Закон Ампера
Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.
Формулировка закона: сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником.
Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:
Направление силы Ампера определяется по правилу левой руки.
Правило левой руки : если расположить левую руку так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре пальца были вытянуты по направлению тока в проводнике, то отставленный на 90° большой палец, укажет направление силы Ампера.
Яркой иллюстрацией закона Ампера является взаимодействие двух проводников при протекании в них тока. Причем от направления тока в них зависит, будут ли они притягиваться либо же отталкиваться.
При протекании тока в одном направлении проводники притягиваются, а при противоположном отталкиваются. Величина силы взаимодействия между токами определяется по формуле:
Где µ0 = 4π*10-7 Гн/м – магнитная постоянная, r – расстояние между проводниками. Если принять длину проводников равной единице, тогда формула примет вид
В международной системе единиц, ампер определяют как силу неизменяющегося тока, которая при протекании через два параллельных проводника бесконечной длины и малой площади поперечного сечения, расстояние между которыми в вакууме 1 м, вызвала бы на каждом участке в 1 м силу взаимодействия равную 2*10-7 Н
Рекомендуем к прочтению - закон электромагнитной индукции
electroandi.ru
Закон Ампера
Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.
Ампер первым установил, что проводники, по которым течет электрический ток, взаимодействуют механически (притягиваются или отталкиваются).
Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Ее обозначения: \( \overrightarrow{F} \),\( \overrightarrow{F}_{A} \). Сила (\( \overrightarrow{F} \)), которая действует на прямолинейный проводник с током (I), всегда перпендикулярна проводнику и направлению вектора магнитной индукции (\( \overrightarrow{B} \)). В том случае, если прямолинейный проводник расположен параллельно вдоль направления линий магнитного поля, поле не действует.
Конкретное направление силы Ампера можно найти с помощью правила левой руки. Левую руку надо расположить так, чтобы линии поля входили в ладонь, четыре пальца были направлены по току, тогда отогнутый на 90 градусов большой палец укажет направление силы Ампера.
Еще Ампер установил, что два параллельных проводника с током притягиваются, если токи имеют одинаковые направления и отталкиваются, если токи текут в противоположные стороны. Это просто объяснить, если представить, что один проводник создает магнитное поле, а другой проводник в него помещен и это поле действует на него. Можно использовать правило левой руки и выяснить, как направлена сила.
Закон Ампера
Сила Ампера – сила, действующая на проводник тока, находящийся в магнитном поле и равная произведению силы тока в проводнике, модуля вектора индукции магнитного поля, длины проводника и синуса угла между вектором магнитного поля и направлением тока в проводнике.
Для прямолинейного проводника сила Ампера имеет вид:
\[ \large{\overrightarrow{F}_{A}} = I \cdot \overrightarrow{B} \cdot \overrightarrow{l} \cdot sin(α) \]
где: \( I \) -- сила тока, которая течет в проводнике, \( \overrightarrow{B} \) -- вектор индукции магнитного поля, в которое проводник помещен, \( \overrightarrow{l} \) -- длина проводника в поле, направление задано направлением тока, \( \alpha \) -- угол между векторами \( \overrightarrow{l\ }и\ \overrightarrow{B} \).
Этой формулой можно пользоваться:
- если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;
- если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).
Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:
\[ \large{d\overrightarrow{F}_{A}} = I \cdot \overrightarrow{B} \cdot d\overrightarrow{l} \cdot sin(α) \]
Значение закона Ампера
На основании закона Ампера устанавливают единицы силы тока в системах СИ и СГСМ. Так как ампер равен силе постоянного тока, который при течении по двум параллельным бесконечно длинным прямолинейным проводникам бесконечно малого кругового сечения, находящихся на расстоянии 1м друг от друга в вакууме вызывает силу взаимодействия этих проводников равную \( 2\cdot {10}^{-7}Н \) на каждый метр длины.
Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой \( 2\cdot {10}^{-7} \) Ньютона.
Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.
В вашем браузере отключен Javascript.Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Источник
Поделитесь с другими:
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
calcsbox.com
Формула силы. Сила - формула (физика)
Слово «сила» настолько всеобъемлюще, что дать ему четкое понятие – задача практически невыполнимая. Разнообразие от силы мышц до силы разума не охватывает весь спектр вложенных в него понятий. Сила, рассмотренная как физическая величина, имеет четко определенное значение и определение. Формула силы задает математическую модель: зависимость силы от основных параметров.
История исследования сил включает определение зависимости от параметров и экспериментальное доказательство зависимости.
Сила в физике
Сила – мера взаимодействия тел. Взаимное действие тел друг на друга полностью описывает процессы, связанные с изменением скорости или деформацией тел.
Как физическая величина сила имеет единицу измерения (в системе СИ – Ньютон) и прибор для ее измерения – динамометр. Принцип действия силомера основан на сравнении силы, действующей на тело, с силой упругости пружины динамометра.
За силу в 1 ньютон принята сила, под действием которой тело массой 1 кг изменяет свою скорость на 1 м за 1 секунду.
Сила как векторная величина определяется:
- направлением действия;
- точкой приложения;
- модулем, абсолютной величиной.
Описывая взаимодействие, обязательно указывают эти параметры.
Виды природных взаимодействий: гравитационные, электромагнитные, сильные, слабые. Гравитационные силы (сила всемирного тяготения с ее разновидностью – силой тяжести) существуют благодаря влиянию гравитационных полей, окружающих любое тело, имеющее массу. Исследование полей гравитации не закончено до сих пор. Найти источник поля пока не представляется возможным.
Больший ряд сил возникает вследствие электромагнитного взаимодействия атомов, из которых состоит вещество.
Сила давления
При взаимодействии тела с Землей оно оказывает давление на поверхность. Сила давления, формула которой имеет вид: P = mg, определяется массой тела (m). Ускорение свободного падения (g) имеет различные значения на разных широтах Земли.
Сила вертикального давления равна по модулю и противоположна по направлению силе упругости, возникающей в опоре. Формула силы при этом меняется в зависимости от движения тела.
Изменение веса тела
Действие тела на опору вследствие взаимодействия с Землей чаще именуют весом тела. Интересно, что величина веса тела зависит от ускорения движения в вертикальном направлении. В том случае, когда направление ускорения противоположно ускорению свободного падения, наблюдается увеличение веса. Если ускорение тела совпадает с направлением свободного падения, то вес тела уменьшается. К примеру, находясь в поднимающемся лифте, в начале подъема человек чувствует увеличение веса некоторое время. Утверждать, что его масса меняется, не приходится. При этом разделяем понятия «вес тела» и его «масса».
Сила упругости
При изменении формы тела (его деформации) появляется сила, которая стремится вернуть телу его первоначальную форму. Этой силе дали название "сила упругости". Возникает она вследствие электрического взаимодействия частиц, из которых состоит тело.
Рассмотрим простейшую деформацию: растяжение и сжатие. Растяжение сопровождается увеличением линейных размеров тел, сжатие – их уменьшением. Величину, характеризующую эти процессы, называют удлинением тела. Обозначим ее "x". Формула силы упругости напрямую связана с удлинением. Каждое тело, подвергающееся деформации, имеет собственные геометрические и физические параметры. Зависимость упругого сопротивления деформации от свойств тела и материала, из которого оно изготовлено, определяется коэффициентом упругости, назовем его жесткостью (k).
Математическая модель упругого взаимодействия описывается законом Гука.
Сила, возникающая при деформации тела, направлена против направления смещения отдельных частей тела, прямо пропорциональна его удлинению:
- Fy = -kx (в векторной записи).
Знак «-» говорит о противоположности направления деформации и силы.
В скалярной форме отрицательный знак отсутствует. Сила упругости, формула которой имеет следующий вид Fy = kx, используется только при упругих деформациях.
Взаимодействие магнитного поля с током
Влияние магнитного поля на постоянный ток описывается законом Ампера. При этом сила, с которой магнитное поле действует на проводник с током, помещенный в него, называется силой Ампера.
Взаимодействие магнитного поля с движущимся электрическим зарядом вызывает силовое проявление. Сила Ампера, формула которой имеет вид F = IBlsinα, зависит от магнитной индукции поля (В), длины активной части проводника (l), силы тока (I) в проводнике и угла между направлением тока и магнитной индукцией.
Благодаря последней зависимости можно утверждать, что вектор действия магнитного поля может измениться при повороте проводника или изменении направления тока. Правило левой руки позволяет установить направление действия. Если левую руку расположить таким образом, чтобы вектор магнитной индукции входил в ладонь, четыре пальца были направлены по току в проводнике, то отогнутый на 90
Применение этому воздействию человечеством найдено, к примеру, в электродвигателях. Вращение ротора вызывается магнитным полем, созданным мощным электромагнитом. Формула силы позволяет судить о возможности изменения мощности двигателя. С увеличением силы тока или величины поля вращательный момент возрастает, что приводит к увеличению мощности двигателя.
Траектории частиц
Взаимодействие магнитного поля с зарядом широко используется в масс-спектрографах при исследовании элементарных частиц.
Действие поля при этом вызывает появление силы, названной силой Лоренца. При попадании в магнитное поле движущейся с некоторой скоростью заряженной частицы сила Лоренца, формула которой имеет вид F = vBqsinα, вызывает движение частицы по окружности.
В этой математической модели v – модуль скорости частицы, электрический заряд которой – q, В – магнитная индукция поля, α – угол между направлениями скорости и магнитной индукции.
Частица движется по окружности (либо дуге окружности), так как сила и скорость направлены под углом 90° друг к другу. Изменение направления линейной скорости вызывает появление ускорения.
Правило левой руки, рассмотренное выше, имеет место и при изучении силы Лоренца: если левую руку расположить таким образом, чтобы вектор магнитной индукции входил в ладонь, четыре пальца, вытянутых в линию, были направлены по скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление действия силы.
Проблемы плазмы
Взаимодействие магнитного поля и вещества используется в циклотронах. Проблемы, связанные с лабораторным изучением плазмы, не позволяют содержать ее в замкнутых сосудах. Высоко ионизированный газ может существовать только при высоких температурах. Удержать плазму в одном месте пространства можно посредством магнитных полей, закручивая газ в виде кольца. Управляемые термоядерные реакции можно изучать, также закручивая высокотемпературную плазму в шнур при помощи магнитных полей.
Пример действия магнитного поля в естественных условиях на ионизированный газ – Полярное сияние. Это величественное зрелище наблюдается за полярным кругом на высоте 100 км над поверхностью земли. Загадочное красочное свечение газа пояснить смогли лишь в ХХ веке. Магнитное поле земли вблизи полюсов не может препятствовать проникновению солнечного ветра в атмосферу. Наиболее активное излучение, направленное вдоль линий магнитной индукции, вызывает ионизацию атмосферы.
Явления, связанные с движением заряда
Исторически сложилось так, что основной величиной, характеризующей протекание тока в проводнике, называют силу тока. Интересно, что это понятие ничего общего с силой в физике не имеет. Сила тока, формула которой включает заряд, протекающий за единицу времени через поперечное сечение проводника, имеет вид:
- I = q/t, где t – время протекания заряда q.
Фактически, сила тока – величина заряда. Единицей ее измерения является Ампер (А), в отличие от Н.
Определение работы силы
Силовое воздействие на вещество сопровождается совершением работы. Работа силы – физическая величина, численно равная произведению силы на перемещение, пройденное под ее действием, и косинус угла между направлениями силы и перемещения.
Искомая работа силы, формула которой имеет вид A = FScosα, включает величину силы.
Действие тела сопровождается изменением скорости тела или деформацией, что говорит об одновременных изменениях энергии. Работа силы напрямую зависит от величины.
fb.ru
Сила Ампера | Virtual Laboratory Wiki
Сила $ d\vec F $, с которой магнитное поле действует на элемент $ d\vec l $ проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока $ I $ в проводнике и векторному произведению элемента длины $ d\vec l $ проводника на магнитную индукцию $ \vec B $:
- $ d\vec F = I[d\vec l, \vec B] $.
Сила Ампера/рамка
Направление силы $ d\vec F $ определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки.
Модуль силы Ампера можно найти по формуле:
- $ dF = I B dl \sin\alpha\, $,
где $ \alpha $ — угол между векторами магнитной индукции и тока.
Сила $ dF $ максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции ($ \alpha = 90^\circ, \sin\alpha = 1 $):
- $ dF_{max} = IBdl\, $.
Два параллельных проводника Править
Файл:AtractionTwoWires.svgНаиболее известным примером, иллюстрирующим силу Ампера, является следующая задача. В вакууме на расстоянии $ r $ друг от друга расположены два бесконечных параллельных проводника, в которых в одном направлении текут токи $ I_1 $ и $ I_2 $. Требуется найти силу, действующую на единицу длины проводника.
Бесконечный проводник с током $ I_1 $ в точке на расстоянии $ r $ создаёт магнитное поле с индукцией:
- $ B_1(r) = \frac{\mu_0}{4\pi}\frac{2I_1}{r} $ (по закону Био — Савара — Лапласа).
Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:
- $ d\vec F_{1-2} = I_2[d\vec l, \vec B_1(r)] $
По правилу буравчика, $ d\vec F_{1-2} $ направлена в сторону первого проводника (аналогично и для $ d\vec F_{2-1} $, а значит, проводники притягиваются).
Модуль данной силы ($ r $ — расстояние между проводниками):
- $ dF_{1-2} = \frac{\mu_0}{4\pi}\frac{2 I_1 I_2}{r} dl $
Интегрируем, учитывая только проводник единичной длины (пределы $ l $ от 0 до 1):
- $ F_{1-2} = \frac{\mu_0}{4\pi}\frac{2 I_1 I_2}{r} $
Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Сила Ампера. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .
ru.vlab.wikia.com
Сила Ампера. Правило левой руки | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко
Магнитное поле действует на проводник с током. Силу, которая возникает при этом, называют силой Ампера.
Сила Ампера действует на проводник с током в магнитном поле.
Исследуем, от чего зависит модуль и направление данной силы. С этой целью используем установку, в которой прямолинейный проводник подвешен на тонких проволочках в магнитном поле постоянного магнита (рис. 6.16). Гибкие проволочки, присоединенные к концам проводника, позволяют включать его в электрическую цепь, сила тока в которой регулируется с помощью реостата и измеряется амперметром.
Легкая, но жесткая тяга соединяет проводник с чувствительным измерителем силы.
Замкнув электрическую цепь, в которую входит исследуемый проводник, увидим, что он отклонится от положения равновесия, а измеритель покажет определенное значение силы. Увеличим силу тока в проводнике в 2 раза и увидим, что сила, действующая на проводник, также увеличится в 2 раза. Любые другие изменения силы тока в проводнике вызовут соответствующие изменения силы, которая действует на проводник. Сопоставление полученных результатов позволяет сделать вывод, что сила F, действующая в магнитном поле на проводник с током, пропорциональна силе тока I в нем:
F ~ I.
Сила Ампера пропорциональна силе тока в проводнике.
Рис. 6.16. Установка для измерения силы Ампера, действующей на прямой проводник с током в магнитном поле |
Расположим еще один магнит рядом с первым. Длина той части проводника, которая находится в магнитном поле, увеличится приблизительно в 2 раза. Значение силы, действующей на проводник, также увеличится приблизительно в два раза. Таким образом, сила F, действующая на проводник с током в магнитном поле, пропорциональна длине части проводника Δl, которая находится в магнитном поле:
F ~ Δl.
Сила Ампера пропорциональна длине активной части проводника.
Сила увеличится также тогда, когда применим другой, более «сильный» магнит с большей магнитной индукцией. Это позволяет сделать вывод о зависимости силы F от магнитной индукции поля B:
F ~ B. Материал с сайта http://worldofschool.ru
Рис. 6.17. С помощью левой руки можно определить направление силы Ампера |
Максимальной сила будет тогда, когда между магнитной индукцией и проводником угол α = 90°. Если же этот угол равен нулю, то есть магнитная индукция будет параллельной проводнику, то сила будет равна нулю. Отсюда нетрудно сделать вывод о зависимости силы Ампера от угла между магнитной индукцией и проводником.
Окончательно формула для расчета силы Ампера будет иметь вид
FА = BIΔl • sin α.
Направление силы Ампера определяется по правилу левой руки (рис. 6.17).
Правило левой руки. Если левую руку разместить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца показывали направление тока, то отставленный большой палец покажет направление силы, действующей на проводник с током в магнитном поле.
На этой странице материал по темам:Правило левой руки для измерения силы ампера
Задачи по правилу левой руки для силы ампера
От каких причин зависит сила ампера
Правило левой руки для определения силы ампера
Сила ампера формула
Какое явление описывает сила Ампера?
Какой может быть установка для исследования силы Ампера?
От каких величин зависит сила Ампера?
Как определяется направление силы Ампера?
worldofschool.ru
Сила Ампера Википедия
Зако́н Ампе́ра — закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила оказывается линейно зависимой как от тока, так и от магнитной индукции B{\displaystyle B}. Выражение для силы dF→{\displaystyle d{\vec {F}}}, с которой магнитное поле действует на элемент объёма dV{\displaystyle dV} проводника с током плотности j→{\displaystyle {\vec {j}}}, находящегося в магнитном поле с индукцией B→{\displaystyle {\vec {B}}}, в Международной системе единиц (СИ) имеет вид:
- dF→=j→×B→dV.{\displaystyle d{\vec {F}}={\vec {j}}\times {\vec {B}}dV.}
Если ток течёт по тонкому проводнику, то j→dV=Idl→{\displaystyle {\vec {j}}dV=Id{\vec {l}}}, где dl→{\displaystyle d{\vec {l}}} — «элемент длины» проводника — вектор, по модулю равный dl{\displaystyle dl} и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:
Направление силы dF→{\displaystyle d{\vec {F}}} определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки.
Модуль силы Ампера можно найти по формуле:
- dF=IBdlsinα,{\displaystyle dF=IBdl\sin \alpha ,}
где α{\displaystyle \alpha } — угол между вектором магнитной индукции и направлением, вдоль которого течёт ток.
Сила F{\displaystyle F} максимальна, когда проводник с током расположен перпендикулярно линиям магнитной индукции (α=90∘,sinα=1{\displaystyle \alpha =90^{\circ },\sin \alpha =1}):
- F=BLI{\displaystyle F=BLI}, где L{\displaystyle L} — длина проводника.
Два параллельных проводника
Наиболее известным примером, иллюстрирующим силу Ампера, является следующая задача. В вакууме на расстоянии r{\displaystyle r} друг от друга расположены два бесконечных параллельных проводника, в которых в одном направлении текут токи I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}}. Требуется найти силу, действующую на единицу длины проводника.
В соответствии с законом Био — Савара — Лапласа бесконечный проводник с током I1{\displaystyle I_{1}} в точке на расстоянии r{\displaystyle r} создаёт магнитное поле с индукцией
- B1(r)=μ04π2I1r,{\displaystyle B_{1}(r)={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}}{r}},}
где μ0{\displaystyle \mu _{0}} — магнитная постоянная.
Теперь по закону Ампера найдём силу, с которой первый проводник действует на второй:
- dF→1−2=I2dl→×B→1(r).{\displaystyle d{\vec {F}}_{1-2}=I_{2}d{\vec {l}}\times {\vec {B}}_{1}(r).}
По правилу буравчика, dF→1−2{\displaystyle d{\vec {F}}_{1-2}} направлена в сторону первого проводника (аналогично и для dF→2−1{\displaystyle d{\vec {F}}_{2-1}}, а значит, проводники притягиваются).
Модуль данной силы (r{\displaystyle r} — расстояние между проводниками):
- dF1−2=μ04π2I1I2rdl.{\displaystyle dF_{1-2}={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{r}}dl.}
Интегрируем, учитывая только проводник единичной длины (пределы l{\displaystyle l} от 0 до 1):
- F1−2=μ04π2I1I2r.{\displaystyle F_{1-2}={\frac {\mu _{0}}{4\pi }}{\frac {2I_{1}I_{2}}{r}}.}
Полученная формула используется в СИ для установления численного значения магнитной постоянной μ0{\displaystyle \mu _{0}}. Действительно, ампер, являющийся одной из основных единиц СИ, определяется в ней как «сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2⋅10−7ньютона»[1].
Таким образом, из полученной формулы и определения ампера следует, что магнитная постоянная μ0{\displaystyle \mu _{0}} равна 4π×10−7{\displaystyle 4\pi \times 10^{-7}} Н/А² или, что то же самое, 4π×10−7{\displaystyle 4\pi \times 10^{-7}} Гн/ м точно.
Проявления
- Электродинамическая деформация шин (токопроводов) трёхфазного переменного тока на подстанциях при воздействии токов короткого замыкания.
- Раздвигание токопроводов рельсотронов при выстреле.
Применение
- Любые узлы в электротехнике, где под действием электромагнитного поля происходит движение каких-либо элементов, используют закон Ампера. Самый широко распространённый и используемый чуть ли не во всех технических конструкциях агрегат, в основе своей работы использующий закон Ампера - это электродвигатель, либо, что конструктивно почти то же самое, генератор.
Именно под действием силы Ампера происходит вращение ротора, поскольку на его обмотку влияет магнитное поле статора, приводя в движение. Любые транспортные средства на электротяге для приведения во вращение валов, на которых находятся колёса, используют силу Ампера (трамваи, электрокары, электропоезда и др). Также магнитное поле приводит в движение механизмы электрозапоров (электродвери, раздвигающиеся ворота, двери лифта). Другими словами, любые устройства, которые работают на электричестве и имеют движущиеся узлы, основаны на эксплуатации закона Ампера.
- Также он находит применение во многих других видах электротехники, например, в громкоговорителе. В громкоговорителе или динамике для возбуждения мембраны, которая формирует звуковые колебания используется постоянный магнит. На него под действием электромагнитного поля, создаваемого расположенным рядом проводником с током, действует сила Ампера, которая изменяется в соответствии с нужной звуковой частотой.
- Принцип работы электромеханических машин (движение части обмотки ротора относительно части обмотки статора).
- Электродинамическое сжатие плазмы, например, в токамаках, установках Z-пинч.
- Электродинамический метод прессования.
История
В 1820 году Ханс Кристиан Эрстед открыл, что провод, по которому идёт ток, создает магнитное поле и заставляет отклоняться стрелку компаса. Он заметил, что магнитное поле перпендикулярно току, а не параллельно ему, как можно было бы ожидать. Ампер, вдохновлённый демонстрацией опыта Эрстеда, обнаружил, что два параллельных проводника, по которым течёт ток, притягиваются или отталкиваются в зависимости от того, в одну ли или разные стороны по ним идёт ток. Таким образом ток не только производит магнитное поле, но магнитное поле действует на ток. Уже через неделю после объявления Эрстедом о своём опыте, Ампер предложил объяснение: проводник действует на магнит, потому что в магните течёт ток по множеству маленьких замкнутых траекторий[2][3].
Сила Ампера и третий закон Ньютона
Пусть есть два тонких проводника с токами I1{\displaystyle I_{1}} и I2{\displaystyle I_{2}} , заданные кривыми C1{\displaystyle C_{1}} и C2{\displaystyle C_{2}}. Сами кривые могут быть заданы радиус-векторами r1{\displaystyle \mathbf {r} _{1}} и r2{\displaystyle \mathbf {r} _{2}}. Найдем силу, действующую непосредственно на токовый элемент одного провода со стороны токового элемента другого провода. По закону Био — Савара — Лапласа токовый элемент I1dr1{\displaystyle I_{1}\mathrm {d} \mathbf {r} _{1}}, находящийся в точке r1{\displaystyle \mathbf {r} _{1}}, создает в точке r2{\displaystyle \mathbf {r} _{2}} элементарное магнитное поле dB1(r2)=μ04πI1[dr1,r2−r1]|r2−r1|3{\displaystyle \mathrm {d} \mathbf {B} _{1}(\mathbf {r} _{2})={\mu _{0} \over 4\pi }{\frac {I_{1}[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}}. По закону Ампера сила, действующая со стороны поля dB1(r2){\displaystyle \mathrm {d} \mathbf {B} _{1}(\mathbf {r} _{2})} на токовый элемент I2dr2{\displaystyle I_{2}\mathrm {d} \mathbf {r} _{2}}, находящийся в точке r2{\displaystyle \mathbf {r} _{2}}, равна
- d2F12=I2dr2×dB1(r2)=μ0I1I24π[dr2,[dr1,r2−r1]]|r2−r1|3.{\displaystyle \mathrm {d} ^{2}\mathbf {F} _{12}=I_{2}\mathrm {d} \mathbf {r} _{2}\times \mathrm {d} \mathbf {B} _{1}(\mathbf {r} _{2})={\mu _{0}I_{1}I_{2} \over 4\pi }{\frac {[\mathrm {d} \mathbf {r} _{2},[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}.}
Токовый элемент I2dr2{\displaystyle I_{2}\mathrm {d} \mathbf {r} _{2}}, находящийся в точке r2{\displaystyle \mathbf {r} _{2}}, создает в точке r1{\displaystyle \mathbf {r} _{1}} элементарное магнитное поле
- dB2(r1)=μ04πI2[dr2,r1−r2]|r2−r1|3{\displaystyle \mathrm {d} \mathbf {B} _{2}(\mathbf {r} _{1})={\mu _{0} \over 4\pi }{\frac {I_{2}[\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{1}-\mathbf {r} _{2}]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}}.
Сила Ампера, действующая со стороны поля dB2(r1){\displaystyle \mathrm {d} \mathbf {B} _{2}(\mathbf {r} _{1})} на токовый элемент I1dr1{\displaystyle I_{1}\mathrm {d} \mathbf {r} _{1}}, находящийся в точке r1{\displaystyle \mathbf {r} _{1}}, равна
- d2F21=I1dr1×dB2(r1)=μ0I1I24π[dr1,[dr2,r1−r2]]|r2−r1|3.{\displaystyle \mathrm {d} ^{2}\mathbf {F} _{21}=I_{1}\mathrm {d} \mathbf {r} _{1}\times \mathrm {d} \mathbf {B} _{2}(\mathbf {r} _{1})={\mu _{0}I_{1}I_{2} \over 4\pi }{\frac {[\mathrm {d} \mathbf {r} _{1},[\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{1}-\mathbf {r} _{2}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}.}
В общем случае для произвольных r1{\displaystyle \mathbf {r} _{1}} и r2{\displaystyle \mathbf {r} _{2}} силы d2F12{\displaystyle \mathrm {d} ^{2}\mathbf {F} _{12}} и d2F21{\displaystyle \mathrm {d} ^{2}\mathbf {F} _{21}} даже не коллинеарны, а значит, не подчиняются третьему закону Ньютона: d2F12+d2F21≠0{\displaystyle \mathrm {d} ^{2}\mathbf {F} _{12}+\mathrm {d} ^{2}\mathbf {F} _{21}\neq 0}. Однако ничего страшного в этом нет. Физиками доказано, что постоянный ток может течь только по замкнутому контуру. Поэтому третий закон Ньютона должен действовать только для сил, с которыми взаимодействуют два замкнутых проводника с током. Убедимся, что для двух таких проводников третий закон Ньютона выполняется.
Пусть кривые C1{\displaystyle C_{1}} и C2{\displaystyle C_{2}} являются замкнутыми. Тогда ток I1{\displaystyle I_{1}} создает в точке r2{\displaystyle \mathbf {r} _{2}} магнитное поле
- B1(r2)=μ0I14π∮C1[dr1,r2−r1]|r2−r1|3,{\displaystyle \mathbf {B} _{1}(\mathbf {r} _{2})={\mu _{0}I_{1} \over 4\pi }\oint \limits _{\mathbb {C} _{1}}{\frac {[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}},}
где интегрирование по C1{\displaystyle C_{1}} производится в направлении течения тока I1{\displaystyle I_{1}}. Сила Ампера, действующая со стороны поля B1(r2){\displaystyle \mathbf {B} _{1}(\mathbf {r} _{2})} на контур C2{\displaystyle C_{2}} с током I2{\displaystyle I_{2}}, равна
- F12=∮C2(I2dr2×B1(r2))=∮C2(I2dr2×μ0I14π∮C1[dr1,r2−r1]|r2−r1|3)=μ0I1I24π∮C2∮C1[dr2,[dr1,r2−r1]]|r2−r1|3,{\displaystyle \mathbf {F} _{12}=\oint \limits _{\mathbb {C} _{2}}(I_{2}\mathrm {d} \mathbf {r} _{2}\times \mathbf {B} _{1}(\mathbf {r} _{2}))=\oint \limits _{\mathbb {C} _{2}}(I_{2}\mathrm {d} \mathbf {r} _{2}\times {\mu _{0}I_{1} \over 4\pi }\oint \limits _{\mathbb {C} _{1}}{\frac {[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}})={\mu _{0}I_{1}I_{2} \over 4\pi }\oint \limits _{\mathbb {C} _{2}}\oint \limits _{\mathbb {C} _{1}}{\frac {[\mathrm {d} \mathbf {r} _{2},[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}},}
где интегрирование по C2{\displaystyle C_{2}} производится в направлении течения тока I2{\displaystyle I_{2}}. Что характерно, порядок интегрирования значения не имеет.
Аналогично сила Ампера, действующая со стороны поля B2(r1){\displaystyle \mathbf {B} _{2}(\mathbf {r} _{1})}, создаваемого током I2{\displaystyle I_{2}}, на контур C1{\displaystyle C_{1}} с током I1{\displaystyle I_{1}}, равна
- F21=∮C1(I1dr1×B2(r1))=μ0I1I24π∮C1∮C2[dr1,[dr2,r1−r2]]|r2−r1|3=∮C1∮C2d2F21.{\displaystyle \mathbf {F} _{21}=\oint \limits _{\mathbb {C} _{1}}(I_{1}\mathrm {d} \mathbf {r} _{1}\times \mathbf {B} _{2}(\mathbf {r} _{1}))={\mu _{0}I_{1}I_{2} \over 4\pi }\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {[\mathrm {d} \mathbf {r} _{1},[\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{1}-\mathbf {r} _{2}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}=\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}\mathrm {d} ^{2}\mathbf {F} _{21}.}
Равенство F12+F21=0{\displaystyle \mathbf {F} _{12}+\mathbf {F} _{21}=0} эквивалентно равенству ∮C2∮C1[dr2,[dr1,r2−r1]]|r2−r1|3=∮C1∮C2[dr1,[dr2,r2−r1]]|r2−r1|3{\displaystyle \oint \limits _{\mathbb {C} _{2}}\oint \limits _{\mathbb {C} _{1}}{\frac {[\mathrm {d} \mathbf {r} _{2},[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}=\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {[\mathrm {d} \mathbf {r} _{1},[\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{2}-\mathbf {r} _{1}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}}.
Чтобы доказать это последнее равенство, заметим, что выражение для силы Ампера очень похоже на выражение для циркуляции магнитного поля по замкнутому контуру, в котором внешнее скалярное произведение заменили векторным произведением. Тогда понятно, в каком направлении нужно двигаться.
Пользуясь тождеством Лагранжа, двойное векторное произведение в левой части доказываемого равенства можно записать так:
- [dr2,[dr1,r2−r1]]=dr1(dr2,r2−r1)−(r2−r1)(dr2,dr1).{\displaystyle [\mathrm {d} \mathbf {r} _{2},[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]]=\mathrm {d} \mathbf {r} _{1}(\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{2}-\mathbf {r} _{1})-(\mathbf {r} _{2}-\mathbf {r} _{1})(\mathrm {d} \mathbf {r} _{2},\mathrm {d} \mathbf {r} _{1}).}
Тогда левая часть доказываемого равенства примет вид:
- ∮C2∮C1[dr2,[dr1,r2−r1]]|r2−r1|3=∮C1∮C2dr1(dr2,r2−r1)|r2−r1|3−∮C1∮C2(r2−r1)(dr2,dr1)|r2−r1|3.{\displaystyle \oint \limits _{\mathbb {C} _{2}}\oint \limits _{\mathbb {C} _{1}}{\frac {[\mathrm {d} \mathbf {r} _{2},[\mathrm {d} \mathbf {r} _{1},\mathbf {r} _{2}-\mathbf {r} _{1}]]}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}=\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {\mathrm {d} \mathbf {r} _{1}(\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{2}-\mathbf {r} _{1})}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}-\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {(\mathbf {r} _{2}-\mathbf {r} _{1})(\mathrm {d} \mathbf {r} _{2},\mathrm {d} \mathbf {r} _{1})}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}.}
Рассмотрим отдельно интеграл ∮C1∮C2dr1(dr2,r2−r1)|r2−r1|3{\displaystyle \oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {\mathrm {d} \mathbf {r} _{1}(\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{2}-\mathbf {r} _{1})}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}}, который можно переписать в следующем виде:
- ∮C1∮C2dr1(dr2,r2−r1)|r2−r1|3=∮C1dr1∮C2(r2−r1,d(r2−r1))|r2−r1|3.{\displaystyle \oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {\mathrm {d} \mathbf {r} _{1}(\mathrm {d} \mathbf {r} _{2},\mathbf {r} _{2}-\mathbf {r} _{1})}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}=\oint \limits _{\mathbb {C} _{1}}\mathrm {d} \mathbf {r} _{1}\oint \limits _{\mathbb {C} _{2}}{\frac {(\mathbf {r} _{2}-\mathbf {r} _{1},\mathrm {d} (\mathbf {r} _{2}-\mathbf {r} _{1}))}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}.}
Сделав замену переменной во внутреннем интеграле на r=r2−r1{\displaystyle \mathbf {r} =\mathbf {r} _{2}-\mathbf {r} _{1}}, где вектор r{\displaystyle \mathbf {r} } изменяется по замкнутому контуру C2′{\displaystyle C_{2}'}, обнаружим, что внутренний интеграл является циркуляцией градиентного поля по замкнутому контуру. А значит, он равен нулю:
- ∮C2(r2−r1,d(r2−r1))|r2−r1|3=∮C2′(r,dr)|r|3=−∮C2′(grad(1|r|),dr)=0.{\displaystyle \oint \limits _{\mathbb {C} _{2}}{\frac {(\mathbf {r} _{2}-\mathbf {r} _{1},\mathrm {d} (\mathbf {r} _{2}-\mathbf {r} _{1}))}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}=\oint \limits _{\mathbb {C} _{2}'}{\frac {(\mathbf {r} ,\mathrm {d} \mathbf {r} )}{|\mathbf {r} |^{3}}}=-\oint \limits _{\mathbb {C} _{2}'}(\mathrm {grad} ({\frac {1}{|\mathbf {r} |}}),\mathrm {d} \mathbf {r} )=0.}
Значит, и весь двойной криволинейный интеграл равен нулю. В таком случае для силы F12{\displaystyle \mathbf {F} _{12}} можно записать:
- F12=μ0I1I24π∮C1∮C2(r1−r2)(dr2,dr1)|r2−r1|3.{\displaystyle \mathbf {F} _{12}={\mu _{0}I_{1}I_{2} \over 4\pi }\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {(\mathbf {r} _{1}-\mathbf {r} _{2})(\mathrm {d} \mathbf {r} _{2},\mathrm {d} \mathbf {r} _{1})}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}.}
Выражение для силы F21{\displaystyle \mathbf {F} _{21}} можно получить из выражения для силы F12{\displaystyle \mathbf {F} _{12}}, просто исходя из соображений симметрии. Для этого произведем замену индексов: 2 меняем на 1, а 1 — на 2. В таком случае для силы F21{\displaystyle \mathbf {F} _{21}} можно записать:
- F21=μ0I1I24π∮C1∮C2(r2−r1)(dr2,dr1)|r2−r1|3.{\displaystyle \mathbf {F} _{21}={\mu _{0}I_{1}I_{2} \over 4\pi }\oint \limits _{\mathbb {C} _{1}}\oint \limits _{\mathbb {C} _{2}}{\frac {(\mathbf {r} _{2}-\mathbf {r} _{1})(\mathrm {d} \mathbf {r} _{2},\mathrm {d} \mathbf {r} _{1})}{|\mathbf {r} _{2}-\mathbf {r} _{1}|^{3}}}.}
Теперь совершенно очевидно, что F12=−F21
wikiredia.ru
Referat. Сила Ампера — PhysBook
Сила Ампера
Сила, с которой магнитное поле действует на помещенный в него проводник с током, называется силой Ампера.
Величина этой силы, действующей на элемент Δl проводника с током I в магнитном поле с индукцией \(~\vec B\) , определяется законом Ампера:
\(~\Delta F = B \cdot I \cdot \Delta l \cdot \sin \alpha\) , (1)где α – угол между направлениями тока и вектора индукции.
Направление силы Ампера можно найти с помощью правила левой руки (рис. 1):
Рис. 1
если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца совпадали по направлению с направлением тока, то отогнутый на 90° большой палец укажет направление силы, действующей на элемент проводника.
Использование этого правила затруднительно лишь в том случае, когда угол α мал. Поскольку, однако, величина B∙sin α представляет собой модуль перпендикулярной проводнику с током компоненты вектора индукции \(~\vec B_{\perp}\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой – она должна входить в открытую ладонь левой руки.
Рис. 2
Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.
Закон Ампера выполняется для любого магнитного поля. Предположим, что это поле создается длинным линейным проводником с током I2, параллельным первому проводнику c током I1 и находящимся на расстоянии r от него. Тогда индукцию магнитного поля в точках расположения первого проводника можно определить (с учетом замены I → I2) по формуле:
\(~B = \frac{\mu_0 \cdot I}{2 \pi \cdot r} = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r}\) .Подставляя это выражение в (1) и замечая, что в рассматриваемом случае параллельных проводников α = 90°, находим силу, действующую на линейный элемент Δl первого проводника,
\(~\Delta F = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r} \cdot I_1 \cdot \Delta l = \mu_0 \cdot \frac{I_2 \cdot I_1 \cdot \Delta l}{2 \pi \cdot r} \) . (2)Совершенно ясно, что точно такое же выражение можно записать для силы, действующей на второй проводник. Используя правило буравчика (для определения магнитной индукции проводника с током) и правило левой руки (для определения силы, действующей на проводник с током), можно убедиться в том, что если токи в проводниках текут в одинаковых направлениях, то эти проводники притягиваются (рис. 3 а, б), а если в разных – отталкиваются (рис. 4, а, б), что и подтверждается опытом.
а
б
а
б
Выражение (2) было положено в основу принципа определения единицы силы тока. Если в (2) считать I1 = I2 = 1 А, r = 1 м, Δl = 1 м, то получим F = 2∙10-7 Н/м. Другими словами,
если по двум параллельным, бесконечно длинным линейным проводникам, расположенным на расстоянии 1 м друг от друга, текут одинаковые токи в 1 А, то эти токи взаимодействуют с силой 2∙10-7 Н на каждый метр длины проводников.
Заметим, что единица силы тока – ампер – в СИ принадлежит, наряду с секундой, метром, килограммом, кельвином, молем и канделой, к числу основных единиц измерения физических величин.
Момент сил, действующий на прямоугольную рамку с током
Поместим в однородном магнитном поле с индукцией \(~\vec B\) прямоугольную рамку с током ABCD (рис. 5 а – вид сбоку; рис. 5 б – вид сверху), где обозначим AB = a, AD = b, β – угол между перпендикуляром к рамке и вектором магнитной индукции.
-
а
-
б
На участки AD и BC магнитное поле действуют с силами, которые меняются от нуля до максимального значения (в зависимости от угла поворота рамки β) и стремятся растянуть рамку (на рис. 5 эти силы не указаны). На участки AB и CD магнитное поле действуют с постоянными силами \(~\vec F_1\) и \(~\vec F_2\), которые направлены в противоположные стороны (на рис. 5 а силы направлены перпендикулярно плоскости рисунка) и стремятся повернуть рамку вокруг оси OO´. Таким образом, эти силы \(~\vec F_1\) и \(~\vec F_2\) создают вращающий момент \(~M = F_1 \cdot l_1 + F_2 \cdot l_2\) , где \(~F_1 = F_2 = I \cdot B \cdot l\) (угол α = 90°), \(~l_1 = l_2 = \frac{AD}{2} \sin \beta = \frac{b}{2} \sin \beta\) , \(~l = AB = CD = a\) . Тогда
\(~M = 2 F_1 \cdot l_1 = 2I \cdot B \cdot a \cdot \frac{b}{2} \cdot \sin \beta = I \cdot B \cdot a \cdot b \cdot \sin \beta = I \cdot B \cdot S \cdot \sin \beta\) ,где \(~S = a \cdot b\) – площадь рамки.
Момент сил будет максимальным при β = 90° (рамка расположена вдоль линий индукции)
\(~M_{max} = I \cdot B \cdot S\) . (3)Отметим, что формула (3) справедлива не только для квадратной рамки, но и для плоской рамки другой формы.
Применение силы Ампера в технике
Электрический двигатель постоянного тока
В электрических двигателях для преобразования электрической энергии в механическую используется действие силы Ампера.
Основными частями электродвигателя постоянного тока (рис. 6) являются индуктор 4, с помощью которого создается постоянное магнитное поле, якорь 3, через обмотки которого пропускается ток, и коллектор 1 с электрическими щетками 2, с помощью которых осуществляется соединение обмоток якоря с источником тока.
-
а
-
б
В простейшей машине постоянного тока индуктор – это постоянный магнит или электромагнит со стальным сердечником. Обмотки электромагнита индуктора называются обмотками возбуждения. Магнит индуктора имеет полюсные наконечники такой формы, что между ними образуется отверстие цилиндрической формы. Между полюсными наконечниками индуктора помещается якорь. Якорь состоит из сердечника – стального цилиндра с пазами, параллельными оси цилиндра, и обмоток, вложенных в пазы сердечника (рис. 7). Выводы каждой обмотки соединены с медными контактами коллектора.
Рис. 7
Якорь насажен на ось, концы которой установлены в подшипниках, и может свободно вращаться вокруг этой оси.
Для постоянного вращения рамки с током в магнитном поле необходимо устройство, меняющее направление тока. Такое устройство – коллектор – было изобретено в XIX веке. В простейшем случае он представляет собой два металлических полукольца 1, насаженных на общую с рамкой ось 2, и к которым припаяны провода обмотки 4 (рис. 8). К коллектору с двух противоположных сторон прижимаются щетки 3 из графита или меди; щетки подключаются проводами 5 к источнику постоянного напряжения.
Рис. 8
При включении ток проходит через щетки, полукольца и обмотку, в результате чего под действием пары сил Ампера обмотка начинает поворачиваться и поворачивает полукольца коллектора. Когда плоскость обмотки окажется перпендикулярной линиям магнитной индукции, вращающий момент обратится в ноль. Однако это положение обмотка проскакивает по инерции, и с этого момента каждое из полуколец, повернувшись вместе с рамкой, станет прикасаться уже к другой щетке. В результате направление тока в обмотке изменится на противоположное, а возникший после такой смены направления тока вращающий момент будет вынуждать обмотку вращаться в прежнем направлении до тех пор, пока ее плоскость снова не станет перпендикулярной вектору индукции. После этого направление тока в обмотке снова изменится, и она продолжит вращение, и т.д.
Скорость вращения якоря электродвигателя можно регулировать, изменяя силу тока в его обмотках; направление вращения можно изменять, изменяя направление тока в обмотке якоря или индуктора.
Электродвигатель постоянного тока может приводить в движение колеса электровоза, троллейбуса, трамвая, приводить в действие электробритву, магнитофон и другие бытовые электроприборы.
Электроизмерительные приборы
В электроизмерительных приборах магнитоэлектрической системы используется действие магнитного поля на проводник с током (рис. 9).
Рис. 9
Измеряемый электрический ток пропускается через рамку 6, помещенную в магнитное поле постоянного магнита 5. Рамка укреплена на оси 2. Измеряемый ток подводится к рамке 6 через спиральную пружину 3. На участки проводников, расположенные перпендикулярно линиям индукции магнитного поля, действует сила Ампера. Если бы подвижная часть измерительного механизма не имела пружину 3, противодействующую ее повороту, то при пропускании тока через рамку происходил бы поворот ее на 180° независимо от силы тока. Но силы упругости, возникающие при закручивании пружины, препятствуют повороту рамки. Сила упругости прямо пропорциональна углу закручивания пружины, поэтому угол поворота, при котором наступает равенство моментов сил Ампера и сил упругости, пропорционален силе тока в рамке. Шкала магнитоэлектрического прибора равномерная.
При изменениях силы тока равновесие моментов сил упругости и сил Ампера нарушается, в результате подвижная система начинает совершать колебания относительно нового положения равновесия. Вместе с ней колеблется и стрелка прибора. Для устранения этих колебаний в приборах применяются специальные успокоители. В них для торможения подвижной системы используется тонкая алюминиевая пластина 7, помещенная между полюсами постоянного магнита 8 и закрепленная на оси вращения подвижной системы. При повороте подвижной системы алюминиевая пластина успокоителя движется в поле постоянного магнита. Наводимые в ней при этом индукционные токи тормозят движение пластины и вместе с тем вращение всей подвижной системы электроизмерительного прибора.
Для того чтобы при любом положении указательной стрелки 4 подвижная часть была уравновешена в поле тяжести, имеются противовесы 9. Установка на нулевое деление шкалы производится с помощью корректора 10.
Прибор можно проградуировать так, чтобы угол поворота определял силу тока в амперах или других единицах. Согласно закону Ома сила тока в приборе \(~I = \frac{U}{R}\) . Поэтому прибор можно проградуировать и так, чтобы определенному углу отклонения стрелки соответствовало напряжение U на зажимах прибора в вольтах или других единицах.
Таким образом, прибор может служить как амперметром, так и вольтметром. В последнем случае для увеличения сопротивления прибора нужно последовательно с катушкой включить резистор с большим сопротивлением.
Литература
- Буров Л.И., Стрельченя В.М. Физика от А до Я: учащимся, абитуриентам, репетиторам. – Мн.: Парадокс, 2000. – 560 с.
- Мякишев, Г.Я. Физика : Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. – М.: Дрофа, 2005. – 476 с.
- Физика: Учеб. пособие для 10 кл. шк. и классов с углубл. изуч. физики/ О. Ф. Кабардин, В. А. Орлов, Э. Е. Эвенчик и др.; Под ред. А. А. Пинского. – 2-е изд. – М.: Просвещение, 1995. – 415 с.
www.physbook.ru