Содержание

Как выбрать защиту от перенапряжения (УЗИП) для частного дома и дачи

Любые бытовые электроприборы, работающие в домашней проводке, создаются изготовителями для питания от гармоничного сигнала синусоиды с напряжением 220 или 380 вольт.

Сложная электронная техника использует выпрямленный специальными блоками постоянный ток.

Когда форма и амплитуда питающего напряжения изменяется, то она сильно влияет на качество работы бытовых потребителей, снижая их ресурс.

Внутри бытовой сети часто случаются нарушения технических нормативов поступающей в дом электроэнергии. Этот вопрос подробно раскрыт в статье, посвященной электрической безопасности частного дома и дачи.

Защите бытовой домашней техники необходимо уделять серьезное внимание:

Какие импульсы тока могут возникнуть в бытовой домашней сети

Характер протекания тока по оборудованию принят за основу для проектирования электрических приборов и показан на картинке ниже.


Идеальная синусоида и выпрямленный из нее постоянный ток обеспечивают номинальный режим эксплуатации. Его нарушить может импульс, пришедший от:

  1. разряда молнии;
  2. перенапряжения электросети аварийными режимами.

Приведенные на нижних графиках характеристики носят общий характер. Они меняются в каждом конкретном случае. Однако, следует сразу заметить, что импульс молнии по величине значительно больше, а по времени продолжительнее на 17 крат (350/20=17).

Мощность молнии намного превышает импульс обычного перенапряжения сети, обладает повышенными разрушительными способностями по сравнению с ним.

Поэтому для устранения последействий молнии применяются специализированные защиты импульсного типа.

Практические рекомендации по использованию УЗИП

Сведем их к четырем пунктам:

  1. Импульсные защиты рассчитываются на режим пребывания в готовности к срабатыванию при нахождении под номинальным напряжением сети. При возникновении перенапряжений от аварий они могут повреждаться, сами требуют защиты.
    Автоматический выключатель создается для эксплуатации синусоидальных или постоянных токов. К работе под импульсном разрядом молнии он не приспособлен.
    Защита УЗИП автоматами запрещена. Для нее выбирают только предохранители.
  2. По условиям безопасной эксплуатации корпус УЗИП первого класса лучше использовать цельной конструкцией без добавочных модулей съемного типа.
  3. При выборе устройств защит от импульсного перенапряжения, предназначенных для обработки токов молний более 20 кА с соотношениями импульса 10/350 миллисекунд, необходимо ориентироваться на разрядники.
  4. Монтаж УЗИП следует выполнять в электрическом щите с металлическим корпусом, который наиболее отвечает требованиям пожарной безопасности.

Алгоритм выбора УЗИП по току молнии

Разберём его на примере, представленном картинкой ниже.


Электрическая энергия в дом может поступать по воздушной линии, оборудованной:

  1. самонесущими изолированными проводами СИП — ВЛИ;
  2. обыкновенными проводами без внешнего слоя изоляции — ВЛ.

Наличие диэлектрического слоя на токопроводящих элементах воздушной линии уменьшает воздействие разряда молнии, влияет на конструкцию работающего УЗИП и его схему подключения.

При питании дома от ВЛИ создается система заземления по схеме TN-C-S. УЗИП монтируется между фазными проводниками и PEN. Место расщепления PEN на РЕ и N провода при удалении на 30 метров от здания требует дополнительной защиты.

Наличие на доме смонтированной внешней молниезащиты, подвод металлических коммуникаций инженерных систем влияют на электрическую безопасность здания, выбор и схему подключения УЗИП.


Рассмотрим четыре варианта возможных схем.

Вариант 1

Условия

Электричество поступает по ВЛИ. Здание:

  • без внешней молниезащиты;
  • с отсутствующими металлическими коммуникациями, встроенными в дом;
  • схема системы заземления TN-C-S.
Решение

При такой ситуации вероятность образования прямого удара молнии в здание резко снижается:

  • изоляцией проводов ВЛИ;
  • отсутствием молниеприемника защиты и внешних металлических открытых токопроводящих частей.

Поэтому вполне достаточно защититься от импульсов перенапряжения, обладающих формой 8/20 мкс для тока.

Вполне подойдет УЗИП с комбинированным классом защит 1+2+3 в едином корпусе марки DS131VGS-230. Причем, ее защитная функция по устранению импульсов тока молнии формы 10/350 мкс с амплитудой до 12,5 кА вряд ли будет использована.

Размах тока от импульсов перенапряжения можно выбрать из диапазона 5÷20 кА с учетом периода грозовых дней. Проще остановиться на максимальном значении.

Вариант 2

Условия

Электричество поступает по ВЛИ. Здание:

  • без внешней молниезащиты;
  • с металлическими коммуникациями водо- или газопровода, встроенными в дом;
  • схема системы заземления TN-C-S.
Решение

По сравнению с предыдущим случаем здесь возможен грозовой разряд молнии по трубопроводу силой до 100 кА. Этот ток внутри трубы разветвится на оба конца по 50 кА. С нашей стороны дома эта часть разделится по 25 кА на контур заземления и здание.

PEN проводник заберет свою долю в 12,5 кА, а оставшаяся половинка импульса такой же силы сквозь УЗИП станет проникать в фазный провод. Поэтому ее надо будет подавлять.

Вполне можно выбрать ту же модель УЗИП, что и ранее, но ее возможность защиты от импульса молнии с формой 10/350 мкс и размахом до 12,5 кА будет абсолютно необходима.

Вариант 3

Условия

Электричество поступает по ВЛИ. В здании:

  • внешняя молниезащита смонтирована;
  • отсутствуют металлические коммуникации, встроенными в дом;
  • схема системы заземления TN-C-S.
Решение

Грозовой разряд в 100 кА попадает по молниеприемнику, разделяется на два потока по 50 кА в заземляющее устройство и электросхему здания.


На РЕ шине от повторно разветвляется на PEN проводник и фазный провод по 25 кА. Сквозь УЗИП, таким образом, будет протекать импульс с формой 10/350 мкс и силой 25 кА. С такими параметрами и требуется подбирать защиты.

Вариант 4

Условия

Электричество поступает по ВЛИ. У здания:

  • внешняя молниезащита смонтирована;
  • имеются металлические коммуникации водопровода, встроенные в дом;
  • схема системы заземления TN-C-S.
Решение

Разряд молнии в 100 кА после молниеприемника двумя потоками по 50 кА расходится на контур заземления и электрическую схему вводного устройства. Второй поток тоже разделится поровну: 25 кА растекается через трубы водоснабжения, а очередные 25 тоже делятся по 12,5 кА на PEN проводник и фазный провод через УЗИП. Его можно выбрать той же конструкции, как и во втором варианте.

Особенности выбора УЗИП при питании от ВЛИ

В четырех разобранных примерах за основу электроснабжения здания взяты ВЛИ с СИП. У них обрыв нуля, а, следовательно, появление линейного напряжения 380 вместо фазного маловероятно. Посему выбор УЗИП можно ограничивать максимальным напряжением сети.

Учитывая рабочие нагрузки в рассмотренных четырех вариантах для УЗИП, последние вполне допустимо монтировать в металлических шкафах внутри дома. С учетом небольших габаритов здания допустимо устанавливать одно устройство УЗИП между потенциалами фазы и PEN проводника.

Вариант 5

Условие

Электричество в здание поступает по воздушной ЛЭП с оголенными проводами.

Решение

При такой ситуации высока вероятность грозового разряда в провода ВЛ, а у дома используется схема системы заземления ТТ.


Требуется создавать защиту от проникающих импульсов не только от фазных проводов относительно земли, но и от нулевого. Последняя рекомендуется в большинстве случаев, но может не применяться по местным условиям.

При подключении к открытым проводам ВЛ на электрическую безопасность дома влияет конструкция ответвления. Ее выполнение возможно:

  1. кабелем;
  2. самонесущими изолированными проводами СИП, как на ВЛИ;
  3. открытыми проводами без изоляции.

При воздушном ответвлении меньшие риски обеспечивают изолированные по отдельности провода СИП с сечением от 16 мм кв и созданием промежутка относительно фазных и нулевого проводников. В них прямой удар молнии практически нереален, но он может попасть в место разделки около изоляторов на вводе. Тогда на фазе появится 50% от силы грозового разряда.

Этот случай необходимо исключать:

  • заводом СИП внутрь вводного устройства;
  • подключением РЕ шины щитка к заземляющему устройству с блокированием возможности удара молнии в это место с внешней стороны здания.

Без комплексного выполнения этих условий потребуется монтировать УЗИП на 50 кА 10/350 мкс, а при выполнении — ток молнии в открытый фазный провод силой 100 кА разделится на два потока, из которых 50 кА пойдет в сторону здания на столб ввода. Когда он стоит последним на линии, то весь разряд войдет в дом, а если ВЛ проложена дальше, то разделится на наше строение и уйдет к другим.

Эти условия являются определяющими при выборе УЗИП по силе разряда молнии.

На воздушной ЛЭП с открытыми проводами вероятен обрыв нуля, что требует выбора УЗИП на напряжение до 0,4 кВ, а не 220 вольт.

При монтаже УЗИП следует учитывать заводские рекомендации изготовителя, изложенные техническими характеристиками по схемам подключения в разных системах заземления, их особенности. Иначе от применения защиты возможен больший вред, чем польза.

Роль предохранителя в защите УЗИП

Протекание грозы обычно происходит при шквальном ветре, который может оборвать PEN проводник ВЛ во время или перед ударом молнии. Через рабочий ноль потечет фазный ток.

При разряде молнии по открытому проводу фазы у нас отрабатывает УЗИП, через который потечет импульс от грозы и ток, сопровождающий обрыв PEN, по цепочке: предохранитель, разрядник, шину РЕ и контур заземления.

Все эти элементы обладает определённым электрическим сопротивлением, снижающим величину протекающего тока. Его можно просчитать, определить по закону Ома значение сопровождающего тока, сравнить с характеристиками УЗИП. Если они разрешают эксплуатацию при большей величине, то предохранитель можно не использовать.

Для закрепления опубликованного материала рекомендуем к просмотру два видео.

Компания «Электромир» своим видеороликом объясняет, почему в любом доме необходимо устанавливать УЗИП.

Видео «Вебинар об УЗИП» компании «Дни решений» дает рекомендации на вопросы по выбору и оценке работы устройств импульсной защиты.

Задавайте вопросы по изложенной теме в комментариях, делитесь материалом статьи с друзьями в соц сетях.

Полезные товары

housediz.ru

схема подключения, типы заземляющих контуров

загрузка...

Природа непредсказуема. И это знает каждый из благоразумных граждан. Именно поэтому многие решают установить в своем частном доме дополнительную защиту от перенапряжения. А это весьма опасный фактор, который обычно сказывается на всей электронике в вашем доме. По воле рока страдает практически всё: начиная от холодильника и заканчивая компьютерными блоками питания и материнскими платами.

Самое интересное то, что защититься от ненастья можно, если заранее предусмотреть установку в распределительном щитке специального устройства, которое в экстренной ситуации замкнет цепь защемления по наименьшему пути, обеспечив таким образом прохождение тока по пути наименьшего сопротивления.

Возможные повреждения из-за молний


Величина напряжения молнии измеряется даже не тысячами, а десятками и сотнями тысяч Вольт. И пусть помеха имеет в прямом смысле слова молниеносный характер, но даже за доли секунд она успевает повредить многие внутренние элементы техники, выводя ее из строя. В холодильниках обычно сгорает компрессор, в импульсных блоках питания выгорает первичная цепь преобразования напряжений, и так далее.

Но на этом беда не окончится, потому что выход из строя электронной техники, а в данном случае она просто сгорает, может привести к реальному возгоранию и, как следствие, к пожару. И, к сожалению, только в этот момент хозяин частного дома осознает, что был неправ, когда при монтаже распределительного щитка решил сэкономить на установке УЗИП для частного дома.

Типы импульсов



Перенапряжение — это общее понятие, которое характеризует аварийное состояние цепи в момент его генерации. Но характер и причины его возникновения могут быть различными:

  1. Для молнии характерен иглообразный импульс, который сначала медленно нарастает, заряжая линию, а потом резко пробивает ее насквозь, так как ее мощность в разы больше, чем у проводников. Форма импульса измеряется в кВ/мкс. То есть, если она попадает в воздушную линию, и частный дом от нее подключен, то форма будет выражена как 10/350 или 10 кВ амплитудой и 350 мкс длительностью.
  2. Неисправности в цепях, вызванные коммутационными процессами. Нередко причиной генерации мощного высоковольтного импульса является авария на станции или переключение с одного генератора на другой. В этот момент во вторичной сети из-за потребления большой мощности также возникает достаточно мощный импульс. Он имеет более пологую форму, но с несколько меньшей амплитудой игл.

В обоих случаях может быть нанесен равносильный вред, поэтому для защиты частного дома или квартиры рекомендуется использовать те же УЗИП.

Первичные средства защиты

Установка УЗИП в частном доме — это только часть мероприятий, которые действительно спасут вас от непредвиденного пожара или сгоревшего блока питания. Первым делом необходимо предусмотреть так называемые первичные средства защиты от удара молнией. И они заключаются в следующем:

  • Обустройства внешнего контура заземления по периметру здания. То есть необходимо вокруг строения закопать шину защитного заземления и замкнуть ее в квадрат.
  • К шине необходимо подключить молниеотводы, расположенные по углам здания. Это необходимо для того, чтобы увеличить мощность проходной шины и не допустить ее перегрев на местах сварки или утончения.
  • На крыше установить громоотвод. При этом, если она имеет значительные габариты, их необходимо установить несколько.
  • Особенно нужно позаботиться о защитном контуре заземления и молниеотводах в домах и строениях с металлической кровлей. Потому что именно на нее придется удар, который может вызвать короткое замыкание в проводке под козырьком, если, например, там расположен фонарь или осуществлен ввод.

Но, кроме фактора удара самой молнией, важно учесть всевозможные пути проникновения импульсных помех внутрь здания. А их может быть много, и к ним относятся:

  1. Сеть ввода 220/380 В при ударе молнии в элементы внешней защиты.
  2. Через сеть в случае удара в воздушную линию. Скачок напряжения в линии также может произойти в момент коммутации высоковольтных устройств на подстанциях.
  3. Кабельное ТВ или эфирная антенна. По ней высоковольтный импульс проникает в ТВ-приемник, который с высокой вероятностью выходит из строя.
  4. Сеть Интернет. Довольно часто недалеко от телефонной линии или коммутатора ударившая молния перерастает в высоковольтный и очень мощный импульс, который попадает на сетевой порт ПК и выпаливает его напрочь.
  5. Также местами проникновения высоковольтного импульса могут стать другие слаботочные линии, которые подводятся к внутренним устройствам приема и обработки данных.

Все это может стать причиной не только временного выхода из строя оборудования, но и возникновения пожара, который явно принесет массу дополнительных проблем. Чтобы предотвратить все вышеперечисленные неприятности, необходимо каждую из линий и устройств надежно экранировать, подключать к общему контуру заземления, а во время молний и вовсе отключать их от сети.

Чаще сделать это невозможно по той простой причине, что вас может не оказать дома в роковой момент. А погода, само собой, ждать не будет. Поэтому намного удобнее и практичнее использовать дополнительные элементы защиты низковольтных сетей.

Способы защиты сетей низковольтного питания

Для каждого типа УЗИП схема подключения будет своя, поэтому рассмотрим несколько способов защиты низковольтных сетей от импульсных помех. Но лучше всего применять их все в комплексе, так как погода непредсказуема, и удар молнии может произойти в любое место или устройство. Различают следующие системы защиты от импульсных перенапряжений в результате удара молний:

Система внешней молниезащиты

В случае удара молнии в этот элемент защиты необходимо принимать во внимание максимально возможный ток, который будет протекать по компонентам. В данном случае величина тока, протекающего через защитное устройство, установленное в доме, будет равна 100 кА. Импульс будет иметь вытянутую форму длительностью до 350 мкс. Чтобы он не причинил много бед, его необходимо отвести по пути наименьшего сопротивления. Следовательно, в щитке потребуется установить специальное устройство.

Справиться с энергией такой величины сможет только комбинированный компонент УЗИП, относящийся к классу 1+2+3. Он обладает достаточной мощностью и скоростью срабатывания, чтобы защитить от перенапряжения потребителей в эквиваленте потребляемой ими мощности до 20 кВт.

Напомним. На практике применяется несколько схем подключения заземления: TN — C — S и TT. В зависимости от этого фактора следует выбирать и тип устройства защиты от импульсных помех. Первая представляет собой разделенное заземление, то есть в ней PEN проводник в определенном месте разделяется на два и далее отправляется к нагрузке. Разделение выполняется на ВРУ. То есть в щитке должны быть установлены две отдельных шины: нулевая и шина заземления PE.

Между ними имеется перемычка. Сделано это из тех соображений, что УЗИП успевает своевременно отключить нагрузку, а в случае возникновения пробоя на нулевом проводе от подстанции успевает выгореть перемычка между шинами. То есть, по сути, получается две защиты.

Второй тип схемы подключения заземления заключается в следующем: все потребители глухо заземлены, как и нейтраль источника питания на подстанции.

Также на практике используются и другие типы схем заземлений: С, C — S, S, I — T. Но в частных и многоквартирных жилых домах чаще применяются именно TN — C — S и T. T. Поэтому и рассматривать УЗИП будем только для этих случаев.

Выбор УЗИП в соответствии со схемой подключения заземляющего проводника

Вспомнив, какие бывают схему подключения контура заземления, можно определиться и с выбором УЗИП. Для первого варианта подойдет PowerPro BCD TNS 25/100. Для второго, соответственно, TT 25/100.

Защита на ответвлении при ударе в воздушную линию

Защита от перенапряжения в сети 380 вольт, как и 220 вольт, заключается в установке УЗИП не в распределительном щитке, а на ответвлении. То есть там, где воздушная линия расходится на ваш и соседский дом. Только в таком случае контур заземления состоит лишь в заземляющем периметре, без использования громоотводов.

Также разместить УЗИП можно на вводе в здание или непосредственно на месте ответвления заземляющего проводника. Но в случае размещения защитного устройства ближе к источнику импульса, то есть на столбе в щитке, использовать УЗИП 3 класса нецелесообразно. Это связано с тем, что длинный проводник от столба может стать повторным генератором перенапряжения.

В этом случае лучше применить УЗИП класса 1+2. Но если расстояние от столба со щитком до дома более 60 м, то в здании также должен быть предусмотрен второй УЗИП со 2 классом. Для более точного подбора устройства воспользуйтесь таблицей ниже:

Место монтажаTN-C-STT
На столбе (ответвлении)PowerPro BC TNS 25/100 LE-373−950PowerPro BC TT 25/100 LE-373−920
На вводе при расстоянии от столба более 60 мEnerPro C TNS 275 LE-381−178EnerPro C TT 275 LE-381−180

Удар молнии возле подземной линии электропередачи

Третий способ подключения УЗИП используется в случае, когда к дому подводится питание не от столба (воздушной линии), а от подземного кабеля. В данном случае высоковольтные импульсные помехи возникают в основном по причине наведения их от других источников. Поэтому длительность импульса и его амплитуда будут намного меньше. В результате наведения энергии происходит частичное попадание тока в сеть, поэтому величина энергии на порядок меньше, чем в первых двух случаях. Но все же в такой сети также необходимо иметь надежное УЗИП, которое предохранит электронику от нежелательного воздействия.

Величина тока в этом случае будет равна всего 40 кА, а форма импульса 8/20 мкс также иная, за счет наличия гальванической развязки между источником и потребителем. Что касается типа контура заземления, то в этом случае чаще используется именно T. T. Но также применяют на практике и TN — C — S. Для защиты приборов от перенапряжения рекомендуется установить ограничитель 2 класса. Соответственно, для схемы TN — C — S подключения контура заземления рекомендуется устанавливать устройства LE -381−178, а для схемы TT необходимо использовать автоматы не ниже LE -381−180.

Защита от молний в частном доме

Перенапряжение — это фактор, который может возникать не только по сети переменного напряжения. Высоковольтные помехи довольно часто генерируются и телевизионных сетях, в частности, на антенных приемниках. Ведь они находятся ближе всего к заряженным облакам, которым необходимо разрядиться по пути наименьшего сопротивления. Такое обычно встречается в тех домах, на которых либо нет громоотвода, либо он есть, но антенна прикреплена к нему. Когда молния попадает в молниеотвод, то высоковольтный импульс обязательно наводится в канале передачи. Из-за чего выгорает селектор ТВ-приемника или приставки, к которой она была подключена.

Здесь также необходимо использовать УЗИП, только они представляют собой антенный переходник с отводом для заземления. По сути, это варисторный блок, который отводит наведенный импульс в контур заземления, не давая ему проникнуть далее в линию.

В зависимости от вида принимаемого сигнала различают два разных типа УЗИП:

  • для аналогового ТВ;
  • для спутникового или цифрового ТВ.

Соответственно, на первом будет написано Radio / TV, на втором SAT.

Защита от помех линии передачи Интернета

Чтобы полностью оградить свою жизнь и всю технику от нежелательного воздействия энергии стихии, рекомендуется подумать и об установке УЗИП для сетевого кабеля Ethernet. Установку подобного элемента лучше всего предусмотреть непосредственно перед вводом кабеля в дом, чтобы минимизировать его длину под открытым небом. Как и в случае с ТВ, блок заземляется толстым желто-зеленым проводом к общему контуру.

dachniki.guru

разновидности перенапряжений, классификация устройств, установка в частном доме

Для предохранения электрического и электронного оборудования от удара молнии предназначена система устройств защиты от импульсных перенапряжений (УЗИП). Схема подключения в частном доме осуществляется с целью безопасности или бесперебойности ее работы. В первом случае происходит полное отключение потребителей, а во втором — обеспечивается безопасная их работа.

Типы импульсных перенапряжений

Напряжение молнии исчисляется десятками, а иногда сотнями тысяч вольт. Поэтому за короткий период она наносит немалый вред, выводя из строя бытовую технику. У холодильников ломается компрессорный двигатель, в блоках питания выгорает первичная цепь преобразователя и т. д.

Большую опасность представляет в этот момент перенапряжение в электрической цепи, так как появляется высокая вероятность возникновения пожара. Причины возникновения скачков напряжения:

  1. Молнию характеризует стремительный импульс, который пробивает сеть, так как его мощность в несколько раз превышает значение у проводников. Он попадает в электрическую линию, а затем и оборудование внутри дома, и выражается отношением амплитуды напряжения в 10 кВ к длительности ее протекания — 350 мкс.
  2. К перенапряжению приводят неисправности в электрических цепях, вызванные коммутационными процессами. Это может быть результатом аварии на электростанции или при переключении с одного генератора на другой. В этот момент во вторичной сети может возникнуть мощный импульс, который наносит вред, соизмеримый с молнией.

Перенапряжение характеризуется как аварийное состояние системы во время генерации электрической энергии. Поэтому чтобы защитить электрооборудование от возникновения негативных импульсов, устанавливают УЗИП для частного дома.

Первичные средства

Монтаж устройств защиты от импульсных перенапряжений считается только частью процедуры по защите от возникновения очагов пожара или выхода из строя электрического оборудования. Предварительно следует обеспечить первичные средства защиты от воздействия молнии. В их число входят:

  1. Вокруг частного дома следует провести металлическую шину и замкнуть ее, что послужит в качестве заземления по всему периметру.
  2. К пластинам подключаются молниеотводы по краям дома.
  3. На крыше монтируется основной громоотвод. Если конструкция получается чересчур большой, то громоотводы разделяются на несколько элементов.
  4. Особенно это касается частных домов с металлической крышей, если рядом с ней проходит электрическая сеть.

Кроме воздействия импульсов от молний, следует учесть другие возможности проникновения помех внутрь дома. Резкое повышение напряжения может произойти в период подключения высоковольтных устройств на подстанции.

Импульс проникает через телевизионный кабель и попадает в телевизор, который скорей всего выйдет из строя. Такая же ситуация может возникнуть с интернет-кабелем, перенапряжение по которым приводит в негодность персональный компьютер. В сложных ситуациях может возникнуть очаг возгорания.

Чтобы воспрепятствовать этим негативным явлениям, следует все линии и оборудование подключить к заземляющему контуру, а во время молний полностью их обесточивать. Вручную это обеспечить практически невозможно, поэтому существует автоматическая защита низковольтных сетей.

Классификация УЗИП

Существует 3 класса разновидности устройств защиты от импульсных перенапряжений. Класс 1 обладает способностью пропустить через себя и выдержать всю энергию от молнии. Устанавливаются такие приборы в сельской местности с воздушными электрическими линиями. Кроме того, рекомендуется их монтаж в домах с громоотводами или зданиях, расположенных рядом с высокими объектами. В квартирах или административных помещениях такие устройства не устанавливаются.

Прибор 2 класса не применяется без первого устройства, так как он не способен выдержать мощность удара молнии. Его эффективность проявляется только при совместном применении.

Устройство 3 класса не используется без двух предыдущих приборов и устанавливается оно непосредственно перед потребителем. К такому типу относится сетевой фильтр или защита в блоках питания некоторых бытовых агрегатов.

Схемы подключения

Для защиты низковольтных сетей существует несколько схем подключения УЗИП. Идеальным вариантом считается комплексное применение устройств, так как удар молний абсолютно не прогнозируем.

Внешняя система

Внешний элемент защиты принимается из расчета, что по его компонентам возможно протекание максимального тока. Защитное устройство устанавливается с возможностью выдержать 100 кА. Чтобы негативный импульс не причинил много бед, его следует отвести по пути наименьшего сопротивления.

Для этого в электрическом щите устанавливается комплексный УЗИП, включающий в себя три степени защиты. Это устройство обладает большой мощностью и скоростью срабатывания, предохраняя оборудование общей мощностью до 20 кВт.

Непосредственно схема его подключения зависит от типа контура заземления.

Если это разделенное на два участка заземление, то в щитке монтируются две отдельные шины: нулевая, заземляющая. Между ними устанавливается перемычка, которая считается дополнительной защитой.

Установка защиты на ответвлении

Возможна установка УЗИП не в распределительном щитке, а непосредственно на ответвлении электрической сети. Например, где воздушная линия расходится на два соседних дома, а контур заземления не обладает молниеотводами.

Иногда устройство устанавливается перед входом в дом и применение УЗИП с 3 классом защиты нерационально. Монтируются приборы, обладающие 1 и 2 классом. Если расстояние от столба до дома превышает 60 м, то в электрическом щитке устанавливается дополнительное устройство со 2 классом защиты.

Отличается способ установки защиты, если дом подключен к подземному кабелю. Аварийная ситуация возникает от других внешних источников, поэтому длительность импульсных помех будет намного меньше. Для защиты достаточно будет установить в распределительный щит УЗИП 2 класса.

Кроме электрических линий, перенапряжение может возникнуть в телевизионных сетях. Часто высоковольтные помехи генерируются на антенных приемниках в домах, где нет молниеотводов. Возникновение кратковременного высокого напряжения в антенном кабеле приводит к выходу из строя селектора телевизора.

Устройство защиты представляет собой антенный переходник с заземляющим устройством. Существуют два типа приборов: для аналогового, спутникового или цифрового телевидения. Различить их можно по соответствующим надписям на корпусе: Radio/TV, SAT.

Сетевой кабель интернет также обладает защитным устройством, которое устанавливается при вводе провода в здание.

220v.guru

Опн для частного дома - Всё о электрике в доме

Защита от перенапряжения в частном доме

Перенапряжения в электросети становятся причиной выхода из строя электроники и дорогостоящей бытовой техники, приводят к пожарам. В многоквартирных домах, защита сети от скачков напряжения является обязанностью электроснабжающей и эксплуатирующей организаций. В частном доме, об этом должен позаботиться сам домовладелец. Вероятность возникновения сбоев возрастает при подключении по воздушной линии (в дальнейшем ВЛ). Перенапряжения бывают следующих типов:

  1. 380 В в сети 220 В
  2. Коммутационное импульсное
  3. Вследствие удара молнии

Напряжение 380 В в сети 220 В

Возникает при обрыве нулевого провода или замыкании его на фазу. Наиболее вероятны такие сбои при питании по ВЛ.

Для защиты от перенапряжений этого типа применяются реле напряжения (РН) и многофункциональные защитные устройства (УЗМ). Они контролируют входное напряжение, и отключаются при его значениях выше или ниже установленных (пониженное напряжение опасно для бытовой техники, имеющей электродвигатели).

В зависимости от модели защитного устройства, пороговые значения могут быть предустановленными производителем или устанавливаться вручную. Нижний порог срабатывания приборов регулируется в пределах 155-200 В, верхний – 240-280 В.

Импульсные перенапряжения

Причиной высоковольтных импульсов являются удары молнии вблизи линии электропередач или непосредственно в провод (прямой удар молнии – ПУМ), переключения на подстанциях, включение или отключение мощных электродвигателей. Кратковременные импульсы достигают нескольких десятков киловольт и представляют опасность для электроприборов и внутренней проводки дома. По устойчивости к перенапряжениям, низковольтное оборудование (до 1000 В), разделено на четыре категории:

  • 4 категория – до 6 кВ. Сюда входят счетчики, автоматические выключатели.
  • 3 категория – 4 кВ. В этой категории выключатели, розетки, электроплиты.
  • 2 категория – 2,5 кВ. Во вторую категорию входят бытовые приборы включаемые в розетки: обогреватели, ручной электроинструмент.
  • 1 категория – не более 1.5 кВ. Бытовая электроника, приборы содержащие микросхемы.

Чтобы гарантированно защитить имеющуюся в доме технику, надо понизить напряжение импульса до величины не более 1,5 кВ.

Устройства защиты от импульсных перенапряжений – УЗИП

Первоначально в качестве таких устройств использовались газовые разрядники, устанавливаемые последовательно, со ступенчатым понижением импульса. В настоящее время в УЗИП используются варисторы – элементы, сопротивление которых уменьшается при увеличении напряжения. При превышении порогового значения, варистор направляет высоковольтный импульс на заземление. При этом срабатывает защитный автомат, установленный перед УЗИП. Современные устройства защиты не требуют ступенчатой установки, так как одно комбинированное устройство, выполняет требования предъявляемые к нескольким категориям. Они маркируются как 1+2+3.

Требования к установке УЗИП

При защите дома от импульсных перенапряжений, следует учесть следующие требования:

  • устройства защиты от импульсных перенапряжений, могут быть установлены на абонентском ответвлении или непосредственно у потребителя;
  • установка УЗИП абонентом допускается только в том случае, если аналогичными устройствами защищены воздушная линия и трансформаторная подстанция;
  • обязательно наличие на вводе повторного заземления;
  • наличие у потребителя системы уравнивания потенциалов (СУП), также является обязательным.

Применение приборов защиты от перенапряжений не является обязательным, оно носит рекомендательный характер. Но ответственный домовладелец должен использовать имеющуюся возможность для обеспечения безопасности жилья.

Любое электротехническое оборудование создается для работы с определённой электрической энергией, зависящей от тока и напряжения в сети. Когда их величина становится больше запроектированной нормы, то возникает аварийный режим.

Предотвратить возможность его образования или ликвидировать разрушение электрооборудования призваны защиты. Они создаются под конкретные условия возникновения аварии.

Особенности защит домашней электропроводки от повышенного напряжения

Изоляция бытовой электрической сети рассчитывается на предельное значение напряжения чуть выше одного-полутора киловольт. Если оно возрастает больше, то через диэлектрический слой начинает проникать искровой разряд, который может перерасти в дугу, образующую пожар.

Чтобы предотвратить его развитие создают защиты, работающие по одному из двух принципов:

1. отключения электрической схемы дома или квартиры от повышенного напряжения;

2. отвода опасного потенциала перенапряжения от защищаемого участка за счет быстрого его перенаправления на контур земли.

При незначительном повышении напряжения в сети исправить положение призваны также стабилизаторы различных конструкций. Но, в большинстве своем они создаются для поддержания рабочих параметров электроснабжения в ограниченном диапазоне его регулирования на входе, а не как защитное устройство. Их технические возможности ограничены.

В домашней проводке напряжение может повыситься:

1. на относительно продолжительный срок, когда происходит отгорание нуля в трехфазной схеме и потенциал нейтрали смещается в зависимости от сопротивления случайно подключенных потребителей;

2. кратковременным импульсом.

С первым видом неисправности успешно справляется реле контроля напряжения. Оно постоянно занимается мониторингом входных параметров сети и при достижении ими уровня верхней уставки отключает схему от питания до момента устранения аварии.

Причинами появления кратковременно возникающих импульсов перенапряжения могут быть две ситуации:

1. одновременное отключение нескольких мощных потребителей на питающей линии, когда трансформаторная подстанция не успевает мгновенно стабилизировать систему;

2. ударе грозового разряда молнии в электрооборудование ЛЭП, подстанции или дома.

Второй вариант развития аварии представляют наибо́льшую опасность, чем во всех предыдущих случаях. Сила тока молнии достигает огромных величин. При усредненных расчетах ее принимают в 200 кА.

Она при ударе в молниеприемник и нормальной работе молниезащиты здания протекает по молниеотводу на контур заземления. В этот момент во всех рядом расположенных проводниках по закону индукции наводится ЭДС, величина которой измеряется киловольтами.

Она может появиться даже в отключенной от сети проводке и сжечь ее оборудование, включая дорогостоящие телевизоры, холодильники, компьютеры.

Молния может ударить и в питающую здание воздушную ЛЭП. В этой ситуации нормально работают разрядники линии, гася ее энергию на потенциал земли. Но полностью ликвидировать его они не способны.

Часть высоковольтного импульса по проводам подключенной схемы станет растекаться во все возможные стороны и придет на ввод жилого дома, а с него — ко всем подключенным приборам чтобы сжечь их наиболее слабые места: электродвигатели и электронные компоненты.

В итоге мы получили два варианта повреждения дорогостоящего бытового электрооборудования жилого здания при нормальном ликвидации штатными защитами последствий удара молнии в молниеприемник собственного здания или питающую ЛЭП. Напрашивается вывод: необходимо устанавливать для них автоматическую защиту от импульсных разрядов .

Виды ограничителей перенапряжения для домашней электропроводки

Ассортимент подобных защит создается для работы в разных условиях, отличается конструкцией, применяемыми материалами, технологией работы.

Принципы формирования элементной базы ОПН

При создании защит от перенапряжения учитываются технические возможности различных конструкторских решений. Для газонаполненных разрядников характерно то, что они после окончания прохождения импульса разряда поддерживают протекание дополнительного тока, близкого по величине к нагрузке короткого замыкания. Его называют сопровождающим током.

Разрядники, обеспечивающие ток сопровождения порядка 100÷400 ампер, сами могут стать источником пожара и не обеспечить защиту. Их нельзя устанавливать для защиты изоляции от пробоя между любой фазой, рабочим и защитным нулем. Модели других типов разрядников работают вполне надежно внутри сети 0,4 кВ.

В домашней проводке приоритет в защитах от перенапряжения получили варисторные устройства. При нормальных условиях эксплуатации электроустановки они создают очень маленькие токи утечек до нескольких миллиампер, а во время прохождения высоковольтного импульса напряжения максимально быстро переводятся в туннельный режим, когда способны пропускать до тысяч ампер.

Классы стойкости изоляции домашней электропроводки к импульсным перенапряжениям

Электрооборудование жилых зданий создается по четырем категориям, которые обозначаются римскими цифрами IV÷I и характеризуются предельной величиной допустимого перенапряжения в 6, 4, 2,5 и 1,5 киловольта. Под эти зоны и проектируются защиты от импульсных перенапряжений.

В технической литературе их принято называть «УЗИП». что расшифровывается как устройство защиты от импульсного перенапряжения. Производители электрооборудования в маркетинговых целях ввели более понятное для простого населения определение — ограничители. В интернете можно встретить и другие названия.

Поэтому, чтобы не запутаться в используемой терминологии, рекомендуется обращаться к техническим характеристикам устройств, а не только к их наименованию.

Основные параметры взаимосвязи категорий стойкости изоляции с зонами опасности здания и применением для них трех классов УЗИП поможет понять приведенный ниже рисунок.

Он демонстрирует, что на участке от трансформаторной подстанции по линии электропередач до вводного щита может прийти импульс в 6 киловольт. Его величину должен снизить ограничитель перенапряжения класса I в зоне 1 до четырех кВ.

В распределительном щитке зоны 2 работает ограничитель класса II, снижая напряжение до 2,5 кВ. Внутри жилой комнаты с зоной 3 УЗИП класса III обеспечивает итоговое снижение импульса до 1,5 киловольта.

Как видим, все три класса ограничителей работают комплексно, последовательно и поочередно снижают импульс перенапряжения до допустимой для изоляции электропроводки величины.

Если хоть один из составных элементов этой цепочки защит окажется неисправным, то откажет вся система и возникнет пробой изоляции на конечном приборе. Использовать их необходимо комплексно, а в процессе эксплуатации требуется проверять исправность технического состояния хотя бы внешним осмотром.

Подбор варисторов для разных классов ограничителей перенапряжений

Производители оборудования устройства УЗИП снабжают моделями варисторов, подобранных по вольт-амперным характеристикам. Их вид и рабочие пределы показаны на соответствующем графике.

Каждому классу защиты соответствует свое напряжение и ток открытия. Устанавливать их можно только на свое место.

Принципы формирования схем включения ограничителей перенапряжения

Для защиты линии электроснабжения квартиры могут использоваться различные принципы подключения УЗИП:

В первом случае выполняется продольный принцип защиты каждого провода от перенапряжений относительно контура земли, а во втором — поперечный между каждой парой проводов. На основе сбора статистических данных обработки неисправностей и их анализа выявлено, что возникающие противофазные импульсные перенапряжения создают бо́льшие повреждения и поэтому считаются самыми опасными.

Комбинированный способ позволяет объединять оба предшествующих метода.

Варианты схем подключения ограничителей перенапряжения для системы заземления TN-S

Схема с электронными УЗИП и разрядниками

В этой схеме УЗИП всех трех классов устраняют импульсы перенапряжений между фазами линии и рабочим нулем N по цепочкам «провод — провод». Функция снижения синфазных перенапряжений возложена на разрядники определённого класса за счет их подключения между рабочим и защитным нулем.

Этот способ позволяет гальванически разъединять PE и N между собой. Положение нейтрали трехфазной сети зависит от симметрии приложенных нагрузок по фазам. Она всегда имеет какой-то потенциал, который может быть от долей до нескольких десятков вольт.

Если в системе работают блоки питания с импульсной нагрузкой, то от них высокочастотные помехи могут передаваться по цепям уравнивания потенциалов и заземления через РЕ-проводник к чувствительным электронным приборам, мешать их работе.

Включение разрядников в этом случае уменьшает воздействие перечисленных факторов за счет лучшей гальванической развязки, чем у электронных ограничителей на варисторах.

Схемы с электронными УЗИП в классах защит I и II

В этой схеме зашита от импульсных напряжений в вводном и распределительном щитах выполняется только электронными ОПН.

Они устраняют все синфазные перенапряжения (любых проводов относительно контура земли).

В классе III работает предыдущая схема с электронным ОПН и разрядником, обеспечивая защиту (провод — провод) для оконечного потребителя.

Особенности использования различных моделей ОПН с учетом очередности работы каскадов

При эксплуатации ступеней защит от импульсного перенапряжения требуется их согласование, координация. Она осуществляется удалением ступеней по кабелю на расстояние более 10 метров.

Объясняется это требование тем, что при попадании в схему высоковольтного импульса с крутой формой волны за счет индуктивного сопротивления жил на них происходит падение напряжения. Оно сразу прикладывается к первому каскаду, вызывает его срабатывание. Если это требование не выполнять, то происходит шунтирование ступеней, когда защита работает неправильно.

По такому же принципу подключаются и последующие каскады защит.

Когда по конструктивным особенностям оборудования оно расположено близко, то в схему искусственно включают дополнительные разделительные дроссели импульсного типа, создающие цепочку задержки. Их индуктивность настраивают в пределах 6÷15 микрогенри в зависимости от типа используемого ввода электропитания в здание.

Вариант такого подключения при близком расположении вводного и распределительного щитов и удаленном монтаже оконечных потребителей показан на схеме.

Монтируя дросселя по такой системе следует учитывать их возможность надежно работать при создаваемых нагрузках, выдерживать их предельные значения.

В целях удобства обслуживания защиты от импульсного перенапряжения вместе с дроссельными устройствами могут быть помещены в отдельный защитный щиток, последовательно связывающий вводное устройство с ГРЩ дома.

Один из вариантов подобного исполнения для здания, выполненного по системе зазамления TN-C-S, показан на схеме ниже.

При таком монтаже можно все три класса ограничителей размещать в одном месте, что удобно при обслуживании. Для этого надо последовательно между ступенями защит смонтировать разделительные дроссели.

Конструктивно вводное устройство, ГРЩ и защитный щиток при таком способе монтажа схемы следует располагать как можно ближе.

Комбинированное расположение УЗИП и дросселей в одном месте — защитном щитке позволяет исключить попадание импульсов перенапряжения уже на оборудование ГРЩ, в котором выполняется разделение PEN проводника.

Подключение силовых кабелей к ГЗЩ имеет особенности: их необходимо прокладывать по кратчайшим путям, избегая совместного соприкосновения для участков защищенной схемы и без защит.

Современные производители постоянно модифицируют свои разработки УЗИП, используя встроенные импульсные разделительные дроссели. Они позволили не только располагать ступени защит на близком расстоянии по кабелю, но и объединять их в отдельном блоке.

Сейчас на рынке, с учетом реализации этого метода, появились конструкции УЗИП комбинированных классов I+II+III или I+II. Различный ассортимент моделей таких разрядников выпускает российская копания Hakel.

Они создаются под разные системы заземления здания, работают без установки дополнительных ступеней защит, но требуют выполнения определенных технических условий монтажа по длине подключаемого кабеля. В большинстве случаев он должен быть менее 5 метров.

Для нормальной работы электронного оборудования и защиты его от помех высокой частоты выпускаются различные фильтры, в которые включают УЗИП класса III. Они нуждаются в подключении к контуру заземления через РЕ проводник.

Особенности защиты сложной бытовой техники от импульсов перенапряжений

Жизнь современного человека диктует необходимость использования различных электронных устройств, обрабатывающих и передающих информацию. Они довольно чувствительны к высокочастотным помехам и импульсам, плохо работают или вообще отказывают при их появлении. Для устранения подобных сбоев используют индивидуальное заземление корпуса прибора, называемое функциональным.

Его электрически отделяют от защитного РЕ проводника. Однако, при ударе молнии в молниезащиту между заземлениями здания или линии и функциональным электронного прибора по контуру земли потечет ток разряда, вызванный приложенным высоковольтным импульсом перенапряжения.

Устранить его можно выравниванием потенциалов этих контуров за счет монтажа специального разрядника между ними, который будет выравнивать потенциалы контуров при авариях и обеспечивать гальваническую развязку в повседневных условиях эксплуатации.

На выпуске подобных разрядников также специализируется копания Hakel.

Дополнительное требование к защите ОПН от коротких замыканий

Все УЗИП включаются в схему для выравнивания потенциалов между различными ее частями в критических ситуациях. При этом необходимо учитывать, что они сами, несмотря на наличие встроенной тепловой защиты варисторов, могут быть повреждены и стать из-за этого источником короткого замыкания, перерастающего в пожар.

Защита на варисторах может отказать при длительном превышении номинального напряжения, связанного, например, с отгоранием нуля в трехфазной питающей сети. Разрядники же, в отличие от электроники, вообще не снабжаются тепловой защитой.

По этим причинам все конструкции УЗИП дополнительно защищаются предохранителями, работающими при перегрузках и коротких замыканиях. Они обладают специальной сложной конструкцией и сильно отличаются от моделей с простой плавкой вставкой.

Применение автоматических выключателей для таких ситуаций не всегда оправданно: они повреждаются от импульсов грозовых разрядов, когда происходит сваривание силовых контактов.

Используя схему защиты УЗИП предохранителями необходимо соблюдать принцип создания ее иерархии методами селективности.

Как видим, чтобы обеспечить надежную защиту домашней электропроводки от импульсных перенапряжений необходимо скрупулезно подойти к этому вопросу, проанализировать вероятность возникновения аварий в проектной схеме с учетом работающей системы заземления и под нее выбрать наиболее подходящие ограничители ОПН.

Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.

Информация и обучающие материалы для начинающих электриков.

Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.

Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+

Перепечатка материалов сайта запрещена.

Защита частного дома от перенапряжений — УЗИП кто-нибудь ставит?

Молния — природный электрический разряд. Чтобы защитится от этого явления, нужно создать два контура обороны. Если говорить о защите многоквартирных домов, то об этом думают госучреждения. Но вот защита частного дома — дело рук самих обладателей собственности.

К первому контуру относится внешняя защита. Для этого устанавливают молниеотвод. Тема первого контура заземления очень интересная, обширная и многогранная. Она требует тщательного исследования, поговорим о ней в другом посте. Предлагаю рассмотреть подробно второй контур – внутренняя защита, которая обеспечивается специальными устройствами – ограничителями перенапряжения (ОПН).

НАЗНАЧЕНИЕ ОГРАНИЧИТЕЛЕЙ ПЕРЕНАПРЯЖЕНИЯ

Как уже стало ясно, от прямого попадания в дом молнии защищает громоотвод. Но опасный разряд молнии может оказаться в нашем доме с неожиданной стороны. “Синий дракон” может проникнуть в сеть за сотни метров, а то и в километре от дома, и примчаться по воздушным проводам.

Проводник, который принял импульс, может привести к катастрофическим последствиям домашнюю аппаратуру, подключенную к электрической сети. За фатальный исход дорогого оборудования придется платить самим. Вот почему так активно рекомендуется во время грозы отключать от электросети все электроприборы. Как же защитится от суровой действительности? Для защиты устанавливают ограничители перенапряжения (ОПН).

ПРИНЦИП ДЕЙСТВИЯ ОГРАНИЧИТЕЛЕЙ ПЕРЕНАПРЯЖЕНИЯ

В обычном рабочем режиме ток, протекающий через варистор, носит емкостный характер и составляет незначительные доли миллиампер. При попадании молнии в сеть возникает импульсное перенапряжение, в итоге происходит шунтирование нагрузки и рассеивание импульса в виде тепловой энергии. Тепловой излишек сбрасывается в землю, через защитный проводник РЕ(заземление).

СФЕРА ПРИМЕНЕНИЯ ОГРАНИЧИТЕЛЕЙ ПЕРЕНАПРЯЖЕНИЯ

Применяются во вводно-распределительных устройствах, главных распределительных щитах, квартирных щитах. Устанавливаются на DIN-рейку в металлических распределительных щитовых. В обязательном порядке требуется наличие заземляющего проводника РЕ, для сброса импульсной тепловой энергии. ОПН устанавливается между фазой и землей или нулевым проводником и землей. Срабатывает ОПН за считанные доли секунд, гарантируя надежную защиту от повреждения электрооборудования.

ОПН надежно защищает от скачков напряжения, коммутационных перенапряжений, дифференциальных перенапряжений и высокочастотных помех. Для того чтобы был сброс импульсного перенапряжения, необходимо иметь наличие защитного заземления, такие системы как TN-C-S, TN-S, TT .

ОГРАНИЧИТЕЛИ ПЕРЕНАПРЯЖЕНИЯ ТРЕХФАЗНОГО И ОДНОФАЗНОГО ИСПОЛНЕНИЯ РАЗЛИЧНЫХ ПРОИЗВОДИТЕЛЕЙ.

ограничитель перинапряжений трехфазный

КЛАССИФИКАЦИЯ ОГРАНИЧИТЕЛЕЙ ПЕРЕНАПРЯЖЕНИЯ

  • Устанавливается на вводе здания.
  • Предназначен для защиты от атмосферных молний и коммутационных перенапряжений.
  • Защищают силовую распределительную сеть, оборудование главного распределительного щита и вводный электрический счетчик.
  • Устанавливается в водном щите квартиры или офиса.
  • Предназначен для защиты от наведенных атмосферных и коммутационных перенапряжений, проскочивших через ограничитель В.
  • Защищает внутреннею электропроводку квартиры, офиса, автоматику щитовой, квартирный электрический счетчик.
  • Устанавливают в квартирном щите, возможна установка непосредственно в оборудовании.
  • Предназначен для защиты от высокочастотных помех, прошедших через ограничители класса В и С.
  • Защищает электрическое оборудование, электрические приборы, переносные электрические устройства.

КАКИЕ ОГРАНИЧИТЕЛИ ПЕРЕНАПРЯЖЕНИЯ НУЖНО УСТАНАВЛИВАТЬ?

Как видно из классовых назначений ОПН, погашение импульсного перенапряжения происходит поэтапно. Недостаточно установить ОПН только класса D и на этом успокоится. Последняя ступень способна погасить остатки, которые проскочили через В и С.В одиночку он неспособен отвести сотни, а то и тысячи ампер. Какой вывод напрашивается из всего сказанного – необходимо устанавливать все три класса ограничителей перенапряжений В, С, D.

Источники: http://stroikadialog.ru/articles/communikacii/zashita_ot_perenapryazheniya_v_chastnom_dome, http://electrik.info/main/electrodom/1179-ogranichiteli-perenapryazheniya-vidy-i-shemy.html, http://imhodom.ru/node/14298

electricremont.ru

Как выбрать УЗИП для ВРУ в зависимости от системы заземления?

Практически все мои проекты имеют систему заземления TN-C-S. В вводно-распределительных устройствах для защиты от импульсных перенапряжений я устанавливаю УЗИП. Как выбрать УЗИП для ВРУ для систем заземления TN-C-S, TN-S и ТТ?

Что такое TN-C-S? TN-C-S – это значит, что PEN-проводник в ВРУ разделяется на N и PE. Расстояние между шинами N и PE минимальное, поэтому при выборе УЗИП для ВРУ систему заземления TN-C-S нужно рассматривать, как систему заземления TN-C.

В системе заземления ТТ проводники N и PE, можно сказать, не связаны между собой.

Система TN-C-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. Система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Кстати, если вы будете рассчитывать риски по молниезащите, то вам, скорее всего, придется установить УЗИП в вашем ВРУ.

Мне нравится торговая марка ИЕК (ЕКФ), однако, ОПС данных производителей мне не внушают доверия, т.к. у них 3 УЗИП на все случаи жизни.

В проектах я закладываю УЗИПы OBO BETTERMANN. При выборе УЗИП в первую очередь нужно руководствоваться рекомендациями производителя. Каждый вправе выбрать любого производителя. Мне нравится BETTERMAN.

Если откроете каталог BETTERMANN, то от увиденного у вас может голова кругом пойти Чтобы облегчить свою и вашу участь проектирования, я решил с помощью представителей OBO BETTERMANN составить таблицу выбора УЗИП в зависимости от системы заземления.

На выбор УЗИП влияет также тип ввода: воздушный либо кабельный.

Ввод:Система заземленияТип УЗИПАрт.№Страница каталога
Однофазный-КЛ  (L+PEN)TN-CV25-B+C 1-2805094418158
Трехфазный-КЛ (3L+PEN)TN-CV50-B+C 3-2805093627150
Однофазный-ВЛ (L+PEN)TN-C

MCD 50-B-OS

(V25-B+C 1-280)

5096852

(5094418)

137

(158)

Трехфазный-ВЛ (3L+PEN)TN-C

MCD 50-B 3-OS

5096835137
Однофазный-КЛ  (L+N/L+N+PE)TT/TN-S

V50-B+C 1+NPE

(V25-B+C 1+NPE)

5093653

(5094457)

148

(156)

Трехфазный-КЛ (3L+N/3L+N+PE)TT/TN-SV50-B+C 3+NPE5093654148
Однофазный-ВЛ (L+N/L+N+PE)TT/TN-S

V50-B+C 1+NPE

 

5093653

 

148

 
Трехфазный-ВЛ (3L+N/3L+N+PE)TT/TN-SMCD 50-B 3+1-OS5096836136

Нужно учитывать, что если от УЗИП до шины заземления расстояние менее 5 м по длине провода, то система заземления, как в нашем случае  TN-C-S, рассматривается как TN-C.

Применение вариантов в скобках допустимо, и они стоят дешевле, однако их эксплуатация будет связана с более частой заменой рабочего элемента.

Также вашему вниманию хочу представить схемы заземления систем TN-C-S, TN-S и ТТ с учетом УЗИП:

Схемы заземления систем TN-C-S, TN-S и ТТ с учетом УЗИП

Некоторые предложенные схемы встречаются крайне редко, но тем не менее нужно знать и понимать, как выбрать УЗИП для конкретной системы заземления. А если у вас возникли вопросы по выбору УЗИП, то всегда можно проконсультироваться у официальных представителей и производителей УЗИП.

Некоторые полезные статьи по теме:
Принципы выполнения защиты от перенапряжений.
Выбор защитного аппарата для УЗИП.

Советую почитать:

220blog.ru

Как защита от перенапряжения обеспечивает электрическую безопасность дачи и частного дома

Продолжаем рассматривать с позиции электрика-домашнего мастера случаи возникновения грозовых разрядов, которые могут воздействовать на отдельно стоящее здание, нанося вред жилищу.

Будем считать, что оно оборудовано защитой. Если же ее нет, то ситуация еще больше осложниться.

Принципы работы молниезащиты описаны в предыдущей статье, посвященной электрической безопасности дачи и частного дома, когда создается блокирование проникновения высоковольтных разрядов внутрь здания и отвод их на потенциал земли.

Однако, часть их преобразуется или индуктируется, способна проникать через различные токопроводящие элементы внутрь дома. Вот с воздействием этих импульсов мы и будем разбираться в этой статье.


Что такое УЗИП

Устройства защиты от импульсных перенапряжений кратко называют УЗИП или ОПС (ограничители перенапряжения сети). Причем под термином «перенапряжение» для жилого дома понимают превышение номинальной величины 220 либо 380 вольт более установленного норматива.


Устранять подобные неисправности призваны также реле контроля напряжения, но они созданы для работы в других условиях, когда возникают аварийные ситуации в электрической системе подвода питания с повышением напряжения до 400 вольт. Для ликвидации высоковольтных импульсов они не предназначены.

УЗИП монтируют в вводном электрощите здания и подключают между вводом электроэнергии и главной заземляющей шиной. При возникновении последействий разрядов молнии на входном оборудовании происходит пробой, открытие схемы УЗИП и отвод перенапряжения через ГЗШ на потенциал земли.

Категории УЗИП

По месту установки устройства импульсной защиты от повышенного напряжения делят на 3 класса: I (B), II (C), III (D).

Класс I (B)

Защита предохраняет от проникающих через молниезащиту высоковольтных разрядов при ударах молнии в дом или питающую линию электропередачи. Ее устанавливают на вводном электрическом щите здания.

Работа УЗИП при разряде молнии в молниеприемник

При ударе высоковольтного импульса в молниеприемник он проходит по молниеотводу к контуру заземления, разветвляясь на два потока в месте подключения РЕ шины:

  1. примерно 50% тока уходит на потенциал земли;
  2. столько же идет на питающую линию, разделяясь на два дополнительных маршрута (при пробое УЗИП) через PEN проводник и фазный провод — 25/25%.


Сила молнии редко превышает 100 кА, поэтому рабочий ток УЗИП на 25 кА считается достаточным.

Работа УЗИП при разряде молнии в ВЛ

На питающей ВЛ и трансформаторной подстанции уже стоят собственные разрядники. Они срабатывают при высоковольтном ударе и срезают часть импульса перенапряжения. На УЗИП вводного щита дома поступит уже пониженная мощность молнии и через него тоже пойдет ток импульса, но только срезанный.


Как и в предыдущем случае, уменьшенный импульс молнии разойдется на контур земли и PEN проводник.

Если ВЛ находится в плохом техническом состоянии, то ее разрядники не сработают, а весь ток молнии поступит на ввод дома и пройдет через УЗИП. В этой ситуации защита здания, рассчитанная напряжение на 6 кВ, не выдержит повышенный потенциал разряда и сгорит.

Чтобы исключить подобную ситуацию необходимо:

  • иметь четкое представление о техническом состоянии питающей ВЛ и ее защите;
  • при плохом качестве линии добиться от электроснабжающей организации установки надежных разрядников на ближайшей к дому опоре, которые будут выполнять защитную функцию.

Класс II (C)

Осуществляется защита схемы токораспределения системы электропроводки здания при возникновении коммутационных помех. Дополнительное назначение — вторая ступень защиты от ударов молнии.

Монтируется в распределительном щите дома.

Класс III (D)

Выполняется дополнительная защита подключенных потребителей от оставшихся импульсов напряжения с фильтрацией помех высокой частоты.

Устанавливают около потребителей электроэнергии.

Классификация электрооборудования по рабочему напряжению

Практическими экспериментами выявлено, что через установленную молниезащиту при ее пробое в электрическую схему здания вероятность проникновения импульсов разрядов более 6 киловольт составляет около 10%. Этот показатель взят за основу расчета и проектирования электроприборов, создания защит от высоковольтного перенапряжения, как наиболее вероятного.

Устройства защиты от импульсного перенапряжения бытовой электрической сети создаются для работы с этими группами напряжений.

Категория электроприборов №1

Изготавливаются с изоляцией, обеспечивающей защиту от импульсов напряжения, не превышающих 1,5 кВ. Устанавливаются внутри электрических приборов, работающих со сложной электронной схемой или полупроводниковыми элементами.

Категория электроприборов №2

Изоляция защищает от импульсов до 2,5 кВ. Применяется для бытовых электрических приборов, электрифицированного инструмента домашнего мастера: дрелей, перфораторов и подобных устройствах.

Категория электроприборов №3

Создаются с защитой изоляции от импульсов до 4 кВ. Она устанавливается на розетках и выключателях, электродвигателях, электрических плитах, электропроводке, внутри распределительных щитов.

Категория электроприборов №4

Изоляция выдерживает проникновение импульсов до 6 кВ. Ею снабжаются автоматические выключатели, разрядники, счетчики электроэнергии.

Поскольку электрические приборы ГРЩ своей изоляцией способны сами выдерживать импульсы напряжения до 6 кВ, то их защиту с помощью УЗИП не выполняют. А вот все остальные бытовые потребители нуждаются в защите — снижении возникающих перенапряжений до 1,5 кВ, как минимум. Эту задачу УЗИП и обеспечивает.

Алгоритмы работы УЗИП разных стандартов

Первоначальные конструкции устройств защит от импульсного перенапряжения создавались для поэтапного снижения уровня высоковольтных разрядов с 6 до 4, 2,5 и 1,5 кВ. Они делились на 3 ступени, когда первая уменьшала уровень с 6 до 4, а третья — с 2,5 до 1,5.

Техническое развитие не стоит на месте. Сейчас производители освоили выпуск универсальных конструкций, которые способны совмещать в едином корпусе различные возможности УЗИП разных классов:

  • I, II и III;
  • I и II;
  • II и III.

Если для эффективной работы защиты раньше требовалось между разными классами соблюдать дистанцию по монтажу УЗИП отличных моделей или размещать между ними дроссельные индуктивные сопротивления, то при использовании новых приборов эта необходимость отпадает.

При установке УЗИП в домашней сети необходимо:

Как выбрать УЗИП для частного дома

Последовательность действий домашнего мастера-электрика для правильного подбора устройств защиты от импульсного перенапряжения представлена картинкой.


Заостряем внимание на том, что установка УЗИП в доме бессмысленна и запрещена правилами при отсутствии:

  1. надежного заземляющего устройства дома:
  2. разрядников на питающей ВЛ и ТП.

Ко второму случаю следует отнести и плохое техническое состояние воздушной ЛЭП. Следует знать, что сейчас идет интенсивная замена открытых проводов ВЛ изолированными СИП (самонесущие изолированные провода). Такие линии называют ВЛИ.

Когда реконструкция ВЛИ выполнена на всем ее протяжении, а не на отдельных участках, прямой удар молнии в фазный провод практически нереален. Работает слой изоляции. Энергетики на подобных линиях усиленно следят за качеством разрядников, поддерживают их в рабочем состоянии.

Выбор схемы включения УЗИП для дома зависит от:

  • системы заземления здания TN-C-S либо TT;
  • местных условий жилища;
  • способов подключения к ВЛ;
  • наличия внешней молниезащиты.

Но, это материал очередной статьи, которая готовится к публикации. Подписывайтесь на рассылку, чтобы своевременно получить уведомление о ее выходе.

Для закрепления материала рекомендуем к просмотру видеоролик владельца Staaaarsky «Демонстрация работы УЗИП».

Более полную информацию предоставляет вебинар компании ABB «Устройства защиты от импульсных перенапряжений».

Возможно, у вас появились вопросы или желание прокомментировать статью. Воспользуйтесь подготовленной формой.

Сейчас самое благоприятное время поделиться прочитанным материалом с друзьями в соц сетях с помощью специальных кнопок.

Полезные товары

housediz.ru

УЗИП: особенности выбора и применения

Что такое УЗИП и для чего оно нужно?

Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений – УЗИП. Устройства защиты от импульсных перенапряжений – как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий.


Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

Как работает УЗИП?

УЗИП устраняет перенапряжения:

·         Несимметричный (синфазный) режим: фаза - земля и нейтраль – земля.

·         Симметричный (дифференциальный) режим: фаза - фаза или фаза – нейтраль.

В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. В симметричном режиме отводимая энергия направляется на другой активный проводник.


Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

По принципу действия УЗИП разделяются вентильные и искровые разрядники, нередко применяемые в сетях высокого напряжения, и ограничители перенапряжения с варисторами.

В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

Как выбрать УЗИП?

При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают три уровня защиты, каждая из которых рассчитана на определенный уровень импульсных токов и форму фронта волны. На вводе устанавливаются разрядники (УЗИП класса I), обеспечивающие молниезащиту. Следующее защитное устройство класса II подключается в распределительном щите дома. Оно должно снижать перенапряжения до уровня, безопасного для бытовых приборов и электросети. В непосредственной близости от оборудования, чувствительного к броскам в сети, можно подключить УЗИП класса III. Предпочтительнее использовать УЗИП одного вендора.

Для координации работы ступеней защиты устройства должны располагаться на определенном расстоянии друг от друга - более 10 метров по питающему кабелю. При меньших дистанциях требуется включение дросселя, возмещающего недостающие активно-индуктивные сопротивления проводов. Также рекомендуется защищать УЗИП с помощью плавких вставок.


При каскадной защите требуется минимальный интервал 10 м между устройствами защиты.

Классы УЗИП не являются унифицированными и зависят от конкретной страны. Каждая строительная организация может ссылаться на один из трех классов испытаний. Европейский стандарт EN 61643-11 включает определенные требования по стандарту МЭК 61643-1. На основе МЭК 61643 создан российский ГОСТ Р 51992.


Оценка значимости защищаемого оборудования.

Необходимость защиты, экономические преимущества устройств защиты и соответствующие устройства защиты должны определяться с учетом факторов риска: соответствующие нормы прописаны в МЭК 62305-2. Критерии проектирования, монтажа и техобслуживания учитываются для трех отдельных групп. Первая группа включает меры защиты для минимизации риска ущерба имуществу и вреда здоровью людей (МЭК 62305-3), вторая группа - меры защиты для минимизации отказов электрических и электронных систем (МЭК 62305-4), третья группа - для минимизации рисков ущерба имуществу и отказов инженерных систем (МЭК 62305-5).


Оценка риска воздействия на объект.

Нормы установки молниезащитных разрядников прописаны в международном стандарте МЭК 61643-12 (Принципы выбора и применения). Несколько полезных разделов содержит международный стандарт МЭК 60364 (Электроустановки зданий):

·         МЭК 60364-4-443 (Защита для обеспечения безопасности). Если установка запитывается от воздушной линии или включает в себя такую линию, должно предусматриваться устройство защиты от атмосферных перенапряжений, если грозовой уровень для рассматриваемого объекта соответствует классу внешних воздействий AQ 1 (более 25 дней с грозами в год).

·         МЭК 60364-4-443-4 (Выбор оборудования установки). Этот раздел помогает в выборе уровня защиты для разрядника в зависимости от защищаемых нагрузок. Номинальное остаточное напряжение устройств защиты не должно превышать выдерживаемого импульсного напряжения категории II.


Выбор оборудования по МЭК 60364.

В качестве первой ступени лучше применять УЗИП на базе разрядников без съемного модуля. Вряд ли вам удастся найти варисторное устройство с номинальным током Iimp более 20 кА. Шкаф, в котором установлено УЗИП такого типа, должен быть из несгораемого материала.

Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up. Он не должен превышать стойкость электрооборудования к импульсному напряжению. Для УЗИП I-го класса Up не превышает 4 кВ. Уровень напряжения защиты Up для устройств II-го класса не должен превышать 2,5 кВ, для III-го класса - 1,5 кВ. Это тот уровень, который должна выдерживать техника.

Ещё несколько важных параметров, которые необходимо знать для выбора УЗИП. Максимальное длительное рабочее напряжение Uc – действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения в электросети.


Минимальное требуемое значение Uc для УЗИП в зависимости от системы заземления сети.

Номинальный ток нагрузки IL – максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке. Этот параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. УЗИП обычно подключаются параллельно цепи, поэтому данный параметр у них не указывается.



Выбор защитной аппаратуры: чувствительное оборудование и оборудование здания.

Выбор защитной аппаратуры: бытовая техника и электроника.


Выбор защитной аппаратуры: производственное оборудование.


Выбор защитной аппаратуры: ответственное оборудование.

Сегодня многие крупные потребители электрической энергии с успехом используют на территории России высококачественные элементы УЗИП. Положительные результаты испытаний и эффективность применения УЗИП в России позволяют говорить о том, что их использование в российских условиях выгодно и удобно. Остается подобрать нужную модель устройства и установить ее на объекте.

russvet.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *