Содержание

1.2 Периодичность проверки сопротивления изоляции

Электрическая
изоляция

это слой диэлектрика или конструкция,
выполненная из диэлектрика, которой
покрывают поверхность токоведущих
элементов или которыми токоведущие
элементы отделяют от других частей.

Согласно ГОСТ
12.1.009-90 применяют следующие виды изоляции:

  • рабочая
    изоляция;

  • дополнительная
    изоляция;

  • двойная
    изоляция;

  • усиленная
    изоляция.

Изоляция является
основным способом электробезопасности
в сетях до 1000 В, так как применение
изолированных проводов обеспечивает
достаточную защиту от напряжения при
прикосновении к ним. Действительно,
если в сети с изолированной нейтралью
с фазным напряжением Uф
= 220 В обеспечить сопротивление изоляции
не меньше 65 кОм, то ток через человека
при однофазном прикосновении не превысит
значения порогового неотпускающего
тока, т. е. до 10 мА.

В то же время
использование изолированных проводов
при напряжении выше 1000 В не менее опасно,
чем применение голых, так как повреждения
изоляции обычно остаются незамеченными,
если провод подвешен на изоляторах. А
при более высоких напряжениях опасно
даже приближение к токоведущим частям,
так как возможен пробой воздуха при
малом расстоянии до человека и последующее
поражение его током.

Сопротивление
изоляции осветительных и силовых
электроустановок, распределительных
устройств, электропроводок напряжением
до 1000 В должно быть не менее 0,5 МОм.

Сопротивление
изоляции осветительных и силовых
электроустановок, распределительных
устройств, электропроводок напряжением
свыше 1000 В должно быть не менее 1 МОм.

Минимально
допустимое сопротивление изоляции
обмоток электрических машин с напряжением
до 1000 В не нормируется, но рекомендуется
принимать из расчета 1000 Ом на каждый 1
вольт напряжения, т. е. R=1000U
, где U – номинальное напряжение.

Правила технической
эксплуатации требуют, чтобы сопротивление
обмоток электродвигателя было не менее
1 МОм на 1 кВ рабочего напряжения – для
обмоток статора и 0,5 МОм на 1 кВ рабочего
напряжения для обмоток ротора.

Измерение
сопротивления изоляции производится
на участках между смежными предохранителями,
между любым проводом и землей, а также
между любыми двумя проводами.

Сопротивление
изоляции электроустановок должно
систематически проверяться один раз в
год в помещениях с повышенной опасностью,
в особо опасных помещениях – два раза в
год, и не реже одного раза в квартал – в
помещениях взрыво- и пожароопасных. В
помещениях без повышенной опасности
не реже одного раза в два года.

Сопротивления
изоляции в силовых и осветительных
сетях и в электроустановках (потребителях
тока), в соответствии с IIУЭ, ПТЭ и ПТБ
проверяют специализированные организации
с составлением протокола проверок.

В электроинструментах
сопротивление изоляции в обмотках и
токоведущего провода проверяют 1 раз в
6 месяцев. В понижающих и сварочных
трансформаторах сопротивление изоляции
между первичной и вторичной обмотками,
между корпусом и обмотками проверяют
1 раз в 6 месяцев. Сопротивление изоляции
проверяет администрация с регистрацией
в специальном журнале.

В цепях управления,
автоматики и телемеханики измерение
сопротивления изоляции проводят после
тщательного осмотра цепей управления
не реже 1 раза в 12 месяцев – специальные
организации с составлением протокола.

Контроль защитного
заземления:

  • внешний
    осмотр состояния заземляющих проводников
    проводят не реже 1 раза в 6 месяцев, а в
    сырых и особо сырых агрессивных и
    наружных установках 1 раз в 3 месяца;

  • сопротивление
    растеканию тока в заземлении проверяют
    не реже, чем через 12 месяцев в помещениях
    с повышенной опасностью и не реже 1 раза
    в 2 года (24 месяца) в помещениях нормальных.
    Проверку проводят в периоды наименьшей
    проводимости почвы летом при просыхании
    и зимой при промерзании грунта. Проверка
    проводится специализированной
    организацией с составлением протокола
    проверки;

Зануление проверяют
1 раз в пять лет и после ремонта. Проверка
проводится специализированной
организацией с составлением протокола
проверок.

Испытание средств
индивидуальной защиты: перчатки 1 раз
в 6 месяцев; боты 1 раз в 3 года; галоши 1
раз в 12 месяцев.

Монтерский
инструмент испытывают 1 раз в 12 месяцев
(кусачки, плоскогубцы, круглогубцы,
пассатижи, отвертки, ключи), указатели
напряжения и измерительные клещи 1 раз
в 12 месяцев, изолирующие штанги,
изолирующие клещи, измерительные штанги
1 раз в 24 месяца.

studfiles.net

Периодичность испытаний — Периодичность испытаний / Документы — Электротехническая лаборатория, г.Ханты-Мансийск































































Средство защиты

Напряжение эл.установок и линий

Испытательное напряжение

Продолж., мин

Ток через изделие мА, не более

Периодичность испытаний

Перчатки резиновые диэлектрические

Все напряжения

6 кВ

1

6,0

1 раз в 6 мес.

Боты резиновые диэлектрические

Все напряжения

15 кВ

1

7,5

1 раз в 36 мес.

Галоши диэлектрические

До 1000 В

3,5 кВ

1

2,0

1 раз в 12 мес.

Сапоги диэлектрические

До 1000 В

3,5 кВ

1

10

1 раз в 12 мес.

Колпаки диэлектрические

До 10 кВ

10 кВ

1

-

Осмотр 1 раз в 12 мес. Испытание 1 раз в 36 мес.

Коврики резиновые диэлектрические

Все напряжения

В соответствии с ГОСТ 4997-75

Осмотр 1 раз в 6 мес.

Изолирующие накладки:


жёсткие


1 раз в 24 мес.

До 1000 В

2 кВ

1

-

10 кВ

20 кВ

5

-

15 кВ

30 кВ

5

-

20 кВ

40 кВ

5

-

резиновые

1000 В

2 кВ

1

6

Изолирующие подставки

До 10 кВ

-

-

-

Осмотр 1 раз в 24 мес.

Инструмент слесарно-монтажный с изолирующими рукоятками

До 1000 В

2 кВ

1

-

1 раз в 12 мес.

Штанги изолирующие (кроме измерительных)

Ниже 110 кВ

Трёхкратное линейное, но не менее 40 кВ

5

-

1 раз в 24 мес.

110 -500 кВ

Трёхкратное фазное

5

-

Штанги с дугогасящим устройством. Дугогасящее устройство (при разомкнутых контактах)

110 -220 кВ

40 кВ

5

-

1 раз в 24 мес.

Штанги измерительные

Ниже 110 кВ

Трёхкратное линейное, но не менее 40 кВ

5

-

В сезон измерений 1 раз в 3 мес, перед началом сезона, но не реже 1 раза в 12 мес.

110 -500 кВ

Трёхкратное фазное

5

-

Головки измерительных штанг

35-500 кВ

30 кВ

5

-

Продольные и поперечные планки ползунковых головок и изолирующий капроновый канатик измерительных штанг

200-500 кВ

2,2 кВ на 1 см

5

-

Штанги составные с металлическими звеньями для наложения заземления провода ВЛ 330-500 кВ (изолирующая часть)

330-500 кВ

100 кВ

5

-

1 раз в 24 мес.

Изолирующие устройства и приспособления для работ на ВЛ 110 кВ и выше с непосредственным прикосновением электромонтёра к токоведущим частям

110 кВ и выше

2,2 кВ на 1 см

5

0,5

1 раз в 12 мес.

Клещи изолирующие

До 1000 В

2 кВ

5

-

1 раз в 24 мес.

2-35 кВ

Трёхкратное линейное, но не менее 40 кВ

5

-

Клещи электроизмерительные (ГОСТ 9071-79)

До 600 В

2 кВ

5

-

1 раз в 24 мес.

До 10 кВ

40 кВ

5

-

Указатели напряжения выше 1000 В с газоразрядной лампой:

1 раз в 12 мес.

изолирующая часть

2-35 кВ

Трёхкратное линейное, но не менее 40 кВ

5

-

рабочая часть

2-10 кВ

20 кВ

1

-

6-20 кВ

40 кВ

1

-

10-35 кВ

70 кВ

1

-

напряжение зажигания

2-10 кВ

Не более 550 В

-

-

6-20 кВ

Не более 1,5 кВ

-

-

10-35 кВ

Не более 2,5 кВ

-

-

изолирующая часть

35-220 кВ

Трёхкратное фазное

5

-

напряжение зажигания

35-220 кВ

Не более 9 кВ

-

-

Указатели напряжения выше 1000 В бесконтактного типа:

1 раз в 24 мес.

изолирующая часть

6-35 кВ

105 кВ

5

-

6-10 кВ

20 кВ

1

-

рабочая часть

Проверяется чувствительность согласно п. 3.1.29 “Правил применения и испытания средств защиты, используемых в электроустановках”

Указатели напряжения для фазировки:

3-10 кВ

1 раз в 12 мес.

изолирующие части указателя и дополнительной трубки

40 кВ

5

-

рабочая часть указателя

20 кВ

1

-

токоограничивающее сопротивление дополнительной трубки

6 кВ

6 кВ

1

2,4

10 кВ

10 кВ

1

1,7

Соединительный провод

3-10 кВ

20 кВ

1

-

Указатели напряжения для фазировки:

35-110 кВ

1 раз в 12 мес.

изолирующая часть

35-110 кВ

190 кВ

5

-

рабочая часть

35 кВ

70 кВ

1

-

110 кВ

140 кВ

1

-

Соединительный провод

30 кВ

1

-

Указатели напряжения до 1000 В:

1 раз в 12 мес.

напряжение зажигания

До 1000 В

Не выше 90 В

-

-

изоляция корпусов

До 500 В

1 кВ

1

-

изоляция соединительного провода

До 660 В

2 кВ

1

-

проверка исправности схемы:

однополюсные указатели

До 660 В

750 В

1

0,6

двухполюсные указатели

До 500 В

600 В

1

4,0

До 660 В

750 В

1

4,0

etl86.ru

Как часто проводятся измерения сопротивления изоляции? | ЭлектроАС

Дата: 28 октября, 2010 | Рубрика: Вопросы и Ответы, Электроизмерения
Метки: Замер сопротивления изоляции, Комплекс электроизмерений, ПТЭЭП, Электроизмерения

Этот материал подготовлен специалистами компании “ЭлектроАС”.

Нужен электромонтаж или электроизмерения? Звоните нам!

Станислав
Как часто проводится измерения сопротивления изоляции, и каким документом регулируется?

Ответ:
В соответствии с правилами технической эксплуатации электроустановок потребителей (ПТЭЭП), измерения сопротивления изоляции проводов и кабелей проводятся не реже чем 1 раз в 3 года. Конкретный срок электроизмерений устанавливается системой планово-предупредительного ремонта (ППР), утвержденного техническим руководителем Потребителя.

ПТЭЭП
2.12.17
Проверка состояния стационарного оборудования и электропроводки аварийного и рабочего освещения, испытание и измерение сопротивления изоляции проводов, кабелей и заземляющих устройств должны проводиться при вводе сети электрического освещения в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство Потребителя, но не реже одного раза в три года. Результаты замеров оформляются актом (протоколом) в соответствии с нормами испытания электрооборудования (Приложение 3).

3.6.2
Конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее – К), при текущем ремонте (далее – Т) и при межремонтных испытаниях и измерениях, т.е. при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом электрооборудования в ремонт (далее – М), определяет технический руководитель Потребителя на основе Приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий.
Указанная для отдельных видов электрооборудования периодичность испытаний в разделах 1-28 является рекомендуемой и может быть изменена решением технического руководителя Потребителя.
Приложение 3

Приложение 3.1
Таблица 37
– Электропроводки, в том числе осветительные сети:
Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов.
В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены.
– Стационарные электроплиты:
Измерения сопротивления изоляции производится при нагретом состоянии плиты не реже 1 раза в год.

Более подробную информацию о сроках проведения электроизмерений можно прочитать, пройдя по ссылке «Какова периодичность профилактического электроизмерения электрооборудования и электросетей?«.

elektroas.ru

Существуют ли нормы периодичности замера сопротивления изоляции отдельно для гостиниц? | ЭлектроАС

Дата: 18 мая, 2011 | Рубрика: Вопросы и Ответы, Электроизмерения
Метки: Замер сопротивления изоляции, Периодичность электроизмерений, Электролаборатория

Этот материал подготовлен специалистами компании “ЭлектроАС”.

Нужен электромонтаж или электроизмерения? Звоните нам!

Александр
Существуют ли нормы периодичности замера сопротивления изоляции отдельно для гостиниц? Инспекторы ПО пытаются убедить, что это пожароопасные объекты и поэтому необходимо составлять подобные акты ежегодно. Так ли это?

Ответ:
Здания гостиниц не относятся к особо опасным помещениям, где требуется проводить измерения сопротивления изоляции 1 раз в год, как бы этого не хотелось пожарникам.
В соответствии с ПТЭЭП, в электроустановках потребителей, в том числе в помещениях гостиниц, замеры сопротивления изоляции проводов и кабелей проводятся не реже чем 1 раз в 3 года.

ПТЭЭП
2.7.9
Визуальные осмотры видимой части заземляющего устройства должны производиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником им уполномоченным.
При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов.
Результаты осмотров должны заноситься в паспорт заземляющего устройства.

2.7.13
Для определения технического состояния заземляющего устройства в соответствии с нормами испытаний электрооборудования (Приложение 3) должны производиться:
измерение сопротивления заземляющего устройства;
измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения), проверка наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;
измерение токов короткого замыкания электроустановки, проверка состояния пробивных предохранителей;
измерение удельного сопротивления грунта в районе заземляющего устройства.
Для ВЛ измерения производятся ежегодно у опор, имеющих разъединители, защитные промежутки, разрядники, повторное заземление нулевого провода, а также выборочно у 2% железобетонных и металлических опор в населенной местности.
Измерения должны выполняться в период наибольшего высыхания грунта (для районов вечной мерзлоты – в период наибольшего промерзания грунта).
Результаты измерений оформляются протоколами.
На главных понизительных подстанциях и трансформаторных подстанциях, где отсоединение заземляющих проводников от оборудования невозможно по условиям обеспечения категорийности электроснабжения, техническое состояние заземляющего устройства должно оцениваться по результатам измерений и в соответствии с п.п.2.7.9-11.

2.7.14
Измерения параметров заземляющих устройств – сопротивление заземляющего устройства, напряжение прикосновение, проверка наличия цепи между заземлителями и заземляемыми элементами – производится также после реконструкции и ремонта заземляющих устройств, при обнаружении разрушения или перекрытия изоляторов ВЛ электрической дугой.
При необходимости должны приниматься меры по доведению параметров заземляющих устройств до нормативных.

2.12.17
Проверка состояния стационарного оборудования и электропроводки аварийного и рабочего освещения, испытание и измерение сопротивления изоляции проводов, кабелей и заземляющих устройств должны проводиться при вводе сети электрического освещения в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство Потребителя, но не реже одного раза в три года. Результаты замеров оформляются актом (протоколом) в соответствии с нормами испытания электрооборудования (Приложение 3).

3.4.12
В электроустановках напряжением до 1000 В с глухозаземленной нейтралью (системы TN) при капитальном, текущем ремонтах и межремонтных испытаниях, но не реже 1 раза в 2 года, должно измеряться полное сопротивление петли фаза-нуль электроприемников, относящихся к данной электроустановке и присоединенных к каждой сборке, шкафу и т.д., и проверяться кратность тока КЗ, обеспечивающая надежность срабатывания защитных устройств.
Внеплановые измерения должны выполняться при отказе устройств защиты электроустановок.

3.6.2
Конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее – К), при текущем ремонте (далее – Т) и при межремонтных испытаниях и измерениях, т.е. при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом электрооборудования в ремонт (далее – М), определяет технический руководитель Потребителя на основе Приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий.
Указанная для отдельных видов электрооборудования периодичность испытаний в разделах 1-28 является рекомендуемой и может быть изменена решением технического руководителя Потребителя.

3.6.3
Для видов электрооборудования, не включенных в настоящие нормы, конкретные нормы и сроки испытаний и измерений параметров должен устанавливать технический руководитель Потребителя с учетом инструкций (рекомендаций) заводов-изготовителей.

3.6.4
Нормы испытаний электрооборудования иностранных фирм должны устанавливаться с учетом указаний фирмы-изготовителя.

Приложение 3
26
Заземляющие устройства
К, Т, М – производятся в сроки, устанавливаемые системой ППP

28
Электроустановки, аппараты, вторичные цепи, нормы испытаний которых не определены в разделах 2-27, и электропроводки напряжением до 1000 В К, Т, М – производятся в сроки, устанавливаемые системой ППP

28.4
Проверка срабатывания защиты при системе питания с заземленной нейтралью (TN-C, TNC-S, TN-S)
Проверяется непосредственным измерением тока однофазного короткого замыкания с помощью специальных приборов или измерением полного сопротивления петли фаза-нуль с последующим определением тока короткого замыкания. У электроустановок, присоединенных к одному щитку и находящихся в пределах одного помещения, допускается производить измерения только на одной, самой удаленной от точки питания установке. У светильников наружного освещения проверяется срабатывание защиты только на самых дальних светильниках каждой линии. Проверку срабатывания защиты групповых линий различных приемников допускается производить на штепсельных розетках с защитным контактом.

28.5
Проверка наличия цепи между заземленными установками и элементами заземленной установки:
Производится на установках, срабатывание защиты которых проверено.

Приложение 3.1
Таблица 37
– Электропроводки, в том числе осветительные сети:
Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов.
В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены.
– Стационарные электроплиты:
Измерения сопротивления изоляции производится при нагретом состоянии плиты не реже 1 раза в год.

elektroas.ru

Периодичность проверки изоляции | ЭнергоАудит

Периодичность проверки сопротивления изоляции электрооборудования – важное условие безотказной работы электрооборудования

Периодичность проверки сопротивления изоляции – обязательное действие, важность которого трудно переоценить, необходимое предупреждение непредусмотренной остановки оборудования. Плановое проведение измерений – условие подтверждения надежной работы электрооборудования.

Зачем лишний раз проверять изоляцию электрооборудования?

Ответ прост, с течением времени эксплуатации наблюдается износ оборудования, проявляющийся в старении изоляции.

Рис№1. Измерение сопротивления изоляции современным мультиметром-мегомметром Fluke, обеспечивающим высокую точность показаний

Периодическая проверка сопротивления изоляции: причины выполнения

Следствие износа изоляции – обязательные периодические измерения ее сопротивления. Приведем несколько примеров старения и износа изоляции:

  1. На силовой кабель влияет механическое воздействие, например, почвенных и температурных изменений, отрицательно сказывающихся на состоянии изоляционной прочности. Осушение изоляции масляного кабеля, отсутствие эффекта «самоизлечения» кабеля в пластмассовой изоляции – главные причины износа.
  2. Коммутационные действия и переходные процессы с большими нагрузками обладают свойством создавать и накапливать значительные заряды электроэнергии, они находят выход в слабом месте изоляции кабеля или электрооборудования.
  3. Накапливание влажности обмоткой стоящего в резерве неработающего двигателя отрицательно влияет на величину коэффициента абсорбции.
  4. Измерение сопротивления изоляции – обязательное действие перед проведением и после выполнения периодических испытаний высоковольтного оборудования.

Обязательность периодичного измерения изоляции

Предприятие обязательно должно иметь график ППР (планово-предупредительных ремонтов). Составляет документ руководитель предприятия или энергетик, который ответственен за безаварийную работу электрооборудования. Важно принимать во внимание правила ПТЭЭП, в которых обозначены определенные нормы выполнения измерений. В основном проверка изоляции производится 1 раз в течение 3 лет. Однако в большинстве случаев руководствуются целями сокращения и минимизации простоя оборудования без напряжения и нежелания лишний раз выключать электроустановки. Поэтому на практике измерения сопротивления изоляции электрооборудования  выполняют при всех видах ремонта.

Важно учитывать исключения из общих правил, характерные для ряда учреждений и организаций

  • Для некоторых организаций, таких как образовательные учреждения, замер сопротивления изоляции электрооборудования и заземления производится раз в год.
  • Для организаций Министерства здравоохранения измерения сопротивления производятся раз в полгода. Особенно это требование касается помещений с вредной пожароопасной или взрывоопасной средой.
  • Для предприятий общественного питания измерение изоляции выполняют раз в год.
  • Для некоторых помещений с опасными условиями труда и высокой влажностью измерение сопротивления производят раз в полгода и обязательно выполняют проверку защитного заземления 1 раз в год. Это требование характерно для предприятий, специализирующихся на химической чистке и прачечных.
  • Особенного внимания требуют электродвигатели подъемников и лифтов, в обязательном порядке рекомендуется проводить полный технический осмотр и измерение изоляции.

Рис. №2. Пример документа с нормами измерения сопротивления изоляции электрооборудования лифта

 

Подав заявку на измерение сопротивления изоляции электролаборатории компании «ЭнергоАудит» организация может быть уверена в точности и достоверности полученных сведений. По окончании измерений сотрудники компании готовят и передают заказчику отчет о проведенной работе. В отчете обязательно указываются рекомендации по устранению замечаний. Благодаря качественной работе специалистов электролаборатории «ЭнергоАудит» клиенты могут безопасно и с уверенностью эксплуатировать электрооборудование.

www.e-aud.ru

Необходимость проведения замеров изоляции электропроводки

При эксплуатации жилых помещений и производственных зданий должно периодически проводиться диагностирование изоляции электропроводки и энергетического оборудования с осуществлением замеров устойчивости изоляционного слоя для предотвращения аварийных ситуаций. (см. Рис. 1)


Условия эксплуатации электрических сетей

В процессе эксплуатации электрических сетей происходит воздействие множества различных факторов:

  1. Возможны повреждения, допущенные в ходе проведения ремонтных работ.
  2. Внешнее воздействие погодных условий (повышенной и отрицательной температуры, воздействия солнечных лучей, осадков).
  3. Повышенной нагрузки по причине подключения приборов большой мощности.
  4. Разрушается изоляции электропроводки в результате длительной эксплуатации.
  5. Выявления скрытых дефектов изоляции.

Для выявления повреждений изоляции необходима регламентная ревизия, проводимая строго по графику с осуществлением диагностики состояния электропроводки на объекте.

Оборудование, используемое для проведения замеров


Для проведения измерения показателя изоляции электропроводки используется специальный прибор – мегомметр (см. Рис. 2). Причем внутренняя проводка измеряется с допустимым установленным уровнем до 1000 В, а кабель силовой – до 2500 В.

Процесс замера изоляции выполняется в следующей последовательности:

  1. Снимается показатель сопротивления между токоведущими проводами.
  2. Замеряется потенциал между каждым проводом и приводом заземления.

Измерение должно производиться с соблюдением определенных правил, а процесс продолжаться более 1 мин. с показателем изоляции более 0.5 Мом.

Периодичность выполнения замеров изоляции

Основополагающим документом является приложение 3 ПТЭЭП, когда устанавливается количество плановых инспекций для осуществления замеров изоляционного покрытия токопроводящих сетей –  1 проверка в течение 3 лет (п.2.12.17). По  ГОСТ Р 50571 16-99 регламент проведения проверок тот же с учетом дополнительных замеров непрерывности изолирующих проводников, полного сопротивления действующей сети фаза-нуль и состояния УЗО.

Периодичность проведения проверок ПТЭЭП зависит от специализации предприятия и условий эксплуатации электросетей и оборудования.

В помещения, где существует возможность поражения током из-за внешних факторов:

  • экстремального температурного режима;
  • повышенной концентрации влаги;
  • наличия токопроводящих полов;
  • большого количества установленного и используемого энергетического оборудования, замеры должны проводиться 1 раз за год.

На предприятиях оснащенных большим количеством электрооборудования необходимо проводить профилактический ремонт, что поможет избежать преждевременного выхода действующего оборудования из строя.

Плановые проверки согласно ПТЭЭП по замеру изоляции должны выполняться с привлечением специалистов специализированных электроизмерительных лабораторий имеющих регистрацию в Ростехнадзоре.

Согласно действующим нормативным документам (ПТЭЭП) проверка должна, проводится:

  1. В административных зданиях – 1 раз в течение 3 лет.
  2. В эксплуатируемых многоэтажных домах – 1 раз в течение 3 лет.
  3. В зданиях торговых предприятий – 1 раз в течение года.
  4. Электротехнического оборудования – 1 раз в течение 6 месяцев.

Результаты предоставляются заказчику в виде специального отчета (по ГОСТ Р 50571), где указывается вся необходимая информация о фактическом состоянии электрооборудования и кабельных сетей. Данный акт предъявляется при проверке предприятия инспектору госпожарнадзора или Ростехнадзора.

Периодичность проведения проверок предприятий, учреждений и жилых помещений по видам проводимых замеров:

  • сопротивления изоляционного покрытия – 1 раз в течение 3 лет;
  • переходных значений сопротивлений – 1 раз в течение 3 лет;
  • значение сопротивления петли фаза-нуль – 1 раз в течение 3 лет;
  • УЗО – 1 раз с периодичностью 3 лет.

Особые требования предъявляются (по ПТЭЭП), когда осуществляются замеры показателей, проверка оборудования и кабельных сетей в лечебных заведениях, дошкольных учреждениях, школах, а также лифтового оборудования установленного в жилых домах и учреждениях.

Периодичность проверок должна осуществляться:

  • сопротивления изоляционного покрытия – 1 раз в течение 1 года;
  • переходных значений сопротивлений – 1 раз в течение 1 года;
  • значений сопротивления петли фаза-нуль – 1 раз в течение 1 года;
  • УЗО – 1 раз в течение 1 года.

Плановая периодичность проведения проверок составляется заказчиком самостоятельно, но с учетом нормативных документов (ПТЭЭП, ГОСТ). При вводе нового объекта в строй проводится полная ревизия всех энергосистем согласно графику и оформляется акт соответствия требуемым нормам.

При использовании оборудования с напряжением до 1000 В с заземленным нейтральным проводом — 1 раз в период 2 года, с обязательной проверкой автоматического отключения энергоснабжения.

При проведении текущего или капитального ремонта электрооборудования сроки испытаний и проведения измерений устанавливаются, руководителем предприятия на основе действующих нормативных документов.

Для каждой отрасли промышленного производства разработаны особые нормы проведения проверок, которые должны строго, выполнятся с учетом обеспечения безопасной эксплуатации энергетического оборудования и электрических сетей.

Оцените статью:

elquanta.ru

Проверка сопротивления изоляции – Всё о электрике в доме

Методика измерения сопротивления изоляции

Измерение сопротивления электрической изоляции – наиболее частое измерение при проведении электротехнических работ. Основная цель данного вида измерений – определение пригодности к эксплуатации электрических проводников, электрических машин, электрических аппаратов и электрооборудования в целом.

Сопротивление изоляции зависит от различных факторов. Это и температура окружающей среды, и влажность воздуха, и материал изоляции и т.д. Единица измерения сопротивления – Ом. При замерах сопротивления изоляции величиной обычно является килоОм (1кОм) и мегаОм (1МОм).

Сопротивление изоляции чаще всего измеряют у электрических кабелей, электрической проводки, электродвигателей, автоматических выключателей, силовых трансформаторов, распределительных устройств. Основным прибором для замеров является мегаомметр (мегомметр). Мегаомметры бывают двух основных видов – стрелочные с ручным приводом и электронные с цифровым дисплеем.

В процессе измерений мегаомметр генерирует испытательное напряжение. Стандартные напряжения мегаомметров – 100В, 250В, 500В, 1000В, 2500В. Чаще всего используют мегаомметры на напряжение 1000В и 2500В, реже на 500В.

Проверка исправности мегаомметра

Перед выполнением замеров, необходимо проверить исправность используемого прибора. Для этого выполняется два контрольных замера. Первое измерение проводится при закороченных между собой проводах мегаомметра. В этом случае измеряемая величина должна быть равна нулю. Второе контрольное измерение выполняется при разомкнутых проводах. Измеряемая величина сопротивления должна стремиться к бесконечно большому значению.

Техника безопасности при проведении измерений

При замерах сопротивления изоляции необходимо соблюдать технику безопасности. Во-первых, пользоваться неисправным мегаомметром категорически запрещается. Во-вторых, перед измерением необходимо проверить индикатором или указателем отсутствие напряжения на электрическом кабеле, двигателе или электрооборудовании. При отсутствии напряжения снимается остаточный заряд путём кратковременного заземления тех частей кабеля, двигателя или электрооборудования, которые в рабочем режиме находились под напряжением. Действия по снятию электрического заряда следует также проводить и после каждого замера.

Измерение сопротивления изоляции силовых электрических кабелей и электропроводки

Изоляция электрических кабелей и электрических проводов проверяется сначала на заводе изготовителе, затем перед непосредственной прокладкой, ну и после окончания электромонтажных работ. Количество замеров зависит от количества жил кабеля или провода.

Силовые электрические кабели и провода бывают трёхжильными, четырёхжильными и пятижильными. Три жилы – это или фаза, ноль и провод заземления, или три фазы «A», «B», «C». Четыре жилы – это три фазы плюс ноль (провод заземления или комбинированная жила PEN). Пять жил – это три фазы, нулевой проводник и провод заземления.

Замеры сопротивления изоляции трёхжильного кабеля или провода выполняют следующим образом. Каждая из трёх жил проверяется по отношению к двум другим заземлённым жилам. В итоге получается три замера. Кроме того, можно проверять сопротивление сначала между каждыми двумя жилами, а затем между каждой жилой и «землёй». В этом случае получается шесть замеров.

В случае с четырёхжильным или пятижильным электрическим кабелем (проводом) методика замеров аналогична измерениям трёхжильного проводника, только количество замеров будет несколько больше.

Для того, чтобы измеряемое значение соответствовало действительности, замер выполняется в течение одной минуты. Величина сопротивления изоляции электрического проводника должна быть в пределах государственных норм. Обычно для низковольтных кабелей 220В или 380В она составляет 0,5МОм или 1МОм.

Измерение сопротивления изоляции электрических двигателей

Для электродвигателей проверяется изоляция обмоток статора. В настоящее время наибольшее распространение получили трёхфазные электродвигатели с короткозамкнутым ротором на рабочее напряжение 380В.

У таких двигателей имеется три обмотки статора, которые соединяются между собой либо по схеме треугольника, либо по схеме звезды. Соединение выполняется или внутри корпуса двигателя, или в соединительной коробке двигателя, которая называется «борно». Т.к. в первом случае отсоединить обмотки друг от друга не представляется возможным, то измерение сводится к замеру изоляции всех трёх соединённых обмоток по отношению к корпусу двигателя. Во втором варианте обмотки можно отсоединить друг от друга, после чего выполняется проверка изоляции между обмотками, а также проверка изоляции каждой обмотки по отношению к металлическому корпусу двигателя. Каждый замер выполняется в течение одной минуты. Конечное значение величины должно также соответствовать государственным нормам.

На производстве очень часто применяются достаточно мощные высоковольтные электродвигатели. Замер сопротивления изоляции обмоток таких двигателей часто сводится к определению коэффициента абсорбции, т.е. к определению увлажнённости обмоток. Для этого фиксируется значение после 15 секунд измерения и после 60 секунд. Значение коэффициента абсорбции — это отношение сопротивления R60 к сопротивлению R15. Величина не должна быть менее 1,3.

Измерение сопротивления изоляции силовых трансформаторов

В настоящее время единственным устройством, преобразующим электрическое напряжение из одной величины в другую, является трансформатор. Практически ни одно производство не обходится без силовых питающих трансформаторов. Перед пуском в эксплуатацию каждый такой трансформатор должен пройти высоковольтные испытания. Перед тем, как будут произведены высоковольтные испытания, необходимо выполнить замеры сопротивления изоляции обмоток.

Т.к. у трансформатора есть первичная и вторичная обмотка (обмотки), то проверяется изоляция каждой обмотки по отношению к другой, которая на момент замера должна быть заземлена. Также выполняется замер между первичной и вторичной обмоткой.

Достаточно часто необходимо определить увлажнённость обмоток трансформатора. В таком случае также как и с высоковольтным двигателем, определяется коэффициент абсорбции.

Как проводится измерение сопротивления изоляции кабельных линий мегаомметром

Кабельные линии перед началом работ, а также с определенной периодичностью, проверяются на эксплуатационные характеристики, одна из которых сопротивление изоляции. Именно данная характеристика определяет, сможет ли кабель выдерживать токовые нагрузки, не перегреется ли он и не прогорит ли. Проверка сопротивления изоляции производится мегаомметром. Прибор этот не самый сложный в плане использования, но некоторые моменты применения требуют знаний. Итак, как провести измерение сопротивления изоляции кабельных линий мегаомметром.

Существуют определенные нормативы, которые распределены по классификации самих кабельных линий, представленные в основном тремя позициями:

  • силовые высоковольтные, где напряжение в системе превышает 1000 вольт;
  • силовые низковольтные – это ниже 1000 вольт;
  • контрольные системы и управления.

Кабели двух первых позиций измеряются мегаомметром при напряжении 2500 вольт. Контрольные при напряжении от 500 до 2500 вольт. При этом у каждой позиции свои нормы.

  • У первой позиции (высоковольтных) сопротивление изоляции находится в пределах не меньше 10 МОм.
  • У низковольтных не ниже 0,5 МОм.
  • У контрольных не ниже 1,0 МОм.

Необходимо учитывать тот факт, что измерение сопротивления изоляции должно проводиться с учетом температурного режима, при котором кабельные системы эксплуатируются и тестируются. Все дело в том, что в линии иногда находятся капли влажности, которые при низких отрицательных температурах превращаются в льдинки. А всем известен тот факт, что лед является диэлектриком, то есть, при проведении измерения он (лед) выявляться не будет.

Как измеряется сопротивление мегаомметром

Измерение сопротивление изоляции мегаомметром любых видов кабельных линий производится практически одинаково с некоторыми специфичными различиями. Чтобы понять, какие отличия есть в каждом случае, разберем их все три по отдельности.

Измерение высоковольтных линий

Итак, в первую очередь кабель проверяется на отсутствие на нем напряжения. Для этого используются специальные указатели высокого напряжения. После чего сам измерительный прибор подключается к жилам со стороны, где проверяется изоляция. С другой стороны жилы разводятся на определенное расстояние, узаконенное ПУЭ. Кстати, именно с этой стороны необходимо поставить человека, который будет выполнять функции сторожа, чтобы любопытные не решили потрогать торчащие провода голыми руками. Обязательно везде вывешиваются плакаты о том, что проводятся испытания.

Теперь можно проводить тестирование. Для этого проверяется каждая жила. То есть, две свободные заземляются, а к проверяемой подключается один вывод мегаомметра, а его второй вывод подключается к земле (заземлению). Далее, измеряют сопротивление мегаомметром на 2500 вольт. Длительность испытания – одна минута. Точно также проверяются и другие.

Испытание низковольтных кабелей

Предварительные этапы здесь точно такие же. А вот схема самого измерения сильно отличается от вышеописанной. В низковольтных линиях несколько схем подключения и испытания. Вот они с учетом маркировки жил (А; В и С).

  • Сначала испытываются жилы между собой. То есть, А-С, А-В и С-В.
  • Далее, производится проверка между каждой жилой и нулем. То есть, N-А, N-В и N-С.
  • Затем между жилами и заземляющим контуром. То есть, PE-А, PE-В, PE-С.
  • И обязательно проверяется сопротивление нулевого контура. При этом подключение мегаомметра производится по схеме N-PE. Не забывайте, что в этом случае ноль необходимо отключить от заземления.

Испытание контрольных кабельных систем

Измерение сопротивления изоляции контрольных систем кабелей производится по той же технологии с единственным отличием. То есть, сначала производится определение отсутствия напряжения на жилах, выставляется мегаомметр на проверку 500-2500 вольт.

Один конец (выход) прибора подключается к концу испытуемого кабеля, второй к заземлению. Остальные жилы соединяются между собой и подключаются к заземляющему контуру. Можно второй выход мегаомметра подключить к одной из свободных жил. Проверка проводится в течение одной минуты. Точно также проверяются все жилы кабеля.

Полученные результаты обязательно записываются, а в последствии сравниваются с табличными. Таблицы можно найти в ПУЭ и ПТЭЭП. Если фактическое значение не ниже табличного, то проверяемый кабель можно дальше эксплуатировать. Кстати, на основе проводимых испытаний должно быть сделано заключение и обязательно составлен протокол, где указаны фактические показатели тестирования.

Другие позиции

Кроме силовых и контрольных линий мегаомметром можно измерять и другие, работающие от электрического тока. К примеру:

  • Машины постоянного тока, а точнее, их обмотки и бандажи со всеми присоединенными к ним кабелями и проводами. При этом настройка мегомметра производится: при номинале напряжения до 500 В устанавливается предел 500 вольт, при номинале выше 500 на предел 1000 вольт. Сопротивление изолирующего слоя не должно быть ниже 0,5 МОм.
  • Варочные бытовые электрические плиты проверяются испытательным прибором при 1000 вольт. Норма – 1 МОм.
  • Проверка электрооборудования лифтов и различных подъемных кранов также производится мегомметром, который выставляется на 1000 В. 0,5 МОм – это норма сопротивления.

Заключение по теме

Подходить к измерению сопротивления изоляции кабельных линий магаомметром необходимо строго, учитывая временные нормы. Для некоторых линий тестирования проводятся один раз в год, для других один раз в несколько лет. Пропущенный срок – это нарушение безопасности эксплуатации, что может в один миг привести к неприятным последствиям.

Как правильно проверить сопротивление мультиметром

  • Как правильно пользоваться измерителем сопротивления измерения ИС 10

  • Как прозвонить провод мультиметром – нюансы процесса

    Замеры сопротивления изоляции, их периодичность

    Электробезопасность для любого помещения является гарантом качественной работы и долговечности всех электроприборов. Кроме того, соблюдая такие предусмотренные нормами и правилами электробезопасности условия эксплуатации проводки, можно обезопасить себя, не только от пожара, но и обычного удара током. То есть, если сопротивление изоляции кабеля – норма, то и безопасность жильцов или персонала в этом помещении будет высокой.

    Для чего нужно проводить эти замеры, и с какой периодичностью? Замеры сопротивления проводятся в любых помещениях, особенно, если проводка была смонтирована давно. Это относится и к предприятиям, к жилым квартирам и домам. Лучше всего, если замеры сопротивления изоляции выполняются регулярно, обеспечивая бесперебойную работу всех электроприборов и оборудования.

    Согласно статистическим данным, порядка 20% пожаров в жилых домах и на производстве происходит из-за некачественной или повреждённой проводки. Не менее 15% случаев удара током или выхода из строя любого электроприбора также относятся к нарушению изоляции.

    Причины нарушения изоляции электропроводки

    Причины нарушения изоляции могут быть различными, так как на проводку влияет множество факторов, включая время эксплуатации и её интенсивность. То есть, будет важно выяснить, не только, как измерить сопротивление изоляции . но и возможные причины её повреждения. Наиболее часто такими причинами повреждений будет:

    • Механическое повреждение вследствие проведения ремонта или случайных действий;
    • Агрессивные условия эксплуатации проводки или подключение слишком мощных электрических приборов и оборудования, на нагрузку от которых не рассчитано сопротивление изоляции;
    • Длительная эксплуатация и разрушение изоляции проводки вследствие «старения»;
    • Брак и дефекты изоляции, которые были допущены на заводе.

    Даже небольшая трещина на изоляции может привести к огромному пожару. Единственным методом диагностирования и предупреждения подобного исхода будет проверка изоляции кабеля, которая проводится во всех проблемных местах. Диагностику и замеры выполняют с кабелями и проводами специальными приборами.

    Условия проведения замеров сопротивления изоляции

    Мы уже выяснили, что даже в обычной квартире вам придётся регулярно проводить подобные замеры. Для этого можно приобрести специальный тестер, который пригодится и во многих других ситуациях, например, при проверке питания в розетке, монтаже осветительных приборов или даже проверке работы электрооборудования.

    Теперь рассмотрим, когда именно лучше проводить подобный замер сопротивления изоляции, ведь для него также необходимо определённые условия. Если вы хотите померить сопротивление проводки в квартире, то принципиальной разницы между летом или зимой не будет. Главное, чтобы в помещении не была повышена влажность.

    Жителям собственных домов проверку изоляции кабелей проводить будет немного сложнее. Прежде всего, хотя бы часть их проводки и подводящих к ней кабелей расположена на улице. Соответственно, тут будут действовать другие условия диагностики. Одним из таких условий является температура воздуха, которая не должна быть отрицательной.

    Отрицательная температура и повышенная влажность препятствуют получению точных данных при диагностировании сопротивления. Микрочастицы воды от повышенной влажности могут превратиться в лёд, который выступит в качестве диэлектрика. При этом, будет показано сопротивление изоляции кабелей – нормальное, а на самом деле может быть гораздо меньше.

    Положительная температура (и лучше всего день, когда она поднимается выше всего) будут идеальными условиями для проведения измерения. Причём, этот же фактор относится и к проводке, которая расположена непосредственно в помещении, ведь большая часть её находится внутри стен, которые нагреваются долго.

    Инструменты и приборы для проведения замеров

    Проводить замер сопротивления изоляции кабеля следует при помощи специального прибора – мегомметра. При этом, бытовая проводка, например, в квартире или доме, замеряется напряжением в 1000 Вольт, а силовые кабеля требуют установки напряжения в 2500 Вольт.

    Теперь определим, как измерять сопротивление изоляции . и в каком порядке выполнять подобную диагностику. В первую очередь, выполняются замеры между токоведущими жилами. Это стандартная проверка и её показатели будут основными. После этого необходимо будет выполнить более долгий процесс определения сопротивления уже между заземляющим проводником и отдельно каждой жилой.

    Проведение измерений с учётом повышенных напряжений не должно быть точечным. То есть, такой замер сопротивления изоляции кабеля нормой будет только после проверки хотя бы на протяжении минуты. При этом прибор должен отображать сопротивление для изоляции не менее чем 0,5 МОм.

    Когда нужно проводить замер сопротивления изоляции?

    Вот мы и подошли к основному интересующему всех вопросу – когда же проводить этот самый замер, например, у себя в квартире? Сразу следует сказать, что слишком частым он не будет, а вот безопасность для жильца от пожара или удара током увеличит значительно. То есть, по затраченному времени и периодичности проверки – она будет обязательной для обеспечения этой самой безопасности.

    Для обычной квартиры или даже дома, периодичность проверки изоляций кабелей и проводки составляет три года. То есть, один раз в три года (и как говорилось выше, в летнее время) необходимо проверять всю проводку, и особенное внимание уделять проблемным местам. Однако, тут есть и исключения, которые относятся к тем же частным домам и коттеджам.

    1. Проверка изоляции, при наружной проводке и в кабелях, должна проводиться раз в год.
    2. На предприятиях с более высоким напряжением и подключением большого количества оборудования и приборов, факт нормального сопротивления изоляции кабелей нужно подтверждать ежегодно.
    3. Ежегодная проверка проводится и для эксплуатируемого электрооборудования.

    Будет удобно совместить эти две диагностики, что значительно повысит степень безопасности.

    Случаи повреждения проводки и их определение

    Осознав необходимость ежегодной (или раз в три года) проверки сопротивления для изоляции, мы можем хотя бы частично подстраховаться от удара током и увеличить безопасность использования электроприборов. А вот что делать и, как измерять сопротивление изоляции, а точнее даже не измерять, а определять её повреждение, если проверка прошла, а до следующей далеко?

    Данный вопрос будет актуален в том случае, если для проверки вызывается мастер со своим прибором, а уже после проведения диагностики обнаружилась неисправность.

    Подобной неисправностью могут быть обычные искры, которые возникают при нагрузке, вот только короткого замыкания так и нет, да и автоматы не реагируют.

    В такой ситуации проверка кабелей изоляции выполняется визуально-мануальным способом. То есть, необходимо найти место, в котором «искрит» и осмотреть проводку, подходящую к нему. При этом можно увидеть немного оплавленные провода, смену цвета или даже обгорелые участки вокруг изоляции. Лучшим выходом в данной ситуации станет проверка всех контактов, к которым подходит кабель, и замена повреждённого участка проводки.

    Повышение безопасности использования электроприборов и оборудования

    Итак, мы можем подвести итоги и уже точно сказать, как можно увеличить безопасность использования электроприборов и оборудования. Естественно, главным будет регулярно убеждаться, что сопротивления изоляции кабелей нормальное . в чём может помочь проверка. Также следует внимательно относиться к изоляции проводки и осматривать на предмет искр или нагрева. И последнее несложное требование, которое относится к совмещению проверки сопротивления для изоляции проводки и диагностики оборудования. Соблюдая эти не слишком обременительные правила, можно обеспечить и безопасность для электроприборов, и защиту от ударов током.

    Источники: http://aquagroup.ru/articles/metodika-izmereniya-soprotivleniya-izolyacii.html, http://onlineelektrik.ru/elaboratoriya/eizmereniya/izmerenie-soprotivleniya-izolyacii-kabelnyx-linij-megaommetrom.html, http://obelektrike.ru/posts/zamery-soprotivlenija-izoljatsii/

  • electricremont.ru

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о