Содержание

Правило буравчика: особенности и приёмы

Правило буравчика – упрощенная наглядная демонстрация при помощи одной руки правильного умножения двух векторов. Геометрия школьного курса подразумевает осведомленность учеников о скалярном произведении. В физике часто встречается векторное.

Понятие вектора

Полагаем, нет смысла истолковывать правило буравчика при отсутствии знания определения вектора. Требуется открыть бутылку — знание о правильных действиях поможет. Вектором называют математическую абстракцию, не существующую реально, выказывающую указанные признаки:

  1. Направленный отрезок, обозначаемый стрелкой.
  2. Точкой начала послужит точка действия силы, описываемой вектором.
  3. Длина вектора равна модулю силы, поля, прочих описываемых величин.

Не всегда затрагивают силу. Векторами описывается поле. Простейший пример показывают школьникам преподаватели физики. Подразумеваем линии напряженности магнитного поля. Вдоль обычно рисуются векторы по касательной. В иллюстрациях действия на проводник с током увидите прямые линии.

Правило буравчика

Векторные величины часто лишены места приложения, центры действия выбираются по договоренности. Момент силы исходит из оси плеча. Требуется для упрощения сложения. Допустим, на рычаги различной длины действуют неодинаковые силы, приложенные к плечам с общей осью. Простым сложением, вычитанием моментов найдем результат.

Векторы помогают решить многие обыденные задачи и, хотя выступают математическими абстракциями, действуют реально. На основе ряда закономерностей возможно вести предсказание будущего поведения объекта наравне со скалярными величинами: поголовье популяции, температура окружающей среды. Экологов интересуют направления, скорость перелета птиц. Перемещение является векторной величиной.

Правило буравчика помогает найти векторное произведение векторов. Это не тавтология. Просто результатом действия окажется тоже вектор. Правило буравчика описывает направление, куда станет указывать стрелка. Что касается модуля, нужно применять формулы. Правило буравчика – упрощенная чисто качественная абстракция сложной математической операции.

Аналитическая геометрия в пространстве

Каждому известна задачка: стоя на одном берегу реки, определить ширину русла. Кажется уму непостижимым, решается в два счета методами простейшей геометрии, которую изучают школьники. Проделаем ряд несложных действий:

  1. Засечь на противоположном берегу видный ориентир, воображаемую точку: ствол дерева, устье ручейка, впадающего в поток.
  2. Под прямым углом линии противоположного берега сделать засечку на этой стороне русла.
  3. Найти место, с которого ориентир виден под углом 45 градусов к берегу.
  4. Ширина реки равна удалению конечной точки от засечки.

Определение ширины реки методом подобия треугольников

Используем тангенс угла. Не обязательно равен 45 градусов. Нужна большая точность — угол лучше брать острым. Просто тангенс 45 градусов равен единице, решение задачки упрощается.

Аналогичным образом удается найти ответы на животрепещущие вопросы. Даже в микромире, управляемом электронами. Можно однозначно сказать одно: непосвященному правило буравчика, векторное произведение векторов представляются скучными, занудными. Удобный инструмент, помогающий в понимании многих процессов. Большинству будет интересным принцип работы электрического двигателя (безотносительно к конструкции). Легко может быть объяснен использованием правила левой руки.

Во многих отраслях науке бок-о-бок идут два правила: левой, правой руки. Векторное произведение иногда может описываться так или эдак. Звучит расплывчато, предлагаем немедленно рассмотреть пример:

  • Допустим, движется электрон. Отрицательно заряженная частица бороздит постоянное магнитное поле. Очевидно, траектория окажется изогнута благодаря силе Лоренца. скептики возразят, по утверждениям некоторых ученых электрон не частица, а скорее, суперпозиция полей. Но принцип неопределенности Гейзенберга рассмотрим в другой раз. Итак, электрон движется:

Расположив правую руку, чтобы вектор магнитного поля перпендикулярно входил в ладонь, вытянутые персты указывали направление полета частицы, отогнутый на 90 градусов в сторону большой палец вытянется в направлении действия силы. Правило правой руки, являющееся иным выражением правила буравчика. Слова-синонимы. Звучит по-разному, по сути – одно.

Правило левой руки

  • Приведем фразу Википедии, отдающую странностью. При отражении в зеркале правая тройка векторов становится левой, тогда нужно применять правило левой руки вместо правой. Летел электрон в одну сторону, по методикам, принятым в физике, ток движется в противоположном направлении. Словно отразился в зеркале, поэтому сила Лоренца определяется уже правилом левой руки:

Если расположить левую руку, чтобы вектор магнитного поля перпендикулярно входил в ладонь, вытянутые персты указывали направление течения электрического тока, отогнутый на 90 градусов в сторону большой палец вытянется, указывая вектор действия силы.

Видите, ситуации похожие, правила просты. Как запомнить, которое применять? Главный принцип неопределенности физики. Векторное произведение вычисляется во многих случаях, причем правило применяется одно.

Какое правило применить

Слова синонимы: рука, винт, буравчик

Вначале разберем слова-синонимы, многие начали спрашивать себя: если тут повествование должно затрагивать буравчик, почему текст постоянно касается рук. Введем понятие правой тройки, правой системы координат. Итого, 5 слов-синонимов.

Потребовалось выяснить векторное произведение векторов, оказалось: в школе это не проходят. Проясним ситуацию любознательным школьникам.

Декартова система координат

Школьные графики на доске рисуют в декартовой системе координат Х-Y. Горизонтальная ось (положительная часть) направлена вправо – надеемся, вертикальная — указывает вверх. Делаем один шаг, получая правую тройку. Представьте: из начала отсчета в класс смотрит ось Z. Теперь школьники знают определение правой тройки векторов.

В Википедии написано: допустимо брать левые тройки, правые, вычисляя векторное произведение, несогласны. Усманов в этом плане категоричен. С разрешения Александра Евгеньевича приведем точное определение: векторным произведением векторов называют вектор, удовлетворяющий трем условиям:

  1. Модуль произведения равен произведению модулей исходных векторов на синус угла меж ними.
  2. Вектор результата перпендикулярен исходным (вдвоем образуют плоскость).
  3. Тройка векторов (по порядку упоминания контекстом) правая.

Правую тройку знаем. Итак, если ось Х – первый вектор, Y – второй, Z будет результатом. Почему назвали правой тройкой? По-видимому, связано с винтами, буравчиками. Если закручивать воображаемый буравчик по кратчайшей траектории первый вектор-второй вектор, поступательное движение оси режущего инструмента станет происходить в направлении результирующего вектора:

  1. Правило буравчика применяется к произведению двух векторов.
  2. Правило буравчика качественно указывает направление результирующего вектора этого действия. Количественно длина находится выражением, упомянутым (произведение модулей векторов на синус угла меж ними).

Теперь каждому понятно: сила Лоренца находится согласно правилу буравчика с левосторонней резьбой. Векторы собраны левой тройкой, если взаимно ортогональны (перпендикулярны один другому), образуется левая система координат. На доске ось Z смотрела бы в направлении взгляда (от аудитории за стену).

Простые приемы запоминания правил буравчика

Люди забывают, что силу Лоренца проще определять правилом буравчика с левосторонней резьбой. Желающий понять принцип действия электрического двигателя должен как дважды два щелкать подобные орешки. В зависимости от конструкции число катушек ротора бывает значительным, либо схема вырождается, становясь беличьей клеткой. Ищущим знания помогает правило Лоренца, описывающее магнитное поле, где движутся медные проводники.

Для запоминания представим физику процесса. Допустим, движется электрон в поле. Применяется правило правой руки для нахождения направления действия силы. Доказано: частица несет отрицательный заряд. Направление действия силы на проводник находится правилом левой руки, вспоминаем: физики совершенно с левых ресурсов взяли, что электрический ток течет в направлении противоположном тому, куда направились электроны. И это неправильно. Поэтому приходится применять правило левой руки.

Не всегда следует идти такими дебрями. Казалось бы, правила больше запутывают, не совсем так. Правило правой руки часто применяется для вычисления угловой скорости, которая является геометрическим произведением ускорения на радиус: V = ω х r. Многим поможет визуальная память:

  1. Вектор радиуса круговой траектории направлен из центра к окружности.
  2. Если вектор ускорения направлен вверх, тело движется против часовой стрелки.

Посмотрите, здесь опять действует правило правой руки: если расположить ладонь так, чтобы вектор ускорения входил перпендикулярно в ладонь, персты вытянуть по направлению радиуса, отогнутый на 90 градусов большой палец укажет направление движения объекта. Достаточно однажды нарисовать на бумаге, запомнив минимум на половину жизни. Картинка действительно простая. Больше на уроке физики не придется ломать голову над простым вопросом — направление вектора углового ускорения.

Аналогичным образом определяется момент силы. Исходит перпендикулярно из оси плеча, совпадает направлением с угловым ускорением на рисунке, описанном выше. Многие спросят: зачем нужно? Почему момент силы не скалярная величина? Зачем направление? В сложных системах непросто проследить взаимодействия. Если много осей, сил, помогает векторное сложение моментов. Можно значительно упростить вычисления.

vashtehnik.ru

Реферат Правило левой руки

скачать

Реферат на тему:



План:

    Введение
  • 1 Правило правой руки
  • 2 Первое правило левой руки
  • 3 Второе правило левой руки

Введение

Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода.

Пра́вило бура́вчика или правило правой руки — мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость вращения тела, а также вектора магнитной индукции B или для определения направления индукционного тока.


1. Правило правой руки

Правило буравчика: «Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции».

Правило правой руки

Правило правой руки: «Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца укажут направление индукционного тока».

Для соленоида оно формулируется так: «Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида».


2. Первое правило левой руки

Если расположить ладонь левой руки так, чтобы линии индукции магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца направлены по току, то отставленный на 90° большой палец укажет направление силы, действующей на проводник.

3. Второе правило левой руки

Если движется заряд, а магнит покоится, то для определения силы действует правило левой руки: «Если левую руку расположить так, чтобы линии индукции магнитного поля входили в ладонь перпендикулярно ей, а четыре пальца были направлены по току (по движению положительно заряженной частицы или против движения отрицательно заряженной), то отставленный на 90° большой палец покажет направление действующей силы Лоренца или Ампера».

wreferat.baza-referat.ru

правила левой и правой руки в физике.. объясните пожалуйста

Правило правой руки — правило определяющее направление линий магнитной индукции прямолинейного проводника с током: Если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции. Направление силы Лоренца определяется правилом левой руки. Правило левой определяет направление силы, которая действует на находящийся в магнитном поле проводник с током. Если ладонь левой расположить так, чтобы в нее входили линии индукции магнитного поля, а четыре вытянутых пальца направить вдоль вектора, то отогнутый большой палец покажет направление силы, действующей на положительный заряд. На отрицательный заряд сила со стороны магнитного поля действует в противоположном направлении. Правило правой руки Расположите правую руку так, чтобы силовые линии магнитного поля входили в ладонь, а большой палец, отогнутый на 90 градусов показывал направление движения проводника относительно магнитного поля. Тогда ладонь (4 остальные пальца) покажут направление ЭДС. <img src="//content.foto.my.mail.ru/bk/lar4ik_70/_answers/i-12.jpg" > Правило левой руки Нужно расположить левую руку так, чтобы силовые линии магнитного поля входили в ладонь, четыре вытянутых пальца показывали направление тока, тогда большой палец, отогнутый на 90градусов в плоскости ладони, покажет направление действия электромагнитной силы. Вот и все. Просто и понятно, только не забывайте, где у Вас левая рука и где на ней большой палец! <img src="//content.foto.my.mail.ru/bk/lar4ik_70/_answers/i-13.jpg" >

Я тока помню вращение буравчика, и то смутно...

Правило левой руки-для определения направления силы, действующей на проводник с током в магнитном поле. Правило правой руки-для определения направления эдс в проводнике, движущемся в магнитном поле.

touch.otvet.mail.ru

Правило буравчика Википедия

Прямой провод с током.
Ток (I), протекая через провод в направлении хода буравчика (винта)↖, создаёт магнитное поле (B) вокруг провода в направлении вращения ручки буравчика (головки винта)⟳

Пра́вило буравчика (пра́вило винта́) — варианты мнемонического правила для определения направления векторного произведения и тесно связанного с этим выбора правого базиса[1] в трёхмерном пространстве, соглашения о положительной ориентации базиса в нём, и соответственно — знака любого аксиального вектора, определяемого через ориентацию базиса.

В частности, это относится к определению направления[2] таких важных в физике аксиальных векторов, как вектор угловой скорости, характеризующий скорость вращения тела, вектор магнитной индукции B и многих других, а также для определения направления таких векторов, которые определяются через аксиальные, например, направление индукционного тока при заданном векторе магнитной индукции.

  • Для многих из этих случаев кроме общей формулировки, позволяющей определять направление векторного произведения или ориентацию базиса вообще, имеются специальные формулировки правила, особенно хорошо приспособленные к каждой конкретной ситуации (но гораздо менее общие).

В принципе, как правило, выбор одного из двух возможных направлений аксиального вектора считается чисто условным, однако он должен происходить всегда одинаково, чтобы в конечном результате вычислений не оказался перепутан знак. Для этого и служат правила, составляющие предмет этой статьи (они позволяют всегда придерживаться одного и того же выбора).

  • Под названием правила правой руки существует несколько достаточно различающихся правил.
  • Существует также несколько вариантов правила левой руки.
  • В принципе можно ограничиться выбором из всего набора этих правил в разных формулировках (или из им подобных) какого-то одного, относящегося к универсальному типу (определению знака векторного произведения или ориентации базиса). Это минимально необходимый выбор (хотя бы один вариант правила нужен: без него вообще не только в принципе невозможно следовать общепринятым соглашениям, но и крайне трудно быть последовательным даже в собственных вычислениях). Но в принципе этого и достаточно: вместо всех правил, упоминаемых в этой статье или других им подобных в принципе[3]можно пользоваться всего одним, если только знать порядок сомножителей в формулах, содержащих векторные произведения.

ru-wiki.ru

Правило буравчика - это... Что такое Правило буравчика?

Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода.

Пра́вило бура́вчика (пра́вило винта́), или пра́вило правой руки — варианты мнемонического правила для определения направления векторного произведения и тесно связанного с этим выбора правого базиса[1] в трехмерном пространстве, соглашения о положительной ориентации базиса в нем, и соответственно — знака любого аксиального вектора, определяемого через ориентацию базиса.

В частности, это относится к определению направления[2] таких важных в физике аксиальных векторов, как вектор угловой скорости, характеризующий скорость вращения тела, вектор магнитной индукции B и многих других, а также для определения направления таких векторов, которые определяются через аксиальные, например, направление индукционного тока при заданном векторе магнитной индукции.

  • Для многих из этих случаев кроме общей формулировки, позволяющей определять направление векторного произведения или ориентацию базиса вообще, имеются специальные формулировки правила, особенно хорошо приспособленные к каждой конкретной ситуации (но гораздо менее общие).

В принципе, как правило, выбор одного из двух возможных направлений аксиального вектора считается чисто условным, однако он должен происходить всегда одинаково, чтобы в конечном результате вычислений не оказался перепутан знак. Для этого и служат правила, составляющие предмет этой статьи (они позволяют всегда придерживаться одного и того же выбора).

  • Под названием правила правой руки существует несколько достаточно различающихся правил.
  • Существует также несколько вариантов правила левой руки.
  • В принципе можно ограничиться выбором из всего набора этих правил в разных формулировках (или из им подобных) какого-то одного, относящегося к универсальному типу (определению знака векторного произведения или ориентации базиса). Это минимально необходимый выбор (хотя бы один вариант правила нужен: без него вообще не только в принципе невозможно следовать общепринятым соглашениям, но и крайне трудно быть последовательным даже в собственных вычислениях). Но в принципе этого и достаточно: вместо всех правил, упоминаемых в этой статье или других им подобных в принципе[3]можно пользоваться всего одним, если только знать порядок сомножителей в формулах, содержащих векторные произведения.

Общее (главное) правило

Главным правилом - которое может использоваться и в варианте правила буравчика (винта) и в варианте правила правой руки - это правило выбора направления для базисов и векторного произведения (или даже для чего-то одного из двух, т.к. одно прямо определяется через другое). Главным оно является потому, что в принципе его достаточно для использования во всех случаях вместо всех остальных правил, если только знать порядок сомножителей в соответствующих формулах.

Выбор правила для определения положительного направления векторного произведения и для положительного базиса (системы координат) в трехмерном пространстве — тесно взаимосвязаны.

Левая (на рисунке слева) и правая (справа) декартовы системы координат (левый и правый базисы). Принято считать положительным и использовать по умолчанию правый (это общепринятое соглашение, если только какие-то особые причины не заставляют от него отойти — и тогда это оговаривается явно).

Оба эти правила в принципе чисто условны[4], однако принято (по крайней мере, если обратное явно не оговорено) считать, и это общепринятое соглашение, что положительным является правый базис, а векторное произведение определяется так, что для положительного ортонормированного[5] базиса (базиса прямоугольных декартовых координат с единичным масштабом по всем осям, состоящего из единичных векторов по всем осям) выполняется[6] следующее:

где косым крестом обозначена операция векторного умножения.

По умолчанию же общепринято использовать положительные (и таким образом правые) базисы. Левые базисы в принципе принято использовать в основном когда использовать правый очень неудобно или вообще невозможно (например, если у нас правый базис отражается в зеркале, то отражение представляет собой левый базис, и с этим ничего не поделаешь).

Поэтому правило для векторного произведения и правило для выбора (постороения) положительного базиса взаимно согласованы.

Они могут быть сформулированы так:

Для векторного произведения

Правило буравчика (винта) для векторного произведения: Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю, то буравчик (винт), вращающийся таким же образом, будет завинчиваться в направлении вектора-произведения.

  • (Под винтом и буравчком здесь имеются в виду винт с правой резьбой, каковых абсолютное большинство в технике и что является в ней повсеместным стандартом[7], или буравчик также с правым винтом на острие, каково также абсолютное большинство реальных инструментов).
  • Это можно переформулировать в терминах часовой стрелки, поскольку правый винт по определению это такой винт, который завинчивается (вперед), когда мы вращаем его по часовой стрелке.

Вариант правило буравчика (винта) для векторного произведения через часовую стрелку: Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю и смотреть с той стороны, чтобы это вращение было для нас по часовой стрелке, вектор-произведение будет направлен от нас (завинчиваться вглубь часов).

Правило правой руки для векторного произведения (первый вариант):

Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю, а четыре пальца правой руки показывали направление вращения (как бы охватывая вращающийся цилиндр), то оттопыренный большой палец покажет направление вектора-произведения.

Правило правой руки для векторного произведения (второй вариант):

Если нарисовать векторы так, чтобы их начала совпадали и первый (большой) палец правой руки направить вдоль первого вектора-сомножителя, второй (указательный) — вдоль второго вектора-сомножителя, то третий (средний) покажет (приблизительно) направление вектора-произведения (см. рисунок).

Для базисов

Все эти правила могут быть, конечно, переписаны для определения ориентации базисов. Перепишем только два из них: Правило правой руки для базиса:

x, y,z — правая система координат.

Если в базисе (состоящем из векторов вдоль осей x, y,z) первый (большой) палец правой руки направить вдоль первого базисного вектора (то есть по оси x), второй (указательный) — вдоль второго (то есть по оси y), а третий (средний) окажется направленным (приблизительно) в направлении третьего (по z), то это правый базис (как и оказалось на рисунке).

Правило буравчика (винта) для базиса: Если вращать буравчик и векторы так, чтобы первый базисный вектор кратчайшим образом стремился ко второму, то буравчик (винт) будет завинчиваться в направлении третьего базисного вектора, если это правый базис.

  • Всё это, конечно, соответствует расширению обычного правила выбора направления координат на плоскости (х — вправо, у — вверх, z — на нас). Последнее может быть еще одним мнемоническим правилом, в принципе способным заменить правило буравчика, правой руки и т.д. (впрочем, пользование им, вероятно, требует иногда определенного пространственного воображения, так как надо мысленно повернуть нарисованные обычным образом координаты до совпадения их с базисом, ориентацию которого мы хотим определить, а он может быть развернут как угодно).

Формулировки правила буравчика (винта) или правила правой руки для специальных случаев

Выше упоминалось о том, что все разнообразные формулировки правила буравчика (винта) или правила правой руки (и другие подобные правила), в том числе все упоминаемые ниже, не являются необходимыми. Их не обязательно знать, если знаешь (хотя бы в каком-то одном из вариантов) общее правило, описанное выше и знаешь порядок сомножителей в формулах, содержащих векторное произведение.

Однако многие из описанных ниже правил хорошо приспособлены к специальным случаям их применения и поэтому могут быть весьма удобны и легки для быстрого определения направления векторов в этих случаях[8].

Правило правой руки или буравчика (винта) для механического вращения скорости

Правило правой руки или буравчика (винта) для угловой скорости

Известно, что вектор скорости данной точки связан с вектором угловой скорости и вектором , проведенным из неподвижной точки в данную, как их векторное произведение:

Очевидно, поэтому к определению направления вектора угловой скорости применимы правило винта и правило правой руки, описанные выше для векторного произведения.

Этого в принципе достаточно.

Однако в данном случае правила могут быть сформулированы в еще более простом и запоминающемся варианте, так как речь идет о вполне реальном вращении:

Правило буравчика (винта): Если вращать винт (буравчик) в том направлении, в котором вращается тело, он будет завинчиваться (или вывинчиваться) в ту сторону, куда направлена угловая скорость.

Правило правой руки: Если представить, что мы взяли тело в правую руку и вращаем его в направлении, куда указывают четыре пальца, то оттопыренный большой палец покажет в ту сторону, куда направлена угловая скорость при таком вращении.

Правило правой руки или буравчика (винта) для момента импульса

Полностью аналогичны правила для определения направления момента импульса, что неудивительно, поскольку момент импульса пропорционален угловой скорости с положительным коэффициентом[9].

Правило правой руки или буравчика (винта) для момента сил

Для момента сил (вращающего момента)

(где  — сила, приложенная к i-ой точке тела,  — радиус-вектор,  — знак векторного умножения),

правила тоже в целом аналогичны, однако сформулируем их явно.

Правило буравчика (винта): Если вращать винт (буравчик) в том направлении, в котором силы стремятся повернуть тело, винт будет завинчиваться (или вывинчиваться) в ту сторону, куда направлен момент этих сил.

Правило правой руки: Если представить, что мы взяли тело в правую руку и пытаемся его повернуть в направлении, куда указывают четыре пальца (силы, пытающиеся повернуть тело направлены по направлению этих пальцев), то оттопыренный большой палец покажет в ту сторону, куда направлен вращающий момент (момент этих сил).

Правило правой руки и буравчика (винта) в магнитостатике и электродинамике

Для магнитной индукции (закона Био - Савара)

Правило буравчика (винта): Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции поля, создаваемого этим током.

Правило правой руки

Правило правой руки: Если обхватить проводник правой рукой так, чтобы оттопыренный большой палец указывал направление тока, то остальные пальцы покажут направление огибающих проводник линий магнитной индукции, поля, создаваемого этим током и огибающих проводник, а значит и направление вектора магнитной индукции, направленного везде по касательной к этим линиям.

Для соленоида оно формулируется так: Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Наука не в состоянии объяснить, почему вокруг проводника с током, как экспериментально установлено, вектор магнитной индукции направлен вправо, а не влево, или спонтанно в каждом конкретном случае.

Для тока в проводнике, движущемся в магнитном поле

Правило правой руки: Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца укажут направление индукционного тока.

Для уравнений Максвелла

Поскольку операция ротор (обозначаемая rot), используемая в двух уравнениях Максвелла, может быть записана формально как векторное произведение (с оператором набла), а главное потому, что ротор векторного поля может быть уподоблен (представляет собой аналогию) угловой скорости[10] вращения жидкости, поле скоростей течения которой изображает собой данное векторное поле, можно воспользоваться для ротора теми формулировками правила, которые уже описаны выше для угловой скорости.

Таким образом, если крутить буравчик в направлении завихрения векторного поля, то он будет ввинчиваться в направлении вектора ротора этого поля.

Или: если направить четыре пальца правой руки, сжатой в кулак, в направлении завихрения, то отогнутый большой палец покажет направление ротора.

Из этого следуют правила для закона электромагнитной индукции, например: если указать отогнутым большим пальцем правой руки направление магнитного потока через контур, если он растет, и противоположное направление, если он убывает, то согнутые пальцы, охватывающие контур, покажут направление, противоположное (из-за знака минус в формуле) направлению ЭДС в этом контуре, индуцируемой меняющимся магнитным потоком.

Правила для закона Ампера - Максвелла в целом совпадают с правилами, приведенными выше для вектора магнитной индукции, создаваемой током, только в данном случае надо добавить к электрическому току через контур поток быстроты изменения электрического поля через этот контур и говорить о магнитном поле можно в терминах его циркуляции по контуру.

Правила левой руки

Первое правило левой руки

Если расположить ладонь левой руки так, чтобы линии индукции магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца направлены по току, то отставленный на 90° большой палец укажет направление силы, действующей на проводник.

Второе правило левой руки

Если движется заряд, а магнит покоится, то для определения силы действует правило левой руки: «Если левую руку расположить так, чтобы линии индукции магнитного поля входили в ладонь перпендикулярно ей, а четыре пальца были направлены по току (по движению положительно заряженной частицы или против движения отрицательно заряженной), то отставленный на 90° большой палец покажет направление действующей силы Лоренца или Ампера».

Примечания

  1. Математические детали общего понятия ориентации базиса, о котором здесь идет речь — см. в статье Ориентация.
  2. Под определением направления здесь везде имеется в виду выбор одного из двух противоположных направлений (выбор между всего двумя противоположными векторами), то есть сводится к выбору положительного направления.
  3. Это означает, что другие правила могут быть также удобны в любом количестве, но их использование не является необходимым.
  4. Это означает, что при желании можно пользоваться и противоположным правилом, и иногда это может быть даже удобно.
  5. Понятие правого и левого базиса распространяются не только на ортонормированные, но на любые трехмерные базисы (то есть и на косоугольные декартовы координаты тоже), однако мы для простоты ограничимся здесь случаем ортонормированных базисов (прямоугольных декартовых координат с равным масштабом по осям).
  6. Можно проверить, что в целом это действительно так, исходя из элементарного определения векторного произведения: Векторное произведение есть вектор, перпендикулярный обоим векторам-сомножителям, а по величине (длине) равный площади параллелограмма. То же, какой из двух возможных векторов, перпендикулярных двум заданным, выбрать — и есть предмет основного текста, правило, позволяющее это сделать и дополняющее приведенное здесь определение, указано там.
  7. Левая резьба применяется в современной технике только тогда, когда применение правой резьбы привело бы к опасности самопроизвольного развинчивания под влиянием постоянного вращения данной детали в одном направлении — например, левая резьба применяется на левом конце оси велосипедного колеса. Помимо этого, левая резьба применяется в редукторах и баллонах для горючих газов, чтобы исключить подсоединение к кислородному баллону редуктора для горючего газа.
  8. В том числе они могут быть в своих случаях и более удобными, чем общее правило, и даже иногда сформулированы достаточно органично, чтобы особенно легко запоминаться; что, правда, по-видимому, всё же не делает запоминание их всех более легким, чем запоминание всего одного общего правила.
  9. Даже если мы имеем дело с достаточно асимметричным (и асимметрично расположенным относительно оси вращения) телом, так что коэффициентом пропорциональности между угловой скоростью и моментом импульса служит тензор инерции, несводимый к численному коэффициенту, и вектор момента импульса тогда вообще говоря не параллелен вектору угловой скорости, тем не менее правило работает в том смысле, что направление указывается приблизительно, но этого достаточно, чтобы сделать выбор между двумя противоположными направлениями.
  10. Строго говоря, при этом сопоставлении есть еще постоянный коэффициент 2, но в данной теме это не важно, так как речь идет сейчас только о направлении вектора, а не о его величине.

См. также

Cсылки

dic.academic.ru

Правило правой руки - это... Что такое Правило правой руки?


Правило правой руки

Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода.

Пра́вило бура́вчика (также, правило правой руки) — мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость вращения тела, а также вектора магнитной индукции B или для определения направления индукционного тока.

Правило правой руки

Правило буравчика: «Если направление поступательного движения буравчика (винта) с правой нарезкой совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции».

Определение направления магнитного поля вокруг проводника

Правило правой руки: «Если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции».

Для соленоида оно формулируется так: «Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида».

Правило левой руки

Для определения направления силы Ампера обычно используют правило левой руки: «Если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.»

Wikimedia Foundation. 2010.

  • Правило правого винта
  • Правило семидесяти

Смотреть что такое "Правило правой руки" в других словарях:

  • ПРАВИЛО ПРАВОЙ РУКИ — ПРАВИЛО ПРАВОЙ РУКИ, определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению… …   Энциклопедический словарь

  • ПРАВИЛО ПРАВОЙ РУКИ — ПРАВИЛО ПРАВОЙ РУКИ, см. ПРАВИЛА ФЛЕМИНГА …   Научно-технический энциклопедический словарь

  • правило правой руки — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Fleming s ruleright hand rule …   Справочник технического переводчика

  • правило правой руки — [right hand rule] удобное для запоминания правило для определения направления индукционного тока в проводнике, движущегося в магнитном поле: если расположить правую ладонь так, чтобы отставлtysq большой палец совпадал с направлением движения… …   Энциклопедический словарь по металлургии

  • правило правой руки — dešinės rankos taisyklė statusas T sritis fizika atitikmenys: angl. right hand rule vok. Rechte Hand Regel, f rus. правило правой руки, n pranc. règle de la main droite, f …   Fizikos terminų žodynas

  • Правило левой руки — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки)  мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость …   Википедия

  • Правой руки правило — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки)  мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость …   Википедия

  • ПРАВОЙ РУКИ ПРАВИЛО — определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то 4… …   Большой Энциклопедический словарь

  • ПРАВОЙ РУКИ ПРАВИЛО — для определения направления индукц. тока в проводнике, движущемся в магн. поле: если расположить правую ладонь так, чтобы отставленный большой палец совпадал с направлением движения проводника, а силовые линии магн. поля входили в ладонь, то… …   Физическая энциклопедия

  • правой руки правило — определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то… …   Энциклопедический словарь

Книги

  • Экзамен в ГИБДД 2017 года. Экзаменационные билеты ГИБДД с комментариями к правильным ответам. Категории C, D и подкатегории C1, D1, Копусов-Долинин Алексей Иванович. В данном пособии развернутые ответы, с использованием дидактических приемов и элементов транспортной психологии, позволяют упростить понимание и запоминание Правил дорожного движения и основ… Подробнее  Купить за 322 грн (только Украина)
  • Экзамен в ГИБДД. Категории А, В, M, подкатегории A1, B1. Новые экзаменационные билеты ГИБДД с комментариями к правильным ответам (+CD), Копусов-Долинин Алексей Иванович. В данном пособии развернутые ответы, с использованием дидактических приемов и элементов транспортной психологии, позволяют упростить понимание и запоминание Правил дорожного движения и основ… Подробнее  Купить за 278 грн (только Украина)
  • Экзамен в ГИБДД. Категории А, В, M, подкатегории A1. B1. Особая система запоминания по состоянию на 2017 год. 40 новых экзаменационных билетов с подробными объяснениями правильных ответов (+ CD-ROM), Копусов-Долинин Алексей Иванович. В данном пособии развернутые ответы, с использованием дидактических приемов и элементов транспортной психологии, позволяют упростить понимание и запоминание Правил дорожного движения и основ… Подробнее  Купить за 278 грн (только Украина)
Другие книги по запросу «Правило правой руки» >>

dikc.academic.ru

Правило буравчика

правило буравчика, правило буравчика картинки
Пра́вило бура́вчика (пра́вило винта́), или пра́вило правой руки — варианты мнемонического правила для определения направления векторного произведения и тесно связанного с этим выбора правого базиса в трехмерном пространстве, соглашения о положительной ориентации базиса в нём, и соответственно — знака любого аксиального вектора, определяемого через ориентацию базиса.

В частности, это относится к определению направления таких важных в физике аксиальных векторов, как вектор угловой скорости, характеризующий скорость вращения тела, вектор магнитной индукции B и многих других, а также для определения направления таких векторов, которые определяются через аксиальные, например, направление индукционного тока при заданном векторе магнитной индукции.

  • Для многих из этих случаев кроме общей формулировки, позволяющей определять направление векторного произведения или ориентацию базиса вообще, имеются специальные формулировки правила, особенно хорошо приспособленные к каждой конкретной ситуации (но гораздо менее общие).

В принципе, как правило, выбор одного из двух возможных направлений аксиального вектора считается чисто условным, однако он должен происходить всегда одинаково, чтобы в конечном результате вычислений не оказался перепутан знак. Для этого и служат правила, составляющие предмет этой статьи (они позволяют всегда придерживаться одного и того же выбора).

  • Под названием правила правой руки существует несколько достаточно различающихся правил.
  • Существует также несколько вариантов правила левой руки.
  • В принципе можно ограничиться выбором из всего набора этих правил в разных формулировках (или из им подобных) какого-то одного, относящегося к универсальному типу (определению знака векторного произведения или ориентации базиса). Это минимально необходимый выбор (хотя бы один вариант правила нужен: без него вообще не только в принципе невозможно следовать общепринятым соглашениям, но и крайне трудно быть последовательным даже в собственных вычислениях). Но в принципе этого и достаточно: вместо всех правил, упоминаемых в этой статье или других им подобных в принципе можно пользоваться всего одним, если только знать порядок сомножителей в формулах, содержащих векторные произведения.

Содержание

  • 1 Общее (главное) правило
    • 1.1 Для векторного произведения
    • 1.2 Для базисов
  • 2 Формулировки правила буравчика (винта) или правила правой руки для специальных случаев
    • 2.1 Правило правой руки или буравчика (винта) для механического вращения скорости
      • 2.1.1 Правило правой руки или буравчика (винта) для угловой скорости
      • 2.1.2 Правило правой руки или буравчика (винта) для момента импульса
      • 2.1.3 Правило правой руки или буравчика (винта) для момента сил
    • 2.2 Правило правой руки и буравчика (винта) в магнитостатике и электродинамике
      • 2.2.1 Для магнитной индукции (закона Био - Савара)
      • 2.2.2 Для тока в проводнике, движущемся в магнитном поле
      • 2.2.3 Для уравнений Максвелла
  • 3 Правила левой руки
    • 3.1 Первое правило левой руки
    • 3.2 Второе правило левой руки
  • 4 Примечания
  • 5 См. также
  • 6 Ссылки

Общее (главное) правило

Главным правилом - которое может использоваться и в варианте правила буравчика (винта) и в варианте правила правой руки - это правило выбора направления для базисов и векторного произведения (или даже для чего-то одного из двух, т.к. одно прямо определяется через другое). Главным оно является потому, что в принципе его достаточно для использования во всех случаях вместо всех остальных правил, если только знать порядок сомножителей в соответствующих формулах.

Выбор правила для определения положительного направления векторного произведения и для положительного базиса (системы координат) в трехмерном пространстве — тесно взаимосвязаны.

Левая (на рисунке слева) и правая (справа) декартовы системы координат (левый и правый базисы). Принято считать положительным и использовать по умолчанию правый (это общепринятое соглашение, если только какие-то особые причины не заставляют от него отойти — и тогда это оговаривается явно).

Оба эти правила в принципе чисто условны, однако принято (по крайней мере, если обратное явно не оговорено) считать, и это общепринятое соглашение, что положительным является правый базис, а векторное произведение определяется так, что для положительного ортонормированного базиса (базиса прямоугольных декартовых координат с единичным масштабом по всем осям, состоящего из единичных векторов по всем осям) выполняется следующее:

где косым крестом обозначена операция векторного умножения.

По умолчанию же общепринято использовать положительные (и таким образом правые) базисы. Левые базисы в принципе принято использовать в основном когда использовать правый очень неудобно или вообще невозможно (например, если у нас правый базис отражается в зеркале, то отражение представляет собой левый базис, и с этим ничего не поделаешь).

Поэтому правило для векторного произведения и правило для выбора (постороения) положительного базиса взаимно согласованы.

Они могут быть сформулированы так:

Для векторного произведения

Правило буравчика (винта) для векторного произведения: Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю, то буравчик (винт), вращающийся таким же образом, будет завинчиваться в направлении вектора-произведения.

  • (Под винтом и буравчиком здесь имеются в виду винт с правой резьбой, каковых абсолютное большинство в технике и что является в ней повсеместным стандартом, или буравчик также с правым винтом на острие, каково также абсолютное большинство реальных инструментов).
  • Это можно переформулировать в терминах часовой стрелки, поскольку правый винт по определению это такой винт, который завинчивается (вперед), когда мы вращаем его по часовой стрелке.

Вариант правило буравчика (винта) для векторного произведения через часовую стрелку: Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю и смотреть с той стороны, чтобы это вращение было для нас по часовой стрелке, вектор-произведение будет направлен от нас (завинчиваться вглубь часов).

Правило правой руки для векторного произведения (первый вариант):

Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю, а четыре пальца правой руки показывали направление вращения (как бы охватывая вращающийся цилиндр), то оттопыренный большой палец покажет направление вектора-произведения.

Правило правой руки для векторного произведения (второй вариант):

Если нарисовать векторы так, чтобы их начала совпадали и первый (большой) палец правой руки направить вдоль первого вектора-сомножителя, второй (указательный) — вдоль второго вектора-сомножителя, то третий (средний) покажет (приблизительно) направление вектора-произведения (см. рисунок).

Применительно к электродинамике по большому пальцу направляют ток (I), вектор магнитной индукции (B) направляют по указательному, а сила (F) будет направлена по среднему пальцу. Мнемонически правило легко запомнить по аббревиатуре FBI (сила, индукция, ток или Федеральное Бюро Расследований (ФБР) в переводе с английского) и положению пальцев руки, напоминающему пистолет.

Для базисов

Все эти правила могут быть, конечно, переписаны для определения ориентации базисов. Перепишем только два из них: Правило правой руки для базиса:

x, y,z — правая система координат.

Если в базисе (состоящем из векторов вдоль осей x, y,z) первый (большой) палец правой руки направить вдоль первого базисного вектора (то есть по оси x), второй (указательный) — вдоль второго (то есть по оси y), а третий (средний) окажется направленным (приблизительно) в направлении третьего (по z), то это правый базис (как и оказалось на рисунке).

Правило буравчика (винта) для базиса: Если вращать буравчик и векторы так, чтобы первый базисный вектор кратчайшим образом стремился ко второму, то буравчик (винт) будет завинчиваться в направлении третьего базисного вектора, если это правый базис.

  • Всё это, конечно, соответствует расширению обычного правила выбора направления координат на плоскости (х — вправо, у — вверх, z — на нас). Последнее может быть ещё одним мнемоническим правилом, в принципе способным заменить правило буравчика, правой руки и т.д. (впрочем, пользование им, вероятно, требует иногда определённого пространственного воображения, так как надо мысленно повернуть нарисованные обычным образом координаты до совпадения их с базисом, ориентацию которого мы хотим определить, а он может быть развернут как угодно).

Формулировки правила буравчика (винта) или правила правой руки для специальных случаев

Выше упоминалось о том, что все разнообразные формулировки правила буравчика (винта) или правила правой руки (и другие подобные правила), в том числе все упоминаемые ниже, не являются необходимыми. Их не обязательно знать, если знаешь (хотя бы в каком-то одном из вариантов) общее правило, описанное выше и знаешь порядок сомножителей в формулах, содержащих векторное произведение.

Однако многие из описанных ниже правил хорошо приспособлены к специальным случаям их применения и поэтому могут быть весьма удобны и легки для быстрого определения направления векторов в этих случаях.

Правило правой руки или буравчика (винта) для механического вращения скорости

Правило правой руки или буравчика (винта) для угловой скорости

Известно, что вектор скорости данной точки связан с вектором угловой скорости и вектором , проведённым из неподвижной точки в данную, как их векторное произведение:

Очевидно, поэтому к определению направления вектора угловой скорости применимы правило винта и правило правой руки, описанные выше для векторного произведения.

Этого, в принципе, достаточно.

Однако в данном случае правила могут быть сформулированы в ещё более простом и запоминающемся варианте, так как речь идет о вполне реальном вращении:

Правило буравчика (винта):Если вращать винт (буравчик) в том направлении, в котором вращается тело, он будет завинчиваться (или вывинчиваться) в ту сторону, куда направлена угловая скорость.

Правило правой руки: Если представить, что мы взяли тело в правую руку и вращаем его в направлении, куда указывают четыре пальца, то оттопыренный большой палец покажет в ту сторону, куда направлена угловая скорость при таком вращении.

Правило правой руки или буравчика (винта) для момента импульса

Полностью аналогичны правила для определения направления момента импульса, что неудивительно, поскольку момент импульса пропорционален угловой скорости с положительным коэффициентом.

Правило правой руки или буравчика (винта) для момента сил

Для момента сил (вращающего момента)

(где  — сила, приложенная к i-ой точке тела,  — радиус-вектор,  — знак векторного умножения),

правила тоже в целом аналогичны, однако сформулируем их явно.

Правило буравчика (винта): Если вращать винт (буравчик) в том направлении, в котором силы стремятся повернуть тело, винт будет завинчиваться (или вывинчиваться) в ту сторону, куда направлен момент этих сил.

Правило правой руки: Если представить, что мы взяли тело в правую руку и пытаемся его повернуть в направлении, куда указывают четыре пальца (силы, пытающиеся повернуть тело направлены по направлению этих пальцев), то оттопыренный большой палец покажет в ту сторону, куда направлен вращающий момент (момент этих сил).

Правило правой руки и буравчика (винта) в магнитостатике и электродинамике

Для магнитной индукции (закона Био - Савара)

Правило буравчика (винта): Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции поля, создаваемого этим током.

Правило правой руки

Правило правой руки: Если обхватить проводник правой рукой так, чтобы оттопыренный большой палец указывал направление тока, то остальные пальцы покажут направление огибающих проводник линий магнитной индукции поля, создаваемого этим током, а значит и направление вектора магнитной индукции, направленного везде по касательной к этим линиям.

Для соленоида оно формулируется так: Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Для тока в проводнике, движущемся в магнитном поле

Правило правой руки: Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца укажут направление индукционного тока.

Для уравнений Максвелла

Поскольку операция ротор (обозначаемая rot), используемая в двух уравнениях Максвелла, может быть записана формально как векторное произведение (с оператором набла), а главное потому, что ротор векторного поля может быть уподоблен (представляет собой аналогию) угловой скорости вращения жидкости, поле скоростей течения которой изображает собой данное векторное поле, можно воспользоваться для ротора теми формулировками правила, которые уже описаны выше для угловой скорости.

Таким образом, если крутить буравчик в направлении завихрения векторного поля, то он будет ввинчиваться в направлении вектора ротора этого поля.

Или: если направить четыре пальца правой руки, сжатой в кулак, в направлении завихрения, то отогнутый большой палец покажет направление ротора.

Из этого следуют правила для закона электромагнитной индукции, например: если указать отогнутым большим пальцем правой руки направление магнитного потока через контур, если он растет, и противоположное направление, если он убывает, то согнутые пальцы, охватывающие контур, покажут направление, противоположное (из-за знака минус в формуле) направлению ЭДС в этом контуре, индуцируемой меняющимся магнитным потоком.

Правила для закона Ампера - Максвелла в целом совпадают с правилами, приведёнными выше для вектора магнитной индукции, создаваемой током, только в данном случае надо добавить к электрическому току через контур поток быстроты изменения электрического поля через этот контур и говорить о магнитном поле можно в терминах его циркуляции по контуру.

Правила левой руки

Первое правило левой руки

Если расположить ладонь левой руки так, чтобы линии индукции магнитного поля входили во внутреннюю сторону ладони, перпендикулярно к ней, а четыре пальца направлены по току, то отставленный на 90° большой палец укажет направление силы, действующей на проводник.

Второе правило левой руки

Если движется заряд, а магнит покоится, то для определения силы действует правило левой руки: «Если левую руку расположить так, чтобы линии индукции магнитного поля входили во внутреннюю сторону ладони, перпендикулярно к ней, а четыре пальца были направлены по току (по движению положительно заряженной частицы или против движения отрицательно заряженной), то отставленный на 90° большой палец покажет направление действующей силы Лоренца или Ампера».

Примечания

  1. Математические детали общего понятия ориентации базиса, о котором здесь идет речь — см. в статье Ориентация.
  2. Под определением направления здесь везде имеется в виду выбор одного из двух противоположных направлений (выбор между всего двумя противоположными векторами), то есть сводится к выбору положительного направления.
  3. Это означает, что другие правила могут быть также удобны в любом количестве, но их использование не является необходимым.
  4. Это означает, что при желании можно пользоваться и противоположным правилом, и иногда это может быть даже удобно.
  5. Понятие правого и левого базиса распространяются не только на ортонормированные, но на любые трехмерные базисы (то есть и на косоугольные декартовы координаты тоже), однако мы для простоты ограничимся здесь случаем ортонормированных базисов (прямоугольных декартовых координат с равным масштабом по осям).
  6. Можно проверить, что в целом это действительно так, исходя из элементарного определения векторного произведения: Векторное произведение есть вектор, перпендикулярный обоим векторам-сомножителям, а по величине (длине) равный площади параллелограмма. То же, какой из двух возможных векторов, перпендикулярных двум заданным, выбрать — и есть предмет основного текста, правило, позволяющее это сделать и дополняющее приведённое здесь определение, указано там.
  7. Левая резьба применяется в современной технике только тогда, когда применение правой резьбы привело бы к опасности самопроизвольного развинчивания под влиянием постоянного вращения данной детали в одном направлении — например, левая резьба применяется на левом конце оси велосипедного колеса. Помимо этого, левая резьба применяется в редукторах и баллонах для горючих газов, чтобы исключить подсоединение к кислородному баллону редуктора для горючего газа.
  8. В том числе они могут быть в своих случаях и более удобными, чем общее правило, и даже иногда сформулированы достаточно органично, чтобы особенно легко запоминаться; что, правда, по-видимому, всё же не делает запоминание их всех более лёгким, чем запоминание всего одного общего правила.
  9. Даже если мы имеем дело с достаточно асимметричным (и асимметрично расположенным относительно оси вращения) телом, так что коэффициентом пропорциональности между угловой скоростью и моментом импульса служит тензор инерции, несводимый к численному коэффициенту, и вектор момента импульса тогда вообще говоря не параллелен вектору угловой скорости, тем не менее правило работает в том смысле, что направление указывается приблизительно, но этого достаточно, чтобы сделать выбор между двумя противоположными направлениями.
  10. Строго говоря, при этом сопоставлении есть ещё постоянный коэффициент 2, но в данной теме это не важно, так как речь идет сейчас только о направлении вектора, а не о его величине.
  11. Не обязательное требование.

См. также

  • Буравчик
  • Векторное произведение
  • По часовой стрелке и против часовой стрелки

Ссылки

  • Правило буравчика (видео)

правило буравчика, правило буравчика картинки


Правило буравчика Информацию О




Правило буравчика Комментарии

Правило буравчика
Правило буравчика
Правило буравчика Вы просматриваете субъект

Правило буравчика что, Правило буравчика кто, Правило буравчика описание

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *