Проводники и диэлектрики в электричестве




Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока. 


Что представляют собой проводники?



Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу. 



Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.



Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод. 



Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.


Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность. 



Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.  


Например кабельная продукция: медный кабель обладает большей электропроводностью по сравнению с алюминиевым.


Что представляют собой диэлектрики?



Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу. 



Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы. 



Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств. 



Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач. 



Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц. 



Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.


Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос). 



Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно. 



Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы. 



Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах. 



Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля. 



Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника. 



Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным. 


Что такое полупроводник?



Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника. 



С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы. 



Полупроводниками являются кремний и германий.


Статья по теме: Электрический ток и его скорость

www.elektro.ru

Проводники и диэлектрики

Проводники

К проводникам относятся все металлы и их сплавы, а также электротехнический уголь(каменный уголь, графит, сажа, смола и т.д.)
К жидким проводникам относятся:вода, раствор солей, кислот и щелочей.
К газообразным относятся ионизированные газы.
Электрический ток в твердых проводниках-это направленное движение свободных электронов под действием ЭДС.
ЭДС-электронно-движущая сила.

Свойства проводников:

  1. Электрические
    • Удельное сопротивление веществ от которого зависит электропроводимость
    • Сверхпроводимость-это свойство некоторых материалов при температуре равной 101(-273) проводить эл.ток без препятствий, т.е. удельное сопротивление этих материалов равно нулю
  2. Физические
    • плотность
    • температура плавления
  3. Механические
    • Прочность на изгиб, растяжение и т.д., а также способность обрабатываться на станках
  4. Химические
    • Свойства взаимодействовать с окружающей или противостоять коррозии
    • Свойства соединятся при помощи пайки, сварки

Диэлектрики

Не пропускают электрический ток.Диэлектрики обладают высоким удельным сопротивлением.Используются для защиты проводника от влаги, механических повреждений, пыли.

Диэлектрики бывают

  • твердые-все неметаллы;
  • жидкие-масла, синтетические жидкости СОВОЛ, СОВТОЛ
  • газообразные-все газы:воздух, кислород, азот и т.д.

Свойства диэлектриков:

  1. Электрические свойства
    • Электрический пробой-устанавление большого тока, под действием высокого электрического напряжения к электроиоляционному материалу определенной толщины.
    • Электрическая прочность-это величина, равная напряжению, при котором может быть пробит электроизоляционному материал толщиной в единицу длины.
  2. Физико-химические свойства
    • Нагревостойкость-это способность диэлектрика длительно выдерживать заданную рабочую температуру без заметного изменения своих электроизоляционных качеств.
    • Холодостойкость-способность материала переносить резкие перепады температуры, от +120, до — 120
    • Смачиваемость-способность материала отторгать влагу, испытания проводятся в климатических камерах, типа ELKA, где изделие подвергается увлажнению, создается ТУМАН и мгновенный перепад температуры-СУШКА, и так несколько циклов!
  3. Химические
    • Должны противостоять активной(агрессивной) среде
    • Способность склеиваться
    • Растворение в лаках и растворителях, склеиваться
  4. Механические
    • Защита металлических проводников от коррозии
    • Радиационная стойкость
    • Вязкость(для жидких диэлектриков)
    • Вязкость-время истечения жидкости из сосуда, имеющего определенную форму и отверстие
    • Предел прочности, твердости
    • Обработка инструментом

Читайте также:

www.modelzd.ru

Проводники, полупроводники и диэлектрики в электрическом поле

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

G=1/R

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

samelectrik.ru

Проводники, диэлектрики, полупроводники

     Все вещества состоят из атомов и молекул, имеющих положительно заряженные ядра и отрицательно заряженные электроны. Атомы и молекулы электрически нейтральны, так как заряд ядра равен суммарному заряду

электронов, окружающих ядро. При наличии внешних факторов (повышение температуры, электрическое поле и т.д.) атом или молекула теряет электрон. Этот атом превращается в положительный ион, а электрон, оторвавшийся от атома, может присоединиться к другому атому, превратив его в отрицательный ион, остаться свободным. Процесс образования ионов называют ионизацией. Количество свободных электронов или ионов в единице объема вещества называется концентрацией заряженных частиц. Таким образом, в веществе, которую поместили в электрическое поле, под действием сил поля возникает процесс движения свободных электронов или ионов в направлении сил поля, назвали электрическим током.

 

     Свойство вещества проводить ток под действием электрического поля называется электропроводностью вещества, которая зависит от концентрации свободных электрически заряженных частиц. Чем больше концентрация заряженных частиц, тем больше электропроводность вещества. Все вещества в зависимости от электропроводности делятся на:

1 Проводник. Обладают очень большой электропроводностью. Проводники делятся на две группы. К проводникам первой группе относятся металлы (медь, алюминий, серебро и т.д.) и их сплавы, в которых возможно перемещение только электронов. То есть в металлах электроны очень слабо связаны с ядрами атомов и легко от них отделяются. В металлах явление электрического тока связано с движением свободных электронов, которые обладают очень большой подвижностью и находятся в состоянии теплового движения. Эту электропроводность называют электронной. Проводники используются для изготовления проводов, ЛЭП, обмоток электрических машин и т.п.. К проводникам второй группе относятся водные растворы солей, кислот и т.д., которые называют электролитами. Под действием раствора молекулы вещества распадаются на положительные и отрицательные ионы, которые под действием электрического поля начнут перемещаться. Ионы электролита при прохождении тока начнут осаждатися на электродах, опущенных в электролит. Процесс выделения вещества из электролитов электрическим током называется электролизом. Его используют для добычи цветных металлов из растворов их соединений (медь, алюминий), а также для покрытия металлов защитным слоем другого металла (например, хромирование).

2 Диэлектрики (или электроизоляционные вещества). Вещества с очень малой электропроводностью (газы, резиновые вещества, минеральные масла и т.п.). В этих веществах электроны очень сильно связаны с ядрами атомов и под действием электрического поля редко отделяются от ядер. Т.е. диэлектрики не проводят электрический ток. Это их свойство используют при производстве электрозащитных средств: диэлектрические перчатки, обувь, коврики, изолирующие подставки, накладки, колпаки, изоляторы на электрооборудовании и т.п..

Диэлектрики могут быть: твердые, газообразные, жидкости.

 

3 Полупроводниковые (германий, селен, кремний). Это вещества, которые кроме электронной проводимости, имеют «дырочную» проводимость, которая в большой степени зависит от наличия внешних факторов: света, температуры, электрического или магнитного поля. Эти вещества имеют ковалентную связь (- это химическая связь между двумя электронами соседних атомов на одной орбите). Ковалентная связь очень непрочен. При наличии внешнего фактора он разрушается и появляются свободные электроны (электронная проводимость). В момент образования свободного электрона в ковалентной связи появляется свободный город — «электрона дыра» (эквивалентная протона), которая притягивает к себе электрон из соседнего ковалентной связи. Но тогда образуется новая «дыра», которая вновь притягивает к себе электрон из соседнего ковалентной связи и так далее. Т.е. под действием электрического поля перемещаются «дыры» в направлении поля (навстречу электронам) — движение протонов. Таким образом, при электронной проводимости — электрон проходит весь путь, а при «дырочной» — электроны поочередно замещаются по связям, каждый электрон проходит долю пути. При нарушении связей в полупроводниках одновременно возникает одинаковое количество электронов и «дырок». То есть, проводимость состоит из электронной и «дырочной» и называется собственной проводимостью полупроводника. Свойства полупроводников возможно изменить, если в них внести примеси других веществ. Тем самым увеличить ту или иную проводимость. Это используется в промышленной электронике: диоды, транзисторы, тиристоры. Используют, как усилители, выпрямители, электронные генераторы, стабилизаторы и тому подобное. Их преимущества: малая потеря энергии, стоимость, размер и масса, простота эксплуатации, большой срок работы. Недостаток: зависимость проводимости от температуры.




worldofscience.ru

3. Электротехнические материалы (проводники, полупроводники, диэлектрики).

1.Электрические
цепи и их элементы. Понятие узел и контур.

Электрическая
цепь представляет собой совокупность
устройств и объектов, образующих путь
для электрического тока, электромагнитные
процессы в которых могут быть описаны
с помощью понятий об электродвижущей
силе, токе и напряжении. В электрической
цепи постоянного тока могут действовать
как постоянные токи, так и токи, направление
которых остается постоянным, а значение
изменяется произвольно во времени или
по какому-либо закону.

Электрическая
цепь состоит из отдельных устройств
или элементов, которые по их назначению
можно разделить на 3 группы. Первую
группу составляют элементы, предназначенные
для выработки электроэнергии (источники
питания). Вторая группа — элементы,
преобразующие электроэнергию в другие
виды энергии (механическую, тепловую,
световую, химическую и т. д.). Эти элементы
называются приемниками электрической
энергии (электроприемниками). В третью
группу входят элементы, предназначенные
для передачи электроэнергии от источника
питания к электроприемнику (провода,
устройства, обеспечивающие уровень и
качество напряжения, и др.).

Источники
питания цепи постоянного тока — это
гальванические элементы, электрические
аккумуляторы, электромеханические
генераторы, термоэлектрические
генераторы, фотоэлементы и др. Все
источники питания имеют внутреннее
сопротивление, значение которого
невелико по сравнению с сопротивлением
других элементов электрической цепи.

Электроприемниками
постоянного тока являются электродвигатели,
преобразующие электрическую энергию
в механическую, нагревательные и
осветительные приборы и др. Все
электроприемники характеризуются
электрическими параметрами, среди
которых можно назвать самые основные
— напряжение и мощность. Для нормальной
работы электроприемника на его зажимах
(клеммах) необходимо поддерживать
номинальное напряжение. Для приемников
постоянного тока оно составляет 27, 110,
220, 440 В, а также 6, 12, 24, 36 В.

Графическое
изображение электрической цепи,
содержащее условные обозначения ее
элементов и показывающее соединения
этих элементов, называется схемой
электрической цепи.

Ветвь
и узел электрической цепи

Электрическая
цепь характеризуется совокупностью
элементов, из которых она состоит, и
способом их соединения. Соединение
элементов электрической цепи наглядно
отображается ее схемой. В зависимости
от особенностей схемы следует применять
тот или иной способ расчета электрической
цепи. В данном разделе рассмотрим
ключевые понятия, которые в дальнейшем
будут необходимы для выбора наиболее
оптимального и правильного приема
решения задач.

Ветвью
называется
участок электрической цепи, обтекаемый
одним и тем же током. Ветвь образуется
одним или несколькими последовательно
соединенными элементами цепи.

Узел
— место
соединения трех и более ветвей.

При
обходе по соединенным в ветвях цепям
можно получить замкнутый контур
электрической
цепи. Каждый контур представляет собой
замкнутый путь, проходящий по нескольким
ветвям, при этом каждый узел встречается
в данном контуре не более одного раза.
Ниже приведена электрическая схема, на
которой отмечено несколько произвольно
выбранных контуров.

2.Основные
электротехнические величины: ЭДС,
напряжение и ток.

По
способности проводить электрический
ток вещества можно разделить на

-проводники

-полупроводники

-диэлектрики

Эта
способность обусловлена особенностью
строения веществ.

В
проводниках
присутствуют
свободные носители заряда — это часть
электронов сравнительно слабо связанных
с ядром, которые могут перемещаться с
орбиты одного ядра на орбиту другого
под воздействием внешнего электрического
поля. Такие электроны называются
свободными. К проводникам относятся
такие вещества, как медь, алюминий.

Диэлектриками
называются
вещества, основным электрическим
свойством которых является их способность
поляризоваться в электрическом поле.
Строение диэлектриков характеризуется
наличием незначительного количества
свободных электронов и молекул, вытянутых
по форме (полярные диполи). Суть явления
поляризации заключается в том, что под
воздействием внешнего электрического
поля связанные заряды диэлектрика
смещаются в направлении действующих
на них сил и тем больше, чем выше
напряженность поля.

В
дипольных диэлектриках воздействие
электрического поля вызывает
соответствующую ориентацию дипольных
молекул в направлении поля. При отсутствии
поля диполи расположены беспорядочно
вследствие теплового движения. В
результате поляризации на поверхности
диэлектрика образуются заряды разных
знаков. Проводимость диэлектриков
обусловлена наличием незначительного
числа свободных зарядов. Диэлектрические
материалы обладают очень большим
электрическим сопротивлением, которое
находится в пределах 106… 1011 Ом*м.

Диэлектрические
материалы классифицируют по:

-агрегатному
состоянию:

жидкие;

газообразные;

твердые.

-по
способу получения:

естественные;

синтетические.

-по
химическому составу:

органические;

неорганические.

-по
строению молекул:

нейтральные;

полярные.

К
диэлектрикам относятся воздух, азот,
элегаз, лаки, слюда, керамика, полэтилен.

Промежуточное
положение между проводниками и
диэлектриками занимают полупроводники.
К полупроводникам относятся элементы
IV
группы периодической системы элементов
Д. И. Менделеева, которые на внешней
оболочке имеют четыре валентных
электрона. Типичные полупроводники —
германий Ge
и кремний Si.

Чистые
полупроводники обладают удельным
сопротивлением в пределах 10-5 — 108 Ом *
м. Для снижения высокого удельного
сопротивления в чистые полупроводники
вводят примеси — проводят легирование,
такие полупроводники называются
легированными. В качестве легирующих
примесей применяют элементы III
(бор В) и V
(мышьяк As)
групп периодической системы элементов
Д. И. Менделеева.

Область
на границе двух полупроводников, один
из которых имеет дырочную, а другой —
электронную проводимость, называют р-n
— переходом.

4.Ферромагнитные материалы. Свойства и их применение.

Ферромагнетики
— вещества (как правило, в твёрдом
кристаллическом или аморфном состоянии),
в которых ниже определённой критической
температуры (точки Кюри) устанавливается
дальний ферромагнитный порядок магнитных
моментов атомов или ионов (в неметаллических
кристаллах) или моментов коллективизированных
электронов (в металлических кристаллах).
Иными словами, ферромагнетик — такое
вещество, которое, при температуре ниже
точки Кюри, способно обладать
намагниченностью в отсутствие внешнего
магнитного поля. Последние исследования
в области физики показали, что некоторые
ферромагнетики, при создании определенных
условий, могут приобретать парамагнетические
свойства при температурах, которые
существенно выше точки Кюри.

Свойства
ферромагнетиков

1.Магнитная
восприимчивость ферромагнетиков
положительна и значительно больше
единицы.

2.При
не слишком высоких температурах
ферромагнетики обладают самопроизвольной
(спонтанной) намагниченностью, которая
сильно изменяется под влиянием внешних
воздействий.

3.Для
ферромагнетиков характерно явление
гистерезиса

Гистере́зис
(греч.
ὑστέρησις
— отстающий) — свойство систем
(физических, биологических и т. д.),
мгновенный отклик которых на приложенные
к ним воздействия зависит в том числе
и от их текущего состояния, а поведение
системы на интервале времени во многом
определяется её предысторией. Для
гистерезиса характерно явление
«насыщения», а также неодинаковость
траекторий между крайними состояниями
(отсюда наличие остроугольной петли на
графиках).

Применение
ферромагнетиков

Ферромагнетики
имеют наибольшее практическое применение,
хотя их и не так много в природе. Железный
или стальной сердечник в катушке во
много раз усиливает создаваемое этой
катушкой поле, не увеличивая силу тока
в катушке. Это экономит электроэнергию.
Сердечники трансформаторов, генераторов,
электродвигателей и других устройств
изготавливают из ферромагнетиков. При
выключении внешнего магнитного поля
ферромагнетик остаётся намагниченным,
то есть создаёт магнитное поле в
окружающем его пространстве. Упорядоченная
ориентация элементарных токов не
исчезает при выключении внешнего
магнитного поля. Благодаря этому
существуют постоянные магниты. Постоянные
магниты находят широкое применение в
электроизмерительных приборах,
громкоговорителях, телефонах, в
устройствах звукозаписи, магнитных
компасах и т.д. Большое распространение
получили ферриты — ферромагнитные
материалы, не проводящие электрического
тока. Они представляют собой химические
соединения оксидов железа с оксидами
других веществ. Первый из известных
человеку ферромагнитных материалов —
магнитный железняк — является ферритом.

studfiles.net

2. Проводники, диэлектрики и поток электронов | 1. Основы электроники | Часть1

2. Проводники, диэлектрики и поток электронов

Проводники, диэлектрики и поток электронов

Электроны различных типов атомов обладают разными степенями свободы перемещения. В некоторых материалах, таких как металлы, внешние электроны атомов настолько слабо связаны с ядром, что легко могут покидать свои орбиты и хаотично двигаться в пространстве между соседними атомами даже при комнатной температуре. Такие электроны часто называют свободными электронами

В других типах материалов, таких как стекло, у электронов в атомах существует очень небольшая свобода перемещения. Однако внешние силы, например физическое трение, могут заставить некоторые из этих электронов покинуть собственные атомы и перейти к атомам другого материала, но они не могут свободно перемещаться между атомами  материала.

Эта относительная подвижность электронов в материале известна как электропроводность. Электропроводность определяется типами атомов материала (количество протонов в ядре атома, определяющее его химическую идентичность) и способом соединения атомов друг с другом. Материалы с высокой подвижностью электронов (много свободных электронов) называются проводниками, а материалы с низкой подвижностью электронов (мало или совсем нет свободных электронов) называются диэлектриками.

Ниже приведено несколько примеров наиболее распространенных проводников и диэлектриков:

Проводники:

  • серебро
  • медь
  • золото
  • алюминий
  • железо
  • сталь
  • латунь
  • бронза
  • ртуть
  • графит
  • грязная вода
  • бетон

Диэлектрики:

  • стекло
  • резина
  • нефть
  • асфальт
  • стекловолокно
  • фарфор
  • керамика
  • кварц
  • (сухой) хлопок
  • (сухая) бумага
  • (сухая) древесина
  • пластмасса
  • воздух
  • алмаз
  • чистая вода

Следует понимать, что не у всех проводящих материалов одинаковый уровень проводимости, и не все диэлектрики одинаково сопротивляются движению электронов. Электрическая проводимость аналогична прозрачности некоторых материалов: материалы, которые легко «пропускают» свет, называют «прозрачными», а те, которые его не пропускают, называют «непрозрачными». Однако, не все прозрачные материалы одинаково пропускают свет. Оконное стекло — лучше чем органическое стекло, и конечно лучше чем «прозрачное» стекловолокно. Так же и с электрическими проводниками, некоторые из них лучше пропускают электроны, а некоторые — хуже.

Например, серебро является лучшим проводником в представленном выше списке «проводников», обеспечивая более легкий проход электронов чем любой другой материал из этого списка. Грязная вода и бетон также значатся как проводники, но эти материалы являются существенно менее проводящими чем любой металл.

Некоторые материалы изменяют свои электрические свойства при различных температурных условиях. Например, стекло является очень хорошим диэлектриком при комнатной температуре, но становится проводником, если его нагреть до очень высокой температуре. Газы, такие как воздух, в обычном состоянии — диэлектрики, но они также становятся проводниками при нагревании до очень высоких температур. Большинство металлов, наоборот, становятся менее проводимыми при нагревании, и увеличивают свою проводимость при охлаждении. Многие проводники становятся идеально проводящими (сверхпроводимость) при экстремально низких температурах.

В обычном состоянии движение «свободных» электронов в проводнике хаотично, без определенного направления и скорости. Однако, путем внешнего воздействия можно заставить эти электроны двигаться скоординировано через проводящий материал. Такое направленное движение электронов мы называем электричеством, или электрическим током. Чтобы быть более точным, его можно назвать динамическим электричеством в отличие от статического электричества, в котором накопленный электрический заряд неподвижен. Электроны могут перемещаться в пустом пространстве внутри и между атомами проводника точно так же, как вода течет через пустоту трубы. Приведенная аналогия с водой в нашем случае уместна, потому что движение электронов через проводник часто упоминается как «поток».

Поскольку электроны двигаются через проводник равномерно, то каждый из них толкает находящиеся впереди электроны. В результате все электроны движутся одновременно. Начало движения и остановка электронного потока на всем протяжении проводника фактически мгновенны, даже несмотря на то, что движение каждого электрона может быть очень медленным. Приблизительную аналогию мы можем увидеть на примере трубки, заполненной мраморными шариками:

Трубка заполнена мраморными шариками точно также, как проводник заполнен свободными электронами, готовыми к перемещению под воздействием внешних факторов. Если вставить еще один мраморный шарик в эту заполненную трубку слева, то последний шарик сразу выйдет из нее справа. Несмотря на то, что каждый шарик прошел короткое расстояние, передача движения через трубку в целом произошла мгновенно от левого конца до правого, независимо от  длины трубки. В случае с электричеством, передача движения электронов от одного конца проводника к другому происходит со скоростью света: около 220 000 км. в секунду!!! Каждый отдельный электрон проходит через проводник в гораздо более медленном темпе.

Если мы хотим, чтобы электроны текли в определенном направлении к определенному месту, мы должны проложить для них соответствующий путь из проводов, точно так же, как водопроводчик должен проложить трубопровод, чтобы подвести воду к нужному месту. Для облегчения этой задачи, провода изготавливаются из хорошо проводящих металлов, таких как медь или алюминий.

Электроны могут течь только тогда, когда у них есть возможность перемещаться в пространстве между атомами материала. Это означает, что электрический ток может быть только там, где существует непрерывный путь из проводящего материала, обеспечивающего передвижение электронов. По аналогии с мраморными шариками мы можем видеть, что шарики будут «течь» через трубку только в том случае, если она будет открыта с правой стороны. Если трубку заблокировать, то мрамор будет «накапливаться» в ней, а соответственно не будет и «потока». То же самое верно и для электрического тока: непрерывный поток электронов требует непрерывного пути для обеспечения этого потока. Давайте посмотрим на схему, чтобы понять, как это работает:

 

Тонкая, сплошная линия (показанная выше) является схематическим обозначением непрерывной части провода. Так как провод сделан из проводящего материала, такого как медь, у  составляющих его атомов существует много свободных электронов, которые могут свободно перемещаться по нему. Однако, в пределах такого провода никогда не будет направленного и непрерывного потока электронов, если у него не будет места, откуда приходят электроны и места, куда они идут. Давайте в нашу схему добавим гипотетические  «Источник» и «Получатель» электронов:

 

Теперь, когда Источник поставляет новые электроны в провод, через этот провод пойдет поток электронов (как показано стрелками, слева-направо). Однако, поток будет прерван, если проводящий путь, образованный проводом, повредить:

 

В связи с тем, что воздух является диэлектриком, образовавшийся воздушный разрыв разделит провод на две части. Некогда непрерывный путь нарушается, и электроны не могут течь от Источника к Получателю. Аналогичная ситуация получится, если водопроводную трубу разрезать на две части, а концы в месте разреза закупорить: вода в этом случае течь не сможет. Когда провод был одним целым, у нас была электрическая цепь, и эта цепь была нарушена в момент повреждения. 

Если мы возьмем еще один провод  и соединим им две части поврежденного провода, то снова будем иметь непрерывный путь для потока электронов. Две точки на схеме показывают физический (металл-металл) контакт между проводами:

Теперь у нас снова есть цепь, состоящая из Источника, нового провода (соединяющего поврежденный) и Получателя электронов. Если рассматривать аналогию с водопроводом, то  установив тройник на одной из закупоренных туб, мы можем направить воду через новый сегмент трубы к месту назначения. Обратите внимание, что в правой части поврежденного провода нет потока электронов, потому что он больше не является частью пути от Источника до получателя электронов.  

Следует отметить что проводам, в отличие от водопроводных труб, которые в конечном итоге разъедаются ржавчиной, никакой «износ» от воздействия потока электронов не грозит. При движении электронов, в проводнике возникает определенная сила трения, которая может вырабатывать тепло. Подробнее эту тему мы рассмотрим несколько позже.

Краткий обзор:

  • В проводниках, электроны находящиеся на внешних орбитах атомов могут легко покинуть эти атомы, или наоборот присоединится к ним. Такие электроны называются свободными электронами.
  • В диэлектриках внешние электроны имеют намного меньше свободы передвижения, чем в проводниках.
  • Все металлы являются электрически проводящими.
  • Динамическое электричество, или электрический ток — это  направленное движение электронов через проводник.
  • Статическое электричество — это неподвижный (если на диэлектрике), накопленный заряд, сформированный избытком или недостатком электронов в объекте.
  • Для обеспечения потока электронов нужен целый, неповрежденный проводник, который обеспечит приём и выдачу электронов.

Источник: Lessons In Electric Circuits

www.radiomexanik.spb.ru

Урок 26. Лекция 26. Проводники и диэлектрики в электрическом поле. Конденсаторы.

По электрическим свойствам все вещества разделяют на два больших класса — вещества, которые проводят электрический ток (проводники) и вещества, которые не проводят электрический ток (диэлектрики, или изоляторы). 

Мы знаем, что все вещества состоят из атомов, которые, в свою очередь, состоят из заряженных частиц. Если внешнее поле вокруг вещества отсутствует, то его частицы распределяются так, что суммарное электрическое поле внутри вещества равно нулю. Если вещество поместить во внешнее электрическое поле, то поле начет действовать на заряженные частицы и они перераспределяться так, что в веществе возникнет собственное электрическое поле. Полное электрическое поле  складывается из внешнего поля  и внутреннего поля  создаваемого заряженными частицами вещества.

Проводник — это тело или материал, в котором электрические заряды начинают перемещаться под действием сколь угодно малой силы. Поэтому эти заряды называют свободными.

В металлах свободными зарядами являются электроны, в растворах и расплавах солей (кислот и щелочей) — ионы.

Диэлектрик — это тело или материал, в котором под действием сколь угодно больших сил заряды смещаются лишь на малое, не превышающее размеров атома расстояние относительно своего положения равновесия. Такие заряды называются связанными.

Рассмотрим подробнее эти классы веществ.

Проводники в электрическом поле.

Проводниками называют вещества, проводящие электрический ток.

Типичными проводниками являются металлы.

Основная особенность проводников – наличие свободных зарядов ( в металлах это электроны), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.

В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.

 

   Явление перераспределения зарядов внутри проводника под действием внешнего электрического поля называется электростатической индукцией.

  Заряды, появляющиеся на поверхности проводника, называются индукционными зарядами. 

   Индукционные заряды создают свое собственное поле  , которое компенсирует внешнее поле  во всем объеме проводника:

   (внутри проводника).

   Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

   Диэлектрики в электрическом поле.

   Диэлектриками (изоляторами) называют вещества, не проводящие электрического тока.

   В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

   При внесении диэлектрика во внешнее электрическое поле  в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.

   Связанные заряды создают электрическое поле , которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля . Этот процесс называется поляризацией диэлектрика.

   Электрической поляризацией называют особое состояние вещества, при котором электрический момент некоторого объёма этого вещества не равен нулю.

   В результате полное электрическое поле внутри диэлектрика  оказывается по модулю меньше внешнего поля .

   Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме  к модулю напряженности полного поля в однородном диэлектрике , называется диэлектрической проницаемостью вещества.

 

   Диэлектрическая проницаемость среды показывает, во сколько раз напряженность поля в вакууме больше, чем в диэлектрике. Это величина безразмерная (нет единиц измерения).

   При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика. В этом случае электрическое поле связанных зарядов  и полное поле  могут иметь сложную структуру, зависящую от геометрии диэлектрика. Утверждение о том, что электрическое поле   в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем  строго справедливо только в случае однородного диэлектрика, заполняющего все пространство, в котором создано внешнее поле. В частности:

   Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд q, то напряженность поля , создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

               

   Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная, электронная и ионная поляризации. Ориентационная и электронная механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков, ионная — при поляризации твердых диэлектриков.

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U.

Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью (электрической емкостью) проводников называется физическая величина, характеризующая способность проводника или системы проводников накапливать электрический заряд.

Электроемкость находится как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:


 В системе СИ единица электроемкости называется фарад [Ф]: 

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.

Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.

Простейший конденсатор – плоский конденсаторсистема из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

Электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними.

Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2.

Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.

Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

   — сферический конденсатор

   — цилиндрический конденсатор

Для получения заданного значения емкости конденсаторы соединяются между собой, образуя батареи конденсаторов.

1) При параллельном соединении конденсаторов соединяются их одноименно заряженные обкладки.

 

Напряжения на конденсаторах одинаковы     U1U2U,  заряды равны q1 = С1U и    q2 = С2U.

Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом qq1q2 при напряжении между обкладками равном U. Отсюда следует  или С = С1 + С2

Таким образом, при параллельном соединении электроемкости складываются.

2) При последовательном соединении конденсаторов соединяют разноименно заряженные обкладки

Заряды обоих конденсаторов одинаковы    q1q2q,  напряжения на них равны  и 

Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками UU1U2.

Следовательно,   или  

При последовательном соединении конденсаторов складываются обратные величины емкостей.

Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

Т.е. в случае n конденсаторов одинаковой емкости С емкость батареи

при параллельном соединении Собщ = nС

при последовательном соединении Собщ = С/n

Если обкладки заряженного конденсатора замкнуть металлическим проводником, то по цепи пойдет электрический ток, лампочка загорится и будет гореть до тех пор, пока конденсатор не разрядится. Значит, заряженный конденсатор содержит запас энергии.

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую.При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов

   

при переносе каждой порции Δq внешние силы должны совершить работу

   

Энергия We конденсатора емкости C, заряженного зарядом q, может быть найдена путем интегрирования этого выражения в пределах от 0 до q:

   

Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением qCU.

   

Электрическую энергию We следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе.

По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля.

infofiz.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о