Содержание

правила расчета для определения силы тока

На практике разработан ряд методов для определения и расчета схем с постоянным током, что предоставляет возможность уменьшить трудоемкий процесс вычисления трудных электрических цепей. Основными законами, с помощью которых определяются характеристики практически каждой схемы, являются постулаты Кирхгофа.

Пример сложных электрических цепей

Пути вычисления электрических схем

Расчет электрических цепей разветвляется на множество методов, используемых на практике, а именно: метод эквивалентных преобразований, прием, основанный на постулатах Ома и Кирхгофа, способ наложения, способ контурных токов, метод узловых потенциалов, метод идентичного генератора.

Процесс расчета электрической цепи состоит из нескольких обязательных этапов, позволяющих довольно быстро и точно произвести все расчеты.

Перед тем, как узнать или вычислить необходимые параметры, рассчитываемая электрическая цепь переносится схематически на бумагу, где содержатся символические обозначения входящих в ее состав элементов и порядок их соединения.

Все элементы и устройства подразделяются на три категории:

  1. Источники электропитания. Основным признаком данного элемента является превращение неэлектрической энергии в электрическую. Эти источники энергии именуются первичными источниками энергии. Вторичные источники энергии представляют собой такие устройства, на входах и выходах которых присутствует электрическая энергия. К ним относятся выпрямительные приборы или трансформаторы напряжения;
  2. Устройства, потребляющие электрическую энергию. Такие элементы преобразовывают электрическую энергию в любую другую, будь то свет, звук, тепло и тому подобные виды;
  3. Вспомогательные элементы цепи, к которым относятся провода соединений, аппаратура коммутации, защиты и другие подобные элементы.

Также к основным понятиям электрической схемы относятся:

  • Ветвь электрической схемы – участок цепи с одним и тем же током. В состав такой ветви могут входить один или несколько последовательно соединенных элементов;
  • Узел электрической схемы – точка соединения трех и более ветвей схемы;
  • Контур электрической схемы, представляющий собой любой замкнутый путь, проходящий по нескольким ветвям.

Обозначение ветвей, узлов и контуров на схеме

Метод расчета по законам Ома и Кирхгофа

Данные законы позволяют узнать силу тока и найти взаимосвязь между значениями токов, напряжений, ЭДС всей цепи и единичных участков.

Закон Ома для участка цепи

По закону Ома соотношение тока, напряжения и сопротивления цепи выглядит как:

UR=RI.

Исходя из этой формулы, найти силу тока можно по выражению:

I=UR/R, где:

  • UR – напряжение или падение напряжения на резисторе;
  • I – ток в резисторе.

Закон Ома для полной цепи

В законе Ома для полной цепи дополнительно используется величина внутреннего сопротивления источника питания. Найти силу тока с учетом внутреннего сопротивления возможно по выражению:

I=E/Rэ = E/r0+R, где:

  • E – ЭДС источника питания;
  • rо – внутреннее сопротивление источника питания.

Поскольку сложная электрическая цепь, состоящая из нескольких ветвей и имеющая в своей структуре ряд устройств питания, не может быть описана законом Ома, то применяют 1-ый и 2-ой закон Кирхгофа.

Первый закон Кирхгофа

Закон Кирхгофа гласит, что сумма токов, втекающих в узел, равна сумме токов, вытекающих из него, это выглядит как:

∑mIk=0, где m – число ветвей, подведенных к узлу.

Согласно закону Кирхгофа, токи, втекающие в узел, используются со знаком «+», а токи, вытекающие из узла, – со знаком «-».

Второй закон Кирхгофа

Из второго закона Кирхгофа следует, что сумма падений напряжений на всех элементах цепи равна сумме ЭДС цепи, выглядит как:

∑nEk=∑mRkIk=∑mUk, где:

  • n – число источников ЭДС в контуре;
  • m – число элементов с сопротивлением Rk в контуре;
  • Uk=RkIk – напряжение или падение напряжения на k-том элементе контура.

Перед применением второго закона Кирхгофа следует проверить выполнение следующих требований:

  1. Указать относительно положительные направления ЭДС, токов и напряжений;
  2. Указать направление обхода контура, описываемого уравнением;
  3. Применяя одну из трактовок 2-го закона Кирхгофа, характеристики входящие в уравнение используются со знаком «+», если их относительно положительные направления схожи с обходом контура, и с «-», если они разнонаправленные.

Из 2-го закона Кирхгофа следует выражение баланса мощностей, по которому мощность источников питания в любой момент времени равна сумме мощностей, расходуемых на всех участках цепи. Уравнение баланса мощностей имеет вид:

∑EI=∑RI2.

Метод преобразования электрической цепи

Элементы в электрических цепях могут соединяться параллельно, последовательно, смешанным способом и по схемам «звезда», «треугольник». Расчет таких схем упрощается путем замены нескольких сопротивлений на эквивалентное сопротивление, и дальнейшие вычисления уже проводятся по закону Ома либо Кирхгофа.

Последовательное и параллельное соединение элементов

Под смешанным соединением элементов подразумевается одновременное присутствие в схеме и последовательного, и параллельного соединения элементов. При этом сопротивление смешанного соединения вычисляется после преобразования схемы в эквивалентную цепь с помощью формул, приведенных на рис. выше.

Также встречается соединение элементов «звездой» и «треугольником». Для нахождения эквивалентного сопротивления необходимо первоначально преобразовать схему «треугольник» в «звезду». По картинке ниже, сопротивления равны:

  • R1=R12R31/R12+R31+R23,
  • R2=R12R23/R12+R31+R23,
  • R3=R31R23/R12+R31+R23.

Треугольник и звезда соединений

Дополнительные методы расчета цепей

Все дополнительные методы расчета цепей в той или иной мере являются или основаны на первом и втором законах Кирхгофа. К этим методам относятся:

  1. Метод контурных токов – основан на введении дополнительных величин контурных токов, удовлетворяющих 1-му закону Кирхгофа;
  2. Метод узловых потенциалов – с его помощью находят потенциалы всех узлов схемы и затем по известным потенциалам токи во всех ветвях. Метод базируется на первом законе Кирхгофа;
  3. Метод эквивалентного генератора – этот метод предоставляет решение задачи, как найти ток только в одной или нескольких ветвях. Суть метода в том, что любую электрическую цепь по отношению к исследуемой ветви можно представить в виде эквивалентного генератора;
  4. Метод наложения – основан на том, что ток в цепи или ветви схемы равен алгебраической сумме токов, наводимых каждым источником в отдельности.

Основная часть методов расчета направлена на упрощение процедуры определения токов в ветвях схемы. Эти мероприятия проводятся либо упрощением систем уравнений, по которым проводятся расчеты, либо упрощением самой схемы. Основываясь, в первую очередь, на постулаты Кирхгофа, любой из методов отвечает на вопрос: как определить силу тока и напряжение электрической цепи.

Видео

Оцените статью:

elquanta.ru

Расчёты электрических цепей

Расчёты электрических цепей

Расчёт электрических цепей онлайн. Популярные и часто применяемые формулы для расчётов.
Для удобства есть более быстрый сервер — зеркало — Расчёт электрических цепей онлайн.

Достаточно вписать значения и кликнуть мышкой в таблице.

Расчёт реактивного сопротивления катушки индуктивности L и емкости конденсатора С.

Реактивное сопротивление ёмкости

Xc = 1/(2Pi*F*C)


Реактивное сопротивление индуктивности

XL = 2Pi*F*L


Расчёт параллельного соединения двух резисторов и последовательного соединения двух конденсаторов. Общее сопротивление.

Параллельное соединение двух сопротивлений

R =R1*R2/(R1+R2)


Последовательное соединение двух ёмкостей

C = C1*C2/(C1+C2)


Расчёт резистивного и ёмкостного делителей напряжения. Резистивный делитель. Емкостный делитель.

Расчёт резистивного делителя напряжения

U1 = U*R1/(R1+R2)


Расчёт емкостного делителя напряжения

U1 = U*C2/(C1+C2)


Резонансная частота. Расчёт частоты резонанса контура и фильтра RC. Частота среза ФНЧ и ФВЧ фильтра.

Частота резонанса колебательного контура LC

F = 1/(2*Pi*√(LC))


Постоянная времени τ цепочки RC и частота среза RC-фильтра

τ = R*C ;   Fср = 1/(2Pi* τ)


Расчёт реактивных потерь и компенсации. Компенсация реактивной мощности и потерь в цепях переменного тока.

Реактивная мощность Q = √((UI)²-P²)
Реактивное сопротивление X = U²/Q
Компенсирующая ёмкость C = 1/(2Pi*F*X)


После сброса ввести два любых известных параметра

I=U/R;   U=IR;   R=U/I;   P=UI;
P=U²/R;   P=I²R;   R=U²/P;   R=P/I²   U=√(PR)   I= √(P/R)


Полезные статьи:

Сайт создан в системе uCoz

horef.narod.ru

Методы расчета электрических цепей

Постановка
задачи: в известной схеме цепи с заданными
параметрами необходимо рассчитать
токи, напряжения, мощности на отдельных
участках. Для этого можно использовать
следующие методы:

  • преобразования цепи;

  • непосредственного применения законов
    Кирхгофа;

  • контурных токов;

  • узловых потенциалов;

  • наложения;

  • эквивалентного генератора.

Будем
рассматривать первых два метода.

  1. Метод
    преобразования цепи. Суть метода: если
    несколько последовательно или (и)
    параллельно включенных сопротивлений
    заменить одним, то распределение токов
    в электрической цепи не изменится.

а)
Последовательное соединение резисторов.
Сопротивления включены таким образом,
что начало следующего сопротивления
подключается к концу предыдущего (рис.
6).

Ток
во всех последовательно соединенных
элементах одинаков.

Заменим
все последовательно соединенные
резисторы одним эквивалентным(рис. 7.).

По
IIзакону Кирхгофа:

;

;

т.е.
при последовательном соединении
резисторов эквивалентное сопротивление
участка цепи равно сумме всех
последовательно включенных сопротивлений.

б)
Параллельное соединение резисторов.
При этом соединении соединяются вместе
одноименные зажимы резисторов (рис. 8).

Все
элементы присоединяются к одной паре
узлов. Поэтому ко всем элементам приложено
одно и тоже напряжениеU.

По Iзакону Кирхгофа:.

По
закону Ома
.
Тогда.

Для
эквивалентной схемы (см рис. 7):
;
.

Величина
,
обратная сопротивлению, называется
проводимостьюG.

;=
Сименс (См).

Частный
случай: параллельно соединены два
резистора (рис. 9).

в)
Взаимное преобразование звезды (рис.10а)
и треугольник сопротивлений (рис. 10б).


преобразование звезды сопротивлений
в треугольник:


преобразование «треугольника»
сопротивлений в «звезду»:

  1. Метод
    непосредственного применения законов
    Кирхгофа. Порядок расчета:

  • Определить
    число ветвей (т.е. токов) и узлов в схеме.

  • Произвольно
    выбрать условно-положительные направления
    токов. Общее число уравнений должно
    быть равно числу неизвестных токов.

  • Определить,
    сколько уравнений должно быть составлено
    по Iзакону Кирхгофа, а
    сколько — поIIзакону
    Кирхгофа.

  • Составить
    уравнения для
    узлов
    поIзакону Кирхгофа и
    длянезависимых
    контуров (отличающихся друг от друга
    хотя бы на одну ветвь) — поIIзакону Кирхгофа.

  • Решить
    система уравнений относительно токов.
    Если в результате ток получился
    отрицательным, то его действительное
    направление противоположно выбранному.

  • Проверить
    правильность решения задачи, составив
    уравнение баланса мощности и смоделировав
    электрическую цепь средствами
    моделирующего пакета ElectronicsWorkbench.

Примечание:
если есть возможность, то перед
составлением системы уравнений по
законам Кирхгофа, следует преобразовать
«треугольник» сопротивлений в
соответствующую «звезду».

Пример расчет электрических цепей постоянного тока

Расчет будем выполнять с применением
законов Кирхгофа, предварительно
преобразовав треугольник сопротивлений
в звезду.

Пример.
Определить токи в цепи рис. 11, еслиE1=160
В,E2=100 В,R3=100 Ом,R4=100 Ом,R5=150 Ом,R6=40
Ом.

Преобразуем
треугольник сопротивлений R4
R5 R6в звезду сопротивленийR45
R56 R64,
предварительно указав условные
положительные направления токов в цепи
(рис. 12).

Ом;

Ом;

Ом.

а)

б)

Рис. 12

После
преобразования электрическая цепь
примет вид рис. 13 (в непреобразованной
части электрической цепи направления
токов не изменятся).

Вполученной электрической цепи 2 узла,
3 ветви, 2 независимых контура, следовательно,
в цепи протекает три тока (по количеству
ветвей) и необходимо составить систему
трех уравнений, из которых поIзакону Кирхгофа – одно уравнение (на 1
меньше, чем узлов в схеме электрической
цепи) и два уравнения – поIIзакону Кирхгофа:

Подставим
в полученную систему уравнений известные
значения ЭДС и сопротивлений:

Решая
систему уравнений любым способом,
определяем токи схемы электрической
цепи рис. 13:

А;А;А.

Переходим
к исходной схеме (см. рис. 11). По IIзакону Кирхгофа:

;

А.

По Iзакону Кирхгофа:

;

А;

;

А.

Токииполучились отрицательными, следовательно,
их действительное направление
противоположно выбранному нами (рис.
14).

Правильность
решения проверяем, составив уравнение
баланса мощности. Мощность источников
(учтем, что ЭДС источника E2направленно встречно токуI2,
протекающему через него):

Вт.

Мощность
потребителей:

Погрешность
вычислений в пределах допустимого
(меньше 5%).

Смоделируем
электрическую цепь рис. 11 средствами
моделирующего пакета ElectronicsWorkbench(рис. 15):

Рис.
15

При
сравнении расчетных результатов и
результатов моделирования, можно
увидеть, что они отличаются (различия
не превышают 5%), т.к. измерительные
приборы имеют внутренние сопротивления,
которые моделирующая система учитывает

studfiles.net

Circuit Magic — расчет электрических цепей постоянного и переменного тока в общем виде

Circuit Magic

русскоязычная версия программы перестала быть платной.
(Просто лень ходить на почту.)
www.circuit-magic.narod.ru/cm23122001.zip
http://circuitmagic.chat.ru/cm23122001.zip
password
12359590ghtnbddggrrrtyrtyryt
keygen
www.circuit-magic.narod.ru/keygen.zip
нажать кнопку выходной код.
На нашем сайте размещена информация о возможностях программы, примеры решения задач с помощью Circuit Magic, условия приобретения программы, а также демоверсия программы. Кроме того, планируется к размещению коллекция ссылок на ресурсы интернет посвященные вопросам расчета, и анализа электрических цепей.

Краткое описание и область применения

Circuit Magic –комплекс расчета электрических цепей постоянного и переменного тока в общем виде. Основное назначение программы создание схем электрических цепей, расчет токов, напряжений, составление балансов мощности, построение и корректировка векторных диаграмм токов и напряжений. В состав Circuit Magic включен встроенный текстовый редактор для вывода и оформления результатов расчета. Расчет электрических цепей несколькими методами (метод узловых потенциалов, метод контурных токов и расчет по законам Кирхгофа).

Главное окно Circuit Magic

  Программа предназначена в основном для студентов изучающих теоретические основы электротехники(ТОЭ), основы теории цепей (ОТЦ), физику и преподавателей. Circuit Magic может также применятся для различных инженерных расчетов и в качестве редактора электрических схем и векторных диаграмм.

circuit-magic.narod.ru

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Главная

Примеры решения задач ТОЭ

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Основными законами, определяющими расчет электрической цепи, являются законы Кирхгофа.

На основе законов Кирхгофа разработан ряд практических методов расчета электрических цепей постоянного тока, позволяющих сократить вычисления при расчете сложных схем.

Существенно упростить вычисления, а в некоторых случаях и снизить трудоемкость расчета, возможно с помощью эквивалентных преобразований схемы.

Преобразуют параллельные и последовательные соединения элементов, соединение «звезда» в эквивалентный «треугольник» и наоборот. Осуществляют замену источника тока эквивалентным источником ЭДС. Методом эквивалентных преобразований теоретически можно рассчитать любую цепь, и при этом использовать простые вычислительные средства. Или же определить ток в какой-либо одной ветви, без расчета токов других участков цепи.

В данной статье по теоретическим основам электротехники рассмотрены примеры расчета линейных электрических цепей постоянного тока с использованием метода эквивалентных преобразований типовых схем соединения источников и потребителей энергии, приведены расчетные формулы.

Решение задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований


Задача 1. Для цепи (рис. 1), определить эквивалентное сопротивление относительно входных зажимов a−g, если известно: R1 = R2 = 0,5 Ом, R3 = 8 Ом, R4 = R5 = 1 Ом, R6 = 12 Ом, R7 = 15 Ом, R8 = 2 Ом, R9 = 10 Ом, R10= 20 Ом.

Рис. 1

Решение

Начнем эквивалентные преобразования схемы с ветви наиболее удаленной от источника, т.е. от зажимов a−g:


Задача 2. Для цепи (рис. 2, а), определить входное сопротивление если известно: R1 = R2 = R3 = R4= 40 Ом.

Рис. 2

Решение

Исходную схему можно перечертить относительно входных зажимов (рис. 2, б), из чего видно, что все сопротивления включены параллельно. Так как величины сопротивлений равны, то для определения величины эквивалентного сопротивленияможно воспользоваться формулой:

где R – величина сопротивления, Ом;

n – количество параллельно соединенных сопротивлений.


Задача 3. Определить эквивалентное сопротивление относительно зажимов a–b, если R1 = R2 = R3 = R4 = R5 = R6 = 10 Ом (рис. 3, а).

Рис. 3

Решение

Преобразуем соединение «треугольник» f−d−c в эквивалентную «звезду». Определяем величины преобразованных сопротивлений (рис. 3, б):

По условию задачи величины всех сопротивлений равны, а значит:

На преобразованной схеме получили параллельное соединение ветвей между узлами e–b, тогда эквивалентное сопротивление равно:

И тогда эквивалентное сопротивление исходной схемы представляет последовательное соединение сопротивлений:


Задача 4. В заданной цепи (рис. 4, а) определить методом эквивалентных преобразований входные сопротивления ветвей a−b, c–d и f−b, если известно, что: R1 = 4 Ом, R2 = 8 Ом, R3 =4 Ом, R4 = 8 Ом, R5 = 2 Ом, R6 = 8 Ом, R7 = 6 Ом, R8 =8 Ом.

Решение

Для определения входного сопротивления ветвей исключают из схемы все источники ЭДС. При этом точки c и d, а также b и f соединяются накоротко, т.к. внутренние сопротивления идеальных источников напряжения равны нулю.

Рис. 4

Ветвь a−b разрывают, и т.к. сопротивление Ra–b = 0, то входное сопротивление ветви равно эквивалентному сопротивлению схемы относительно точек a и b (рис. 4, б):

Аналогично методом эквивалентных преобразований определяются входные сопротивления ветвей Rcd и Rbf. Причем, при вычислении сопротивлений учтено, что соединение накоротко точек a и b исключает ( «закорачивает») из схемы сопротивления R1, R2, R3, R4 в первом случае, и R5, R6, R7, R8 во втором случае.


Задача 5. В цепи (рис. 5) определить методом эквивалентных преобразований токи I1, I2, I3 и составить баланс мощностей, если известно: R1 = 12 Ом, R2 = 20 Ом, R3 = 30 Ом, U = 120 В.

Рис. 5

Решение

Эквивалентное сопротивлениедля параллельно включенных сопротивлений:

Эквивалентное сопротивление всей цепи:

Ток в неразветвленной части схемы:

Напряжение на параллельных сопротивлениях:

Токи в параллельных ветвях:

Баланс мощностей:


Задача 6. В цепи (рис. 6, а), определить методом эквивалентных преобразований показания амперметра, если известно: R1 = 2 Ом, R2 = 20 Ом, R3 = 30 Ом, R4 = 40 Ом, R5 = 10 Ом, R6 = 20 Ом, E = 48 В. Сопротивление амперметра можно считать равным нулю.

Рис. 6

Решение

Если сопротивления R2, R3, R4, R5 заменить одним эквивалентным сопротивлением RЭ, то исходную схему можно представить в упрощенном виде (рис. 6, б).

Величина эквивалентного сопротивления:

Преобразовав параллельное соединение сопротивлений RЭ и R6 схемы (рис. 6, б), получим замкнутый контур, для которого по второму закону Кирхгофа можно записать уравнение:

откуда ток I1:

Напряжение на зажимах параллельных ветвей Uab выразим из уравнения по закону Ома для пассивной ветви, полученной преобразованием RЭ и R6:

Тогда амперметр покажет ток:


Задача 7. Определить токи ветвей схемы методом эквивалентных преобразований (рис. 7, а), если R1 = R2 = R3 = R4 = 3 Ом, J = 5 А, R5 = 5 Ом.

Рис. 7

Решение

Преобразуем «треугольник» сопротивлений R1, R2, R3 в эквивалентную «звезду» R6, R7, R8 (рис. 7, б) и определим величины полученных сопротивлений:

Преобразуем параллельное соединение ветвей между узлами 4 и 5

Ток в контуре, полученном в результате преобразований, считаем равным току источника тока J, и тогда напряжение:

И теперь можно определить токи I4 и I5:

Возвращаясь к исходной схеме, определим напряжение U32 из уравнения по второму закону Кирхгофа:

Тогда ток в ветви с сопротивлением R3 определится:

Величины оставшихся неизвестными токов можно определить из уравнений по первому закону Кирхгофа для узлов 3 и 1:


Электронная версия статьи Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Примеры решения задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Расчет электрических цепей постоянного тока методом эквивалентных преобразований


Метод эквивалентных преобразований 

02.09.2011, 225795 просмотров.

rgr-toe.ru

Решение задач по электротехнике (ТОЭ)

В электрической цепи однофазного синусоидального тока, схема и параметры элементов которой заданы для каждого варианта в таблице, определить:
1) полное сопротивление электрической цепи и его характер;
2) действующие значения токов в ветвях;
3) показания вольтметра и ваттметра;
4) построить векторную диаграмму токов и топографическую диаграмму напряжений для всей цепи.

Дано
E = 130 В;
f = 50 Гц;
R1 = 9 Ом;
L1 = 15,9 мГн;
C2 = 318 мкФ;
L2 = 9,4 мГн;
R3 = 8 Ом;
C3 = 500 мкФ;
Схема 1.5.

Решение

Рисунок 1. Исходная схема цепи

Выбираем произвольные направления токов в ветвях. Заменяем измерительные приборы их внутренними сопротивлениями:

Рисунок 2. Расчётная схема цепи

Циклическая частота цепи:

ω=2πf=2•3,14•50=314рад⁄с;

Сопротивления реактивных элементов:

XL1=ωL1=314•15,9•10^(-3)=4,99 Ом;

XC2=1/(ωC2)=1/(314•318•10^(-6))=10,01 Ом;

XL2=ωL2=314•9,4•10^(-3)=2,95 Ом;

XC3=1/(ωC1 )=1/(314•500•10^(-6))=6,37 Ом;

Общее сопротивление цепи:

Характер входного сопротивления активно-индуктивный, на это указывает наличие действительной части и положительная мнимая часть сопротивления.

Комплекс действующего значения входного напряжения:

E=E•(cosφ+jsinφ)=130•(cos0o+jsin0o)=130+0j В;

Действующие комплексные токи в цепи:

I1=E/Zвх =130/(10,632+0,669j)=12,179-0,767j=12,203•e(-4oj) А;

I2=I1•((R3-jXC3))/(R3+j(XL2-XC2-XC3))=(12,179-0,767j)•(8-6,37j)/(8+j•(2,95-10,01-6,37))=

=7,631+2,346j=7,983•e(17oj) А;

I3=I1-I2=12,179-0,767j-7,631-2,346j=4,548-3,113j=5,511•e(-35oj) А;

Падения напряжения на элементах:

UL1=I1•jXL1=(12,179-0,767j)•4,99j=3,83+60,77j В;

UR1=I1•R1=(12,179-0,767j)•9=109,61-6,90j В;

UL2=I2•jXL2=(7,631+2,346j)•2,95j=-6,92+22,51j В;

UC2=I2•(-jXC2)=(7,631+2,346j)•(-10,01j)=23,48-76,39j В;

UR3=I3•R3=(4,548-3,113j)•8=36,38-24,90j В;

UC3=I4•(-jXC3)=(4,548-3,113j)•(-6,37j)=-19,83-28,97j=35,11•e(-124oj) В;

Показания вольтметра (измеряющего действующее значение напряжения):

UV=UC3=35,11 В;

Показания ваттметра (измеряющего активную мощность):

Pw=Re(E•I1*)=Re(130•(12,179+0,767j))=1583,3 Вт;

I* — сопряженный ток.Например,если I=a+jb,то I*=a-jb;


Рисунок 3. Топографическая диаграмма напряжений


Рисунок 4. Векторная диаграмма токов

toe5.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о