Эдс самоиндукции

Изменение тока в
катушке вызывает изменение потока
сцепления самоиндукции, а следовательно
возникает ЭДС.

Явление, при котором
ЭДС возникает в контуре или в катушке
в результате изменения тока в этом
контуре или катушке, называется
самоиндукцией.

ЭДС самоиндукции
обозначается
.

Т.о. ЭДС самоиндукции
пропорциональна индуктивности катушки
и скорости изменения тока в ней.

Если
(ток нарастает), то— отрицательна, т.е. направлена навстречу
току (противо ЭДС), если же(ток убывает), то— положительна, т.е. направлена согласно
с током.

Время нарастания
и уменьшения тока характеризуется
постоянным временем.


«тау»

При включении
катушки в электрическую цепь вокруг
катушки создается магнитное поле, в
котором запасается часть энергии,
израсходованной источниками.

Величина этой
энергии определяется как:

Явление взаимоиндукции

Если две катушки
с током расположены близко друг от
друга, то часть магнитного потока
первой катушки пронизывает витки
второй и наоборот.

Такие
контуры и катушки называют
индуктивно-
или
магнитосвязанными.

Магнитный поток
,
а следовательно и потокосцеплениепропорциональны току в катушкеI1,
т. е.

М– взаимная
индуктивность двух катушек, равная
отношению потокосцепления одной катушки
к току другой.

ЭДС, возникающая
при этом в другой катушке будет равна:

,

где K– коэффициент связи двух катушек,
зависящий от взаимного их расположения
(чем ближе катушка, тем большеKи наоборот).

Однофазный переменный ток

Переменнымназывают такой электрический ток,
который с течением времени изменяется
по величине и по направлению.

Основным достоинством
переменного тока является возможность
его трансформации, а также то, то
электрические машины и аппараты
переменного тока значительно проще и
дешевле, чем постоянного тока.

Время, в течении
которого ток делает полный цикл своих
изменений называется периодом.

Величина, обратная
периоду и численно равная числу периодов
за секунду, называется частотой
.

Значение переменного
тока в любой момент времени называется
мгновенным значением.

Наибольшее из
мгновенных значений называется
максимальным, илиамплитудным
.

Получение
синусоидальной ЭДС

Простейший генератор
переменного тока представляет собой
магнитную систему, состоящую из двух
полюсов, причем, форма полюсов такова,
что магнитная индукция в воздушном
зазоре распределяется по синусоидальному
закону, т.е. значение магнитной индукции
в любой точке
.

Допустим, за время
tрамка развернулась
на угол, тогда
угловая скорость.


угловая скорость (частота)

За один оборот
рамка развернется на угол
,
а время оборота – период (Т), тогда
угловая частотаопределяется:

Многополюсные генераторы

Для
получения промышленной частоты 50Гц
якорь двухполюсного генератора должен
вращаться со скоростью 50 об/с или 3000
об/мин. Если скорость вращения меньше,
то необходимо увеличить число пар
полюсов. У многополюсных генераторов
за 1 оборот якоря ЭДС совершает Р
циклов своих

изменений,
где Р – число пар полюсов. Если число
оборотов в минуту n,
то число циклов в минуту будет
,
а в секунду

studfiles.net

ЭДС самоиндукции и индуктивность цепи

Дата публикации: .

При замыкании выключателя в цепи, представленной на рисунке 1, возникнет электрический ток, направление которого показано одинарными стрелками. С появлением тока возникает магнитное поле, индукционные линии которого пересекают проводник и индуктируют в нем электродвижущую силу (ЭДС). Как было указано в статье «Явление электромагнитной индукции», эта ЭДС называется ЭДС самоиндукции. Так как всякая индуктированная ЭДС по правилу Ленца направлена против причины, ее вызвавшей, а этой причиной будет ЭДС батареи элементов, то ЭДС самоиндукции катушки будет направлена против ЭДС батареи. Направление ЭДС самоиндукции на рисунке 1 показано двойными стрелками.

Таким образом, ток устанавливается в цепи не сразу. Только когда магнитный поток установится, пересечение проводника магнитными линиями прекратится и ЭДС самоиндукции исчезнет. Тогда в цепи будет протекать постоянный ток.

Рисунок 1. Электродвижущая сила самоиндукции в момент замыкания цепи направлена против ЭДС источника напряженияРисунок 2. График постоянного тока

На рисунке 2 дано графическое изображение постоянного тока. По горизонтальной оси отложено время, по вертикальной оси – ток. Из рисунка видно, что если в первый момент времени ток равен 6 А, то в третий, седьмой и так далее моменты времени он также и будет равен 6 А.

На рисунке 3 показано, как устанавливается ток в цепи после включения. ЭДС самоиндукции, направленная в момент включения против ЭДС батареи элементов, ослабляет ток в цепи, и поэтому в момент включения ток равен нулю. Далее в первый момент времени ток равен 2 А, во второй момент времени – 4 А, в третий – 5 А, и только спустя некоторое время в цепи устанавливается ток 6 А.

Рисунок 3. График нарастания тока в цепи с учетом ЭДС самоиндукцииРисунок 4. ЭДС самоиндукции в момент размыкания цепи направлена одинаково с ЭДС источника напряжения

При размыкании цепи (рисунок 4) исчезающий ток, направление которого показано одинарной стрелкой, будет уменьшать свое магнитное поле. Это поле, уменьшаясь от некоторой величины до нуля, будет вновь пересекать проводник и индуктировать в нем ЭДС самоиндукции.

При выключении электрической цепи с индуктивностью ЭДС самоиндукции будет направлена в ту же сторону, что и ЭДС источника напряжения. Направление ЭДС самоиндукции показано на рисунке 4 двойной стрелкой. В результате действия ЭДС самоиндукции ток в цепи исчезает не сразу.

Таким образом, ЭДС самоиндукции всегда направлена против причины, ее вызвавшей. Отмечая это ее свойство, говорят что ЭДС самоиндукции имеет реактивный характер.

Графически изменение тока в нашей цепи с учетом ЭДС самоиндукции при замыкании ее и при последующем размыкании в восьмой момент времени показано на рисунке 5.

Рисунок 5. График нарастания и исчезновения тока в цепи с учетом ЭДС самоиндукцииРисунок 6. Индукционные токи при размыкании цепи

При размыкании цепей, содержащих большое количество витков и массивные стальные сердечники или, как говорят, обладающих большой индуктивностью, ЭДС самоиндукции может быть во много раз больше ЭДС источника напряжения. Тогда в момент размыкания воздушный промежуток между ножом и неподвижным зажимом рубильника будет пробит и появившаяся электрическая дуга будет плавить медные части рубильника, а при отсутствии кожуха на рубильнике может ожечь руки человека (рисунок 6).

В самой цепи ЭДС самоиндукции может пробить изоляцию витков катушек, электромагнитов и так далее. Во избежание этого в некоторых выключающих приспособлениях устраивают защиту от ЭДС самоиндукции в виде специального контакта, который замыкает накоротко обмотку электромагнита при выключении.

Следует учитывать, что ЭДС самоиндукции проявляет себя не только в моменты включения и выключения цепи, но также и при всяких изменениях тока.

Величина ЭДС самоиндукции зависит от скорости изменения тока в цепи. Так, например, если для одной и той же цепи в одном случае в течение 1 секунды ток в цепи изменился с 50 до 40 А (то есть на 10 А), а в другом случае с 50 до 20 А (то есть на 30 А), то во втором случае в цепи будет индуктироваться втрое большая ЭДС самоиндукции.

Величина ЭДС самоиндукции зависит от индуктивности самой цепи. Цепями с большой индуктивностью являются обмотки генераторов, электродвигателей, трансформаторов и индукционных катушек, обладающих стальными сердечниками. Меньшей индуктивностью обладают прямолинейные проводники. Короткие прямолинейные проводники, лампы накаливания и электронагревательные приборы (печи, плитки) индуктивностью практически не обладают и появления ЭДС самоиндукции в них почти не наблюдается.

Магнитный поток, пронизывающий контур и индуктирующий в нем ЭДС самоиндукции, пропорционален току, протекающему по контуру:

Ф = L × I ,

где L – коэффициент пропорциональности. Он называется индуктивностью. Определим размерность индуктивности:

Ом × сек иначе называется генри (Гн).

1 генри = 103; миллигенри (мГн) = 106 микрогенри (мкГн).

Индуктивность, кроме генри, измеряют в сантиметрах:

1 генри = 109 см.

Так, например, 1 км линии телеграфа обладает индуктивностью 0,002 Гн. Индуктивность обмоток больших электромагнитов достигает нескольких сотен генри.

Если ток в контуре изменился на Δi, то магнитный поток изменится на величину Δ Ф:

Δ Ф = L × Δ i .

Величина ЭДС самоиндукции, которая появится в контуре, будет равна (формула ЭДС самоиндукции):

При равномерном изменении тока по времени выражение будет постоянным и его можно заменить выражением . Тогда абсолютная величина ЭДС самоиндукции, возникающая в контуре, может быть найдена так:

На основании последней формулы можно дать определение единицы индуктивности – генри:

Проводник обладает индуктивностью 1 Гн, если при равномерном изменении тока на 1 А в 1 секунду в нем индуктируется ЭДС самоиндукции 1 В.

Как мы убедились выше, ЭДС самоиндукции возникает в цепи постоянного тока только в моменты его включения, выключения и при всяком его изменении. Если же величина тока в цепи неизменна, то магнитный поток проводника постоянен и ЭДС самоиндукции возникнуть не может (так как . В моменты изменения тока в цепи ЭДС самоиндукции мешает изменениям тока, то есть оказывает ему своеобразное сопротивление.

Рисунок 7. Бифилярная обмотка катушки

Часто на практике встречаются случаи, когда нужно изготовить катушку, не обладающую индуктивностью (добавочные сопротивления к электроизмерительным приборам, сопротивления штепсельных реостатов и тому подобные). В этом случае применяют бифилярную обмотку катушки (рисунок 7)

Как нетрудно видеть из чертежа, в соседних проводниках токи проходят в противоположных направлениях. Следовательно, магнитные поля соседних проводников взаимно уничтожаются. Общий магнитный поток и индуктивность катушки будут равны нулю. Для еще более полного уяснения понятия индуктивности приведем пример из области механики.

Как известно из физики, по второму закону Ньютона ускорение, полученное телом под действием силы, пропорционально самой силе и обратно пропорционально массе тела:

или

Сравним последнюю формулу с формулой ЭДС самоиндукции, взяв абсолютное значение ЭДС:

Если в этих формулах изменения скорости во времени уподобить изменению тока во времени , механическую силу – электродвижущей силе самоиндукции, то масса тела будет соответствовать индуктивности цепи.

При равномерном прямолинейном движении a = 0, поэтому F = 0, то есть если на тело не действуют силы, его движение будет прямолинейным и равномерным (первый закон Ньютона).

В цепях постоянного тока величина тока не меняется и поэтому eL = 0.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

www.electromechanics.ru

расчет электродвижущей силы по формуле

Электромагнитная индукция – генерирование электротоков магнитными полями, изменяющимися во времени. Открытие Фарадеем и Генри этого феномена ввело определенную симметрию в мир электромагнетизма. Максвеллу в одной теории удалось собрать знания об электричестве и магнетизме. Его исследования предсказывали существование электромагнитных волн перед экспериментальными наблюдениями. Герц доказал их существование и открыл человечеству эпоху телекоммуникаций.

Эксперименты Фарадея

Законы Фарадея и Ленца

Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.

Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.

Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.

Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.

Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.

Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.

ЭДС индукции

Формула ЭДС индукции определена как:

Е = — dФ/dt.

Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.

Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.

Движение провода в магнитном поле

Когда провод длиной l движется в МП, имеющем индукцию В, внутри него будет наводиться ЭДС, пропорциональная его линейной скорости v. Для расчета ЭДС применяется формула:

  • в случае движения проводника перпендикулярно направлению магнитного поля:

Е = — В x l x v;

  • в случае движения под другим углом α:

Е = — В x l x v х sin α.

Индуцированная ЭДС и ток будут направлены в сторону, которую находим, пользуясь правилом правой руки: расположив руку перпендикулярно силовым линиям магнитного поля и указывая большим пальцем в сторону перемещения проводника, можно узнать направление ЭДС по оставшимся четырем распрямленным пальцам.

Перемещение провода в МП

Вращающаяся катушка

Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.

ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).

Из формулы следует, что Ф подвержен изменениям в следующих случаях:

  • меняется интенсивность МП – вектор В;
  • варьируется площадь, ограниченная контуром;
  • изменяется ориентация между ними, заданная углом.

В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.

Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.

Вращение контура в МП

Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.

Для формулы ЭДС электромагнитной индукции применяется выражение:

Е = В х ω х S x N x sin ωt, где:

  • S – площадь, ограниченная одним витком или рамкой;
  • N – количество витков;
  • ω – угловая скорость, с которой вращается катушка;
  • В – индукция МП;
  • угол α = ωt.

На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).

ЭДС самоиндукции

Когда через катушку проходит переменный ток, он генерирует переменное МП, обладающее изменяющимся магнитным потоком, индуцирующим ЭДС. Этот эффект называется самоиндукцией.

Поскольку МП пропорционально интенсивности тока, то:

Ф = L x I,

где L – индуктивность (Гн), определяемая геометрическими величинами: количеством витков на единицу длины и размерами их поперечного сечения.

Для ЭДС индукции формула принимает вид:

Е = — L x dI/dt.

Взаимоиндукция

Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.

Взаимоиндукция

Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:

  1. Взаимоиндуктивность второй катушки относительно первой:

М21 = (N2 x F21)/I1;

  1. Магнитный поток:

Ф21 = (М21/N2) x I1;

  1. Найдем индуцированную ЭДС:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt;

  1. Идентично в первой катушке индуцируется ЭДС:

Е1 = — M12 x dI2/dt;

Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.

Взаимную индуктивность можно признать равной:

М12 = М21 = М.

Соответственно, E1 = — M x dI2/dt и E2 = M x dI1/dt.

М = К √ (L1 x L2),

где К – коэффициент связи между двумя индуктивностями.

Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.

Кроме генерирования, трансформации электроэнергии магнитная индукция применяется в иных устройствах. Например, в магнитных левитационных поездах, которые двигаются не в непосредственном контакте с рельсами, а на несколько сантиметров выше из-за электромагнитной силы отталкивания.

Видео

Оцените статью:

elquanta.ru

Тест по физике на тему «Электромагнитная индукция»

Тест 11-1(электромагнитная индукция)

Вариант 1

1. Кто открыл явление электромагнитной индукции?

А. X. Эрстед. Б. Ш. Кулон. В. А. Вольта. Г. А. Ампер. Д. М. Фарадей. Е. Д. Максвелл.

2. Выводы катушки из медного провода присоединены к чувствительному гальванометру. В каком из перечисленных опытов гальванометр обнаружит возникновение ЭДС электромагнитной индукции в катушке?

  1. В катушку вставляется постоянный магнит.

  2. Из катушки вынимается постоянный магнит.

  3. Постоянный магнит вращается вокруг своей продоль­ной оси внутри катушки.

А. Только в случае 1. Б. Только в случае 2. В. Только в случае 3. Г. В случаях 1 и 2. Д. В случаях 1, 2 и 3.

3.Как называется физическая величина, равная произве­дению модуля В индукции магнитного поля на площадь S поверхности, пронизываемой магнитным полем, и косинус
угла а между вектором В индукции и нормалью п к этой поверхности?

А. Индуктивность. Б. Магнитный поток. В. Магнитная индукция. Г. Са­моиндукция. Д. Энергия магнитного поля.

4. Каким из приведенных ниже выражений определяется ЭДС индукции в замкнутом контуре?

A. Б. В. Г. Д.

5. При вдвигании полосового магнита в металлическое кольцо и выдвигании из него в кольце возникает индук­ционный ток. Этот ток создает магнитное поле. Каким по­люсом обращено магнитное поле тока в кольце к: 1) вдвигаемому северному полюсу магнита и 2) выдвигаемому се­верному полюсу магнита.

A. 1 — северным, 2 — северным. Б. 1 — южным, 2 — южным.

B. 1 — южным, 2 — северным. Г. 1 — северным, 2 — южным.

6. Как называется единица измерения магнитного потока?

А. Тесла. Б. Вебер. В. Гаусс. Г. Фарад. Д. Генри.

7. Единицей измерения какой физической величины является 1 Генри?

А. Индукции магнитного ноля. Б. Электроемкости. В. Самоиндук­ции. Г. Магнитного потока. Д. Индуктивности.

8. Каким выражением определяется связь магнитного по­ тока через контур с индуктивностью L контура и силой тока I в контуре?

A. LI. Б. . В. LI . Г. LI2. Д. .

9. Каким выражением определяется связь ЭДС самоин­дукции с силой тока в катушке?

А. Б. В. LI. Г. . Д. LI .

10. Ниже перечислены свойства различных полей. Какими из них обладает электростатическое поле?

  1. Линии напряженности обязательно связаны с электри­ческими зарядами.

  2. Линии напрялсенности не связаны с электрическими зарядами.

  3. Поле обладает энергией.

  4. Поле не обладает энергией.

  5. Работа сил по перемещению электрического заряда по замкнутому пути может быть не равна нулю.

  6. Работа сил по перемещению электрического заряда по любому замкнутому пути равна нулю.

А. 1, 4, 6. Б. 1, 3, 5. В. 1, 3, 6. Г. 2, 3, 5. Д. 2, 3, 6. Е. 2, 4, 6.

11. Контур площадью 1000 см2 находится в однородном магнитном поле с индукцией 0,5 Тл, угол между вектором В индукции и нормалью к поверхности контура 60°. Ка­ков магнитный поток через контур?

А. 250 Вб. Б. 1000 Вб. В. 0,1 Вб. Г. 2,5 · 10-2 Вб. Д. 2,5 Вб.

12. Какая сила тока в контуре индуктивностью 5 мГн создает магнитный поток 2 · 10-2 Вб?

А. 4 мА. Б. 4 А. В. 250 А. Г. 250 мА. Д. 0,1 А. Е. 0,1 мА.

13. Магнитный поток через контур за 5 · 10-2 с равномер­но уменьшился от 10 мВб до 0 мВб. Каково значение ЭДС в контуре в это время?

А. 5 · 10-4 В. Б. 0,1 В. В. 0,2 В. Г. 0,4 В. Д. 1 В. Е. 2 В.

14. Каково значение энергии магнитного поля катушки индуктивностью 5 Гн при силе тока в ней 400 мА?

А. 2 Дж. Б. 1 Дж. В. 0,8 Дж. Г. 0,4 Дж. Д. 1000 Дж. Е. 4·105 Дж.

15. Катушка, содержащая n витков провода, подключена к источнику постоянного тока с напряжением U на выходе. Каково максимальное значение ЭДС самоиндукции в катушке при увеличении напряжения на ее концах от 0 В до U В?

A, U В, Б. nU В. В. U/п В. Г. Может быть во много раз больше U, зависит от скорости изменения силы тока и от индуктивности катушки.

16. Две одинаковые лампы включены в цепь источника постоянного тока, первая последовательно с резистором, вторая последовательно с катушкой. В какой из ламп (рис. 1) сила тока при замыкании ключа К достигнет мак­симального значения позже другой?

А. В первой. Б. Во второй. В. В первой и второй одновременно. Г. В пер­вой, если сопротивление резистора больше сопротивления катушки. Д. Во второй, если сопротивление катушки больше сопротивления резистора.

17. Катушка индуктивностью 2 Гн включена параллельно с резистором электрическим сопротивлением 900 Ом, сила тока в катушке 0,5 А, электрическое сопротивление ка­тушки 100 Ом. Какой электрический заряд протечет в цепи катушки и резистора при отключении их от источника тока (рис. 2)?

А. 4000 Кл. Б. 1000 Кл. В. 250 Кл. Г. 1 • 10 -2 Кл. Д. 1,1 • 10-3 Кл. Е. 1 • 10-3 Кл.

18. Самолет летит со скоростью 900 км/ч, модуль вертикальной составляющей вектора индукции магнитного поля Земли 4 • 105 Тл. Какова разность потенциалов между концами крыльев самолета, если размах крыльев равен 50 м?

А. 1,8 В. Б. 0,9 В. В. 0,5 В. Г. 0,25 В.

19. Какой должна быть сила тока в обмотке якоря электромотора для того, чтобы на участок обмотки из 20 витков длиной 10 см, расположенный перпендикулярно век­тору индукции в магнитном поле с индукцией 1,5 Тл, действовала сила 120 Н?

А. 90 А. Б. 40 А. В. 0,9 А. Г. 0,4 А.

20. Какую силу нужно приложить к металлической пере­мычке для равномерного ее перемещения со скоростью 8 м/с по двум параллельным проводникам, располо­женным на расстоянии 25 см друг от друга в однородном магнитном поле с индукцией 2 Тл? Вектор индукции перпендикулярен плоскости, в которой расположены рельсы. Проводники замкнуты резистором с электрическим сопротивлением 2 Ом.

А. 10000 Н. Б. 400 Н. В. 200 Н. Г. 4 Н. Д. 2 Н. Е. 1 Н.

Вариант 2

1. Как называется явление возникновения электрического тока в замкнутом контуре при изменении магнитного по­тока через контур?

А. Электростатическая индукция. Б. Явление намагничивания. В. Сила Ампера. Г. Сила Лоренца. Д. Электролиз. Е. Электромагнитная индукция.

2. Выводы катушки из медного провода присоединены к чувствительному гальванометру. В каком из перечислен­ных опытов гальванометр обнаружит возникновение ЭДС электромагнитной индукции в катушке?

  1. В катушку вставляется постоянный магнит.

  2. Катушка надевается на магнит.

3)Катушка вращается вокруг магнита, находящегося
внутри нее.

А.В случаях 1, 2 и 3. Б. В случаях 1 и 2. В. Только в случае 1. Г. Только в случае 2. Д. Только в случае 3.

3. Каким из приведенных ниже выражений определяется магнитный поток?

A. BScosα. Б. . В. qvBsinα. Г. qvBI. Д. IBlsina.

4. Что выражает следующее утверждение: ЭДС индукции в замкнутом контуре пропорциональна скорости измене­ния магнитного потока через поверхность, ограниченную контуром?

А. Закон электромагнитной индукции. Б. Правило Ленца. В. Закон Ома для полной цепи. Г. Явление самоиндукции. Д. Закон электролиза.

5. При вдвигании полосового магнита в металлическое кольцо и выдвигании из него в кольце возникает индук­ционный ток. Этот ток создает магнитное поле. Каким полюсом обращено магнитное поле тока в кольце к: 1) вдви­гаемому южному полюсу магнита и 2) выдвигаемому южному полюсу магнита.

A. 1 — северным, 2 — северным. Б. 1 — южным, 2 — южным.

B. 1 — южным, 2 — северным. Г. 1 — северным, 2 — южным.

6. Единицей измерения какой физической величины является 1 Вебер?

А. Индукции магнитного поля. Б. Электроемкости. В. Самоиндукции. Г. Магнитного потока. Д. Индуктивности.

7. Как называется единица измерения индуктивности?

А. Тесла. Б. Вебер. В. Гаусс. Г. Фарад. Д. Генри.

8. Каким выражением определяется связь энергии маг­нитного потока в контуре с индуктивностью L контура и силой тока I в контуре?

А. . Б. . В. LI2, Г. LI . Д. LI.

9.Какая физическая величина х определяется выражением х= для катушки из п витков.

А. ЭДС индукции. Б. Магнитный поток. В. Индуктивность. Г. ЭДС само­индукции. Д. Энергия магнитного поля. Е. Магнитная индукция.

10. Ниже перечислены свойства различных полей. Какими из них обладает вихревое индукционное электрическое поле?

  1. Линии напряженности обязательно связаны с электри­ческими зарядами.

  2. Линии напряженности не связаны с электрическими зарядами.

  3. Поле обладает энергией.

  4. Поле не обладает энергией.

  5. Работа сил по перемещению электрического заряда по замкнутому пути может быть не равна нулю.

  6. Работа сил по перемещению электрического заряда по любому замкнутому пути равна нулю.

А. 1, 4, 6. Б. 1, 3, 5. В. 1, 3, в. Г. 2, 3, 5. Д. 2, 3, 6. Е. 2, 4, 6.

11. Контур площадью 200 см2 находится в однородном магнитном поле с индукцией 0,5 Тл, угол между вектором В индукции и нормалью к поверхности контура 60°. Ка­ков магнитный поток через контур?

А. 50 Вб. Б. 2 · 10-2 Вб. В. 5 · 10-3 Вб. Г. 200 Вб. Д. 5 Вб.

12. Ток 4 А создает в контуре магнитный поток 20 мВб. Какова индуктивность контура?

А. 5 Гн. Б. 5 мГн. В. 80 Гн. Г. 80 мГн. Д. 0,2 Гн. Е. 200 Гн.

13. Магнитный поток через контур за 0,5 с равномерно уменьшился от 10 мВб до 0 мВб. Каково значение ЭДС в контуре в это время?

А. 5 · 10-3 В. Б. 5 В. В. 10 В. Г. 20 В. Д. 0,02 В. Е. 0,01 В.

14. Каково значение энергии магнитного поля катушки индуктивностью 500 мГн при силе тока в ней 4 А?

А. 2 Дж. Б. 1 Дж. В. 8 Дж. Г. 4 Дж. Д. 1000 Дж. Е. 4000 Дж.

15. Катушка, содержащая п витков провода, подключена к источнику постоянного тока с напряжением U на выхо­де. Каково максимальное значение ЭДС самоиндукции в катушке при уменьшении напряжения на ее концах от U В до 0 В?

A. U В. Б. nU В. В. U/n В. Г. Может быть во много раз больше U, зависит от скорости изменения силы тока и от индуктивности катушки.

16. В электрической цепи, представленной на рисунке 1, четыре ключа 1, 2, 3 и 4 замкнуты. Размыкание какого из четырех даст лучшую возможность обнаружить явление самоиндукции?

А. 1. Б. 2. В. 3. Г. 4. Д. Любого из четырех.

17. Катушка индуктивностью 2 Гн включена параллельно с резистором электрическим сопротивлением 100 Ом, сила тока в катушке 0,5 А, электрическое сопротивление ка­тушки 900 Ом. Какой электрический заряд протечет в це­пи катушки и резистора при отключении их от источника тока (рис. 2)?

А. 4000 Кл. Б. 1000 Кл. В. 250 Кл. Г. 1 • 10-2 Кл. Д. 1,1 • 10-3 Кл. Е. 1 • 10-3 Кл.

18. Самолет летит со скоростью 1800 км/ч, модуль вертикальной составляющей вектора индукции магнитного поля Земли 4 • 10-5 Тл. Какова разность потенциалов между кон­цами крыльев самолета, если размах крыльев равен 25 м?

А. 1,8 В. В. 0,5 В. В. 0,9 В. Г. 0,25 В.

19. Прямоугольная рамка площадью S с током I помеще­на в магнитном поле с индукцией В . Чему равен момент силы, действующей на рамку, если угол между вектором В и нормалью к рамке равен а?

A. IBS sin а. Б. IBS. В. IBS cos а. Г. I2BS sin а. Д. I2BS cos а.

20. По двум вертикальным рельсам, верхние концы кото­рых замкнуты резистором электрическим сопротивлением R, начинает скользить проводящая перемычка массой т и длиной I. Система находится в магнитном поле. Вектор индукции перпендикулярен плоскости, в которой расположены рельсы. Найдите установившуюся скорость и движения перемычки. Сила трения пренебрежимо мала.

А. . В. В. . Г. . Д. .

Ответы:

Номер вопроса и ответ

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Вариант 1

Д

Г

Б

Б

Г

Б

Д

А

Д

В

Г

Б

В

Г

А

Б

Е

В

Б

Е

Вариант 2

Е

Б

А

А

В

Г

Д

Б

А

Г

В

Б

Д

Г

Г

А

Е

Б

В

А

www.metod-kopilka.ru

4.2. Самоиндукция. Индуктивность соленоида

Вокруг
всякого проводника с током существует
магнитное поле. Собственное магнитное
поле контура создает магнитный поток
самоиндукции
сквозь поверхностьS,
ограниченную этим контуром
:

,

где
– проекция вектора индукциимагнитного поля на нормаль к элементу
поверхностиdS.

По
закону Био- Савара — Лапласа магнитная
индукция
в точке, находящейся на расстоянииот элементаконтура равна,
а магнитная индукция, создаваемая всем
контуром

,

тогда

,
где— проекция векторного произведения на
направление нормали к поверхностиdS,
ограниченной контуром
.
Для магнитного потока самоиндукции
имеем:

.

Обозначим

,
тогда.
ВеличинаL
называется индуктивностью контура. Она
зависит от свойств среды (
),
от геометрической формы (S
и
) и размеров проводника. Индуктивность
равна магнитному потоку самоиндукции,
контура, когда в контуре течет ток
единичной силы.

Единицей
индуктивности в СИ является Гн
(генри),
.

Самоиндукция
– это возникновение ЭДС индукции в
результате изменения тока в цепи. ЭДС
самоиндукции:

.

Если
свойства среды ()
и размеры контура (S
и
)
остаются неизменными, а среда
неферромагнитная, то,
ЭДС самоиндукции пропорциональна
скорости убывания тока в контуре. т. е.

Под действием
ЭДС самоиндукции в цепи появляется
индукционный ток, который по закону
Ленца противодействует изменению тока
в цепи. Это противодействие будет тем
больше, чем больше индуктивность контура.
Таким образом, индуктивность контура
является мерой его инертности к изменению
тока.

Вычислим
индуктивность соленоида бесконечной
длины. При протекании тока I
внутри соленоида
возбуждается однородное поле, индукция
которого равна
.
Поток через каждый из витков равен,
а полный поток, сцепленный с соленоидом,
определяется выражением:

,

где
— длина соленоида (которая предполагается
очень большой),S
— площадь поперечного сечения, n
— число витков на
единицу длины, полное число витков
. Известно, что,
поэтому

,

где
— объем соленоида.

4.3. Токи фуко

Индукционные
токи могут возбуждаться в сплошных
массивных проводниках. В этом случае
их называют токами Фуко или вихревыми
токами. Электрическое сопротивление
массивного проводника мало, поэтому
токи Фуко могут быть очень большими.

В соответствии
с правилом Ленца токи Фуко выбирают
внутри проводника такие пути и направления,
чтобы своим действием возможно сильнее
противиться причине, которая их вызывает.
Поэтому движущиеся в сильном магнитном
поле хорошие проводники испытывают
сильное торможение, обусловленное
взаимодействием токов Фуко с магнитным
полем.

Токи
Фуко, возникающие в проводах, по которым
течет переменный ток, направлены так,
что ослабляют ток внутри провода и
усиливают вблизи поверхности. В
результате быстропеременный ток
оказывается распределенным по сечению
провода неравномерно – он как бы
вытесняется на поверхность проводника.
Это скин-эффект или поверхностный
эффект. Из-за скин-эффекта внутренняя
часть проводников в высокочастотных
линиях оказывается бесполезной и
проводники делают в виде трубок.

studfiles.net

ЭДС индукции и ЭДС самоиндукции. Подскажите, пожалуйста, какая разница между эдс индукции и эдс самоиндукции?

почти никакой. .
и та и другая возникает изза переменного магнитного поля, но в случае самоиндукции это поле вызывает ток в проводе, на который потом и наводится эдс самоиндукции, а в случае с простой индукцией это может быть два провода в одном течёт переменный ток вызывая магнитное поле, а в другом магнитное поле вызывает ток …
а для шутки самоиндукция это типа онанизм ))вроде всё работает, а толку ноль..

в учебнике написано

если в магнитное поле катушки поместить проводник — в нем наведется ЭДС индукции, но и сама катушка находится в магнитном поле, а значит в ней самой наводится ЭДС индукции, только называется она ЭДС самоиндукции

ЭДС самоиндукции является частным случаем процесса индукции. Как известно из закона электромагнитной индукции, при взаимодействии проводника с переменным магнитным полем в нем наводится ЭДС определяемая формулой
E = — dФ / dt (ЭДС пропорционально скорости изменения магнитного потока)
При очень быстром исчезновении переменного магнитного поля (например, при быстром отключении от источника питания) изменение магнитного потока (от макс. до 0) происходит очень быстро, при этом Е возрастает в несколько раз относительно номинального значения. (исходя из вышеуказанной формулы) Это явление и получило название «ЭДС самоиндукции»

При ЭДС самоиндукции провод действует магнитным полем сам на себя.

touch.otvet.mail.ru

3.4.6 Индуктивность. Самоиндукция. ЭДС самоиндукции

Видеоурок: Индуктивность контура (катушки). Явление самоиндукции

Лекция: Индуктивность. Самоиндукция. ЭДС самоиндукции

Самоиндукция

Считается, что индуктивный ток действует сам на себя некоторым образом. Так как индуктивный ток достаточно нестабилен, то он вызывает собственное изменение магнитного потока, а это значит, что в таком проводнике должен бежать ток, в результате изменения потока. Такое явление называется самоиндукцией.

Итак, давайте представим некоторый проводник в виде кольца. Если ток индукции в нем течет против часовой стрелки (он увеличивается), то магнитное поле будет направлено вертикально вверх (оно увеличивается).

Это значит, что появляется некоторое вихревое поле, направленное в противоположном направлении относительно направления движения тока. Таким образом, оно пытается тормозить ток. Однако моментально ток затормозить не может, поэтому магнитное поле изменяется на протяжении некоторого времени.

Если же ток в проводнике будет уменьшаться, что также приводит к уменьшению магнитного поля, то вихревое электрическое поле наоборот начнет ускорять ток в проводнике.

Таким образом, можно сделать вывод, что любое изменение тока и поля будет приводить к появлению внутреннего ЭДС, которое будет либо тормозить, либо ускорять индукционный ток.

Индуктивность

Итак, нам уже известно, что поток описывает магнитное поле, значит, величина потока пропорциональна индукции. Коэффициент, связывающий индукцию и поток, называется индуктивностью.

Определяется индуктивность с помощью геометрических размеров проводника, а также материалом, из которого он создан.

Единицами измерения индуктивности являются Генри (Гн).

Если использовать данную формулу для ЭДС индукции, можно получить:

То есть ЭДС пропорционально производной силы тока.

cknow.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о