Содержание

Резонансные режимы работы электрических цепей

В электротехнике при анализе режимов
работы электрических цепей широко
используется понятие двухполюсника.
Двухполюсникомпринято называть
часть электрической цепи произвольной
конфигурации, рассматриваемую относительно
двух выделенных выводов (полюсов).
Двухполюсники, не содержащие источников
энергии, называются пассивными. Всякий
пассивный двухполюсник характеризуется
одной величиной – входным сопротивлением,
т.е. сопротивлением, измеряемым (или
вычисляемым) относительно двух выводов
двухполюсника. Входное сопротивление
и входная проводимость являются взаимно
обратными величинами.

Пусть пассивный двухполюсник содержит
одну или несколько индуктивностей и
один или несколько конденсаторов. Под
резонансным режимом работы такого
двухполюсника понимают режим (режимы)
двухполюсника при котором входное
сопротивление является чисто активным.
По отношению к внешней цепи двухполюсник
ведет себя как активное сопротивление,
вследствие чего входные напряжение и
ток совпадают по фазе. Различают две
разновидности резонансных режимов:
резонанс напряжения и резонанс тока.

Резонанс напряжений

В простейшем случае резонанс напряжений
может быть получен в электрической цепи
переменного тока при последовательном
включении катушки индуктивности и
конденсаторов. При этом, изменяя емкость
конденсаторов при постоянных параметрах
катушки, получают резонанс напряжений
при неизменных значениях напряжения и
индуктивности, частоты и активного
сопротивления цепи. При изменении
емкости конденсаторов Спроисходит
изменение реактивного емкостного
сопротивления. При этом полное
сопротивление цепи также изменяется,
следовательно, изменяются ток, коэффициент
мощности, напряжения на катушке
индуктивности, конденсаторах, а также
активная, реактивная и полная мощности
электрической цепи. Зависимости токаI, коэффициента мощности cosи полного сопротивленияZцепи
переменного тока в функции емкостного
сопротивления (резонансные кривые) для
рассматриваемой цепи приведены на
рис. 9,а. Векторная диаграмма тока
и напряжений этой цепи при резонансе
представлена на рис. 9,б.

Как видно из этой диаграммы, реактивная
составляющая напряжения ULна
катушке при резонансе равна напряжениюUСна конденсаторе. При этом
напряжение на катушке индуктивностиUкпри резонансе вследствие того, что
катушка кроме реактивного сопротивленияXLобладает еще и активным
сопротивлениемR, несколько больше,
чем напряжение на конденсаторе.

Анализ представленных выражений
(2), а также рис. 9,аибпоказывают, что резонанс напряжений
имеет ряд отличительных особенностей.

1. При резонансе напряжений полное
сопротивление электрической цепи
переменного тока принимает минимальное
значение и оказывается равным ее
активному сопротивлению, т.е.

2. Из этого следует, что при неизменном
напряжении питающей сети (U= const)
при резонансе напряжений ток в цепи
достигает наибольшего значения=U/=U/R.
Теоретически ток может достигать больших
значений, определяемых напряжением
сети и активным сопротивлением катушки.

а)б)

Рис. 9

3. Коэффициент мощности при резонансе
cos=R/=R/= 1,
т.е. принимает наибольшее значение,
которому соответствует угол= 0.
Это означает, что вектор токаи вектор напряжения сетипри этом совпадают по направлению, так
как они имеют равные начальные фазыi=u.

4. Активная мощность при резонансе
P=RI 2имеет наибольшее значение, равное полной
мощностиS, в то же время реактивная
мощность цепиQ=XI 2= (XLXC)I 2оказывается равной нулю:=QLQC= 0.

5. При резонансе напряжений напряжения
на емкости и индуктивности оказываются
равными UС=UL=XC=XLIи в зависимости от тока и реактивных
сопротивлений могут принимать большие
значения, во много раз превышающие
напряжение питающей сети. При этом
напряжение на активном сопротивлении
оказывается равным напряжению питающей
сети, т.е.UR=U.

Резонанс напряжений в промышленных
электротехнических установках
нежелательное и опасное явление, так
как оно может привести к аварии вследствие
недопустимого перегрева отдельных
элементов электрической цепи или пробою
изоляции обмоток электрических машин
и аппаратов, изоляции кабелей и
конденсаторов при возможном перенапряжении
на отдельных участках цепи. В то же время
резонанс напряжений широко используется
в различного рода приборах и устройствах
электроники.

studfiles.net

Резонанс токов и напряжений: условия возникновения и применение

Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.

Реактивные сопротивления индуктивности и емкости

Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.

Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

Емкость и индуктивность в цепи переменного тока

Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.

Реактивное сопротивление катушки индуктивности определяется по формуле:

Векторная диаграмма:

 

Реактивное сопротивление конденсатора:

Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.

Векторная диаграмма:

Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:

Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):

От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.

Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:

U=I/X

Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

K=Q

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

Uк=Uвх*Q

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен:

cosФ=1

Эта формула показывает, что потери происходят за счет активной мощности:

S=P/Cosф

Резонанс токов

Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:

  1. Частота питания аналогична резонансной у контура.
  2. Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

Применение на практике

Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.

Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.

Заключение

Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:

  1. Где и в каких цепях наблюдается явление резонанса?

В индуктивно-емкостных цепях.

  1. Какие условия возникновения резонанса токов и напряжений?

Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.

  1. Как найти резонансную частоту?

В обоих случаях по формуле: w=(1/LC)^(1/2)

  1. Как устранить явление?

Увеличив активное сопротивление в цепи или изменив частоту.

Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:

Материалы по теме:

samelectrik.ru

Резонанс напряжений. Что такое резонанс в электрической цепи

Резонанс является одним из самых распространенных в природе физических явлений. Явление резонанса можно наблюдать в механических, электрических и даже тепловых системах. Без резонанса у нас не было бы радио, телевидения, музыки и даже качелей на детских площадках, не говоря уже об эффективнейших диагностических системах, применяемых в современной медицине. Одним из самых интересных и полезных видов резонанса в электрической цепи является резонанс напряжений.

Элементы резонансной цепи

Явление резонанса может возникнуть в так называемой RLC-цепи, содержащей следующие компоненты:

  • R — резисторы. Эти устройства, относящиеся к так называемым активным элементам электрической цепи, преобразуют электрическую энергию в тепловую. Другими словами, они удаляют энергию из контура и преобразуют ее в тепло.
  • L — индуктивность. Индуктивность в электрических цепях — аналог массы или инерции в механических системах. Этот компонент не очень заметен в электрической цепи, пока не попробуешь сделать в ней какие-либо изменения. В механике, например, таким изменением является изменение скорости. В электрической цепи — изменение тока. Если оно по какой-либо причине происходит, индуктивность противодействует такому изменению режима цепи.
  • С – обозначение для конденсаторов, которые представляют собой устройства, хранящие электрическую энергию подобно тому, как пружины сохраняют механическую энергию. Индуктивность концентрирует и сохраняет магнитную энергию, в то время как конденсатор концентрирует заряд и тем самым хранит электрическую энергию.

Понятие резонансного контура

Ключевыми элементами резонансного контура являются индуктивность (L) и емкость (C). Резистор имеет тенденцию к гашению колебаний, поэтому он удаляет энергию из контура. При рассмотрении процессов, происходящих в колебательном контуре, мы его временно игнорируем, но необходимо помнить, что подобно силе трения в механических системах электрическое сопротивление в цепях невозможно устранить.

Резонанс напряжений и резонанс токов

В зависимости от способа соединения ключевых элементов резонансный контур может быть последовательным и параллельным. При подключении последовательного колебательного контура к источнику напряжения с частотой сигнала, совпадающей с собственной частотой, при определенных условиях в нем возникает резонанс напряжений. Резонанс в электрической цепи с параллельно соединенными реактивными элементами называется резонансом токов.

Собственная частота резонансного контура

Мы можем заставить систему колебаться с собственной частотой. Для этого сначала необходимо зарядить конденсатор, как показано на верхнем рисунке слева. Когда это будет выполнено, ключ переводится в положение, показанное на том же рисунке справа.

В момент времени «0» вся электрическая энергия сохраняется в конденсаторе, и ток в контуре равен нулю (рисунок внизу). Обратите внимание, что верхняя пластина конденсатора заряжена положительно, а нижняя — отрицательно. Мы не можем видеть колебания электронов в цепи, но мы можем измерить ток амперметром, а при помощи осциллоскопа отследить характер зависимости тока от времени. Отметим, что T на нашем графике — это время, необходимое для завершения одного колебания, носящего в электротехнике название «период колебания».

Ток течет по часовой стрелке (рисунок внизу). Энергия передается из конденсатора в катушку индуктивности. На первый взгляд может показаться странным, что индуктивность содержит энергию, однако это похоже на кинетическую энергию, содержащуюся в движущейся массе.

Поток энергии возвращается обратно в конденсатор, но обратите внимание, что полярность конденсатора теперь изменилась. Другими словами, нижняя пластина теперь имеет положительный заряд, а верхняя пластина — отрицательный заряд (рисунок внизу).

Теперь система полностью обратилась, и энергия начинает поступать из конденсатора опять в индуктивность (рисунок внизу). В итоге энергия полностью возвращается к своей отправной точке и готова начать цикл заново.

Частота колебаний может быть аппроксимирована следующим образом:

где: F — частота, L — индуктивность, C — емкость.

Рассмотренный на этом примере процесс отражает физическую суть резонанса напряжений.

Исследование резонанса напряжений

В реальных схемах LC всегда присутствует небольшое сопротивление, которое с каждым циклом уменьшает прирост амплитуды тока. После нескольких циклов ток уменьшается до нуля. Этот эффект называется «затухание синусоидального сигнала». Скорость затухания тока до нулевого значения зависит от величины сопротивления в цепи. Тем не менее, сопротивление не изменяет частоту колебаний резонансного контура. Если сопротивление достаточно велико, синусоидальные колебания в контуре не возникнут вообще.

Очевидно, там, где существует собственная частота колебаний, есть возможность возбуждения резонансного процесса. Мы делаем это, включая в последовательную цепь источник питания переменного ток (АС), как показано на рисунке слева. Термин «переменный» означает, что выходное напряжение источника колеблется с определенной частотой. Если частота источника питания совпадает с собственной частотой контура, возникает резонанс напряжений.

Условия возникновения

Сейчас мы рассмотрим условия возникновения резонанса напряжений. Как показано на последнем рисунке, мы вернули резистор в контур. При отсутствии резистора в контуре ток в резонансной цепи будет нарастать до некоторого максимального значения, определяемого параметрами элементов контура и мощностью источника питания. Увеличение сопротивления резистора в резонансной цепи повышает тенденцию к затуханию тока в контуре, но не влияет на частоту резонансных колебаний. Как правило, режим резонанса напряжений не наступает, если сопротивление цепи резонанса удовлетворяет условию R = 2(L/C)0,5.

Использование резонанса напряжений для передачи радиосигнала

Явление резонанса напряжений является не только любопытнейшим физическим феноменом. Оно играет исключительную роль в технологии беспроводных коммуникаций – радио, телевидении, сотовой телефонии. Передатчики, используемые для беспроводной передачи информации, в обязательном порядке содержат схемы, предназначенные для резонирования на определенной для каждого устройства частоте, называемой несущей частотой. При помощи передающей антенны, подключенной к передатчику, он излучает электромагнитные волны на несущей частоте.

Антенна на другом конце приемо-передающего тракта получает этот сигнал и подает его на приемный контур, предназначенный для резонирования на частоте несущей. Очевидно, что антенна принимает множество сигналов на различных частотах, не говоря уже о фоновом шуме. Благодаря наличию на входе приемного устройства, настроенного на несущую частоту резонансного контура, приемник выбирает единственно правильную частоту, отсеивая все ненужные.

После детектирования амплитудно-модулированного (AM) радиосигнала, выделенный из него низкочастотный сигнал (НЧ) усиливается и подается на звуковоспроизводящее устройство. Это простейшая форма радиопередачи очень чувствительна к шумам и помехам.

Для повышения качества принимаемой информации разработаны и успешно используются другие, более совершенные способы передачи радиосигнала, которые также базируются на использовании настроенных резонансных систем.

Частотная модуляция или FM-радио решает многие из проблем радиопередачи с амплитудно-модулированным передающим сигналом, однако это достигается ценой существенного усложнения системы передачи. В FM-радио системные звуки в электронном тракте превращаются в небольшие изменения несущей частоты. Часть оборудования, которое выполняет это преобразование, называется «модулятор» и используется с передатчиком.

Соответственно, к приемнику должен быть добавлен демодулятор для преобразования сигнала обратно в форму, которая может быть воспроизведена через громкоговоритель.

Другие примеры использования резонанса напряжения

Резонанс напряжений как основополагающий принцип заложен также в схемотехнике многочисленных фильтров, широко применяемых в электротехнике для устранения вредных и ненужных сигналов, сглаживания пульсаций и генерирования синусоидальных сигналов.

fb.ru

Резонанс напряжений | Онлайн журнал электрика

Если в цепь переменного тока включены поочередно катушка индуктивности и конденсатор, то они по-своему действуют на генератор, питающий цепь, и на фазовые соотношения меж током и напряжением.

Катушка индуктивности заносит сдвиг фаз, при котором ток отстает от напряжения на четверть периода, конденсатор же, напротив, принуждает напряжение в цепи отставать по фазе от тока на четверть периода. Таким макаром, действие индуктивного сопротивления на сдвиг фаз меж током и напряжением в цепи обратно действию емкостного сопротивления.

Это приводит к тому, что общий сдвиг фаз меж током и напряжением в цепи находится в зависимости от соотношения величин индуктивного и емкостного сопротивлений.

Если величина емкостного сопротивления цепи больше индуктивного, то цепь носит емкостный нрав, т. е. напряжение отстает по фазе от тока. Если же, напротив, индуктивное сопротивление цепи больше емкостного, то напряжение опережает ток, и, как следует, цепь носит индуктивный нрав.

Общее реактивное сопротивление Хобщ рассматриваемой нами цепи определяется методом сложения индуктивного сопротивления катушки XL и емкостного сопротивления конденсатора ХС.

Но потому что действие этих сопротивлений в цепи обратно, то одному из их, а конкретно Хс приписывается символ минус, и общее реактивное сопротивление определяется по формуле:

Хобщ = XL ХС, XL = ωL, ХС = 1 / ωС

Применив к этой цепи закон Ома, получим:

I = U / Хобщ

Формулу эту можно конвертировать последующим образом:

U = I Хобщ = I (XL ХС) = IXL С

В приобретенном равенстве IXL —действующее значение слагающей общего напряжения цепи, идущей на преодоление индуктивного сопротивления цепи, а IХС—действующее значение слагающей общего напряжения цепи, идущей на преодоление емкостного сопротивления.

Таким макаром, общее напряжение цепи, состоящей из поочередного соединения катушки и конденсатора, можно рассматривать как состоящее из 2-ух слагаемых, величины которых зависят от величин индуктивного и емкостного сопротивлений цепи.

Мы считали, что такая цепь не обладает активным сопротивлением. Но в тех случаях, когда активное сопротивление цепи не так уже не достаточно, чтоб им можно было пренебречь, общее сопротивление цепи определяется последующей формулой:

где R — общее активное сопротивление цепи, XL ХС — ее общее реактивное сопротивление. Переходя к формуле закона Ома, мы вправе написать: U = I / Z

Резонанс напряжений в цепи переменного тока

Индуктивное и емкостное сопротивления, соединенные поочередно, вызывают в цепи переменного тока наименьший сдвиг фаз меж током и напряжением, чем если б они были включены в цепь по отдельности.

По другому говоря, от одновременного деяния этих 2-ух разных по собственному нраву реактивных сопротивлений в цепи происходит компенсация (обоюдное ликвидирование) сдвига фаз.

Полная компенсация, т. е. полное ликвидирование сдвига фаз меж током и напряжением в таковой цепи, наступит тогда, когда индуктивное сопротивление окажется равным емкостному сопротивлению цепи, т. е. когда XL = ХС либо, что то же, когда ωL = 1 / ωС.

Цепь в данном случае будет вести себя как чисто активное сопротивление, т. е. будто бы в ней нет ни катушки, ни конденсатора. Величина этого сопротивления обусловится суммой активных сопротивлений катушки и соединительных проводов. При всем этом действующее значение тока в цепи будет большим и обусловится формулой закона Ома I = U / R, где заместо Z сейчас поставлено R.

Сразу с этим действующие напряжения как на катушке UL = IXL так и на конденсаторе Uc = IХС окажутся равными и будут очень большой величины. При малом активном сопротивлении цепи эти напряжения могут во много раз превысить общее напряжение U на зажимах цепи. Это увлекательное явление именуется в электротехнике резонансом напряжений.

На рис. 1 приведены кривые напряжений, тока и мощности при резонансе напряжений в цепи.

График тока напряжений и мощности при резонансе напряжений

Следует твердо держать в голове, что сопротивления XL и ХС являются переменными, зависящими от частоты тока, и стоит хотя бы малость поменять частоту его, к примеру, прирастить, как XL = ωL вырастет, а ХС = = 1 / ωС уменьшится, и тем в цепи сходу нарушится резонанс напряжений, при всем этом вместе с активным сопротивлением в цепи появится и реактивное. То же самое произойдет, если поменять величину индуктивности либо емкости цепи.

При резонансе напряжений мощность источника тока будет затрачиваться лишь на преодоление активного сопротивления цепи, т. е. на нагрев проводников.

Вправду, в цепи с одной катушкой индуктивности происходит колебание энергии, т. е. повторяющийся переход энергии из генератора в магнитное поле катушки. В цепи с конденсатором происходит то же самое, но за счет энергии электронного поля конденсатора. В цепи же с конденсатором и катушкой индуктивности при резонансе напряжений (XL = ХС) энергия, раз запасенная цепью, временами перебегает из катушки в конденсатор и назад и на долю источника тока выпадает только расход энергии, нужный для преодоления активного сопротивления цепи. Таким макаром, обмен энергии происходит меж конденсатором и катушкой практически без роли генератора.

Стоит только нарушить резонанс напряжений в цени, как энергия магнитного поля катушки станет не равной энергии электронного поля конденсатора, и в процессе обмена энергии меж этими полями появится излишек энергии, который временами будет то поступать из источника в цепь, то ворачиваться ему назад цепью.

Явление это очень сходно с тем, что происходит в часовом механизме. Маятник часов мог бы безпрерывно колебаться и без помощи пружины (либо груза в часах-ходиках), если б не силы трения, тормозящие его движение.

Пружина же, сообщая маятнику в подходящий момент часть собственной энергии, помогает ему преодолеть силы трения, чем и достигается непрерывность колебаний.

Подобно этому и в электронной цепи, при явлении резонанса в ней, источник тока расходует свою энергию лишь на преодоление активного сопротивления цепи, тем поддерживая в ней колебательный процесс.

Итак, мы приходим к выводу, что цепь переменного тока, состоящая из генератора и поочередно соединенных катушки индуктивности и конденсатора, при определенных критериях XL = ХС преобразуется в колебательную систему. Такая цепь получила заглавие колебательного контура.

Из равенства XL = ХС можно найти значения частоты генератора, при которой наступает явление резонанса напряжений:

Значение емкости и индуктивности цепи, при которых наступает резонанс напряжений:

Lрез = 1 / ω2С, Срез = 1 / ω2L

Таким макаром, изменяя всякую из этих 3-х величин (fрез, L и С), можно вызвать в цепи резонанс напряжений, т. е. перевоплотить цепь в колебательный контур.

Пример полезного внедрения резонанса напряжений: входной контур приемника настраивается конденсатором переменной емкости (либо вариометром) таким макаром, что в нем появляется резонанс напряжений. Этим достигается нужное для обычной работы приемника огромное увеличение напряжения на катушке по сопоставлению с напряжением в цепи, сделанным антенной.

Вместе с полезным внедрением явления резонанса напряжений в электротехнике технике нередко бывают случаи, когда резонанс напряжений вредоносен. Огромное увеличение напряжения на отдельных участках цепи (на катушке либо на конденсаторе) по сопоставлению с напряжением генератора может привести к порче отдельных деталей и измерительных устройств.

elektrica.info

Резонанс напряжений

Резонанс токов

 

Резонанс токов возникает в цепи с параллельным включением элементов (рис.5.1). Такая цепь содержит два сложных потенциальных узла, а все элементы находятся под одним и тем же напряжением

 

. (5.1)

 

Для любого из узлов — 1 или 1’ справедлив первый закон Кирхгофа:

 

(5.2)

 

Применяя к (5.2) выражения (1.7) и (1.12) приведем его к виду

 

(5.3)

 

Подставим в (5.3) вместо u(t) его значение из (5.1) и решим его

 

(5.4)

 

Векторная диаграмма, построенная по (5.4) приведена на рис. 5.2. В качестве исходного в ней принят общий для всех элементов цепи вектор напряжения . С этим вектором совпадает по направлению вектор тока через резистор. Его величина равна

.

Вектор тока через индуктивность отстает от вектора напряжения, а вектор тока через емкость опережает его на 90о. Проведем последовательное сложение векторов . Результатом сложения является вектор Он сдвинут по фазе относительно вектора на угол j. Разность векторов дает вектор реактивного тока . Его величина

 

. (5.5)

 

 

Векторы и образуют треугольник токов. Для этого треугольника справедливы выражения

 

 

(5.6)

 

. (5.7)

Треугольник токов наглядно показывает, что для достижения резонанса в цепи необходимо обеспечить равенства противофазных токов и . Тогда результирующий реактивный ток цепи и угол j будут равны нулю, а сопротивление цепи станет активным. Из выражения (5.5) видно что может быть равно нулю при соблюдении условия

 

. (5.8)

 

Отсюда легко определить:

-частоту , на которой наступает резонанс (резонансную частоту) при заданных значениях элементов L и С

 

 

; (5.9)

 

-значение одного из элементов L или С, если заданы резонансная частота и другой элемент

. (5.10)

 

 

Определим значение тока всей цепи и токов, протекающих в ее ветвях в режиме резонанса.

Действующее значение тока всей цепи на частоте легко найти по (5.6)

 

(5.11)

 

Но это значение равно току, протекающему через активное сопротивление цепи т.е.

(5.12)

 

Ток, протекающий через элемент L определим по закону Ома

 

. (5.13)

Подставляя в (5.13) вместо U его значение из (5.11) получим

 

(5.14)

 

Аналогично определяем выражение для тока через элемент

 

(5.15)

Принимая во внимание (5.8) нетрудно сделать вывод о том, что токи протекающие через индуктивный и емкостной элементы равны по величине, но противоположны по фазе. Величина Q равная

 

(5.16)

 

может быть больше единицы, в специальных устройствах достигает несколько десятков и сотен единиц и называется добротностью.

Еще раз подчеркнем замечательную особенность цепи в режиме резонанса. Токи протекающие в ветвях реактивных элементов могут принимать значения в десятки и сотни раз больше общего тока цепи. Поэтому резонанс цепи называют резонансом токов. Очень важно и то, что они противофазны. Именно это указывает на то, что в цепи происходит колебательный процесс с частотой по передаче электрической энергии конденсатора в магнитную энергию индуктивности и наоборот. Энергия источника на этот процесс не затрачивается (при идеальных L и С). Она расходуется только на преодоление сопротивления резистора R. Поэтому цепь рис.5.1. называют параллельным колебательным контуром.

Чтобы завершить анализ цепи рассмотрим зависимость ее токов и напряжения от частоты (рис.5.4). Ток, протекающий через элемент R — iR

 
 

определяется законом Ома и не зависит от частоты. Ток через емкость ic согласно (5.15) прямопропорционален частоте, а ток через индуктивность iL -обратнопропорционален. На частоте они равны по величине, но противоположны по направлению. Общий ток цепи определяется суммой трех токов. Поэтому он имеет большое значение на частотах, дальних от резонансной, но принимает значение iR на резонансной частоте. Физически это означает что на резонансной частоте проводимость цепи минимальна ( она равна проводимости только элемента R). Поэтому падение напряжения между узлами 1-1’ максимально на частоте и имеет вид резонансной огибающей. В силу этих качеств параллельный колебательный контур широко применяют в радио и радиотехнических устройствах для выделения сигналов на заданной частоте.

 

Резонанс напряжений

 

Резонанс напряжений возникает в цепи с последовательным включением элементов (рис.5.5).

 

Известно, что комплексное сопротивление токов цепи определяется выражением

.

 

По определению резонанс в цепи рис.5.5 наступает, когда выполнится условие

 

.

 

Отсюда видно, что резонанс в цепи возникает на частоте

 

.

Очевидно также, что

 

, .

Видим, что полученные выражения полностью соответствуют (5.9) и (5.10). Это подтверждает единство физической сути различных видов резонанса.

Определим ток и напряжение всей цепи , а также падение напряжения на ее отдельных элементах в режиме резонанса.

Так как сопротивление всей цепи в режиме резонанса минимально и равно R то ток в ней максимален и равен

, (5.17)

 

а падение напряжения определяется ЭДС источника — Е.

Падение напряжения на отдельных элементах легко найти по закону Ома. Так, падение напряжения на резисторе R равно

 

. (5.18)

 

Тривиальный математически результат интересен по физической сути. Все напряжение источника выделяется на одном элементе цепи.

Падение напряжения на индуктивности равно

 

. (5.19)

Величина

 

(5.20)

 

называется добротностью и может принимать значение десятков и сотен единиц. Значит, падение напряжения на индуктивности может в десятки и сотни раз превышать ЭДС источника.

Падение напряжения на емкости равно

 

. (5.21)

Так как , то падение напряжения на емкости равно по величине падению напряжения на индуктивности, но согласно (5.8) они противоположны по знаку. Отношение напряжения на индуктивности или на емкости в режиме резонанса к току в этом режиме называют характеристическим сопротивлением , причем

 

. (5.22)

В силу того что

 

,

рассматриваемый режим назван резонансом напряжений. Противофазность напряжений и указывает на то, что в цепи происходит такой же колебательный процесс с частотой , как и в параллельном колебательном контуре.

Здесь также энергия источника затрачивается только на преодоление сопротивления резистора R. Поэтому цепь называется последовательным колебательным контуром.

Завершим анализ резонанса напряжений разбором частотной зависимости тока цепи рис.5.5. и падений напряжений на элементах L и С от частоты (рис.5.6). На рисунке пунктиром отмечен график ЭДС. Падение напряжения на идеальной индуктивности при равно нулю. С увеличением частоты сопротивление индуктивности, а значит и падение напряжения на ней увеличивается. Когда частота устремляется в бесконечность сопротивление ХL также устремляется в бесконечность. При этом падение напряжения стремится к Е. Между крайними точками существует экстремум напряжения который находится по формуле

 

. (5.23)

 

 

Частота, на которой достигается этот максимум определяется выражением

 

. (5.24)

 

Сопротивление емкости на частоте равно бесконечности и значит напряжение на ее обкладках равно Е. С увеличением частоты сопротивление ХС уменьшается, а при стремится к нулю. Между крайними точками также существует экстремум причем

 

. (5.25)

 

 

Частота, на которой достигается этот максимум определяется выражением

 

. (5.26)

 

Так как подкоренное выражение в (5.24) и (5.26) всегда меньше единицы то очевидно, что

 

.

Кроме того

 

.

 

В силу этих особенностей единственным верным признаком наступления резонанса в цепи является максимум тока, значение которого изменяется с изменением частоты по резонансной кривой.

 

 


 

Похожие статьи:

poznayka.org

РЕЗОНАНС НАПРЯЖЕНИЙ в колебательном контуре

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Резонанс напряжений, или последовательный резонанс, наблюдается в случае, когда генератор переменной эдс нагружен

 

Рис.1 — Схема и резонансные кривые для резонанса напряжений

 

на соединенные последовательно L и С контура (рис.1 а), т.е. включен внутри контура.

В такой цепи имеется активное сопротивление г и общее реактивное сопротивление х, равное

Разность хL, и xC берется потому, что индуктивное и емкостное сопротивления оказывают противоположные влияния на ток. Первое вызывает отставание по фазе тока от напряжения, а второе, наоборот, создает отставание напряжения от тока.

Для собственных колебаний xL и хс равны друг другу. Если частота генератора равна частоте контура, то для тока, создаваемого генератором, xL и хC также одинаковы. Тогда общее реактивное сопротивление х станет равным нулю и полное сопротивление цепи для генератора равно только одному активному сопротивлению, которое в контурах имеет сравнительно небольшую величину. Благодаря этому ток значительно возрастает и устраняется сдвиг фаз между напряжением генератора и током.

Резонанс напряжений выражается в том, что полное сопротивление контура становится наименьшим и равным активному сопротивлению, а ток становится максимальным.
Условием резонанса напряжений является равенство частот генератора и контура f = fo, или равенство индуктивного и емкостного сопротивлений для тока генератора: xL = хC.

Когда частота генератора больше частоты контура, индуктивное сопротивление преобладает над емкостным и контур представляет для генератора сопротивление индуктивного характера.

Если частота генератора меньше частоты контура, то емкостное сопротивление больше индуктивного и контур для генератора является сопротивлением емкостного характера. В любом из этих случаев при отклонении от резонанса полное сопротивление контура возрастает по сравнению а его величиной при резонансе.

На (рис.1 б) показаны графики изменения полного сопротивления контура z и тока I при изменении частоты генератора f.

Для расчета сопротивления контура и тока при резонансе напряжений служат простые формулы:

Таким образом, напряжение генератора U равно падению напряжения на активном сопротивлении (г).
Большой ток в контуре при резонансе создает на индуктивном и емкостном сопротивлениях напряжения, значительно превышающие напряжение генератора. Они равны:

Так как хL = хC = р, то эти напряжения равны, но они противоположны по фазе и взаимно компенсируют друг друга. Действительно, напряжение на катушке опережает ток на 90°, а напряжение на конденсаторе отстает от тока на 90°. Ясно, что между этими напряжениями сдвиг фаз равен 180°.

Кривая резонанса для тока, приведенная на (рис.1 6), при небольшом Изменении частоты показывает также изменение напряжения UL и Uс (только в ином масштабе). Это следует из того, что при изменении частоты вблизи резонанса ток меняется сильно, а сопротивления xL и хC — сравнительно мало.

Например, если fpeз — 1000 кгц и частота изменяется на 20 кгц, т.е. на 2%, то сопротивления xL и хС изменяются каждое также только на 2%. В результате напряжения UL = IxL и Uc = IxС изменяются почти точно пропорционально току.

При резонансе напряжение на катушке или на конденсаторе в Q раз больше, чем напряжение генератора, равное U — Ir. Напряжение на L или С равно UL = Uc = р. Поэтому

Чем выше добротность контура Q, тем больше увеличение напряжения при резонансе.

Повышение напряжения на катушке и на конденсаторе характерно для резонанса напряжений, само название которого подчеркивает увеличение напряжения в момент резонанса.

Большие напряжения на катушке и конденсаторе получаются за счет постепенного накопления энергии в контуре в процессе возникновения в нем колебаний. Эдс генератора возбуждает в контуре колебания, амплитуда которых нарастает до тех пор, пока энергия, даваемая генератором, не станет равна потерям энергии в активном сопротивлении контура. После этого в контуре происходят мощные колебания, характеризующиеся большой величиной тока и большими напряжениями, а генератор расходует небольшую мощность только для компенсации потерь энергии.

Подобно этому можно, раскачивая тяжелый маятник легкими движениями руки с частотой, равной его собственной частоте, постепенно довести амплитуду колебаний маятника до значительной величины, во много раз превышающей амплитуду колебаний руки, играющей роль генератора.

Резонанс напряжений применяется в радиотехнике для получения максимального тока и напряжения в контуре.

Например, антенный контур радиопередатчика настраивают на резонанс напряжений для того, чтобы ток в антенне был максимальным. Тогда дальность действия передатчика будет наибольшей. Входной контур приемника также настраивают на резонанс напряжений для того, чтобы получить усиление напряжения сигналов той радиостанции, на частоту которой настроен контур. Напряжения сигналов других радиостанций, частоты которых отличаются от резонансной частоты приемного контура, усиливаются незначительно.

При резонансе напряжений в величину активного сопротивления контура входит внутреннее сопротивление генератора. Если оно велико, то качество контура может стать низким и резонансные свойства его будут выражены слабо. Поэтому для резонанса напряжений генератор, питающий контур, должен иметь малое внутреннее сопротивление.

www.radioingener.ru

причины возникновения, способы использования и возможный вред, цепь переменного тока

Резонанс напряжений происходит в электрической цепи, включающей в себя несколько элементов: источник электроэнергии, катушку индуктивности и конденсатор. Перечисленные элементы соединяются последовательно. При этом источник напряжения имеет такую частоту, которая совпадает с внутренним контуром. Это часто применяется в полосовых фильтрах.

Последовательное соединение

Катушка индуктивности и последовательно включенный в цепь конденсатор вместе особенным образом воздействуют на генератор, от которого запитана цепь. Также они влияют на фазовые соотношения напряжения и тока:

  1. Первый элемент сдвигает фазу, при этом напряжение начинает обгонять ток примерно на четверть периода.
  2. Второй элемент действует иначе. Он заставляет ток обгонять напряжение также на одну четвертую часть периода фазы.

Индуктивное сопротивление действует на смещение фаз, из-за чего его можно считать противоположным работе емкостного сопротивления. В результате итоговый сдвиг фаз между напряжением и током в цепи зависит от суммарного действия индуктивного и емкостного сопротивлений, а также соотношения между ними. От этого тоже зависит характер цепи.

Если одноимённая величина превосходит противоположную, то систему можно считать емкостной, ведь ток превосходит по фазе. При иной ситуации характер цепи считается индуктивным, ведь напряжение доминирует.

Общее реактивное сопротивление определить просто. Необходимо сложить два показателя сопротивления:

  1. Индуктивное от катушки.
  2. Емкостное от конденсатора.

Из-за того, что они оказывают противоположное воздействие, одному из них присваивается отрицательный знак (обычно ёмкостному сопротивлению конденсатора). Тогда общее реактивное сопротивление можно найти так: из показателя катушки вычесть конденсатор. Если общее напряжение разделить на найденный параметр, то по закону Ома получится сила тока. Эту формулу можно легко изменить, переведя на напряжение. Оно будет равно произведению силы тока и разности двух сопротивлений (индуктивное берется с катушки, а емкостное — с конденсатора).

Если раскрыть скобку, то первое значение отразит действительный показатель части общего напряжения, которая старается преодолеть сопротивление. Второе — слагающая всего напряжения, которая пытается преодолеть емкостный параметр. Так, общее напряжение можно рассматривать как сумму этих слагаемых.

Обычно значением активного сопротивления можно пренебречь. Если оно слишком велико, учитывать его все же нужно.

Для определения этого значения нужно вычислить квадратный корень из суммы двух частей:

  1. Общее активное сопротивление, возведенное в квадрат.
  2. Квадрат разности индуктивного и емкостного сопротивлений, то есть общее реактивное.

Очевиден переход к закону Ома. Если разделить силу тока на найденное значение, то можно получить напряжение.

Цепь переменного тока

Если соединить катушку с конденсатором последовательно, происходит меньшее смещение по фазе, чем если бы эти элементы были включены отдельно. Это связано с тем, что эти элементы действуют на цепь совершенно иначе, сдвигая баланс в разные стороны. Они компенсируют фазовый сдвиг, усредняют его значение.

Возможен и равный баланс. Полная компенсация соотношения между напряжением и током произойдет, если сопротивление катушки и конденсатора будут равны друг другу. В этом случае цепь будет вести себя так, будто бы в нее не включены эти элементы. Действие системы сведется к чистому активному сопротивлению, образованному соединительными проводами и катушкой. Сила действующего тока достигнет максимального значения, его можно будет вычислить по стандартному закону Ома.

Понятие резонанса

При описанной ситуации действующие напряжения на катушке и конденсаторе сравняются, а также достигнут максимального значения. Если активное сопротивление в этой цепи минимальное, то локальные показатели будут в несколько раз превышать общее напряжение. Такое явление принято называть резонансом напряжений.

Важно понимать, что местные сопротивления напрямую зависят от показателей тока. Если частоту тока уменьшить, то индуктивное значение снизится, а емкостное — возрастет. Помимо активного сопротивления, в сети также возникнет реактивное, из-за чего резонанс сойдет на нет. Это случится и в том случае, если изменить значения индуктивности или емкости.

Если в цепи возникает резонанс, то энергия источника расходуется исключительно на нагрев проводов, то есть преодоление активного сопротивления, так как катушка перекидывает ток на конденсатор и обратно без усилий генератора. Ведь в цепи с одним из элементов ток колеблется, периодически переходя от истока в магнитное поле. Это касается катушки. В случае с конденсатором наблюдается аналогичная ситуация, только участвует электрическое поле. Если эти два элемента объединены, а также наблюдается резонанс, то энергия циклично движется от катушки к конденсатору и обратно. При этом она тратится в большей степени только из-за сопротивления проводника.

При нарушении резонанса количество энергии, требуемой первому и второму элементу, не совпадает. Возникнет избыток, который будет покрываться усилиями генератора. Этот процесс можно сравнить с механизмом часов с маятником. Если бы силы трения не было, он мог колебаться без использования дополнительного груза или пружины в механизме. Но эти элементы, когда необходимо, передают часть своей энергии маятнику, из-за чего тот преодолевает силу трения и движется непрерывно. При резонансе в электроцепи количество энергии, которую необходимо сообщить для поддержания колебаний, минимально.

Цепь считается колебательным контуром, если соблюдено несколько условий. Во-первых, ток должен быть переменным. Во-вторых, в систему должны входить генератор, конденсатор и катушка индуктивности. В-третьих, элементы должны быть соединены последовательно. В-четвертых, показатели внутренних сопротивлений должны быть равны.

Но резонанс невозможен, если частота генератора, емкость и индуктивность цепи не будут соответствовать значениям, зависящим от других параметров цепи. Все они вычисляются по специальным несложным формулам.

Польза и вред

Резонанс часто используют с пользой. Один из ярких бытовых примеров — починка радиоприемника. Электрика устройства настраивается таким образом, чтобы возник резонанс. Благодаря этому напряжение на катушке повышается и превосходит значение в цепи, созданной антенной. Это необходимо для нормальной работы приемника.

Но иногда действие резонанса сказывается на технике исключительно пагубно. Рост напряжения на некоторых участках может привести к их порче. Из-за того, что локальные значения не соответствуют генератору, отдельные детали или измерительные приборы могут выйти из строя.


220v.guru

Отправить ответ

avatar
  Подписаться  
Уведомление о