От чего зависит сопротивление проводника — обзор параметров

Сопротивление проводника (СП) – это одно из основных физических явлений в электричестве. Оно положено в основу многих электроприборов. Также это главная причина всех потерь в любых электросетях. Следует уточнить, что СП является весьма объемным понятием, которое неоднозначно для ряда ситуаций. Далее раскроем суть СП во всем его разнообразии. 

Что необходимо уточнить, затрагивая СП

Название статьи – это исходная точка рассказа о целой группе понятий, каждое из которых относится к СП. И вот почему. Само понятие «сопротивление» означает препятствование чему-либо. Следовательно, при упоминании проводника подразумевается то, как он препятствует прохождению электрического тока через него. Но, как известно, ток бывает переменный и постоянный. Поэтому сразу уточняем:

  • СП в целом зависит от свойств напряжения, воздействующего на него, материала и пространственно-геометрических характеристик проводника при определенной температуре окружающей среды, и силы, приложенной к нему.

Из этой общей формулировки вытекают следующие понятия:

  • активное сопротивление,
  • реактивное сопротивление,
  • импеданс,
  • волновое сопротивление.

Раскрытие перечисленных понятий дает общее представление того, от чего же зависит СП.

Зависимость от свойств материала

Материал проводника в основном определяет реакцию на приложенное напряжение. Наименьшим сопротивлением обладают металлы. Хотя среди них существует большая разница в этом свойстве. Современная теория объясняет это строением атомов металлов. Для любого проводника его свойство быть таковым объясняется наличием свободных заряженных частиц. В металлах это электроны, в жидкостях и газах – ионы. Приложенное к проводнику напряжение вызывает их движение.

Чем слабее воздействие, препятствующее перемещающимся зарядам, тем меньше СП. Для оценки материла проводника введено понятие удельного сопротивления. Оно применимо к тем веществам, из которых можно получить проводник длиной 1 м с поперечником в 1 кв. мм. Что получается в результате изготовления такого проводника из некоторых материалов, наглядно демонстрирует изображение далее.


Сопротивление различных металлов

Если длина проводника будет больше одного метра, его сопротивление увеличится, а при увеличении поперечника – уменьшится. Эти закономерности можно проверить опытным путем, используя, например, батарейку, отрезок проволоки из нихрома и мультиметр. В результате получаем формулу, которая подтверждена экспериментально. В ней обозначим:

  • R – сопротивление,
  • ρ – удельное сопротивление,
  • l – длина,
  • S – площадь поперечного сечения.

Формула получится такой:

R= ρ*l/S.


Поясняющее изображение для удельного сопротивления

Но эта формула не дает исчерпывающего представления обо всех ситуациях, для которых имеет значение сопротивление. Она будет применима лишь при определенных соответствиях удельного сопротивления температуре, а также постоянном напряжении. То есть это формула для расчета активного СП при заданной температуре. Если температура проводника увеличится, усилится так называемое броуновское движение в его материале. Как результат этого – более затрудненное перемещение электронов и увеличение СП.


Броуновское движение

И наоборот. Охлаждение проводника создает лучшие условия для беспрепятственного перемещения электронов, и при определенных температурах может привести к минимальным величинам сопротивления. Это явление получило название сверхпроводимости. Оно связано по температурным показателям с химическим составом материала проводника и существенно различается для разных металлов и прочих химических элементов, а также их соединений.


Зависимость сопротивления от температуры

Зависимость от свойств напряжения

Напряжение – это главная движущая сила электричества. Напряжение первично. Фактически это среда, в которой протекают разнообразные процессы, связанные с электрическим током. Важнейшей является связь электрического тока с электромагнитным полем. А его параметры, в свою очередь, определяются не только напряжением, но и пространственно-геометрическими характеристиками проводника.

Даже в том случае, когда проводник – это прямой отрезок проволоки в составе электрической цепи, его положение в пространстве при достаточно высоких частотах напряжения будет заметно влиять на величину его сопротивления. Это связано с тем, что в этих условиях проявляются его индуктивность и емкость, существующие лишь при переменном напряжении. Эти параметры проводника именуются реактивным сопротивлением, и также приводят к потерям электроэнергии.

  • Следовательно, если проводник находится под воздействием переменного напряжения, его сопротивление также зависит как от частоты этого напряжения, так и от его индуктивно-емкостных параметров.

Активное СП при этом остается в силе. А сопротивление проводника в целом именуется импедансом. Его принято обозначать буквой Z и рассчитывать с использованием комплексных чисел. Это довольно-таки специфические расчеты, которыми не стоит утомлять читателя нашей статьи. Но чтобы читатель в этом утверждении не усомнился, далее приведем формулу, по которой в общем случае рассчитывается импеданс:

Формула

Зависимость от геометрии

Но и постоянный ток не так прост, как представляется по некоторым опытам. Все дело в его силе. Известно, что площадь поперечного сечения напрямую связана с силой тока. Но эта закономерность применима не всегда. С определенных значений силы ток все больше устремляется к поверхности проводника, что называется вытеснением тока. По этой причине сопротивление току большой силы меньше у плоских и трубчатых проводников.


Распределение тока по поперечнику проводника

Еще лучший результат получается при покрытии серебром. Аналогично проявляются и токи высокой частоты. Для них поверхностный эффект закономерен так же, как и для постоянного тока большой силы. Но и механическая сила, воздействующая на проводник, способна повлиять на его сопротивление. И это неудивительно, поскольку деформации влияют на распределение частиц, которые тормозят электроны.

Этот принцип заложен в основу тензометрии, без которой сегодня невозможно представить машиностроение и другие отрасли промышленности, где важна прочность материалов. Все перечисленные причины, от которых зависит СП, по-разному проявляются у различных материалов. Но для прикладного использования взаимосвязи сопротивления с теми или иными воздействиями разработаны специальные сплавы и химические соединения.


Распределение тока по поперечнику проводника

Но в любом случае сопротивление измеряется в Омах и долях Ома, в том числе и кратных 1000, то есть килоом, мегаом. Больше нескольких единиц мегаом сопротивление, как правило, не бывает. Мы постарались показать читателям несколько причин, обуславливающих СП. Надеемся, что полученные знания помогут успешно решить существующие задачи.

Похожие статьи:

domelectrik.ru

II. Электрическое сопротивление проводника

Электрическое
сопротивление проводника:
1)
величина, характеризующая противодействие
проводника или электрической цепи
электрическому току;

2)
структурный элемент электрической
цепи, включаемый в цепь для ограничения
или регулирования силы тока.

Электрическое
сопротивление металлов з
ависит
от материала проводника, его длины и
поперечного сечения, температуры и
состояния проводника (давления,
механических сил растяжения и сжатия,
т.е. внешних факторов, влияющих на
кристаллическое строение металлических
проводников).

Зависимость
сопротивления от материала, длины и
площади поперечного сечения проводника:

,

где

— удельное сопротивление проводника;

l
– длина проводника;

S – площадь
поперечного сечения проводника.

Зависимость
сопротивления проводника от температуры:

или

,

где
Rt
– сопротивление при температуре t
0C;

R0
– сопротивление при 0 0C;


температурный коэффициент сопротивления,
который показывает, как изменяется
сопротивление проводника по отношению
к его сопротивлению при 0 0C,
если температура изменяется на один
градус;

T – термодинамическая
температура.

Соединения
сопротивлений:

последовательное, параллельное,
смешанное.

а)
Последовательное соединение сопротивлений

представляет собой систему проводников
(сопротивлений), которые включены один
за другим, так что через каждое из
сопротивлений протекает один и тот же
ток:

I
= I1
= I2
==
In.

Напряжение
при последовательном соединении
сопротивлений

равно сумме напряжений на каждом из
сопротивлений:

.

Напряжение
на каждом из последовательно соединенных
сопротивлений

пропорционально значению данного
сопротивления:

.

Распределение
напряжения по последовательно соединенным
элементам цепи (делитель напряжения)
:

,

где
U0
– напряжение на всем соединении;

U
– напряжение на участке цепи с
сопротивлением R1;

R
– полное сопротивление соединения;

R1
– сопротивление участка цепи с выбранным
сопротивлением.

Общее
сопротивление цепи при последовательном
соединении
равно
сумме отдельно взятых сопротивлений
и оно больше наибольшего из включенных:

.

Общее
сопротивление цепи при последовательном
соединении
n
одинаковых сопротивлений
:

,

где
n
– число сопротивлений, включенных
последовательно;

R1
= значение отдельно взятого сопротивления.

б)
Параллельное соединение сопротивлений:

признаком такого соединения является
разветвление тока I на отдельные токи
через соответствующие сопротивления.
При этом ток I равен сумме токов через
отдельно взятое сопротивление:

.

Общее
напряжение при параллельном соединении

равно напряжению на отдельно взятом
сопротивлении:

U
= U1
= U2
= =
Ui.

Связь
между током и сопротивлением при
параллельном соединении:

при параллельном соединении сопротивлений
токи в отдельных проводниках обратно
пропорциональны их сопротивлениям:

.

Величина,
обратная полному сопротивлению цепи
(общая проводимость) при параллельном
соединении,

равна сумме проводимостей отдельно
взятых проводников. При этом общее
сопротивление цепи меньше наименьшего
сопротивления из включенных:

;
.

Общая
проводимость цепи при параллельном
соединении
n
проводников:

Gпар
= nG1,

где
Gпар
– проводимость цепи;

G1
– проводимость отдельного взятого
проводника.

Шунтирование
электроизмерительных приборов

– расширение предела измерения тока
с помощью электроизмерительного
прибора, к которому присоединяют
параллельно проводник с малым
сопротивлением (шунт). В этом случае

,

где
Iп
– ток, протекающий через прибор;

I
– ток в цепи;

n
= Rп/Rш
– отношение сопротивления прибора Rп
к сопротивлению шунта Rш.

Добавочное
сопротивление

– сопротивление, которое присоединяют
последовательно к электроизмерительному
прибору для расширения предела измерения
напряжения. При этом

,

где
Uп
– напряжение на приборе;

U
– напряжение в цепи;

N
= Rд/Rп
– отношение величины добавочного
сопротивления к сопротивлению прибора.

Электрическая
проводимость

– физическая величина, обратная
сопротивлению проводника:

.

Сверхпроводимость
– свойство многих проводников, состоящее
в том, что их электрическое сопротивление
скачком падает до нуля при охлаждении
ниже определенной критической температуры
Tk,
характерной для данного материала.

Связь
удельной проводимости с удельным
сопротивлением (удельным электрическим
сопротивлением)
:

;

.

Зависимость
удельного сопротивления проводника
от температуры
:

,

где
t
– удельное сопротивление при температуре
t
0C;

0
– удельное сопротивление при 0 0C;


температурный коэффициент сопротивления,
который показывает, как изменяется
удельное сопротивление проводника по
отношению к его удельному сопротивлению
при 0 0C,
если температура изменяется на один
градус.

Задания:
1.
Ознакомиться с применяемыми в работе
электроизмерительными приборами.
Результаты занести в табл. 1.

Таблица 1.

Наименование
прибора

Заводской
номер

Инвентарный
номер

Система

Класс
точности

Предел измерений

Число
делений шкалы

Цена
деления

Абсолютная
погрешность

Внутреннее
сопротивление

Чувствительность

2.
Измерить удельное электрическое
сопротивление.

1.
Измерить микрометром в нескольких
местах рабочей части проводника его
диаметр. Рассчитать среднее значение
диаметра.

2.
Установить подвижный контакт на 0,5 
0,7 от длины рабочей части проводника.
Занести значение длины в таблицу 2.

3.
Включить установку в сеть переменного
тока с напряжением 220 В. При этом должна
загореться индикаторная лампочка.

4.
Провести измерения тока и напряжения.
Результаты занести в таблицу 2.

Таблица 2.

п/п

<d>

10-3,

м

<d>

10-3,

м

ℓ,

м

<ℓ>

10-3,

м

U,

В

I

10-3,

А

106

Омм

<>

106,

Омм

,

%

<>

106,

Омм

5.
Отключить установку. Установить
подвижный контакт на другое значение
рабочей части исследуемого проводника.
Вновь включить установку и определить
новые значения тока и напряжения.

Примечание.
Изменение
длины рабочей части проводника,
определение тока и напряжения проводятся
3-5 раз.

6.
Так как

,

то

,
(1)

где

— удельное электросопротивление
проводника;

ℓ —
длина проводника;

S
— площадь поперечного сечения.

По
формуле (1) рассчитать удельное
электрическое сопротивление исследуемого
проводника и среднее его значение.

7.
Рассчитать относительные погрешности
проведенных измерений по формуле

,
(2)

где
— погрешность вольтметра;


приборная погрешность миллиамперметра;

 —
задается преподавателем;

d,
ℓ
— определяются известными методами.

9.
Зная среднее значение <>
рассчитать среднее значение абсолютной
погрешности <>.

10.
Записать полученный результат в виде
доверительного интервала

.

studfiles.net

Что такое сопротивление проводников и от чего оно зависит: что важнее

Протекающий в проводящем материале ток пропорционален напряжению на нём. Т.е. при увеличении потенциала объём протекающих электронов также растёт. Правда, при применении различных элементов равнозначное напряжение даёт различное значение у тока. Таким образом, получается правило: при увеличении напряжения проходящий через проводник электрический ток тоже будет расти, но неодинаково, а в зависимости от характеристик элемента.

Пример провода

Определение резистивной составляющей

Электросопротивление материала – это соотношение величины протекающего тока и приложенного к нему напряжения. Для каждого конкретного элемента это соотношение своё. Для обозначения данной физической величины используют букву R. При определении её используют формулу закона Ома для участка цепи:

R=U/I.

Из представленного выражения видно, что резистивная составляющая – это отношение потенциала на проводнике к силе тока на нём же. Таким образом, чем выше величина тока, тем слабее резистивная составляющая у проводника, при большем напряжении – большая.

Дополнительная информация. Часто в обиходе говорят, что резистивная величина «мешает» напряжению бесконечно наращивать силу тока.

У любого резистора, выпускаемого в промышленных условиях, существует порядка десяти параметров, на которые необходимо обращать внимание при его выборе. Главный его параметр –  сопротивление. Это статическая характеристика для любого проводника, заданная при его производстве. Т.е. при подаче большего потенциала на проводящий элемент изменится только ток, проходящий сквозь него, но не его резистивная составляющая. Т.е. соотношение U/I остаётся неизменным.

От чего зависит сопротивление

Необходимо рассмотреть, от каких факторов зависит электрическое сопротивление проводника. Основных параметров четыре:

  • Длина кабеля – l;
  • Площадь поперечного сечения проводящего элемента – S;
  • Металл, использованный в производстве кабеля;
  • Температура окружающей среды – t.

Важно! Удельное сопротивление детали – это используемое в физике понятие, показывающее способность элемента задерживать проведение электричества.

Для состыковки детали и ее резистивной составляющей в физической науке введено понятие удельного сопротивления. Этот показатель характеризует величину резистивной составляющей кабеля при единичной длине в 1 метр и единичной площадью 1 м². Детали указанной протяжённости и толщины, произведённые из различного сырья, будут показывать различные значения резистивной величины. Это связано с физическими свойствами металлов. Именно из них в основном изготавливают провода и кабели. У каждого металлического материала своя величина элементов в кристаллической решётке.

Кристаллическая решётка

Самыми безупречно проводящими электричество деталями являются те, у которых значение резистивной составляющей наименьшее. Примером металлов с небольшой указанной величиной являются алюминий и медь. Подавляющее большинство проводов и кабелей для передачи электрической энергии изготавливаются из них. Также из них изготавливают шины в трансформаторных подстанциях и главных распределительных щитах любых зданий. Примером металлов, обладающих большой величиной удельного сопротивления, можно указать железо и всевозможные сплавы. Зачастую резистивную составляющую элемента указывают резистором.

При увеличении длины проводящего материала увеличивается и сопротивление металлического проводника. Это связано с физическими процессами, происходящими в нём при прохождении электрического тока. Суть их такова: электроны движутся по проводящему слою, в котором присутствуют ионы, из которых состоит кристаллическая решётка любого металла. Чем больше длина проводника, тем большее количество мешающих движению электронов присутствует ионов кристаллической решётки. Тем больше они создают препятствия для проведения электричества.

Для возможности наращивания протяжённости проводника производители увеличивают площадь материалов. Это даёт возможность расширить «автостраду» для электрического тока. Т.е. электроны меньше пересекаются с деталями решетки металла. Отсюда следует, что более толстый кабель имеет меньшее сопротивление.

Из всего вышесказанного вытекает формула для определения сопротивления проводника, выраженная через его длину (l), площадь поперечного сечения (S) и удельного сопротивления металла (ρ):

R = ρl/S.

В представленном выражении определения данного параметра отсутствует температура окружающей среды. Однако резистивная величина элемента меняется при достижении определенной температуры. Обычно эта температура составляет 20-25 °С. Поэтому не учитывать температуру окружающей среды при выборе детали нельзя. Это может привести к перегреву проводника и его воспламенению. Для выбора используют специализированные таблицы, значения которых используют в вычислениях.

Обычно увеличение температуры ведёт к увеличению резистивной составляющей металлического элемента. С физической точки зрения это связано с тем, что при увеличении температуры кристаллической решётки ионы в ней выходят из состояния покоя и начинают производить колебательные движения. Данный процесс замедляет электроны, т.к. столкновения между ними происходят чаще.

Шинная сборка

Выбор проводника – это достаточно сложный процесс, который лучше доверить профессионалам. При неправильной оценке всех факторов работы детали можно получить множество негативных последствий, вплоть до пожара. Поэтому понимание, от чего может зависеть сопротивление проводника, должно присутствовать.

Видео

Оцените статью:

elquanta.ru

Тест по физике Расчет сопротивления проводника 8 класс

Тест по физике Расчет сопротивления проводника. Удельное сопротивление для учащихся 8 класса с ответами. Тест состоит из 10 заданий с выбором ответа.

1. От каких факторов зависит сопротивление проводника?

1) Его размеров и силы тока в нем
2) Его длины и площади поперечного сечения
3) Длины, площади поперечного сечения проводника и напря­жения на его концах
4) Длины, площади поперечного сечения и вещества, из кото­рого он изготовлен

2. Как сопротивление проводника зависит от его длины?

1) Чем больше длина проводника, тем больше его сопротивле­ние
2) Чем больше длина проводника, тем меньше его сопротивле­ние
3) Сопротивление проводника прямо пропорционально его длине
4) Сопротивление проводника практически не зависит от его длины

3. Как сопротивление проводника зависит от площади его попе­речного сечения?

1) Чем больше площадь поперечного сечения проводника, тем больше его сопротивление
2) Чем больше площадь поперечного сечения проводника, тем меньше сопротивление
3) Сопротивление проводника обратно пропорционально пло­щади его поперечного сечения
4) Зависимость между сопротивлением и площадью попереч­ного сечения проводника практически отсутствует

4. Какая физическая величина характеризует зависимость со­противления проводника от вещества, из которого он состо­ит?

1) Количество электричества, проходящего через поперечное сечение проводника
2) Сила тока в проводнике
3) Напряжение на концах проводника
4) Удельное электрическое сопротивление вещества

5. По какой формуле, зная длину, площадь поперечного сечения проводника и материал, из которого он изготовлен, можно рассчитать его сопротивление?

1) R = U/I
2) R = ρl/S
3) U = A/q
4) I = q/t

6. Какое из приведенных ниже веществ наилучший проводник электричества? Какова особенность его удельного сопротивле­ния?

1) Алюминий; оно велико
2) Железо; оно мало
3) Серебро; оно имеет наименьшее значение
4) Ртуть; оно имеет наибольшее значение

7. Какой бы вы выбрали материал для изготовления нагрева­тельного элемента кипятильника?

1) Никелин
2) Вольфрам
3) Константан
4) Алюминий

8. Определите сопротивление алюминиевого провода длиной 100 ми площадью поперечного сечения 2,8 мм2.

1) 10 Ом
2) 1 Ом
3) 2,8 Ом
4) 28 Ом

9. Рассчитайте удельное сопротивление меди, провод из которой длиной 500 ми площадью поперечного сечения 0,1 мм2 имеет сопротивление 85 Ом.

10. Найдите площадь поперечного сечения алюминиевого прово­да длиной 500 м, имеющего сопротивление 7 Ом.

1) 0,2 мм2
2) 2 мм2
3) 4 мм2
4) 0,4 мм2

Ответы на тест по физике Расчет сопротивления проводника. Удельное сопротивление
1-4
2-3
3-3
4-4
5-2
6-3
7-3
8-2
9-1
10-2

testschool.ru

Сопротивление проводника и его зависимость от размеров, материалов и температуры.

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Сопротивление обозначается латинскими буквами R или r.

За единицу электрического сопротивления принят Ом.

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита ρ. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника:

R = р l / S,

где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм2.

Еще одной причиной, влияющей на сопротивление проводников, являетсятемпература.

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов.

 

ЭДС источника тока. Закон Ома для полной цепи с ЭДС.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника(ЭДС):

Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).


 

Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Сопротивление r неоднородного участка можно рассматривать как внутреннее сопротивление источника тока.

63. Соединение проводников.

Проводники в электрических цепях могут соединяться последовательно и параллельно.

При последовательном соединении проводников сила тока во всех проводниках одинакова:

 

По закону Ома, напряжения U1 и U2 на проводниках равны

Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:

U = U1 + U2 = I(R1 + R2) = IR,

где R – электрическое сопротивление всей цепи. Отсюда следует:

cyberpedia.su

Сопротивление проводника

Когда происходит замыкание электрической цепи, при наличии на зажимах разности потенциалов, то, в данном случае, возникает действие электрического тока. Сила электрического поля влияет на свободные электроны, заставляя их перемещаться вдоль проводника. Во время движения, электроны сталкиваются с атомами проводника, отдавая имеющуюся кинетическую энергию. Все электроны движутся с непрерывно изменяющейся скоростью.

Уменьшение скорости происходит, когда электроны сталкиваются с другими электронами и атомами, попадающимися на пути. В дальнейшем, под воздействием электрического поля, скорость движения электронов вновь увеличивается до нового столкновения.

Процесс этот непрерывный, в результате чего, поток электронов в проводнике движется равномерно. При этом, электроны, во время движения, постоянно встречают сопротивление. Это в конечном итоге, приводит к нагреванию проводника.

Что такое сопротивление проводника

Сопротивление – это свойство среды или тела, которое способствует превращению электрической энергии в тепловую, в то время, когда по нему проходит электрический ток. Изменить значение тока в цепи можно при помощи переменного электрического сопротивления, называемого реостатом. Нужное сопротивление вводится при помощи специального ползунка, установленного в определенном положении.

Проводник с большой длиной и малым поперечным сечением, обладает более высоким сопротивлением. И, наоборот, короткий проводник с большим поперечным сечением способен оказать току совсем небольшое сопротивление.

Два проводника, имеющие одинаковое сечение и длину, но изготовленные из разных материалов, совершенно по-разному проводят электрический ток. Отсюда следует, что материал, напрямую влияет на сопротивление.

Влияние дополнительных факторов

Дополнительные факторы влияют на значение и собственную температуру проводника. При повышении температуры, наблюдается увеличение сопротивления в различных металлах. В жидкостях и угле сопротивление, наоборот, уменьшается. Существуют определенные виды сплавов, у которых, с увеличением температуры сопротивление практически не изменяется.

Таким образом, сопротивление проводника зависит от таких факторов, как его длина и сечение, а также от температуры и материала, из которого он изготовлен. Сопротивление всех проводников измеряется в омах.

При большом сопротивлении, такой проводник обладает, соответственно, меньшей проводимостью и наоборот, малое сопротивление способствует гораздо лучшей проводимости электрического тока. Поэтому, величины проводимости и сопротивления, имеют обратное значение.

electric-220.ru

Электрическое сопротивление — проводник — Большая Энциклопедия Нефти и Газа, статья, страница 2

Электрическое сопротивление — проводник

Cтраница 2

Величина электрического сопротивления проводников, кроме геометрических размеров и материала, зависит от их температуры. Известно, что частота и амплитуда колебаний атомов около своих средних положений зависят от температуры тел и с увеличением ее возрастают. Увеличение частоты колебаний атомов приводит к более частым столкновениям свободных электронов с атомами, а, следовательно, и к увеличению сопротивления проводников.
 [17]

Величину электрического сопротивления проводника и соответствующую этому сопротивлению температуру определяют по логометру.
 [19]

Изменение электрического сопротивления проводников и полупроводников. Чувствительный элемент прибора, называемый термометром сопротивления, представляет собой проводник или полупроводник с известной зависимостью его электрического сопротивления от температуры. Таким образом, для определения температуры среды, в которой находится термометр, необходимо измерить его сопротивление.
 [20]

ЭДС и изменяется электрическое сопротивление проводника.
 [22]

Она получила название электрического сопротивления проводника, или просто сопротивления.
 [23]

В каких единицах измеряется электрическое сопротивление проводника. Что называется удельным сопротивлением материала проводника. Какие металлы обладают наименьшим удельным сопротивлением.
 [24]

От каких факторов зависит электрическое сопротивление проводника.
 [25]

Как влияют примеси на электрическое сопротивление проводников и изоляторов.
 [26]

Как влияют примеси на электрическое сопротивление абсолютно чистых проводников и изоляторов.
 [27]

Тензодатчики основаны на изменении электрического сопротивления проводников при упругих деформациях растяжения и сжатия.
 [28]

Ограничивает уровень интеграции рост электрического сопротивления проводников с уменьшением размеров микроструктур, а также явление электромиграции ионов в металле пленочных проводников при высоких плотностях тока, что обусловливает и снижение надежности.
 [29]

Мостовая схема для измерения электрического сопротивления проводников впервые была разработана Уитстоном. Эта схема была использована Кольраушем применительно к переменному току.
 [30]

Страницы:  

   1

   2

   3

   4




www.ngpedia.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о