеров (рис. 1.3–1.5).

Рис. 1.3. Линейные штыревые изоляторы: а – фарфоровый ШФ-10Г; б – стеклянный НС 18А

Рис. 1.4. Конструкции подвесных тарельчатых изоляторов: а – из закаленного стекла с конусной заделкой деталей; б – из фарфора с «арочной» заделкой деталей; 1 – стержень; 2 – изоляционная деталь; 3 – шапка; 4 – цементная заделка; 5 – замок; 6 – герметик

Рис. 1.5. Полимерный изолятор типа ЛК 70/35-AIV

Штыревые изоляторы применяются при напряжении от 0,4 до 6 кВ, при напряжении от 10 до 35 кВ применяются как штыревые, так и подвесные изоляторы.

Изоляторы из закаленного стекла в отличие от фарфоровых не требуют проверки на электрическую прочность перед монтажом. В случае наличия дефекта изолирующая деталь стеклянного изолятора рассыпается на мелкие части, а остаток стеклянного изолятора сохраняет несущую способность, равную не менее 75 % номинальной электромеханической прочности изолятора.

Полимерные изоляторы представляют собой комбинированную конструкцию, состоящую из высокопрочных стержней из стеклопластика с полимерным защитным покрытием, тарелок и металлических наконечников. Стеклопластиковый стержень защищается от внешних воздействий защитной оболочкой, стойкой к ультрафиолетовому излучению и химическим воздействиям. Полимерные изоляторы позволяют заменить целые гирлянды стеклянных и фарфоровых изоляторов. Кроме того, полимерные изоляторы значительно легче, чем гирлянды из стекла и фарфора.

Эксплуатационные характеристики изоляторов зависят от аэродинамических характеристик изолирующей детали («тарелки») изолятора. Хорошее обтекание изолятора способствует уменьшению загрязнения, лучше происходит его самоочистка ветром и дождем и, как следствие, не происходит значительного снижения уровня изоляции гирлянды.

Основные характеристики изолятора – его механическая разрушающая сила, кН, электромеханическая разрушающая сила, кН, а также соотношение длины пути утечки изолятора, мм, к строительной высоте изолятора, мм.

Механическая разрушающая сила – наименьшее значение силы, приложенной к изолятору в определенных условиях, при которой он разрушается.

Электромеханическая разрушающая сила – наименьшее значение силы, приложенной к изолятору в определенных условиях, находящемуся под действием разности электрических потенциалов, при которой он разрушается.

Длина пути утечки изолятора – это кратчайшее расстояние или сумма кратчайших расстояний по контуру наружной изоляционной поверхности между частями, находящимися под разными электрическими потенциалами. От этой величины зависит надежность работы изолятора при загрязнении и увлажнении.

Хранение изоляторов на площадке должно осуществляться под навесом и в таком положении, чтобы избежать скопления воды в полостях изолятора. Технические характеристики изоляторов приведены в табл. 1.69—1.71.

Таблица 1.69

Штыревые изоляторы (см. рис. 1.3)

* На напряжение до 1 кВ. * * На напряжение свыше 1 кВ.

Таблица 1.70

Подвесные тарельчатые высоковольтные изоляторы (см. рис. 1.4)

Таблица 1.71

Полимерные линейные изоляторы для воздушных линий электропередачи (см. рис. 1.5)

При сооружении линий электропередачи с применением проводов SAX используются изоляторы финского производства типа SDI (табл. 1.72).

Таблица 1.72

Изоляторы типа SDI

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

особенности и выбор, журнал Новости электротехники, февраль 2004

Штыревые изоляторы для ЛЭП: особенности и выбор

Олег ЕФИМОВ, начальник конструкторского бюро инженерного конструкторско-технологического центра ОАО «ЮАИЗ».

         Штыревым линейным изоляторам уже более 100 лет: впервые они появились в 1892 г. на линии 15 кВ и до сих пор являются основным элементом изоляции на воздушных линиях электропередачи до 20 кВ и, реже, до 35 кВ.
         В России  одним из ведущих производителей  линейных штыревых изоляторов является Южноуральский арматурно-изоляторный завод. Он выпускает фарфоровые штыревые изоляторы ШФ 10Г и ШФ 20Г.

          Изолятор ШФ 10Г                  Изолятор ШФ 20Г

 

Сравнительный анализ изоляторов ШФ 10Г, ШФ 20Г и изолятора ШС 10Д из отожженного  стекла.

ПОКАЗАТЕЛИШФ 10ГШФ 20Г ШС 10Д
Длина пути утечки, мм 

265 

400

280

Высота, мм 

140 

184 

 145

Диаметр, мм 

140

175

160

  Разрушающая нагрузка на изгиб, кН, не менее 

12,5

13

 13

Пробивное напряжение в изоляционной среде, кВ, не менее 

160 

180

  130

Выдерживаемое напряжение частоты 50 Гц в сухом состоянии, кВ, не менее 

65 

85

60

Выдерживаемое напряжение частоты 50 Гц под дождем, кВ, не менее 

42 

 65

 40

Выдерживаемое импульсное напряжение 

100

 135 

90

          При сравнении изоляторов (таблица) видно, что характеристики фарфоровых  изоляторов выше. Исключение- длина пути утечки ШФ10Г, т.к. ШС10Д превосходит  ШФ10Г по габаритам. 
          Наилучшими показателями среди сравниваемых изоляторов обладает изолятор ШФ20Г.
Хотя он проектировался на номинальное напряжение 20 кВ, сфера его применения значительно шире. Сегодня ШФ20Г все чаще устанавливают на линиях 10 кВ в районах с повышенным естественным загрязнением атмосферы (прибрежные районы, районы с пылевыми бурями), а также в районах с промышленным загрязнением атмосферы. Кроме того, ШФ20Г - монолитный изолятор, что также является его преимуществом.
      

      Основной недостаток штыревых изоляторов из отожженного стекла ШС - их термостойкость, которая ниже, чем у фарфоровых изоляторов. При испытаниях фарфоровые изоляторы выдерживают три цикла резких изменений температуры с перепадом 700 °С, а изоляторы из отожженного стекла - три цикла с перепадом 450°С.
            Недостаточная термостойкость изоляторов из отожженного стекла вызывает большие разрушения при их эксплуатации, как из-за резкого перепада суточных температур, так и из-за нагрева изолятора  в солнечные дни.
      

            Разрушения стеклянных изоляторов из-за низкой термостойкости порождают ложное
представление, что изолятор разрушился при электрическом пробое. В действительности,
при пробое изоляторов из отожженного стекла образуется сквозное оплавленное отверстие диаметром до 1мм (практически так же, как и у фарфоровых изоляторов), обнаружить
которое сложно даже при ближайшем рассмотрении, а уж на линии практически невозможно, если не использовать специальные приборы или приборы ИК - контроля. Поэтому причиной разрушения на пинии стеклянного штыревого изолятора может быть резкий перепад температур, не электрически пробой.
      

         Устанавливая на воздушные линии электропередачи изоляторы ШС10Д, ШС10Г, энергетики неизбежно столкнутся с проблемой их температурных разрушений. В то же время изоляторы ШФ10Г и ШФ20Г выдерживают без разрушения любые природные температурные колебания, возможные на территории нашей страны. На это стоит обратить внимание энергетикам при выборе типа штыревых изоляторов для ЛЭП.

ПРОДУКТОВАЯ ЛИНЕЙКА ОАО «ЮАИЗ»
       Помимо изоляторов ШФ10Г и ШФ20Г ОАО "ЮАИЗ" выпускает линейные подвесные изоляторы из закаленного стекла ПС, линейную арматуру для воздушных линий электропередачи, фарфоровые опорные и опорно-штыревые изоляторы. Продукция завода поставляется в энергосистемы России и стран ближнего зарубежья, для контактных сетей электрифицированных железных дорог, нефтегазовой промышленности, на внешний рынок: в Финляндию, Швецию, Италию, Испанию, Ливан, Сирию, Вьетнам, Иран и т.д.

МЕНЕДЖМЕНТ КАЧЕСТВА
       На заводе действует система менеджмента качества, соответствующая требованиям международного стандарта ISO 9001. Все изоляторы, выпускаемые Южноуральским арма-турно-изоляторным заводом, прошли типовые испытания на соответствие требованиям МЭК-383-1 в лабораториях КЕМА (Нидерланды), Всероссийского Электротехнического Института (ВЭИ, Москва) и Института высоких напряжений Хельсинкского Технологического Университета (Финляндия).

 

www.aiz.ru

Линейные изоляторы | Линии электропередачи

Линейные изоляторы предназначаются для подвески проводов и грозозащитных тросов к опорам линий электропередачи. В зависимости от напряжения линий электропередачи применяются штыревые или подвесные изоляторы, изготовленные из стекла, фарфора или полимеров (3–1.5).

3. Линейные штыревые изоляторы: а – фарфоровый ШФ-10Г; б – стеклянный НС 18А

4. Конструкции подвесных тарельчатых изоляторов: а – из закаленного стекла с конусной заделкой деталей; б – из фарфора с «арочной» заделкой деталей; 1 – стержень; 2 – изоляционная деталь; 3 – шапка; 4 – цементная заделка; 5 – замок; 6 – герметик

5. Полимерный изолятор типа ЛК 70/35-AIV

Штыревые изоляторы применяются при напряжении от 0,4 до 6 кВ, при напряжении от 10 до 35 кВ применяются как штыревые, так и подвесные изоляторы.

Изоляторы из закаленного стекла в отличие от фарфоровых не требуют проверки на электрическую прочность перед монтажом. В случае наличия дефекта изолирующая деталь стеклянного изолятора рассыпается на мелкие части, а остаток стеклянного изолятора сохраняет несущую способность, равную не менее 75 % номинальной электромеханической прочности изолятора.

Полимерные изоляторы представляют собой комбинированную конструкцию, состоящую из высокопрочных стержней из стеклопластика с полимерным защитным покрытием, тарелок и металлических наконечников. Стеклопластиковый стержень защищается от внешних воздействий защитной оболочкой, стойкой к ультрафиолетовому излучению и химическим воздействиям. Полимерные изоляторы позволяют заменить целые гирлянды стеклянных и фарфоровых изоляторов. Кроме того, полимерные изоляторы значительно легче, чем гирлянды из стекла и фарфора.

Эксплуатационные характеристики изоляторов зависят от аэродинамических характеристик изолирующей детали («тарелки») изолятора. Хорошее обтекание изолятора способствует уменьшению загрязнения, лучше происходит его самоочистка ветром и дождем и, как следствие, не происходит значительного снижения уровня изоляции гирлянды.

Основные характеристики изолятора – его механическая разрушающая сила, кН, электромеханическая разрушающая сила, кН, а также соотношение длины пути утечки изолятора, мм, к строительной высоте изолятора, мм.

Механическая разрушающая сила – наименьшее значение силы, приложенной к изолятору в определенных условиях, при которой он разрушается.

Электромеханическая разрушающая сила – наименьшее значение силы, приложенной к изолятору в определенных условиях, находящемуся под действием разности электрических потенциалов, при которой он разрушается.

Длина пути утечки изолятора – это кратчайшее расстояние или сумма кратчайших расстояний по контуру наружной изоляционной поверхности между частями, находящимися под разными электрическими потенциалами. От этой величины зависит надежность работы изолятора при загрязнении и увлажнении.

Хранение изоляторов на площадке должно осуществляться под навесом и в таком положении, чтобы избежать скопления воды в полостях изолятора. Технические характеристики изоляторов приведены в табл. 1.69—1.71.

Таблица 1.69

Штыревые изоляторы (см. 3)

* На напряжение до 1 кВ. * * На напряжение свыше 1 кВ.

Таблица 1.70

Подвесные тарельчатые высоковольтные изоляторы (см. 4)

Таблица 1.71

Полимерные линейные изоляторы для воздушных линий электропередачи (см. 5)

При сооружении линий электропередачи с применением проводов SAX используются изоляторы финского производства типа SDI (табл. 1.72).

Таблица 1.72

Изоляторы типа SDI

energy-ua.com

Изоляторы для высоковольтных линий электропередач

В нашей стране широко распространены, наряду с кабельными линиями, воздушные высоковольтные линии электропередач. У каждого способа прокладки высоковольтных линий есть свои достоинства и недостатки. Кабельные линии обеспечивают прежде всего максимальную безопасность и не загромождают окололинейное пространство и в этом их основное достоинство. С другой стороны, кабельные линии более дорогостоящие и не везде имеется техническая возможность их укладки, вызванная плотностью подземных инженерных коммуникаций.

Воздушные высоковольтные линии электропередач экономически менее затратные по сравнению с кабельными линиями, но они значительно загромождают пространство вдоль линий и представляют собой опасные зоны. В связи с различными показателями линий электропередач еще на стадии их проектирования разрабатываются несколько вариантов и при согласовании проекта делается окончательный выбор способа их прокладки. Кроме того в стране имеется огромная разветвленная сеть воздушных высоковольтных линий электропередач, которые необходимо содержать и обеспечивать техническое обслуживание.

Одними из основных конструктивных элементов высоковольтных линий являются изоляторы различных типов и назначения, которые представляют собой устройства для крепления и изоляции токопроводящих проводов и кабелей на опорах воздушных линий электропередачи. Электрические изоляторы по своему назначению и конструктивному исполнению делятся на опорные, проходные, защитные, такелажные и другие. По способу крепления на опорах изоляторы подразделяются на штыревые и подвесные. Штыревые изоляторы крепятся на опорах на специальных штырях или крюках и применяются в основном на воздушных линиях с напряжением до 35 киловольт. Подвесные же изоляторы применяются на линиях с напряжением 35 и более киловольт, и каждый много раз встречал на высоковольтных линиях собранные из таких изоляторов гирлянды.

Любые высоковольтные изоляторы изготавливаются из электротехнического фарфора, технического стекла или из полимеров. Стеклянные изоляторы изготавливают из специального закаленного стекла, они имеют значительно большую механическую прочность при меньших размерах и массе, более длительный срок службы, в то же время имеют меньшее электрическое сопротивление. Наиболее сложными по конструкции являются подвесные изоляторы, которые состоят из фарфоровой или стеклянной изолирующей тарелки, оголовка или шапки из специального ковкого чугуна и стального стержня в форме пестика. Шапка и стержень закрепляются в тарелке с помощью высокомарочного марки не менее 500 цемента. Гирлянды подвесных изоляторов монтируются благодаря сферической конструкции головки стержня и шапки изоляторов, обеспечивающих надежное соединение изоляторов.

Число изоляторов в гирлянде обуславливается прежде всего напряжением ЛЭП, типом самих изоляторов и степенью загрязнения окружающей среды. Если по своим электротехническим показателям одной гирлянды оказывается недостаточно, то крепление проводов осуществляется двумя параллельно подвешенными гирляндами изоляторов. Подвесные полимерные изоляторы, точнее полимерные композитные изоляторы, представляют собой стеклопластиковый стержень с оконцевателями и полимерной оболочки.

Особое внимание в промышленной электротехнике было уделено стандартизации буквенных обозначений изоляторов, первое по их конструкции – Ш – штыревые, П – подвесные изоляторы, второе по материалу изготовления – Ф – фарфоровые, С – стеклянные, П – полимерные изоляторы. Цифры после буквенных обозначений означают номинальное напряжение электрического тока в киловольтах для данного изолятора. Многие электротехнические компании выполняют работы по строительству и реконструкции высоковольтных линий электропередач.

www.szenergo.ru

Изоляторы, техническое описание, характеристики | Бесплатные дипломные работы на DIPLOMKA.NET

Изоляторы предназначены для изолирования проводов от несущих конструкций и их крепления. В большинстве случаев они выдерживают большие механические нагрузки. Воздушные линии 0,4, 6, 10 кВ сооружаются с применением фарфоровых и
стеклянных изоляторов. Для линий напряжением 0,4 кВ применяются изоляторы типа ТФ-12, ТФ-16, ТФ-20, РФО-12, РФО-16, а также штыревые изоляторы ШЛН-1, ШЛН-2, ШЛН-3, ШЛН-4 и др. Для линий напряжением 6, 10 кВ используются изоляторы ШФ-6А, ШФ-10А, ШФ-10Б, ШЖБ-10, ШС-10, ШСС-10, ШССЛ-10, ШФ-20Г (рис.38, 39).
Для крепления на штырях и крюках изоляторы имеют резьбовые конусные отверстия. При установке изолятора на конец крюка или штыря наматывается пакля, пропитанная суриком, которая при навинчивании изолятора заполняет резьбовые канавки и плотно охватывает конец крюка или штыря с насечками. Однако такой метод не производителен. В настоящее время применяют полиэтиленовые колпачки. Колпачок при сборке надвигается на штырь до упора, после чего на колпачок навинчивается изолятор. Выпускаемые в настоящее время крюки КН-16, КН-18, КН-20, штыри ШН-17, ШН-18, ШН-22, ШН-21, ШН-24, ШН-26, ШН-30, ШН-37, ШН-38, ШН-40 имеют насечки, которые снижают изоляционную прочность изоляторов вследствие концентрации напряжений в стекле или фарфоре от заусенцев и насечек при навинчивании изоляторов. Для устранения этого дефекта наряду с применением накатки на концах штырей, а также для упрощения технологии изготовления штырей и монтажа изоляторов на них разработана конструкция штырей и крюков, имеющих на концах для крепления изоляторов две лыски, рис.37, а. На конец штыря с лысками надевается пластмассовый колпачок, имеющий продольный разрез в его нижней части и выступ на внутренней. При навинчивании изолятора колпачок, фиксированный лысками, не проворачивается и он уже не может быть сорван со штыря, рис.37, б.

Рис.37. Изоляторы и арматура :
а — конструкции колпачка и конец штыря с лысками;
б — стадии установки полиэтиленового колпачка на штыре;
в — изолятор, укрепленный на штыре

Рис.38. Подвесные изоляторы: а — ПФ-6А; б — ПР-3,5; в — НС-2 (для загрязненных районов)

Рис.39. Штыревые изоляторы: а — ТФ; б — ШЛН; в — ТСБ; г — ШС; д — ШСС; е — ШЖБ; ж — ШД;
Для железобетонных опор применяются крюк-скоба КС-18У, ДКС-18В.
Подвесные изоляторы (рис.38) марки ПФ-6А, ПР-3,5; НС-2 (для загрязненных районов) состоят из изолирующей тарелки 1 (фарфоровой или стеклянной), шапки 2, выполненной из ковкого чугуна, и стержня 3.
Шапку и стержень скрепляют с изолирующей частью портландцементом марки не ниже 500.
Чтобы обеспечить необходимую изоляцию проводов, подвесные изоляторы собирают в цепочку (гирлянду) и подвешивают к опорам. Количество изоляторов в гирлянде зависит от их типа, напряжения линии и материала опор. Гирлянды бывают поддерживающие и натяжные. Количество изоляторов в гирлянде указано в табл.26.2.
Таблица 26.2 Число изоляторов в гирляндах воздушных линий и РУ

В маркировку изоляторов входят буквы: Т — телеграфный, Ф — фарфоровый, ТС — телеграфно-стеклянный, ТСБ — телеграфно-стеклянный бесщелочной, ТФО — телеграфно-фарфоровый ответвительный, ШЛН — штыревой линейный для наружной установки, ШО — штыревой ответвительный, ПФ — подвесной фарфоровый, ПС — подвесной стеклянный. Буквы А, Б, В обозначают модификацию изоляторов. Цифры у подвесных изоляторов указывают на механическую прочность в тоннах, буква Р — ребристый, Н — наружной установки.
Изоляторы в условиях эксплуатации несут механическую нагрузку и одновременно находятся под электрическим напряжением. Они воспринимают на себя вес проводов, гололедные отложения, ветер, вибрацию и пляску проводов. Поэтому изоляторы должны отвечать не только большой механической, но и электрической прочности.
На рис.38, 39 приведены различные марки изоляторов.
Соединение изоляторов в гирлянде, крепление к ним проводов, подвеска на опорах, соединение проводов и другие работы производятся с помощью спецдеталей — арматуры. Арматуру делят на: сцепную, поддерживающую, натяжную, соединительную, контактную, защитную. Сцепная арматура служит для соединения элементов подвесок и крепления их к опорам (скобы, промежуточные звенья; коромысла, узлы крепления, серьги, ушки, Двусторонние пестики )

Рис. 95. Крюки и штыри для крепления штыревых изоляторов:
а — крюк КВ-25 для изоляторов ВЛ 6— 10 кв, б — крюк КН-18 для изоляторов ВЛ 0,4 кв, в — штырь ШН-17 для изоляторов ВЛ 0,4 кв

Рис. 96. Полиэтиленовые переходные колпачки для крепления на штырях и крюках штыревых изоляторов:
а —для ШЖБ-10 (ШФ-10), б — для ТФ-2
Штыревые изоляторы крепят к опорам на стальных крюках или штырях. Крюки (рис. 95, а и б) ввертывают непосредственно в деревянные опоры, а штыри (рис. 95, в) устанавливают на металлических, железобетонных или деревянных траверсах. Маркируют штыри и крюки буквами (К — крюк, Ш — штырь, Н — низковольтный, В — высоковольтный) и цифрами, обозначающими диаметр их верхушки (например, КН-18, КВ-25, ШН-17). Изоляторы крепят на крюках и штырях при помощи пеньки или пакли, пропитанных суриком, или переходных полиэтиленовых колпачков.
Наиболее целесообразно крепление изоляторов на крюках и штырях с помощью переходных колпачков. Колпачки изготовляют в виде стаканов с гладкими внутренними стенками и резьбой по наружной поверхности (рис. 96). Колпачок плотно надвигают на штырь до упора, после чего на него навертывают изолятор. Использование переходных колпачков значительно снижает трудоемкость крепления изоляторов и повышает надежность линии электропередачи. Однако для повсеместного применения колпачков необходимо закончить унификацию типоразмеров как самих колпачков, так и изоляторов и штырей.

diplomka.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *