Расчет плавкой вставки предохранителя онлайн по току

Для защиты электрических цепей от аварийных режимов работы, таких как повышенное потребление мощности или короткое замыкание, используют плавкие вставки или предохранители. Они устроены таким образом, что при протекании тока до определенного уровня ничего не происходит, но, согласно закону Джоуля-Ленца при протекании электрического тока происходит выделение тепла на проводнике. Поэтому при определенной силе тока тепла выделяется такое количество, что проводник плавкой вставки просто перегорает.

В электронных схемах предохранители устанавливают на входе питания, он нужен для защиты трансформатора, дорожек платы и других узлов. Также используется для защиты электродвигателя – их часто устанавливают в щитах, к которым происходит подключение. К примеру, при заклинивании ротора электродвигателя в цепи статора (и ротора тоже, для ДПТ, и двигателей с фазным ротором) будет протекать повышенный ток, который сожжет предохранитель. Но если его номинал подобран чрезмерно большим, то сгорят обмотки электрической машины.

Кроме самого проводника предохранитель состоит из стеклянного или керамического корпуса, а для больших мощностей и напряжений корпус заполняется внутри диэлектрическим порошкообразным материалом – это нужно для гашения дуги, возникающей при перегорании плавкой вставки.

Казалось бы, простое устройство и принцип работы, но для его расчетов нужно использовать ряд формул, что значительно усложняет задачу. Хотя можно избежать их, если использовать наш онлайн калькулятор, который производит расчет плавкой вставки предохранителя:

Давайте разбираться, как рассчитать диаметр проволоки. Для начала определяют Iном потребления защищаемого устройства. Его можно узнать из технической документации, для электродвигателей – прочитать на шильдике или определить по мощности устройства. Если параметр не указан, определите его по формуле:

Iном=P/U

После этого проводят расчеты по току, умноженному на коэффициент запаса, который равен 1,2-2,0, в зависимости от типа нагрузки и её особенностей. При имеющейся тонкой проволоке определенного диаметра рассчитывают Iплавления:

При диаметрах проволоки от 0,02 до 0,2 мм:

От 0,2 мм и выше:

Где:

  • d – диаметр;
  • k или m – коэффициент, он приведен в таблице для различных металлов.

Чтобы определить диаметр провода зная ток I:

Для малых I – d от 0,02 до 0,2 мм:

Для больших I – диаметр провода от 0,2 мм и выше:

Если нужно узнать количество тепла, которое выделяется на плавкой вставке, то используйте формулу:

Время и количество теплоты для плавления:

Где:

  • m – масса проволоки;
  • Лямбда – удельное количество телпоты плавления, табличная величина характерная для каждого материала.

Масса круглой проволоки:

Для проверки правильности расчётов вы можете измерить сопротивление проводника по формуле:

Кстати, предохранители высоковольтных цепей обычно имеют высокое сопротивление (килоОмы). Для удобства можно воспользоваться таблицей:

Как вы можете убедиться, расчет плавкой вставки предохранителя достаточно объёмный, поэтому проще посчитать защитный предохранитель с помощью нашего онлайн калькулятора по току. Как уже было сказано, его вы можете определить, исходя из мощности.

Нравится(0)Не нравится(0)

samelectrik.ru

3.3.2. Расчет и выбор предохранителей

Предохранитель не должен сработать при номинальном токе нагрузки , поэтому выполняется условие

<, (3.19)

где – пограничный ток плавкой вставки предохранителя, определяемый по эмпирическим формулам или времятоковыми характеристиками [5, 8-9].

Для лучшей защиты величина пограничного тока предохранителя должна выбираться возможно ближе к. Предохранитель не обеспечивает надежной защиты двигателя от токов перегрузки из-за нестабильности времятоковой характеристики и необходимости учета пусковых токов. Учитывая эти особенности, выбирают для медной вставки

/а для легкоплавкой вставки 1,2–1,4.

Расчет максимально-токовой защиты на предохранителях можно выполнить приближенно.

Номинальный ток плавкой вставки для осветительной нагрузки с активным сопротивлением определяется по номинальному току нагрузки

. (3.20)

Для асинхронного двигателя с фазным ротором (АДФ) и двигателя постоянного тока (ДПТ), если Iпуск , плавкую вставку можно выбирать из условия

(1–1,25) (3.21)

Для двигателей с большими пусковыми токами (Iпуск ), с небольшим числом включений и легкими условиями пуска (продолжительность пуска не более 5с.) ток плавкой вставки определяется по формуле

(3.22)

при тяжелых условиях пуска или большой частоте включений

(3.23)

Для двигателей, работающих в повторно-кратковременном режиме, за номинальный ток принимается ток в режиме ПВ=25%.

Плавкие вставки предохранителей для группы электрических приемников выбираются из условия одновременной работы наибольшего количества приемников и пуске двигателя с максимальным пусковым током

(3.24)

Наряду с проверкой плавкой вставки по условию пуска или кратковременной перегрузки необходимо проводить проверку по условиям короткого замыкания. Допускается применение предохранителей при кратностях /≥3, однако желательно, чтобы выполнялось условие

/≥10.

3.3.3. Выбор автоматического выключателя

Необходимо выбрать автоматический выключатель с максимально-токовым и тепловым расцепителями.

Номинальное напряжение выключателя и число главных контактов должно соответствовать заданным.

Современные автоматические выключатели имеют встроенные расцепители, устанавливаемые заводом-изготовителем и рассчитанные на заданные номинальные токи. Номинальный ток расцепителя может отличаться от номинального тока выключателя , но не превосходит его. Поэтому выбор выключателя производится по номинальному току его расцепителя.

Номинальный ток комбинированного расцепителя выбирается из условия

(3.25)

Выключатели с максимально токовым расцепителем снабжены отсечкой, кратность уставки которой по отношению к номинальному току расцепителя отстраивается от максимально возможного превышения тока

над номинальным значением в процессе нормальной работы потребителя

(3.26)

где 1,2–1,8 – коэффициент запаса превышения максимального тока.

Для группы двигателей

(3.27)

для схем управления электроприводами

(3.28)

где – суммарный номинальный ток катушек максимального количества одновременно включенных в схеме управления.

Для асинхронного двигателя отсечка выключателя может быть отстроена [5, 9] от амплитудного ударного пускового тока(1,2–1,4)на 10–20% превышая его значение

≥(1,1–1,2). (3.29)

Номинальная отсечка автоматического выключателя должна быть не меньше, но не должна превышать минимального значения тока КЗ в цепи

<. (3.30)

Таким образом, кратность уставки тока отсечки к номинальному току расцепителя должна находиться в пределах

<. (3.31)

Предельная коммутационная способность выключателя должна превышать ток короткого замыкания.

Тепловой элемент комбинированного расцепителя проверяется по номинальной уставке на ток срабатывания теплового расцепителя. Номинальная уставка на ток срабатывания теплового расцепителя выключателя

равна среднему значению между током несрабатывания расцепителя – 1,1Iном р и нормированным значением тока срабатывания – 1,45Iном р

(3.32)

Время срабатывания теплового расцепителя автоматического выключателя находится из его защитной характеристики по току перегрузки, длительно протекающему в цепи и проверяется условие согласования нагрузочной характеристики двигателя и защитной характеристики выключателя. При пуске двигателя время срабатываниядолжно быть больше времени пусканенагруженного двигателя, т. е.

>. (3.33)

Если это условие не выполняется, то необходимо изменить в пределах регулирования тока несрабатывания или заменить тепловой нагревательный элемент.

studfiles.net

Расчет плавных вставок предохранителей. Пример расчета.

Поиск Лекций

Плавкие вставки для предохранителей всегда перегорают в неподходящий момент. И что мы делаем? Конечно! Делаем из него “жука”. Если это сделать неправильно, можно навлечь на себя беду. Для того, чтобы правильно и безопасно восстановить плавкую вставку нужно всего лишь выбрать правильный диаметр используемой проволоки. Ниже приведен расчет диаметра провода для плавких вставок предохранителей по таблице.

Ток плавле- ния, А Диаметр, мм
Медь Алюминий Никелин Железо Олово Свинец
0,5 0,03 0,04 0,05 0,06 0,11 0.13
0,05 0,07 0,08 0,12 0,18 0,21
0,09 0,1 0,13 0,19 0,29 0,33
0,11 0,14 0,18 0,25 0,38 0,43
0,14 0,17 0,22 0,3 0,46 0,52
0,16 0,19 0,25 0,35 0,53 0,6
0,18 0,22 0,28 0,4 0,6 0,68
0,2 0,25 0,32 0,45 0,66 0,75
0,22 0,27 0,34 0,48 0,73 0,82
0,24 0,29 0,37 0,52 0,79 0,89
0,25 0,31 0,39 0,55 0,85 0,95
0,32 0,4 0,52 0,72 1,12 1,25
0,39 0,48 0,62 0,87 1,35 1,52
0,46 0,56 0,73 1,56 1,75
0,52 0,64 0,81 1,15 1,77 1,98
0,58 0,7 0,91 1,26 1,95 2,2
0,63 0,77 0,99 1,38 2,14 2,44
0,68 0,83 1,08 1,5 2,3 2,65
0,73 0,89 1,15 1,6 2,45 2,78
0,82 1,3 1,8 2,80 3,15
0,91 1,1 1,43 3,1 3,5
1,22 1,57 2,2 3,4 3,8
1,08 1,32 1,69 2,38 3,64 4,1
1,15 1,42 1,82 2,55 3,9 4,4
1,31 1,6 2,05 2,85 4,45
1,45 1,78 2,28 3,18 4,92 5,5
1,59 1,94 2,48 3,46 5,38
1,72 2,10 2,69 3,75 5,82 6,5
1,84 2,25 2,89 4,05 6,2
1,99 2,45 3,15 4,4 6,75 7,6
2,14 2,6 3,35 4,7 7,25 8,1
2,2 2,8 3,55 7,7 8,7
2,4 2,95 3,78 5,3 8,2 9,2

Диаметр плавкой вставки предохранителя выбирают в зависимости от тока плавления. За ток плавления обычно принимают значение тока в два раза превышающий номинальный ток. Т.е. если Ваше устройство потребляет ток 1А, ток плавления принимаем 2А. И согласно нему выбираем диаметр проволоки. В данном случае медь 0,09мм или алюминий 0,1мм.

Плавкая вставка не перегорает мгновенно, для этого требуется некоторое время, пусть даже очень малое. Поэтому, кратковременные перегрузки (например, пусковые токи) не вызывают разрушения плавкой вставки.

Плавкая вставка, даже небольшого диаметра, толщиной всего 0,2мм, при перегорании может разлетаться на мелкие части. Часть металла испаряется, часть разбрызгивается расплавленными каплями. Разлетающиеся части плавкой вставки имеют температуру близкую к температуре плавления материала, из которого они сделаны и могут нанести вред оборудованию или находящимся рядом людям. Поэтому, плавкая вставка обязательно должна быть в корпусе, который сможет противостоять воздействиям при разрушении плавкой вставки. В зависимости от номинала плавких вставок, корпуса изготавливают из пластмассы, стекла, керамики.

Плавкие вставки можно так же рассчитать по предложенной ниже методике.

Расчёт проводников для плавких предохранителей

Ток плавления проводника для применения в плавкой вставке (предохранителе) можно рассчитать по формулам:

где:
d – диаметр проводника, мм;
k – коэффициент, зависящий от материала проводника согласно таблице.

где:
m – коэффициент, зависящий от материала проводника согласно таблице.

Формула (1) применяется для малых токов (тонкие проводники d=(0,02 – 0,2) мм), а формула (2) для больших токов (толстые проводники).
Таблица коэффициентов.

Диаметр проводника для использования в плавком предохранителе рассчитывается по формулам:
Для малых токов (тонкие проводники диаметром от 0,02 до 0,2 мм):

Для больших токов (толстые проводники):

Количество теплоты выделяемое на плавкой вставке рассчитывается по формуле:

где:
I – ток, текущий через проводник;
R – сопротивление проводника;
t – время нахождения плавкой вставки под током I.

Сопротивление плавкой вставки рассчитывается по формуле:

где:
p– удельное сопротивление материала проводника;
l – длина проводника;
s – площадь сечения проводника.

Для упрощения расчетов сопротивление принимается постоянным. Рост сопротивления плавкой вставки вследствие повышения температуры не учитываем.

Зная количество теплоты, необходимое для расплавления плавкой вставки, можно рассчитать время расплавления по формуле:

где:
W – количество теплоты, необходимое для расплавления плавкой вставки;
I – ток плавления;
R – сопротивление плавкой вставки.

Количество теплоты, необходимое для расплавления плавкой вставки рассчитывается по формуле:

где:
лямбда – удельная теплота плавления материала из которого сделана плавкая вставка;
m – масса плавкой вставки.

Масса плавкой вставки круглого сечения рассчитывается по формуле:

где:
d – диаметр плавкой вставки;
l – длина плавкой вставки;
p – плотность материала плавкой вставки.


Рекомендуемые страницы:



poisk-ru.ru

5. Расчет плавких предохранителей:

Однополосные предохранители серии ПРС предназначены для защиты промышленного электрооборудования и сетей низкого напряжения от перегрузок и токов короткого замыкания в уставках переменного тока напряжением до 380В, частотой 50 и 60Гц и постоянного тока напряжением до 440В. Предохранители предназначены для работы при температуре окружающего воздуха от -40ْ до +40ْ С и относительной влажности не более 90%.

5.1. Расчет плавких предохранителей в первичной обмотке трансформатора.

Номинальная мощность трансформатора – 250 ВА.

Номинальное напряжение трансформатора – 110В.

Значит, номинальный ток трансформатора, проходящий через трансформаторы FU1:

IFU1 = P1/υ1 = 250ВА/110В = 2.27 А.

Выбираем предохранитель ПРС – 6 – П.

Номинальная сила тока предохранителя – 6А.

Номинальная сила тока плавких вставок – 1, 2А.

5.2. Расчет плавких предохранителей в цепи управления:

Номинальная мощность вторичной обмотки цепи управления – 0.19 кВА.

Номинальное напряжение вторичной обмотки цепи управления – 110В.

Выбор плавкой вставки осуществляется из условия:

Iвст.н ≥ Iрасч.у*(1.1÷1.25)

где Iрасч.у = ∑Iа.вкл + ∑Iа.раб – расчетный ток цепи управления,

∑Iа.вкл – сумма включаемых (пусковых) токов обмоток пускателя и промежуточных реле,

∑Iа.раб – сумма работающих токов.

Iрасч.у = ∑Iа.вкл + ∑Iа.раб = Iпкм1+Iпк1+Iпк2+Iкм1+Iк1+Iк2 = 2.4+4.5+4.5+0.15+0.3+0.3 = 12.15А.

Iвст.н ≥ Iрасч.у*(1.1÷1.25) = 1.2*12.15 = 14.58А.

Выбираем плавких предохранитель ПРС – 20 – П.

Номинальная сила тока предохранительного режима предохранителя – 20А.

Номинальная сила тока продолжительного режима плавких вставок – 10, 16, 20А.

Iвст.н = 16А – номинальный ток плавкой вставки для FU2.

5.3. Расчет плавких предохранителей в цепи сигнализации и освещения.

Одновременно могут работать 3 лампы:

Iрасч = 3*(Iл.пуск + Iл.ном) = 3*(1+0.1) = 3.3А.

В качестве плавкого предохранителя выбираем ПРС – 6 – П.

Iплав.вставки = 4А – номинальная сила тока плавкой вставки для FU4.

5.4. Расчет плавких предохранителей вторичной обмотки в цепи динамического торможения

Iвст = Iв + Iпкт1 + Iкт1 = 43.4 + 5 + 3 = 51.4А.

Из условия выбираем плавкий предохранитель ПРС – 63П.

Iпл.вст = 63А – номинальная сила тока плавкой вставки для FU3.

5.5. Расчет плавких предохранителей первичной обмотки в цепи динамического торможения

Iрасч = Pi/Uф = iв*Uв/Uф = 3400/220 = 15.45А.

В качестве плавкого предохранителя выбираем ПРС – 20 – П.

Iн = 20А; Iпл.вст = 20А – номинальная сила тока плавкой вставки для FU5.

6. Расчет реле времени.

Реле времени предназначены для передачи команд из одной электрической цепи в другую, с определенным установленным предварительно выдержкой времени, для применения в схемах как коммутирующие изделия.

Формула для расчета времени торможения электродвигателя имеет вид:

Мс = 0; tт = J * ωд.ном/Мт.сред + Мс;

ωд.ном = N*2π/60 = 1465*2*3.14/60 = 153.3 рад/с.

N – асинхронная частота вращения.

Мн = Р1н*60/2π*N = 18500*60/(2*3.14*1465) = 120.6 Н*м.

Мпуск = Мн*1.4 = 120.6*1.4 = 168.8 Н*м.

Мкр = Мн*2.3 = 120.6*2.3 = 277.4 Н*м.

Мт.сред = Мпуск*Мкр/2 = 168.8 + 277.4/2 = 223.1Н*м.

J’ =Jд.р = 0.13 кг*м2, отсюда следует:

tт = 0.13*153.3/223.1 = 0.01.

Условию выбора соответствует реле времени ЭВ100.

U = 24В.

Диапазон выдержки: 0.01 – 20с.

Число замкнутых контактов: 1.

Реле времени ЭВ100 с замыкающим контактом, т.е. через определенный промежуток времени, после обесточивания катушки реле времени, его контакт находящийся в цепи управления, размыкает цепь. Катушка контактора обесточивается и размыкает цепь динамического торможения. Торможение закончилось.

studfiles.net

3.1 Расчет плавких вставок предохранителей или уставок автоматов

Выбор по нагреву нормальными рабочими токами, и по условию срабатывания в случае кз:

номинальный ток плавкой вставки, А.

ток срабатывания плавкой вставки, А.

Выбор предохранителя для лини жилого сектора 1

1.1

Выбирается предохранитель ППН-33 160 А,

= 160 А. 3

Результат выбора предохранителей сведен в таблицу 12

Таблица 12

Выбор предохранителей

Название линии

Iр (А)

Iкз

Iпв (А)

Iпвс (А)

Тип предохранителя

 

 

 

(от А до В)

120,7

1016,073

132,77

3048,22

Плавкая вставка ППН-33 160/80А

 

 

 

(от C до D)

23,6

725,292

26

2175,88

Плавкая вставка ППН-33 160/32А

 

 

 

(от E до F)

120,7

566,707

132,77

3000,22

Плавкая вставка ППН-33 160/80А

 

 

 

(от G до J)

54

566,707

59,42

1700,12

Плавкая вставка ППН-33 160/80А

 

 

 

(от K до L)

50,6

465,029

55,71

1395,09

Плавкая вставка ППН-33 160/80А

 

 

 

(от M до N)

70,9

537,335

77,99

1868,66

Плавкая вставка ППН-33 160/80А

 

 

 

(от O до м P)

23,6

725,292

26

2175,88

Плавкая вставка ППН-33 160/32А

 

 

 

(от Q до м R)

120,7

1003,987

132,77

2897,45

Плавкая вставка ППН-33 160/80А

 

 

 

(от S до м T)

50,6

470,389

55,72

1427,19

Плавкая вставка ППН-33 160/80А

 

 

 

Рис.7,8,9. Время-токовая характеристика предохранителей ППН

3.2 Выбор электрического шкафа ветроустановки

Шкафы вводно-распределительные ШВР предназначены для приема и распределения электроэнергии напряжением 380В переменного тока частотой 50Гц и защиты электрических установок при перегрузках, токах короткого замыкания и сверхтоков. Конструктивно шкафы ШВР изготавливаются с автоматическими выключателями или рубильниками на вводе. В шкафах с автоматическим выключателем ввода управление последним может производиться как непосредственно флажком выключателя, так и ручным дистанционным приводом, выведенным на дверь шкафа. В исполнении с рубильником на вводе управление может осуществляться как внутри шкафа, так и снаружи.

Шкафы изготавливаются на номинальные токи 100, 160, 250, 400 и 630А, напряжением до 660В переменного тока и до 440В постоянного. Ввод и вывод провода предусматривается как сверху, так и снизу.

Рассчитаем ток распределительного шкафа:

Выбирается распределительный шкаф ШРС1-28У3 630А. Данное оборудование целесообразнее заказать по индивидуальному проекту.

.

3.3. Выбор магнитных пускателей

Выбор магнитных пускателей производим по номинальному току линий, в которой он установлен, к тому же номинальный ток увеличенный на 10 - 15 % должен попадать в пределы регулирования тока несрабатывания теплового реле магнитного пускателя.

Условия выбора:

по току магнитного пускателя

по току теплового реле

где= 1,1 коэффициент запаса.

Выбор магнитного пускателя для лини жилого сектора 1

1,1А

Выбирается номинальный ток теплового реле 50А, тип теплового реле РТЛ 2059 с магнитным пускателем ПМл 4220 (Iном=63 А)и пределами регулирования тока несрабатывания 43-64 А. Полученный ток попадает в эти пределы.

Дальнейший выбор магнитных пускателей производится аналогично и сведен в таблицу 13

Таблица 13

Выбор магнитных пускателей

studfiles.net

Плавкие предохранители. Выбор, расчет предохранителя.

Плавкие предохранители

Назначение

При возникновении эксплуатационных (технологических) перегрузок и аварийных режимов, являющихся следствием нарушений работы схемы, по электрическим цепям аварийного контура протекают токи, превосходящие номинальные значения, на которые рассчитано электрооборудование.

В результате воздействия аварийных токов и перегрева токопроводов нарушается электрическая изоляция, обгорают и плавятся контактные поверхности соединительных шин и электрических аппаратов. Электродинамические удары при переходных процессах вызывают повреждение шин, изоляторов и обмоток реакторов.

Для ограничения амплитуды аварийных токов и длительности их протекания применяются специальные устройства и системы защиты электрооборудования.

Примечание. Устройства защиты должны отключить аварийную цепь раньше, чем могут выйти из строя отдельные ее элементы.

При больших перегрузках или коротких замыканиях устройства защиты должны сразу отключить всю электроустановку или часть ее с максимальным быстродействием для обеспечения дальнейшей работоспособности или, если авария является следствием выхода из строя одного из элементов цепи, предотвратить выход из строя другого электрооборудования.

В случае небольших перегрузок, не опасных для оборудования в течение определенного времени, система защиты может воздействовать на предупреждающую сигнализацию для сведения обслуживающего персонала или на систему автоматического регулирования для снижения тока.

Виды защиты и требования к ней

Поскольку основным фактором, приводящим к выходу из строя электрооборудования, является тепловое действие аварийного тока, то по принципу построения защитные устройства делятся на токовые и тепловые.

Токовые защитные устройства контролируют значения или отношения значений протекающих через оборудование токов.

Независимо от параметров установки и типа применяемых защитных аппаратов и систем выделяют следующие общие требования к защите.

Быстродействие — обеспечение минимально возможного времени срабатывания защиты, не превышающего допустимого.

Селективность. Аварийное отключение должно производиться только в той цепи, где возникла причина аварии. А другие участки силовой цепи должны оставаться в работе.

Электродинамическая стойкость. Максимальный ток, ограниченный защитными устройствами, не должен превышать допустимого для данной электроустановки значения по электродинамической стойкости.

Уровень перенапряжений. Отключение аварийного тока не должно вызывать перенапряжений, опасных для полупроводниковых приборов. Надежность. Устройства защиты не должны выходить из строя при отключении аварийных токов. Они обеспечивают возможность быстрого

восстановления электрической цепи при устранении неисправности.

Помехоустойчивость. При появлении помех в сети и в цепях управления устройства защиты не должно ложно срабатывать.

Чувствительность. Защита должна срабатывать при всех повреждениях и токах, опасных для элеменов схемы, независимо от места и характера аварии.

Плавкие предохранители

Определение. Плавкие предохранители — это аппараты, защищающие установки от перегрузок и токов короткого замыкания.

Основными элементами предохранителя являются плавкая вставка, включаемая в рассечку защищаемой цепи, и дугогасительное устройство (это не обязательный атрибут, а вспомогательный, без него предохранитель все равно работать будет), гасящее дугу, возникающую после плавления вставки.

К предохранителям предъявляются следующие требования:

- времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта;

- время срабатывания предохранителя при коротком замыкании должно быть минимальным, особенно при защите полупроводниковых приборов;

- характеристики предохранителя должны быть стабильными;

- в связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность;

- замена сгоревшего предохранителя или плавкой вставки не должна занимать много времени.

Выбор предохранителей

для защиты асинхронных электродвигателей

Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.

Отстройка плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.

Правило. Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Все электродвигатели разбиты на две группы: по времени; по частоте пуска.

Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3–5 с, пускаются эти двигатели редко, менее 15 раз в 1 ч.

К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто — более 15 раз в 1 ч.

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по формуле:

IвсIпд/К,

где Iпд — пусковой ток двигателя; К — коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6–2.

Примечание. Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она со временем может перегореть и при нормальной работе двигателя.

Вставка, выбранная в соответствии с приведенной выше формулой, может сгореть также при затянувшемся по сравнению с расчетным временем пуске или самозапуске двигателя. Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.

Сгорание вставок при пуске может повлечь работу двигателя на двух фазах и его повреждение.

Примечание. Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи питания каждого двигателя.

Выбор предохранителей для защиты магистралей, питающих несколько асинхронных электродвигателей

Защита магистралей, питающих несколько двигателей, должна обеспечивать и пуск двигателя с наибольшим пусковым током, и самозапуск двигателей. Если он допустим по условиям техники безопасности, технологического процесса и т. п.

При расчете уровня защиты необходимо точно определить, какие двигатели:

- отключаются при понижении или полном исчезновении напряжения;

- остаются включенными;

- повторно включаются при появлении напряжения.

Для уменьшения нарушений технологического процесса применяют специальные схемы включения удерживающего электромагнита пускателя, обеспечивающего немедленное включение в сеть двигателя при восстановлении напряжения. Поэтому в общем случае номинальный ток плавкой вставки, через которую питается несколько самозапускающихся двигателей, выбирается по формуле:

Iвс ≥ ∑Iпд/К,

где ∑Iпд — сумма пусковых токов самозапускающихся электродвигателей.

Выбор предохранителей для защиты магистралей при отсутствии самозапускающихся электродвигателей

Плавкие вставки предохранителей выбираются по следующему соотношению:

Iном. вст.Iкр/К,

где Iкр = Iпуск + Iдлит — максимальный кратковременный ток линии; Iпускпусковой ток электродвигателя или группы одновременно включаемых электродвигателей, при пуске которых кратковременный ток линии достигает наибольшего значения; Iдлитдлительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей) — это суммарный ток, который потребляется всеми элементами, подключенными через плавкий предохранитель, определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Выбор предохранителей для защиты асинхронных электродвигателей от перегрузки

Поскольку пусковой ток в 5–7 раз превышает номинальный ток двигателя, плавкая вставка, выбранная по выражению IвсIпд/К будет иметь номинальный ток в 2–3 раза больше номинального тока двигателя. Выдерживая этот ток неограниченное время, она не может защитить двигатель от перегрузки.

Для защиты двигателей от перегрузки обычно применяют тепловые реле, встраиваемые в магнитные пускатели или в автоматические выключатели.

Примечание. Если для защиты двигателя от перегрузки и управления им применяется магнитный пускатель, то при выборе плавких вставок приходится учитывать также возможность повреждения контактов пускателя.

Дело в том, что при коротких замыканиях в двигателе снижается напряжение на удерживающем электромагните пускателя. Он разрывает ток короткого замыкания своими контактами, которые, как правило, разрушаются. Для предотвращения короткого замыкания двигатели должны отключаться предохранителем раньше, чем разомкнутся контакты пускателя.

Это условие обеспечивается, если время отключения тока короткого замыкания предохранителем не превышает 0,15–0,2 с. Для этого ток короткого замыкания должен быть в 10–15 раз больше номинального тока вставки предохранителя, защищающего электродвигатель.

Обеспечение селективности срабатывания плавких предохранителей

Избирательность (селективность) защиты плавкими предохранителями обеспечивается подбором плавких вставок таким образом, чтобы при возникновении короткого замыкания, например, на ответвлении к электроприемнику, срабатывал ближайший плавкий предохранитель, защищающий этот электроприемник, но не срабатывал предохранитель, защищающий головной участок сети.

Выбор плавких предохранителей по условию селективности следует производить, пользуясь типовыми время-токовыми характеристиками t=f(I) предохранителей с учетом возможного разброса реальных характеристик по данным завода-изготовителя.

При защите сетей предохранителями типов ПН, НПН и НПР с типовыми характеристиками (рис. 20 и рис. 21) селективность действия защиты будет выполняться, если между номинальным током плавкой вставки, защищающей головной участок сети Iг, и номинальным током плавкой вставки на ответвлении к потребителю Io выдерживаются определенные соотношения.

Например, при небольших токах перегрузки плавкой вставки (около 180–250 %) селективность будет выдерживаться, если Iг больше Io хотя бы на одну ступень стандартной шкалы номинальных токов плавких вставок.

Рис. 20. Защитные (времятоковые) характеристики плавких предохранителей типа ПН-2


Рис. 21. Защитные (времятоковые) характеристики плавких предохранителей типа НПР и НПН

При коротком замыкании селективность защиты предохранителями типа НПН будет обеспечиваться, если будут выдерживаться следующие соотношения:

где Iк — ток короткого замыкания ответвления, А; Iг — номинальный ток плавкой вставки плавкого предохранителя головного участка сети, А; Iо — номинальный ток плавкой вставки на ответвлении, А.

Соотношения между номинальными токами плавких вставок Iг и Iо для предохранителей типа ПН2, обеспечивающие надежную селективность, приведены в табл. 2.

Таблица 2 Номинальные токи последовательно включенных плавких вставок предохранителей ПН2, обеспечивающих надежную селективность


Номинальный ток меньшей плавкой вставки , а

Номинальный ток большей плавкой вставки , а, при отношении /Io

10

20

50

100 и более

30

40

50

80

120

40

50

60

100

120

50

60

80

120

120

60

80

100

120

120

80

100

120

120

150

100

120

120

150

150

120

150

150

250

250

150

200

200

250

250

200

250

250

300

300

250

300

300

400

более 600

300

400

400

более 600

400

500

более 600

Примечание. — ток короткого замыкания в начале защищаемого участка сети.

Для выбора плавких предохранителей по условию селективности можно использовать метод согласования характеристик предохранителей, в основу которого положен принцип сопоставления сечений плавких вставок по формуле:

,

где а — коэфициент селективности; F1 — сечение плавкой вставки, расположенной ближе к источнику питания; F2 — сечение плавкой вставки, расположенной дальше от источника питания, т. е. ближе к нагрузке.

Полученное значение а сравнивают с данными табл. 3, где приведены наименьшие значения а, при которых обеспечивается селективность. Селективность защиты будет обеспечена, если расчетное значение а равно табличному или больше него.

Наименьшие значения а, при которых обеспечивается селективность защиты Таблица 3


Металл плавкой вставки предохранителя, расположенного ближе к источнику питания (для любого типа предохранителя)

отношение а сечений плавких вставок смежных предохранителей, если предохранитель, расположенный ближе к нагрузке, изготовлен

с заполнителем при плавкой вставке из

без заполнителя при плавкой вставке из

меди

серебра

цинка

свинца

меди

серебра

цинка

свинца

Медь

1,55

1,33

0,55

0,2

1,15

1,03

0,4

0,15

Серебро

1,72

1,55

0,62

0,23

1,33

1,15

0,46

0,17

Цинк

4,5

3,95

1,65

0,6

3,5

3,06

1,2

0,44

Свинец

12,4

10,8

4,5

1,65

9,5

8,4

3,3

1,2

Выбор плавких предохранителей для защиты цепей управления

Выбор плавких вставок для цепи управления с напряжением Uн можно произвести по формуле

Iн.вст. ≥ (∑Pр + 0,1∑Pв)/Uн,

где ∑Pр — наибольшая суммарная мощность, потребляемая катушками электрических аппаратов (электромагнитными пускателями, промежуточными реле, реле времени, исполнительными электромагнитами) и сигнальными лампами и т. д. при одновременной работе, ВА или Вт;

Pв — наибольшая суммарная мощность, потребляемая при включении катушек одновременно включаемых аппаратов (пусковая мощность), ВА или Вт.

Если известны не мощности, а токи, то это формула может быть записана в виде

Iн.вст. ≥ ∑Iр + 0,1∑Iв

www.eti.su

Таблица предохранителей. Расчет плавных вставок предохранителей. Пример расчета.

Таблица диаметров проводов для предохранителей - Таблицы - Справочник

При поломке или неисправности любого электрооборудования без ведомой тому причины в Ладе Весте, как и в любом другом авто, в первую очередь внимание нужно обратить на блок предохранителей и реле, а именно на состояние предохранителей: возможно они перегорели.

Блок предохранителей и реле именуемый по другому «монтажным блоком» или «черным ящиком» представляет из себя отдельно находящуюся коробку, где находятся все предохранители электрооборудования вашего автомобиля.

На примере дома, монтажным блоком в данном случае является автомат, который мы включаем, когда выбивает пробки.

       

Таблица диаметров плавких вставок

 

Если в предохранителе перегорает плавкая вставка, ее нужно заменить. Но что делать, если нет под рукой стандартизированных вставок? Как выбрать ток плавления вставки?

Ток плавления – это удвоенное значение тока номинального тока потребителя. Так, если номинальная нагрузка составляет 10 А, выбираем ток плавкой вставки, равный 20 А. Надо иметь в виду, что предохранитель мгновенно не перегорает, ему нужно какое-то время. Поэтому пусковые токи двигателей или другие кратковременные повышенные токи не влияют на работу предохранителя.

Назначение плавких вставок как и автоматических выключателей –защита сети и потребителей от перегрузок и коротких замыканий. Главное отличие плавких вставок от автоматов – это одноразовое использование. В последнее время все больше отходят от применения предохранителей, предпочитая их автоматическим выключателям. Плюс плавких вставок – это относительная доступность, дешевизна в применении. Минус – при срабатывании, чтобы включить, нужно время для замены вставки; при замене вставки нужно отключать напряжение.

 

Ток плавления, А

Диаметр, мм

Медь

Алюминий

Железо

0,5

0,03

0,04

0,06

1

0,05

0,07

0,12

2

0,09

0,1

0,19

3

0,11

0,14

0,25

4

0,14

0,17

0,3

5

0,16

0,19

0,35

6

0,18

0,22

0,4

7

0,2

0,25

0,45

8

0,22

0.27

0,48

9

0,24

0,29

0,52

10

0,25

0,31

0,55

15

0,32

0,4

0,72

20

0,39

0,48

0,87

25

0,46

0.56

1

30

0,52

0,64

1,15

35

0,58

0,7

1,26

40

0,63

0.77

1,38

45

0,68

0,83

1,5

50

0,73

0,89

1,6

60

0,82

1

1,8

70

0,91

1.1

2

80

1

1,22

2,2

90

1,08

1,32

2,38

100

1,15

1,42

2,55

120

1,31

1.6

2,85

140

1,45

1.78

3,18

160

1,59

1,94

3,46

180

1,72

2,1

3,75

200

1,84

2,25

4,05

225

1,99

2,45

4,4

250

2,14

2,6

4,7

275

2,2

2,8

5

300

2,4

2,95

5,3

 

                 I=80√d3                                      - формула для расчета тока плавкой вставки для медной проволоки                                                                                          

szemp.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *