Содержание

Как правильно: Мегаомметр или мегомметр?

Данная статья будет как профессия инженера-электрика – творческая, но в рамках правил и техники безопасности. Данный вопрос волнует весь земной шар от начала веков или волновал всех, кто сталкивался по роду деятельности с данным прибором. С одной стороны есть книги, в которых написано по одному, с другой стороны есть сами приборы, на которых написано иначе. А бывает, есть старый опытный товарищ, который знает правду и «нечего вообще спорить».

Вопрос конечно интересный, за ответом я полез в литературу и интернет.

Вот, например, уже не действующее СТП в энергосистеме РБ.

Книга с соответствующим названием.

Результаты выдачи в яндексе по запросу «мегомметр или мегаомметр».

Как видим, встречаются оба варианта.

Ситуацию немного облегчила википедия, где написано, что мегомметр является устаревшим названием прибора. Хотя википедию пишут то люди, да и ссылки на источник не приведено, где бы точно об этом говорилось.

Вот, к примеру, надпись на сумке от мегаомметра. А на самом приборе в сумке написано «мегаомметр».

Погуглив, я узнал, что завод основан в 1957 году. А переименовывать предприятие вообще не особо принято из-за пары букв. Следовательно, завод называется «Мегомметр», а прибор, который он выпускает – мегаомметр.

Книга, обложку которой я привел, издана в 1963 году. В туже эпоху, что и начал работать завод. То есть в те времена прибор для измерения сопротивления изоляции называли мегомметром.

Потом вероятно люди подумали, и решили, что прибор, который меряет мегаомы, а теперь гигаомы и даже больше (о единицах гига, кило можно почитать тут), логично называть мега-ом-метром. А мегаомметр, а не, например, гигаомметр, так как сопротивление изоляции большинства оборудования все-таки находится в пределах от 1МОм до 1000МОм, да и мерить больше величину раньше не могли и писали бесконечность или же по максимально измеряемой величине 1000МОм.

За границей же используют выражение «мегертест». Само измерение у электриков порой называют «помегерить» – это выражение пошло издавна. Название прибора изменилось, выражение осталось. Никто же не говорит сейчас «пойдем помегаомметрим».

В общем, я считаю, что правильно говорить мегаомметр и этот вариант в наше время единственно правильный для употребления. Другое дело, что, если человек всю жизнь говорил мегомметр, то переучивать его не стоит, главное, чтобы измерения проводил правильно.

pomegerim.ru

Мегомметр или мегаомметр > Megaommetr.com

Как же все таки правильно называется этот прибор для измерения сопротивления изоляции Мегаомметр или Мегомметр?! Этим вопросом наверное задавался почти каждый пользователь прибора. И вроде как от названия суть работы и измерений не измениться, но хочется, же не только правильно измерять, но и говорить.

Если искать в интернете, как правильно назвать прибор для измерения сопротивления изоляции в сети, то можно встретить название как «мегаомметр» так и «мегомметр». Так как интернет подстраивается под запросы людей, то истину здесь искать бесполезно. Википедия гласит о том, что прибор называется «мегомметр», но название это устарело и нужно использовать «мегаомметр», то есть ситуация особо не проясняется.

Мегаомметр UNI-T UT502A

Чтобы все-таки выяснить, как же назвать это устройство нужно вернуться, так сказать к первоисточнику, в этом случае к заводу производителю.

Как оказалось, мегомметры в 1957 году начал выпускать Уманский завод, который называется «Мегомметр». Но вот, казалось бы, все, докопались до истины, но не тут-то было, на приборах, которые производит завод, красуется надпись «мегаомметр».

Если совсем уж интересно можно поискать книги об этом устройстве, чтобы облегчить Вам задачу, скажу. В книгах написано «мегомметр», правда, год выпуска изданий 1963. В современных книгах встречается чаще название «Мегаомметр».

И опять непонятно как же правильно назвать это чудо-устройство, которое во многом помогает и облегчает жизнь электрика Мегаомметр или Мегомметр.

Мегаомметр ЭС0202/2Г

Прибор, который измеряет мегаомы, гигаомы, а теперь и больше по логике, должен называться все-таки Мегаомметр. Но логика вещь спорная, исходя из этого всего, можно сделать вывод, что не особо важно как Вы называете устройство Мегаомметр или Мегомметр. Главное чтобы перед использованием Вы внимательно изучали и7нструкцию по эксплуатации и придерживались правил техники безопасности. А название, это всего лишь название, важнее точные и четкие измерения.

При этом, если будете заполнять документы, то нужно писать «Мегаомметр», так гласит Википедия, а то по ГОСТу не положено. Из этого напрашивается вывод, что правильно будет Мегаомметр. Но если Вы привыкли говорить все время Мегомметр, то переучиваться не стоит, Вас и так поймут.

megaommetr.com

Мегаомметр — WiKi

Мегаомме́тр (от мегаом и -метр; устар. мего́мметр) — прибор для измерения больших значений сопротивлений. Отличается от омметра тем, что измерение сопротивления производятся на высоких напряжениях, которые прибор сам и генерирует (обычно 100, 500, 1000 или 2500 вольт). Мегомметр – устарелое название мегаомметра. В соответствии с ГОСТ 2.105 в документах не допускается применение оборотов разговорной речи, техницизмов, произвольных словообразований.

В приборах старых конструкций для получения напряжений обычно используется встроенный механический генератор, работающий по принципу динамо-машины. В настоящее время мегаомметры также выполняются в виде электронных устройств, работающих от батарей.

Наиболее часто применяется для измерения сопротивления изоляции кабелей.

Мегаомметр используется для измерения высокого сопротивления изолирующих материалов (диэлектриков) проводов и кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов. По этим значениям вычисляют коэффициенты абсорбции (увлажненности) и поляризации (старения изоляции).

  Мегаомметр М1101М.
  Мегаомметр с ручным генератором напряжения.

Сопротивление изоляции характеризует её состояние в данный момент времени и не является стабильным, так как зависит от целого ряда факторов, основными из которых являются температура и влажность изоляции в момент проведения измерения.

В ГОСТ 183-74 нормы сопротивления изоляции не определены, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они могут быть установлены в стандартах на конкретные виды машин или в ТУ с обязательным указанием температуры, при которой должны проводиться измерения, и методов пересчета показаний приборов, если измерения проводились при иной температуре обмоток.

Измерение сопротивления изоляции обмоток преследует цель установить возможность проведения её испытаний высоким напряжением без повышенного риска повреждения хорошей, но имеющей большую влажность изоляции.

Измерения проводятся мегаомметром, номинальное напряжение которого выбирается в зависимости от номинального напряжения обмотки. Для обмоток с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для обмоток с напряжением до 3000 В — мегаомметры на 1000 В, для обмоток с номинальным напряжением 3000 В и более — мегаомметры на 2500 В и выше.

Степень увлажнённости изоляции определяется не только по показаниям прибора в момент отсчета, но и характером изменения показания мегаомметра в процессе измерения, которое проводят в течение 1 мин. Запись показаний прибора делают через 15 с (обычное время установления показаний) после начала измерения (R15″) и в конце измерения — через 60 с после начала (R60″). Отношение этих показаний KA = R60″/R15″ называют коэффициентом абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 на 30-50 % больше, чем R15.

Мегаомметром измеряется также сопротивление изоляции термопреобразователей, заложенных в машины, и проводов, соединяющих термопреобразователи с доской выводов.

Сопротивление этой изоляции измеряется по отношению к корпусу и к обмоткам машины. Она не рассчитана на работу при высоких напряжениях, поэтому измерение её сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.

Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания подшипниковых токов в машинах со стояковыми подшипниками.

Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегаомметрами с различными номинальными напряжениями.

ru-wiki.org

Мегомметр Википедия

Мегаомме́тр (от мегаом и -метр; устар. мего́мметр) — прибор для измерения больших значений сопротивлений. Отличается от омметра тем, что измерение сопротивления производятся на высоких напряжениях, которые прибор сам и генерирует (обычно 100, 500, 1000 или 2500 вольт). Мегомметр – устарелое название мегаомметра. В соответствии с ГОСТ 2.105 в документах не допускается применение оборотов разговорной речи, техницизмов, произвольных словообразований.

В приборах старых конструкций для получения напряжений обычно используется встроенный механический генератор, работающий по принципу динамо-машины. В настоящее время мегаомметры также выполняются в виде электронных устройств, работающих от батарей.

Наиболее часто применяется для измерения сопротивления изоляции кабелей.

Мегаомметр используется для измерения высокого сопротивления изолирующих материалов (диэлектриков) проводов и кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов. По этим значениям вычисляют коэффициенты абсорбции (увлажненности) и поляризации (старения изоляции).

Измерение мегаомметром сопротивления изоляции

Мегаомметр М1101М.
Мегаомметр с ручным генератором напряжения.

Сопротивление изоляции характеризует её состояние в данный момент времени и не является стабильным, так как зависит от целого ряда факторов, основными из которых являются температура и влажность изоляции в момент проведения измерения.

В ГОСТ 183-74 нормы сопротивления изоляции не определены, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они могут быть установлены в стандартах на конкретные виды машин или в ТУ с обязательным указанием температуры, при которой должны проводиться измерения, и методов пересчета показаний приборов, если измерения проводились при иной температуре обмоток.

Измерение сопротивления изоляции обмоток преследует цель установить возможность проведения её испытаний высоким напряжением без повышенного риска повреждения хорошей, но имеющей большую влажность изоляции.

Измерения проводятся мегаомметром, номинальное напряжение которого выбирается в зависимости от номинального напряжения обмотки. Для обмоток с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для обмоток с напряжением до 3000 В — мегаомметры на 1000 В, для обмоток с номинальным напряжением 3000 В и более — мегаомметры на 2500 В и выше.

Степень увлажнённости изоляции определяется не только по показаниям прибора в момент отсчета, но и характером изменения показания мегаомметра в процессе измерения, которое проводят в течение 1 мин. Запись показаний прибора делают через 15 с (обычное время установления показаний) после начала измерения (R15″) и в конце измерения — через 60 с после начала (R60″). Отношение этих показаний KA = R60″/R15″ называют коэффициентом абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 на 30-50 % больше, чем R15.

Мегаомметром измеряется также сопротивление изоляции термопреобразователей, заложенных в машины, и проводов, соединяющих термопреобразователи с доской выводов.

Сопротивление этой изоляции измеряется по отношению к корпусу и к обмоткам машины. Она не рассчитана на работу при высоких напряжениях, поэтому измерение её сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.

Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания подшипниковых токов в машинах со стояковыми подшипниками.

Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегаомметрами с различными номинальными напряжениями.

Ссылки

wikiredia.ru

Мегаомметр принцип действия. Во время подготовки необходимо. Влияние наведенного напряжения

Как говорится “по многочисленным просьбам…” записал сегодня на видео пример измерения мегаомметром сопротивления изоляции токоведущих частей.

Мегаомметр- электромеханический, то есть с “крутилкой”, надо вращать ручку как на шарманке))

Лично мне такой больше по душе чем электронный, с тем у меня как то не сложились отношения…

На видео рассказываю как устроен мегаомметр, основные технические характеристики и правила применения- что куда подключать. как крутить и т.д.

Получилась своеобразная краткая инструкция по мегаомметру в видеоформате.

С видео опять у меня не очень… Когда уже начал просматривать- оказалось что стрелочный указатель совсем не видно. Эх, что ж делать, фотоаппарат у меня не справляется с поставленой задачей)))

В статье на фото все прекрасно видно- можно посмотреть.

У кого нет возможности смотреть видео- читайте статью.

Для чего предназначен мегаомметр? Для измерения сопротивления изоляции токоведущих частей. На выходе мегометра при вращении рукоятки появляется высокое напряжение и если изоляция плохая- ее начинает “прошивать”.

И чем хуже изоляция тем сильнее ее пробивает повышенным напряжением мегаомметра- тем ниже ее сопротивление.

Токоведущие части- это провода, шины и т.п. которые в нормальном режиме находятся под напряжением и по ним протекает электрический ток.

А вот как раз для того, что бы этот режим работы был нормальным, а не аварийным нам и надо иметь хорошую изоляцию токоведущих частей относительно земли, корпусов оборудования и всего того где не должно быть опасного потенциала.

Вообще в энергетике самый главный приоритет- это жизнь и здоровье человека. Железяку можно отремонтировать, заменить, а жизнь человека бесценна.

Электричество же представляет реальную угрозу здоровью, поэтому от него отделяются, отгораживаются- изолируются всеми возможными средствами.

В проводах это всевозможный нетокопроводящий материал, на подстанциях с высоким напряжением и громоздким оборудованием- соответствующий воздушный зазор, фарфоровая изоляция ну и т.д.

А вот что бы знать в каком состоянии у нас находится изоляция- и предназначен мегаомметр.

Все прекрасно знают и постоянно передают в новостях- сколько происходит пожаров от неисправной электропроводки- вот последствия нарушенной изоляции.

Параметры изоляции регламентируются в ПУЭ- правилах устройства электроустановок и измеряются естественно в Омах.

А так как сопротивление изоляции очень высокое и значения получаются иногда с девятью нулями то используют приставку МЕГА, то есть шесть нулей сокращается и значение например 9000000000 превращается в 9 тыс.МОм.

Это было небольшое вступление, а сейчас про мегаомметр.

Предназначен уже сказал для чего, технические характеристики кратко:

режим работы прерывистый, 1 мин. максимум можно измерять, 2 мин. перерыв и т.д.

режимы измерения повышенным напряжением 500, 1000, и 2500 Вольт

измерительная шкала- верхняя и нижняя.

По верхней измеряется очень высокое сопротивление от 50 до 10 тыс.МОм

По нижней- от 0 до 50 МОм

Скорость вращения рукоятки- 120-140 оборотов в минуту.

Рабочее положение- горизонтальное, при любом другом стрелочный индикатор будет давать погрешность измерения- немножко врать.

На корпусе имеется клемная колодка куда подключаются измерительные провода с щупами. Всего- три клеммы.

Клемма с буквой “Э” обозначает экран. Сюда подключается специальный третий провод из комплекта, идущего с мегаомметром.

Второй конец этого провода фиксируется на кожухе или экране. Это используется при измерении сопротивления изоляции между двумя токоведущими частями для устранения токов утечки, возникающих при этих измерениях.

Если же меряется изоляция относительно корпуса оборудования или “земли”- то подключать клемму “Э” не надо!

На одном из измерительных проводов на конце- две клеммы, одна- маркированная буквой “Э” подключается на на соответствующую клемму “Э” мегаомметра, вторая- на среднюю клемму.

Второй измерительный провод подключается на клемму со знаком минус.

Если экран не нужен- эту клемму провода просто не подключаем.

Как работать мегаомметром?

Для начала надо убедиться что токоведущие части где будем измерять отключены- проверяем отключенные автоматы, рубильники и т.п.

Затем заземляем токоведущие части и снимаем заземление только после подключения мегаомметра.

Измерительные щупы мегаомметра брать только за изолирующие рукоятки (при напряжении выше 1000Вольт кроме этого еще используют диэлектрические перчатки)

Когда измеряем- нельзя касаться токоведущих частей!

Делаем измерение изоляции и по окончании- снимаем заряд с токоведущих частей прикасаясь к ним кратковременно проводом заземления.

Снимаем заряд и с самого мегаомметра- прикасаемся измерительными щупами друг к другу.

Не забываем снять заземление с токоведущих частей! Иначе будет конкретное КЗ!

Основу вроде всю написал, если у вас есть что добавить- пишите в комментарии.

Узнайте первым о новых материалах сайта!

Мегаомметр или мегомметр как правильно говорить? Такой вопрос возникает у многих. С точки зрения русского языка правильно мегомметр, без идущих друг за другом гласных. Но если посмотреть с профессиональной стороны, то правильно будет мегаомметр, «мега» приставка, показывающая диапа

mirhat.ru

Мегаомметр — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 апреля 2018;
проверки требуют 4 правки.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 апреля 2018;
проверки требуют 4 правки.

Мегаомме́тр (от мегаом и -метр; устар. мего́мметр) — прибор для измерения больших значений сопротивлений. Отличается от омметра тем, что измерение сопротивления производятся на высоких напряжениях, которые прибор сам и генерирует (обычно 100, 500, 1000 или 2500 вольт). Мегомметр – устарелое название мегаомметра. В соответствии с ГОСТ 2.105 в документах не допускается применение оборотов разговорной речи, техницизмов, произвольных словообразований.

В приборах старых конструкций для получения напряжений обычно используется встроенный механический генератор, работающий по принципу динамо-машины. В настоящее время мегаомметры также выполняются в виде электронных устройств, работающих от батарей.

Наиболее часто применяется для измерения сопротивления изоляции кабелей.

Мегаомметр используется для измерения высокого сопротивления изолирующих материалов (диэлектриков) проводов и кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов. По этим значениям вычисляют коэффициенты абсорбции (увлажненности) и поляризации (старения изоляции).

Измерение мегаомметром сопротивления изоляции[править | править код]

Мегаомметр М1101М.
Мегаомметр с ручным генератором напряжения.

Сопротивление изоляции характеризует её состояние в данный момент времени и не является стабильным, так как зависит от целого ряда факторов, основными из которых являются температура и влажность изоляции в момент проведения измерения.

В ГОСТ 183-74 нормы сопротивления изоляции не определены, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они могут быть установлены в стандартах на конкретные виды машин или в ТУ с обязательным указанием температуры, при которой должны проводиться измерения, и методов пересчета показаний приборов, если измерения проводились при иной температуре обмоток.

Измерение сопротивления изоляции обмоток преследует цель установить возможность проведения её испытаний высоким напряжением без повышенного риска повреждения хорошей, но имеющей большую влажность изоляции.

Измерения проводятся мегаомметром, номинальное напряжение которого выбирается в зависимости от номинального напряжения обмотки. Для обмоток с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для обмоток с напряжением до 3000 В — мегаомметры на 1000 В, для обмоток с номинальным напряжением 3000 В и более — мегаомметры на 2500 В и выше.

Степень увлажнённости изоляции определяется не только по показаниям прибора в момент отсчета, но и характером изменения показания мегаомметра в процессе измерения, которое проводят в течение 1 мин. Запись показаний прибора делают через 15 с (обычное время установления показаний) после начала измерения (R15″) и в конце измерения — через 60 с после начала (R60″). Отношение этих показаний KA = R60″/R15″ называют коэффициентом абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 на 30-50 % больше, чем R15.

Мегаомметром измеряется также сопротивление изоляции термопреобразователей, заложенных в машины, и проводов, соединяющих термопреобразователи с доской выводов.

Сопротивление этой изоляции измеряется по отношению к корпусу и к обмоткам машины. Она не рассчитана на работу при высоких напряжениях, поэтому измерение её сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.

Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания подшипниковых токов в машинах со стояковыми подшипниками.

Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегаомметрами с различными номинальными напряжениями.

ru.wikiyy.com

Как правильно пользоваться мегаомметром – Всё о электрике в доме

Как пользоваться мегаомметром

  1. Принцип действия мегаомметра
  2. Общее устройство мегаомметра
  3. Опасность повышенного напряжения
  4. Влияние наведенного напряжения
  5. Действие остаточного напряжения
  6. Безопасная эксплуатация мегаомметра
  7. Как измерить сопротивление изоляции

Измерение электрического сопротивления может выполняться разными приборами. Среди них довольно часто применяется мегаомметр, название которого состоит из трех частей. «Мега» означает миллион или 10 6. «ом» – соответствует сопротивлению, а частица «метр» эквивалентна слову «измерять». Таким образом, диапазоном измерений этого прибора служат мегаомы. Начинающим электрикам рекомендуется, прежде чем пользоваться мегаомметром, изучить принцип работы, устройство и технические характеристики данного измерительного прибора.

Принцип действия мегаомметра

Работа мегаомметра основана на законе Ома для участка цепи. отображаемого в виде формулы I=U/R. Для измерения необходимы элементы, расположенные в корпусе устройства. Прежде всего, это источник напряжения с постоянной, откалиброванной величиной. Кроме того, мегаомметр дополняется измерителем тока и выходными клеммами.

В разных моделях конструкция источника напряжения может существенно изменяться. В старых мегаомметрах установлены простые ручные динамо-машины, а в новых применяются внешние или встроенные источники. Значение выходной мощности генератора и его напряжения могут изменяться в различных диапазонах или оставаться в фиксированном виде. К клеммам мегаомметра подключены соединительные провода, скоммутированные в измеряемую цепь. Надежный контакт обеспечивается специальными зажимами – «крокодилами».

Амперметр, включенный в электрическую схему, измеряет величину тока, проходящего по цепи. Благодаря точному значению напряжения, шкала на измерительной головке размечена сразу в нужных единицах сопротивления. Это могут быть мегаомы или килоомы. Некоторые приборы оборудованы шкалой, показывающей оба значения. Новые модели мегаомметров, использующие цифровые сигналы, отображают полученные данные на дисплее.

Устройство мегаомметра

Типовой мегаомметр состоит из генератора постоянного тока, измерительной головки, тумблера-переключателя и токоограничивающих резисторов. Работа измерительной головки основана на взаимодействии рабочей и противодействующей рамок. Тумблер может выставляться на определенные пределы измерения. Он осуществляет коммутацию различных резисторных цепочек, изменяющих выходное напряжение и режим работы головки.

Все элементы заключены в прочный, герметичный диэлектрический корпус, оборудованный ручкой для более удобной переноски. Здесь же располагается портативная складывающаяся генераторная рукоятка. Чтобы начать вырабатывать напряжение, она раскладывается и вращается. На корпусе имеется рычаг управления тумблером и выходные клеммы, в количестве трех, к которым подключаются соединительные провода. Каждый выход имеет собственное обозначение: «З» — земля, «Л» — линия и «Э» — экран.

Клеммы «З» и «Л» применяются во всех случаях, когда требуется измерить сопротивление изоляции по отношению к контуру заземления. Вывод «Э» необходим для устранения воздействия токов утечки при измерение между кабельными жилами, расположенными параллельно или похожими токоведущими частями. Клемма «Э» работает совместно со специальным измерительным проводом, имеющим экранированные концы. Обычно она подключается к кожуху или экрану. С помощью этой клеммы производятся наиболее точные измерения. В некоторых моделях клеммы «Л» и «З» обозначаются соответствующей маркировкой «rx» и «-».

Принцип работы мегаомметров, использующих внутренние или внешние источники питания генератора, такой же, как и у конструкций с ручкой. Для того чтобы выдать напряжение на проверяемую схему, необходимо нажать кнопку и удерживать ее в этом состоянии. Существуют приборы, способные выдавать различные комбинации напряжения путем сочетания нескольких кнопок.

Современные мегаомметры отличаются более сложным внутренним устройством. Напряжение, выдаваемое генераторами разных конструкций, составляет примерный ряд величин: 100, 250, 500, 700, 1000 и 2500 В. Одни мегаомметры могут работать лишь в одном диапазоне, а другие – сразу в нескольких.

Значение выходной мощности мегаомметра, способны проверять изоляцию на высоковольтном промышленном оборудовании, во много раз выше, чем этот же параметр у моделей мегаомметров, способных проверять лишь бытовую проводку. Их размеры также заметно различаются между собой.

Опасность повышенного напряжения устройства

В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора. Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.

В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.

Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.

Влияние наведенного напряжения

Электрическая энергия, проходящая по проводам ЛЭП, создает значительное магнитное поле. Оно изменяется в соответствии с синусоидальным законом и способствует наведению в металлических проводниках вторичной электродвижущей силы и тока I2. В случае большой протяженности кабеля, наведенное напряжение достигает значительной величины.

Данный фактор оказывает существенное влияние на точность проводимых измерений. Дело в том, что в этом случае неизвестна величина и направление электрического тока, протекающего через измерительный прибор. Данный ток появляется под влиянием наведенного напряжения и его значение добавляется к собственным показаниям мегаомметра, полученным через калиброванное напряжение генератора. В итоге образуется сумма двух неизвестных токовых величин, и данная метрологическая задача становится неразрешимой. Поэтому измерение сопротивления изоляции сетей при наличии любого напряжения является совершенно бессмысленным занятием.

Пристальное внимание к наведенному напряжению объясняется реальной возможностью электрического травматизма. Поэтому все работники должны строго соблюдать установленные правила безопасности.

Действие остаточного напряжения

При выдаче генератором мегаомметра напряжения, поступающего в измеряемую сеть, между проводом и контуром заземления возникает разность потенциалов. Это приводит к образованию емкости, наделенной определенным зарядом.

После того как измерительный провод отключается, цепь мегаомметра становится разорванной. За счет этого потенциал частично сохраняется, поскольку в проводе или шине создается емкостной заряд. В случае касания этого участка, человек может получить электротравму от разряда тока, проходящего через тело. Для того чтобы избежать подобных неприятностей, следует использовать переносное заземление. Его рукоятка должна быть заизолирована, что дает возможность безопасно снимать емкостное напряжение.

Перед тем как подключать мегаомметр для замеров изоляции, необходимо чтобы в проверяемой схеме отсутствовал остаточный заряд или напряжение. Для этого существуют специальные индикаторы или вольтметр с соответствующим номиналом. С помощью мегаомметра можно выполнять самые разные замеры. Например, изоляция в десятижильном кабеле вначале проверяется относительно земли, а затем измеряется каждая жила. Качество изоляции определяется по очереди между всеми жилами. Во время каждого измерения следует использовать переносное заземление.

Чтобы обеспечить быструю и безопасную работу, заземляющий проводник изначально одним концом соединяется с контуром заземления. В таком положении он остается до конца работ. Другим концом проводник контактирует с изоляционной штангой. Именно при ее непосредственном участии накладывается заземление, чтобы снять остаточный заряд.

Безопасная эксплуатация мегаомметра

Любые измерения следует производить только исправным мегаомметром. Устройство должно быть испытанным в лаборатории, где проверяется его собственная изоляция и все комплектующие части. Для испытаний применяется повышенное напряжение, после чего мегаомметру выдается разрешение на работу в течение определенного, ограниченного срока.

С целью поверки мегаомметр направляется в метрологическую лабораторию, где специалисты определяют его класс точности. Прохождение контрольных замеров подтверждается клеймом, наносимым на корпус прибора. В процессе дальнейшей эксплуатации должна соблюдаться сохранность и целостность клейма, особенно даты и номера специалиста, проводившего поверку. В противном случае устройство автоматически попадет в категорию неисправных.

Правильная область применения также гарантирует безопасность при работе с мегаомметром. Перед каждым замером определяется величина выходного напряжения. В первую очередь устройство применяется для испытаний изоляции. С этой целью для проверяемого участка создаются экстремальные условия, когда производится подача не номинального, а завышенного напряжения. Временной период также довольно продолжительный. Это способствует своевременному выявлению возможных дефектов и недопущение их в последующей эксплуатации.

Каждая схема, подлежащая проверке, имеет свои особенности, влияющие на безопасную работу мегаомметра. Поэтому перед подачей на нужный участок высокого напряжения, нужно исключить все неисправности и поломки составляющих элементов. Современное оборудование буквально насыщено полупроводниками, конденсаторами, измерительными и микропроцессорными приборами. Они не рассчитаны на высокое напряжение, создаваемое генератором мегаомметра. Перед проверкой все подобные устройства шунтируются или вовсе извлекаются из схемы. По окончании замеров схема восстанавливается и приводится в рабочее состояние.

Сопротивление изоляции: как правильно измерить

Перед измерением сопротивления нужно внимательно изучить схему электроустановки, подготовить средства защиты и сам прибор в исправном состоянии. Проверяемый участок должен быть заранее выведен из работы.

Проверка исправности мегаомметра происходит следующим образом. Выводы измерительных проводов закорачиваются между собой. После этого к ним от генератора подается напряжение. В случае исправности прибора результаты измерений закороченной цепи равны нулю. Далее концы проводов разъединяются, отводятся в стороны, после чего делается повторный замер. В норме на шкале отображается символ бесконечности, показывающий сопротивление изоляции в воздушном промежутке между измерительными концами.

Непосредственное измерение сопротивления изоляции выполняется в строго определенной последовательности. Прежде всего, переносное заземление нужно подсоединить к контуру. Напряжение на проверяемом участке должно отсутствовать. Далее собирается схема измерения прибора, а переносное заземление снимается.

На схему подается калиброванное напряжение до того момента, пока не выровняется емкостный заряд. Далее фиксируется отсчет, после чего напряжение снимается. Чтобы снять остаточный заряд, накладывается переносное заземление. По окончании замеров соединительный провод отключается от схемы, а заземление снимается.

Для замера сопротивления изоляции мегаомметром используется наибольший предел МΩ. Если данной величины недостаточно, необходимо воспользоваться более точным диапазоном. Все дальнейшие цепочки измерений должны выполняться в такой же последовательности. Некоторые конструкции мегаомметров могут работать в прерывистом режиме. В этом случае на протяжении одной минуты выдается напряжение, после чего в течение двух минут выдерживается пауза.

При наличии в измерительных приборах стрелочного индикатора, для всех замеров используется горизонтальная ориентация корпуса. Нарушение этого требования приводит к дополнительным погрешностям. Современные цифровые мегаомметры могут работать в любом положении.

Мегаомметр, что это такое и как им пользоваться?

Мегаомметр или мегомметр как правильно говорить? Такой вопрос возникает у многих. С точки зрения русского языка правильно мегомметр, без идущих друг за другом гласных. Но если посмотреть с профессиональной стороны, то правильно будет мегаомметр, «мега» приставка, показывающая диапазон измерения прибора на высоком напряжении, и «Ом» единица сопротивления, то есть то, что измеряет прибор, ведь не зря во многих рабочих журналах проверок средств защиты пишут именно мегаомметр. Слово «метр» означает измеряю.

Прибор используется для определения большого значения сопротивления, отключенных от электропитания, электрических цепей и диэлектриков, применяемых для изоляции кабельной продукции, изолированных проводов, двигателей, трансформаторных и электротехнических устройств, установок телекоммуникаций и прочих электрических машин.

Прибор также осуществляет измерительные действия по определению поверхностных и объемных сопротивлений изоляции, определяющей состояние безопасности установки.

Безопасное пользование мегаомметром

Пользоваться мегаомметром можно только согласно правилам техники безопасности, измерения могут производить только два квалифицированных специалиста один из которых должен иметь группу допуска по электробезопасности IV. Не подготовленный пользователь не может пользоваться прибором, это чревато поражением электрическим током.

Мегаомметр принцип работы и его схема

Работу c мегаомметром рассмотрим на примере самого распространенного прибора с маркировкой ЭС0202/2Г. Прибор произведенный еще в советское время, на Уманском приборостроительном заводе, мегаомметр получил распространение по территории всего Советского Союза и успешно работает в настоящее время. Надежность, неприхотливость, а что самое важное, точность измерений зарекомендовали этот прибор с положительной стороны. В России прибор под этой маркировкой производится в Белгороде и на многих других приборостроительных заводах.

Прибор предназначен для проведения измерений с большими величинами сопротивлений, и рекомендуется для проверки высоковольтного оборудования, рассчитанного на большую мощность, а также для силовых кабелей большого сечения или раскинутых на значительное расстояние.

Рис №1: Внешний вид мегаомметра

Мегаоомметр этого типа относится к индукторным устройствам, работает за счет встроенного в конструкцию генератора, что позволяет прибору работать без постороннего источника питания, и без аккумуляторных батарей.

Принцип работы построен на использовании принципиальной схемы логарифмического измерительного устройства отношений. В измерительном процессе задействованы: электромеханический генератор напряжения, преобразователь и электронный измеритель.

Для работы рекомендуется использовать прерывистый режим, в котором 1 минута отводится на измерение, 2 минуты – пауза. При первом ознакомлении прибором внимательно изучите мегаомметр и инструкцию по эксплуатации.

Рис №2. Принципиальная схема мегаомметра ЭС0202/2Г

Как проверить мегаомметр

Перед началом измерительных работ выполняется операция по проверке исправного состояния прибора и его поводков, для этого, провода, подсоединенные к прибору замыкают накоротко, и вращают ручку генератора, стрелка должна показать «0» короткое замыкание в положении переключателя «I». При проверке, во время замыкания проводов, нельзя касаться их голыми руками, можно получить удар током.

Как пользоваться мегаомметромили последовательность проведения измерительных работ:

  1. Присоединение мегаомметра к гнездам измерения сопротивления.
  2. Присоединение заземляющего проводника к гнезду экрана (кожуха).
  3. Установка переключателя в нужный предел проведения измерения, всего их два, чем выше мощность оборудования, тем больше диапазон измерения.
  4. Проверяем работу прибора замкнув измерительные щупы, одновременно вращая ручку.
  5. После присоединения измерительных шнуров вращаем ручку мегаомметра (генератора питания), скорость должна быть не менее 120 об в мин.
  6. Установление стрелки измерения в определенное положение является началом отчета измерения.
  7. Чтобы понизить время измерения сопротивления мегаомметром по II шкале гнезда сопротивления закорачиваем (перед началом замера) и вращаем ручку прибора примерно 5 сек.
  8. После применения мегаомметра переключатель устанавливаем в нейтральное положение.

Рис №3. Схема присоединения мегаомметра

Допустимая погрешность в работе мегаомметра составляет 0,05 Мом +-15%. Предел дополнительной погрешности связанный с наличием в цепи измерения токов с промышленной частотой в виде помех, составляет около 500 мкА. Прибор может эксплуатироваться при температуре в границах от 30 до +50 о С. На зажимах присутствует измерительное напряжение мегаомметра от 500 до 2500В, в зависимости от диапазона используемого измерения, поэтому по окончании измерения необходимо разрядить генератор, касаясь измерительными щупами «земли» или закоротить их на секунду, между собой, до электрического разряда.

Современные мегаомметры

В настоящее время наряду с традиционными, но все еще работоспособными и надежными мегаомметрами, используются электронные аналоговые и цифровые приборы. Они имеют источники тока, это аккумуляторы или гальванические батареи. Использование цифрового табло позволяет более точно проводить измерения и фиксировать их. Многие модели оснащаются немало важными функциями такими как, например: автоматическое определение коэффициентов абсорбции и поляризации. Кроме этого, для большего удобства эксплуатации они конструируются с возможностью подсветки экрана, и сохранения измеренных показаний в память прибора с последующей передачей на компьютер, для отслеживания динамики измерений.

Например, цифровой мегаомметр ЦС202-2 может фиксировать в своей памяти до 10 последних измерений. Кроме измерения изоляции, им можно автоматически выполнить определение коэффициента абсорбции. Диапазон замера этим прибором равен от 0 до 200 ГОм.

Еще материалы по теме:

Вольтметр. Устройство, принцип работы, виды и характеристики Веерное отключение электричества – что это такое? Что такое диммер? Принцип действия и устройство Что такое энергоаудит, его основные направления и задачи

Как правильно пользоваться мегаомметром?

28.03.2016 нет комментариев 33 053 просмотров

Неотъемлемой частью и показателем электрической сети является такое понятие, как изоляция. Защитная оболочка провода или кабеля, электрический изолятор воздушной линии, изолятор выводов трансформатора и прочие устройства препятствуют электрическому току контактировать там, где нам не нужно. Изолирующая оболочка обеспечивает защиту от короткого замыкания, возгорания, пробоя на корпус электрического устройства или машины, а также защиту человека от поражения током. Тем не мене изоляция подвержена воздействию внешних факторов, таких как время, солнце, мороз, вода, механический износ, контакт с агрессивной средой. Чтобы вовремя выявить дефект существует прибор — мегаомметр. Как пользоваться этим прибором, мы расскажем далее, предоставив методику измерения сопротивления изоляции мегаомметром.

Принцип действия прибора

Мегаомметр генерирует напряжение собственным высоковольтным преобразователем, а миллиамперметр фиксирует ток, в измеряемой цепи. Из школьного курса физики мы знаем закон Ома, и связь между сопротивлением R, которое равно U деленное на I.

В настоящее время распространение получили цифровые измерители приборы, благодаря своей компактности и легкости, но наравне с ними до сих пор ходят стрелочные модели с ручной динамо-машиной. Сейчас мы рассмотрим, как правильно пользоваться мегаомметром старого образца и нового.

Обращаем ваше внимание на то, что некоторые называют прибор для измерения сопротивления изоляции мегомметром. Это не совсем правильное название, т.к. если слово разбить по частям, получится приставка «мега», единица измерения «Ом» и «метр» (с греческого переводится как мера).

Инструкция по эксплуатации

Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к. замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ. Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.

Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми. Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях. При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.

Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.

Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.

Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.

Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой). Итак, порядок действий следующий:

  1. Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты.
  2. Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ.
  3. Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках. Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи.
  4. Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений.
  5. Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.
  6. Производим замер каждой линии между фазой и N, фазой и PE, N и PE. Результаты вносим в протокол измерений.
  7. В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.

По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой. Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий. Чтобы вам было более понятна информация, ниже мы предоставили видео, в которых наглядно демонстрируется порядок измерений при работе с определенными моделями приборов.

Видеоуроки

Первым делом предоставляем к вашему вниманию инструкцию по эксплуатации стрелочного мегаомметра ЭС0202/2-Г:

Работа с моделью старого образца

Еще один популярный стрелочный измеритель, который является аналогом указанной выше модели — м4100. Пользоваться им тоже достаточно просто, в чем можно убедиться, просмотрев данное видео:

Как использовать м4100

Цифровые мегаомметры с дисплеем еще проще в использовании. К примеру, выполнить измерение сопротивления изоляции кабеля современным измерителем UT512 UNI-T можно по такой технологии:

Инструкция по эксплуатации цифровой модели

Ну и последняя инструкция касается еще одного популярного устройства — Е6-32. На видео ниже достаточно подробно показывается, как пользоваться мегаомметром для измерения сопротивления изоляции трансформатора, кабеля и даже металлосвязи:

Вот по такой методике осуществляют измерение сопротивления изоляции мегаомметром. Как вы видите, пользоваться данным прибором не сложно, однако нужно серьезно отнестись к технике безопасности и принять все необходимые меры защиты.

Будет интересно прочитать:

Работа с моделью старого образца

Источники: http://electric-220.ru/news/kak_polzovatsja_megaommetrom/2016-09-05-1049, http://enargys.ru/megaommetr-chto-eto-takoe-i-kak-im-polzovatsya/, http://samelectrik.ru/kak-pravilno-polzovatsya-megaommetrom.html

electricremont.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о