Содержание

Частотные характеристики пассивных компонентов

Подробности
Автор: EngineerDeveloper®

       Для корректной работы проектируемого устройства необходим внимательный подбор пассивных компонентов. Необходимо подробно рассмотреть характеристики пассивной элементной базы будущего устройства и предварительной компоновки корпусов на плате.

         Зачастую разработчики не придают особого значения рабочей частотной области пассивных компонентов при подборе элементной базы для будущего устройства. Это приводит к непредсказуемым результатам.   Хочу отметить, что этот касается не только высокочастотных аналоговых устройств, так как ВЧ-сигналы оказывают сильное воздействие на пассивные НЧ-компоненты по средствам гальванической связи или излучая. К примеру, простой активный НЧ-фильтр на ОУ может работать как ВЧ-фильтр при воздействии на его вход высокой частотой.

 

Резисторы

         Резистор на высоких частотах обладает собственной индуктивностью, ёмкостью и сопротивлением. См. рис. 5.

         Резисторы можно разделить на три основных типа: проволочные, углеродные композитные и пленочные. Проволочный резистор по своей структуре представляет собой катушку из высокоомного металла, откуда и появляется его собственная индуктивность. Аналогичная структура у пленочных конденсаторов, поэтому пленочные конденсаторы так же обладают индуктивностью. Индуктивные свойства пленочных резисторов проявляются в меньшей мере, чем у проволочных. Пленочные резисторы  номиналом до 2 кОм можно смело использовать в ВЧ схемах.

         Так как выводы резисторов параллельны друг другу, следовательно, между ними присутствует существенная  ёмкостная связь. Чем больше номинал резистора, тем меньше межвыводная ёмкость.

 

Конденсаторы

         Эквивалентная схема конденсатора в области высоких частот приведена на рис. 6.

Конденсаторы в схемотехники применяются как развязывающие и фильтрующие элементы. Для расчета реактивного сопротивления конденсатора обратимся к следующей формуле:

         Отталкиваясь от вышеуказанной формулы, рассчитаем реактивное сопротивление конденсатора ёмкостью 10 мкФ на частотах 10кГц и 100 МГц. Расчётные величины получились следующие 1,6 Ом  на 10кГц и 160 мкОм на 100 МГц. А теперь проверим так ли на самом деле.

         На практике никто не видел электролитического конденсатора с реактивным сопротивлением 160 мкОм. Обкладки пленочных и электролитических конденсаторов представляют собой слои фольги, которые и создают паразитную индуктивностью. В то время как у керамических конденсаторов эффект собственной индуктивности гораздо меньше, поэтому их часто применяют в высокочастотных схемах. Кроме упомянутой собственной индуктивности, конденсаторы так же обладают определенным паразитным током утечки. Природа возникновения тока утечки эквивалентна тому случаю, если параллельно конденсатору подключить резистор. Величина тока утечки не большая так как электролит не является хорошим проводником.

         Все упомянутые сопротивления складываются и создают эквивалентное последовательное сопротивление (ESR). Исходя из вышесказанного отметим, что конденсаторы, применяемые в развязывающих цепях, должны обладать малым ESR. Это объясняется тем, что последовательное сопротивление ограничивает эффективность подавления пульсаций и помех. Повышение рабочей температуры устройства  так же значительно влияет на изменение ESR, увеличивается.  Поэтому, при использовании алюминиевого электролитического конденсатора при повышенных рабочих температурах, необходимо использовать конденсаторы соответствующего типа.

          Выводы конденсаторов так же вносят паразитную индуктивность. Если применены конденсаторы малой ёмкости, тогда необходимо выводы делать короткими. Паразитная индуктивность может послужить образованием резонансных паразитных контуров на плате. Учитывая, что паразитная индуктивность выводов составляет порядка 8 нГн на один сантиметр длины, конденсатор ёмкостью  0,01 мкФ с выводами длиной по одному сантиметру будет иметь паразитный резонанс  на частоте около 12,5 МГц.

         При использовании электролитических конденсаторов следует внимательно располагать, подключать конденсатор на плате. Положительная обкладка должна быть подключена к плюсу, линии подключающие конденсатор должны быть максимально короткими. При некорректном подключении конденсатора токи начинают протекать через электролит с скорым выходом из строя самого конденсатора.

         Существуют так же устройства, в которых разность потенциалов по постоянному току между двумя точками может менять свой знак. В подобных случаях применяют неполярные электролитические конденсаторы.

 

Индуктивности

         Эквивалентная схема индуктивности в области высоких частот приведена на рис. 7.

Реактивное сопротивление индуктивности описывается по следующей формуле:

         Из формулы видно, что индуктивность номиналом 10 мГн будет обладать реактивным сопротивлением 628 ом на частоте 10 кГц, на частоте 100 МГц расчётная величина составит 6.28 МОм.

         Полученная при расчете величина реактивного сопротивления 6.28 МОм является теоретической, так как на практике индуктивности с таким реактивным сопротивлением не бывает. Паразитное сопротивление возникает, так как катушка – это намотанный провод, который и обладает определенным сопротивлением.  При этом любая индуктивность так же имеет паразитную ёмкость, которая возникает по причине межвитковой емкостной связи. То есть витки располагаются параллельно друг другу, что и даёт емкостную связь. Паразитная ёмкость ограничивает верхнюю рабочую частоту индуктивности. Проволочные индуктивности не больших размеров теряют свою эффективность в диапазоне частот 10…100 МГц.

 

         Печатная плата

         Печатной плате так же присуще все описанные свойства пассивных компонентов, но эти свойства не так ярко выражены.

         Печатные   проводники на печатной плате могут быть как источниками помех, так и приёмниками (антенной). Грамотная трассировка печатной платы сводит к минимуму излучаемые и наводящие помехи. Так как любой проводник на печатной плате можно рассматривать как антенну, обратимся к основам теории антенн.

 

         Основы теории антенн

         Одним из основных типов антенн является «штырь» или в нашем случае – прямой проводник. Полный импеданс прямого проводника имеет резистивную (активную) и индуктивную (реактивную) составляющие:

На постоянном токе и  при низких частотах преобладает активная составляющая. При увеличении частоты реактивная составляющая оказывается более значимой.

         Формула для расчета индуктивности проводника печатной платы выглядит следующим образом:

           В среднем печатный проводники на плате обладают индуктивностью 6…12 нГн на сантиметр длины. К примеру, проводник длиной 10 см имеет сопротивление 57 МОм и индуктивность 8 нГн на сантиметр. На частоте 10 кГц реактивное сопротивление становится равным 50 МОм, а на более высоких частотах проводник необходимо рассматривать как индуктивность, нежели проводник с активным сопротивлением.

Штыревая антенна начинает функционировать при соотношении длины волны к длине антенны 1/20. Поэтому 10-ти сантиметровый проводник послужит хорошей антенной на частоте  свыше 150 МГц. Возвращаясь к печатным платам отмечу, что к примеру генератор тактового сигнала может и не иметь частоты равной 150 МГц, а вот высшие гармоники от тактового генератора могут стать источником высоких частот.

         Другим одним из основных типов антенн является петлевая антенна. Индуктивность прямого проводника существенно увеличивается при изгибах. Увеличенное значение индуктивности проводника снижает частоту, на которой чувствительность «антенны» максимальна.

         Опытные разработчики печатных плат, имеющие представления об эффекте  петлевых антенн, отмечают, что нельзя строить топологию таким образом, чтобы образовывалась петля для критических сигналов. В противном случае образовываются петли из проводников прямого и обратного хода токов. См. рис.8.  На рисунке так же отражен эффект щелевой антенны.

Рассмотри подробнее три варианта рисунка 8.

 

         Вариант А: Самый неудачный из представленных. В нем не используются полигоны земли, Петлевой контур образуется земляным и сигнальным проводниками. Следует помнить, что при соотношении длины волны к проводнику 1/20 петлевая антенна достаточно эффективна.

 

         Вариант Б: По сравнению с вариантом А это вариант лучше. Но здесь виден разрыв в земляном полигоне. Пути прямого и возвратных токов образуют щелевую антенну.

 

         Вариант В: Этот вариант самый наилучший. Пути сигнальных и обратных токов совпадают, тем самым эффективность петлевой антенны ничтожно мала. Стоит отметить, что в этом варианте так же присутствуют вырезы вокруг микросхем, но они отделены от пути возвратного тока.

 

         Теория отражений и согласований проводников идентична той, что рассмотрена в теории антенн.

         При повороте печатного проводника на угол в 90° может возникнуть отражение сигнала. Это происходит из-за изменения ширины проводника. В углу проводника ширина трассы увеличивается  в 1,414 раза, что приводит к рассогласованности линии связи, распределенной ёмкости и индуктивности трассы. Современный системы автоматического проектирования предлагают  различные виды сглаживания углов см. рис. 9.

Самым наилучшим из представленных вариантов поворота является третий вариант, так как ширина его проводника неизменна.

portal-ed.ru

Расчёт сопротивления резисторов и ёмкости конденсаторов

Автор: admin, 22 Мар 2013

Расчёт сопротивления резисторов и ёмкости конденсаторов

В этой статье рассмотрим как можно с помощью параллельного и последовательного включения резисторов и конденсаторов подобрать нужный номинал радиодетали, при отсутствии нужного. Расчёт производится по формулам расчёта сопротивления и ёмкости для параллельного и последовательного включения, а также с помощью удобной таблицы подбора ёмкости и сопротивления.

 

Резисторы

Широко применяются в радиоприёмниках, усилителях сигналов и во многих других схемах. Они служат для ограничения тока, создания падения напряжения, регулирования частоты, громкости и других сигналов. Обозначаются на схемах буквой R. Сопротивление резистора измеряется в Омах. Для больших сопротивлений используют единицы: килоомы (1кОм=1000Ом), мегаомы (1Мом=1000кОм). Кроме сопротивления резисторы характеризуются мощностью рассеяния, это такая наибольшая мощность, которую резистор может выдержать длительное время. Мощность рассеяния измеряется в ваттах (Вт). Ещё один показатель — это наибольшее возможное отклонение действительного сопротивления от  номинального, указанного на резисторе, выражается в %. Резисторы бывают постоянные (не изменяют своего сопротивления) и переменные(изменяют сопротивление в зависимости от положения движка резистора).

Иногда, при сборке схемы не оказывается под рукой резистора нужного номинала. В этом случае в большинстве случаев можно заменить резистор на ближайший по номиналу — например вместо 110 Ом можно использовать резистор номиналом 100 или 120 Ом. А если нет и ближайшего по номиналу или требуется точное значение сопротивления, то можно составить нужное сопротивление с помощью последовательного или параллельного соединения нескольких резисторов.

Последовательное соединение резисторов:

последовательное соединение резисторов

 

При последовательном соединении резисторов их общее сопротивление равно их сумме: Rобщ = R1+R2+…+Rn.

 

 

 

Параллельное соединение резисторов:

параллельное соединение резисторов

 

При параллельном соединении резисторов их общее сопротивление рассчитывается по формуле:

1/Rобщ = 1/R1 + 1/R2 +…+1/Rn или

Rобщ = 1/(1/R1 + 1/R2 +…+1/Rn).

На практике для подбора нужного сопротивления обычно включают параллельно два резистора, в этом случае формула примет вид:

Rобщ = R1*R2/(R1+R2).

Ещё можно отметить, что при включении резисторов одинакового сопротивления, то их общее сопротивление будет равно половине сопротивления каждого их них. Мощность рассеяния, в этом случае, увеличится в 2 раза. Также при параллельном соединении общее сопротивление всегда меньше наименьшего из включенных в параллель резисторов.

Конденсаторы

Конденсаторы, как и резисторы, тоже очень широко применяются. Конденсатор это накопитель энергии, в простейшем виде это две пластины, между которыми находится диэлектрик, в качестве диэлектрика может быть просто воздух. Конденсаторы также бывают постоянной и переменной ёмкости. Единицей ёмкости является  фарада(Ф). На практике используют меньшие ёмкости, их выражают в микрофарадах(1Ф=1 000 000 мкФ), нанофарадах(1мкФ = 1 000 нФ), пикофарадах(1нФ=1 000 пФ). Также конденсаторы характеризуются рабочим напряжением, выражаемом в вольтах (В). Превышение на конденсаторе напряжения выше рабочего может привести к «пробою» диэлектрика конденсатора.

Конденсатор не проводит постоянный ток, а переменному току оказывает сопротивление, которое вычисляется по формуле:

Хс = 1/(2πfC), где

  • Хс — емкостное сопротивление конденсатора, Ом;
  • π — математическая константа, примерно равная 3,1416;
  • f — частота переменного тока, Гц;
  • С — ёмкость конденсатора, Ф.

Рассмотрим как можно собрать нужную ёмкость из имеющихся под рукой.

Последовательное включение конденсаторов:

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов их общая ёмкость рассчитывается по формуле, очень похожей на формулу для параллельного включения резисторов:

Собщ = 1/(1/С1+1/С2+…+1/Сn).

Но чаще тоже используют два конденсатора, тогда формула упрощается:

Собщ = С1*С2/(С1+С2).

Также, при включении конденсаторов с одинаковой ёмкостью их общая ёмкость будет в два раза меньше ёмкости каждого из них. Рабочее напряжение такого сборного конденсатора увеличится в 2 раза.

Параллельное включение конденсаторов:

Параллельное соединение конденсаторов

 

 

При параллельном соединении конденсаторов их общая ёмкость будет равна сумме всех емкостей.

Собщ = С1+С2+…+Сn.

При необходимости можно делать даже комбинированные соединения и параллельные и последовательные, в этом случае высчитывается ёмкость(или сопротивление) по одинаковым группам соединений, получают промежуточные значения, например Собщ1, Собщ2.., а потом уже из них высчитывают общее значение.

Но, как правило, более двух деталей для составления нужного номинала не используют, для параллельного соединения конденсаторов и последовательного резисторов всё просто — считаем сумму. А для последовательного соединения конденсаторов и параллельного соединения резисторов нужно считать, поэтому будет удобно пользоваться заранее составленной таблицей, которая подойдёт для обоих радиоэлементов.

Таблица расчёта общего сопротивления (ёмкости) для двух параллельно соединённых резисторов (двух последовательно соединённых конденсаторов)

Таблица расчёта общего сопротивления(ёмкости)

По горизонтали смотрим значения, выделенные зелёным цветом, первого резистора(конденсатора) по вертикали второго. На перекрестии этих двух значений и будет общее сопротивление (ёмкость).

Будет интересно почитать:

Рубрики: Электронные устройства, Электросхемы
Метки: электроника, электросхема

elektricvdome.ru

Резистор

Резистор — это самый распространенный электронный компонент, название которого произошло от английского слова «resistor» и от латинского «resisto» — сопротивляюсь. Основным параметром резистора считается сопротивление, которое характеризуется его способностью в препятствии протекания электрического тока. Единицами сопротивления у резисторов являются – Омы (Ω), Килоомы (1000 Ом или 1КΩ) и Мегаомы (1000000 Ом или 1МΩ).

Практически ни одна схема не обходиться без резисторов. С помощью подбора соответствующих величин резисторов и их соединений, происходит нужное распределение электрического тока в цепи.

Характеристики резистора

Кроме предельного сопротивления, резисторы обладают рядом других физиотехнических показателей, которые имеют большое значение в его применении.

Среди основных параметров выделяются такие характеристики резистора, как сопротивление по номинальному значению и его возможное отклонение, рассеиваемая мощность, предельное рабочее напряжение, максимальная температура, температурный коэффициент сопротивления, частотный отклик и шумы. Рассмотрим некоторые из них.

Температурный коэффициент сопротивления ТКС

Температурный коэффициент сопротивления (ТКС) определяет относительное изменение величины сопротивления резистора при изменении температуры окружающей среды на 1 ° по Цельсию. ТКС может быть как положительным, так и отрицательным. Если резистивная пленка имеет относительно большую толщину, то она обладает свойствами объемного тела, сопротивляемость которого с увеличением температуры становится больше. Если же резистивная пленка имеет относительно небольшую толщину, то она состоит как бы из небольших «островков», расположенных отдельно друг от друга, и сопротивление такой пленочной структуры с увеличением температурных значений становится меньше, так как взаимодействие между отдельными «островками» улучшается. Для непроволочных резисторов, применяемых в радиоэлектронике и телевизионной промышленности, температурный коэффициент сопротивления не больше ±0,04 — 0,2 %, у проволочных деталей -±0,003 — 0,2 %.

Рассеиваемая мощность резистора

Номинальная мощность рассеивания, или рассеиваемая мощность резистора показывает предельно значимую мощность, которую сопротивление может рассеивать при долговременной электрической нагрузке, атмосферном давлении и температуре в нормальных значениях. Непроволочные резисторы подоазделяются на мощность по номиналу от 0,05 до 10 Вт, а сопротивления проволочного типа от 0,2 до150 Вт. На электpосхемах рассеиваемая мощность резистора выделяется условно пунктиром на обозначении сопротивления для мощностей меньше 1 Вт и pимскими цифрами на обозначении сопротивления для мощности больше 1 Вт. Номинальная мощность рассеивания этих деталей должна быть на 20—30 % больше такого показателя, как рабочая рассеиваемая мощность резистора

Максимальное напряжение резистора

Предельное или максимальное напряжение резистора — это предельно возможное напряжение, подведенное к выводам сопротивления, которое не допускает превышения показателей техусловий (ТУ) на параметры электричества. По- другому, максимальное напряжение резистора – предельно допустимая величина, которая может быть приложена к резистору. Этот показатель выводится для обычных пределов работы детали и напрямую зависит от линейных размеров резистора, шага спиральной нарезки, температурных показателей, давления эксплуатационной среды и давления атмосферы. Чем выше температурные показатели и меньше давление атмосферы, тем больше шансов для пробоя теплового или электрического типа и выхода резистора из строя.

Максимальная температура резистора

Одной из характеристик резистора является такой показатель, как максимальная температура резистора, напрямую зависит от мощности детали. Получается, что при увеличении мощности, которая выделяется в сопротивлении, увеличивается температура резистора, что может привести к его поломке. Во избежание этого, необходимо уменьшить температуру резистора. Это можно достичь укрупнением габаритов сопротивления.. Для всех типов сопротивлений определена максимальная температура резистора, превышение которой чревато выходом детали из строя.

Температурный показатель сопротивления находится в прямой зависимости и от температуры окружающего воздуха. Если этот показатель достигает большого значения, то температурный показатель сопротивления может стать выше максимальной температуры резистора, что крайне нежелательно. Чтобы этого не случилось, нужно снизить мощность, которая выделяется в резисторе.

Частотный отклик резистора

Значение такой характеристики, как частотный отклик резистора, связано с определением значения максимального сопротивления и минимальной ёмкости. При прохождении тока высокой частоты сопротивление стремится к проявлению реактивных свойств в зависимости от конструктивного исполнения – доминируют либо емкостные, либо индуктивные значения.

Если в одно и то же время дискретно уменьшать и значение сопротивления и значение емкости, то можно вызвать быстрый демпфированный частотный отклик резистора, который позволит определить как максимальное сопротивление, так и минимальную емкость. При этих значениях не возникает колебаний и в то же время достигается мгновенная стабилизация выходного напряжения. Но в теории это рассматривается , как частный случай. На высоких частотах резистор начинает проявлять реактивные свойства в зависимости от конструктивного исполнения — либо преимущественно емкостные, либо индуктивные.

Основные типы резисторов

По физическому устройству резисторы бывают следующих типов:

  • углеродные пленочные
  • углеродные композиционные
  • металлооксидные
  • пленочные металлические
  • проволочные

Углеродные пленочные выпускают в виде керамического стержня, который покрыт специальной пленкой кристаллического углерода. Она в свою очередь и является резистивным элементом. Их номинальный диапазон сопротивления от двух до одного МОм, а максимальная мощность от 0,2 до 2 Вт.

Углеродные композиционные являются самыми дешевыми. Поэтому их стабильность не высока и их сопротивление, как правило, может меняться на пару процентов. Также при протекании тока, через такие резисторы могут возникать шумы. Такое обстоятельство имеет важное значение, особенно в медицинской электронной аппаратуре, так как там часто требуется большое усилие, но с малым уровнем шума

Металлооксидные являются вторым типом пленочных резисторов. В этих резисторах окончательное сопротивление получается за счет нанесения спиральной канавки на керамической основе. За счет этого увеличивается эффективная длина между концами резистора, а также сопротивление. Пленочные металлические используются в транзисторных выходных, так как они имеют сопротивление меньшее, чем 10 Ом, что для этого и необходимо. Эти резисторы рассеивают большую мощность при малых размерах. Это и является самым большим их достоинством. Также он имеет стабильность нагрузки, которая достигает не более ±3%, малый коэффициент сопротивления под напряжением, а также очень малый уровень шумов. Еще у него температурный коэффициент достигает от 0 до 600-10~6 1/°С.

Проволочные резисторы делаются из безиндуктивной или обычной обмотки. Они применяются тогда, когда нужна большая рассеиваемая мощность или высокая стабильность, так как другие резисторы не могут этого обеспечить. Они рассеивают мощность до 100 Вт, но их сопротивление ограничено до 50 кОм. Температура их поверхности при работе может достигать очень больших размеров, поэтому их нужно располагать так, чтобы могла обеспечиваться вентиляция воздуха и их охлаждение, потому что в противном случае они выйдут из строя.

hightolow.ru

Резистор Википедия

Шесть резисторов разных номиналов и точности, промаркированные с помощью цветовой схемы

Рези́стор (англ. resistor, от лат. resisto — сопротивляюсь) — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления[1], предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др.[2]. Весьма широко используемый компонент практически всех электрических и электронных устройств.

Схема замещения резистора чаще всего имеет вид параллельно соединенных сопротивления и емкости. Иногда на высоких частотах последовательно с этой цепью включают индуктивность. В схеме замещения сопротивление — основной параметр резистора, емкость и индуктивность — паразитные параметры.

Закон Ома для мгновенных значений тока и напряжения справедлив только в резистивных цепях.

Линейные и нелинейные резисторы[ | ]

Все резисторы делятся на линейные и нелинейные.

Сопротивления линейных резисторов не зависят от приложенного напряжения или протекающего тока.

Сопротивления нелинейных резисторов изменяются в зависимости от значения приложенного напряжения или протекающего тока. Например, сопротивление осветительной лампы накаливания при отсутствии тока в 10-15 раз меньше, чем в режиме освещения. В линейных резистивных цепях форма тока совпадает с формой напряжения, вызвавшего этот ток.

Основные характеристики и параметры резисторов[ | ]

  • Номинальное сопротивление — основной параметр.
  • Предельная рассеиваемая мощность.
  • Температурный коэффициент сопротивления.
  • Допустимое отклонение сопротивления от номинального значения (технологический разброс в процессе изготовления).
  • Предельное рабочее напряжение.
  • Избыточный шум.
  • Максимальная температура окружающей среды для номинальной мощности рассеивания.
  • Влагоустойчивость и термостойкость.
  • Коэффициент напряжения. Учитывает явление зависимости сопротивления некоторых видов резисторов от приложенного напряжения.

Определяется по форм

ru-wiki.ru

Резистор – это основной элемент радиоэлектроники

Резистор – это простейший элемент радиоэлектронных схем, обладающий свойством оказывать сопротивление протекающему сквозь него электрическому току. Название этого прибора произошло от английского слова resist, что означает – сопротивление.

Номинальное сопротивление резистора измеряется в Омах (Ом, кОм, мОм), в честь ученого Георга Ома, открывшего закон, согласно которому сопротивление электрической цепи равно отношению напряжения к току цепи.

В промышленности выпускаются резисторы с различным значением номинального сопротивления. Существует три основных вида этих приборов: постоянные, переменные, подстроечные.

Постоянный резистор – это самый многочисленный класс элементов, имеющих неизменное сопротивление. На корпус такого прибора наносится маркировка, означающая тип резистора, значение номинального сопротивления, класс точности, мощность рассеивания и др. Эта информация кодируется различными способами. Так, можно встретить элементы, у которых все данные записаны с помощью цветовой маркировки (от трех до семи цветных поперечных полос). Чтобы считать эти значения, необходимо воспользоваться специальной таблицей, которую можно найти в справочной литературе или в техническом описании этих элементов. Второй вид записи, это буквенно-цифровой. При таком способе информация передается с помощью символов и цифр. Так, резистор 10 Ом может иметь следующую маркировку: МЛТ 10R. МЛТ означает тип устройства.

Переменный резистор – это прибор, имеющий определенный диапазон номинального сопротивления. На корпусе такого элемента существует регулировочный элемент (винт или поворотная ручка), с помощью которого можно выставить необходимое сопротивление прибора. На таких приборах маркировка номинального значения указывается в буквенно-цифровом виде – обозначается предел от минимального до максимального значения сопротивления. Такие устройства широко применяются для регулировки и настройки сигналов: в качестве регуляторов тембра, уровней, громкости, настройки на частоту в радиоприемной аппаратуре.

Подстроечный резистор – это прибор, имеющий определенный диапазон номинального сопротивления, но в отличие от переменных, этот диапазон незначительный. Такие элементы нашли широкое применение в радиоэлектронных схемах. Предназначены они для настройки и доводки требуемых параметров при проектировании радиоаппаратуры или в высокоточных устройствах, где не допускается разброс характеристик. Они позволяют точно выставить требуемое сопротивление, в результате отпадает необходимость  впайки-выпайки резисторов постоянного номинала для подбора необходимого значения.

Кроме основных параметров, у любого резисторасуществует так называемая паразитная характеристика – емкость. Что же это за параметр? Паразитная емкость резистора, как правило, весьма мала и особо ни на что не влияет. Учитывать ее необходимо только при проектировании высокоточной аппаратуры. Паразитная емкость присутствует между выводами элемента; получается, что параллельно резистору припаян конденсатор. Также емкость может возникнуть и между резистором и соседними деталями печатной платы и частями конструкции.

На этом краткий обзор такого элемента, как резистор мы заканчиваем, более подробную информацию можно найти в учебниках по промышленной электронике.

fb.ru

Основные электрические параметры резисторов

Поиск Лекций

Для оценки свойств резисторов используются следующие основные параметры: номинальное сопротивление, допустимое отклонение величины сопротивления от номинального значения (допуск), номинальная мощность рассеяния, предельное напряжение, температурный коэффициент сопротивления, коэффициент напряжения, уровень собственных шумов, собственная емкость и индуктивность.

Номинальное сопротивление Rн – это электрическое сопротивление, значение которого обозначено на резисторе или указано в сопроводительной документации.

В ЭВА применяются резисторы сопротивлением от нескольких Ом до нескольких мегаОм. Номинальные сопротивления резисторов стандартизированы. Численные значения номинальных сопротивлений определяются рядами предпочтительных чисел: Е6, Е12, Е24, Е48, Е96, Е192 (цифра указывает число номинальных сопротивлений в ряду).

Ряды Е6, Е12, Е24 применяются для постоянных резисторов общего применения. Шкала номинальных значений резисторов переменного сопротивления определяется рядом Е6.

Кратные и дольные значения сопротивлений получаются путем умножения или деления этого ряда на 10.

Шкала номинальных сопротивлений для постоянных резисторов общего применения по ряду Е6, Е12, Е24 приведена в табл.2.

Таблица 2. Номинальные сопротивления по ряду Е6, Е12, Е24

Индекс ряда Числовые коэффициенты, умножаемые на любое число, кратное 10
Е6 1,0; 1,5; 2,2; 3,3; 4,7; 6,8
Е12 1,0; 1,2; 1,5; 1,8; 2,2; 2,7; 3,3; 3,9; 4,7; 5,6; 6,8; 9,1
Е24 1,0; 1,1; 1,2; 1,3; 1,5; 1,6; 1,8; 2,0; 2,2; 2,4; 2,7; 3,0; 3,3; 3,6; 3,9; 4,3; 4,7; 5,1; 5,6; 6,2; 6,8; 7,5; 8,2; 9,1

Допустимое отклонение – это максимальное допустимое отклонение реальной величины сопротивления резистора от его номинального значения, выраженное в процентах.

Согласно ГОСТа установлен ряд допусков: ±0,001; ±0,002; ±0,005; ±0,01 ±0,02; ±0,05; ±0,1 ; ±0,25; +0 ,5; ±1; ±2; ±5; ±10; ±20; ±30.

Наиболее употребительны резисторы с допускаемым отклонением ±5; ±10; ±20%.

Переменные резисторы имеют допуски ±5, ±10, ±20, ±30%.

Номинальная мощность рассеивания РН – это наибольшая мощность, создаваемая протекающим через резистор током, при которой он может длительное время надежно работать.

Значение РН зависит от конструкции резистора, физических свойств материалов и температуры окружающей среды.

Резисторы эксплуатируют, как правило, при мощностях рассеивания в 3 – 10 раз меньше номинальных, что обеспечивает более высокую надежность работы устройств.

Конкретные значения номинальных мощностей рассеивания в ваттах устанавливаются согласно ГОСТ и выбираются из ряда: 0,01; 0,025; 0,05; 0,062; 0,125; 0,25; 0,5; 1,0; 2; 3; 4; 8; 10; 16; 25; 40; 63; 80; 100; 160; 250; 500.

Величина номинальной мощности рассеяния указывается на корпусах крупногабаритных резисторов, а у малогабаритных – определяется по размерам корпуса.

Мощность рассеяния Р можно рассчитать по формулам:

Р=UI=I2R=U2/R.

Если на резисторе, выделяется большая мощность, чем предусмотрено, его температура будет повышаться, что может привести к перегоранию токопроводящего элемента и тем самым к внезапному отказу резистора.

Предельное напряжение Uпред. – это максимальное напряжение, при котором может работать резистор. Оно ограничивается тепловыми процессами, а у высокоомных резисторов – электрической прочностью резистора.

Температурный коэффициент сопротивления (ТКС) – это относительное изменение величины сопротивления резистора при изменении температуры на 1ºС: ТКС= ΔR/(Ro·ΔT),

где Ro– начальное значение величины сопротивления резистора,

ΔR – изменение сопротивления в диапазоне температур ΔТ.

Значение ТКС прецизионных резисторов лежит в пределах от единиц до 100×10-6 1/ ºС, а у резисторов общего назначения – от десятков до 2000×10-6/ ° С.

Собственные шумы резисторов складываются из тепловых и токовых шумов. Токовые шумы наиболее характерны для непроволочных резисторов. Наиболее шумящими являются композиционные резисторы, поэтому их применяют в приемных устройствах ограниченно. По уровню шумов резисторы делятся на две группы А (1мкВ/В) и Б ( 5мкВ/В).

Частотные свойства резисторов. При работе резисторов в диапазоне частот переменного тока сопротивление может изменяться относительно его номинала при постоянном токе , что приводит к изменению выходных параметров и устойчивости работы устройств.

Упрощенная эквивалентная схема резистора для высоких частот (рис.5) кроме собственно активного сопротивления R включает реактивные составляющие – индуктивности Lпар и емкость Cпар , которые ухудшают частотные свойства резисторов и поэтому их часто называют паразитными. Для разных типов резисторов паразитные индуктивности и емкость образуются по-разному.

 

 
 

Рис.5. Эквивалентная схема резистора.

У проволочных резисторов паразитная индуктивность образуется за счет намотки провода и индуктивности выводов, а паразитная емкость – за счет межвитковой емкости. Проволочные резисторы по сравнению с непроволочными гораздо менее высокочастотны и применение их без принятия специальных мер ограничиваются областью постоянного тока и диапазоном звуковых частот.

 
 

Рис.6.Функциональная характеристика сопротивления переменных резисторов.

 

В отличие от постоянных резисторов переменные обладают , кроме вышеперечисленных . дополнительными параметрами. Это функциональная характеристика (рис.6.). Она определяет зависимость сопротивления переменного резистора от положения (угла поворота) подвижного контакта. Наиболее распространенные зависимости: линейные – А, логарифмические – Б, обратнологарифмические – В.

 

Резисторыобщего назначения

К группе общего назначения относятся резисторы, используемые в качестве анодных и коллекторных нагрузок, сопротивлений в цепях эммитера и базы и т.д.

Углеродистые резисторы предназначены для работы в цепях постоянного, переменного и импульсного токов в электронной аппаратуре.

Резисторы имеют цилиндрическую форму и радиальные или аксиальные выводы. Снаружи – зеленая глурофобистая эмаль.

Углеродистые резисторы характеризуются высокой стабильностью сопротивления, низким уровнем собственных шумов, небольшим отрицательным ТКС, слабой зависимостью сопротивления от частоты приложенного напряжения.

Основные типы углеродистых резисторов: резисторы общего назначения типа С1-4 ВС, специального назначения – прецизионные типа БЛП, полупрецезионные типа УЛИ, которые предназначены для работы в ВЧ цепях в качестве активных нагрузок. Из-за широкого применения металлопленочных и быстрого развития микропроволочных высокостабильных резисторов применение в наше время углеродистых резисторов стало более ограниченным.

Металлопленочные резисторы предназначены для работы в цепях постоянного, переменного и импульсного токов. Они теплостойки, влагостойки, обладают повышенной механической прочностью.

Их широко применяют в малогабаритной аппаратуре, т.к. они по габаритам совместимы с ИМС. Эти резисторы обладают лучшими по сравнению с углеродистыми и композиционными электрическими параметрами при сравнительно небольшой стоимости, что и объясняет их широкое применение.

Недостатки: сравнительно малая устойчивость к импульсной нагрузке и меньшей частотный диапазон применения, чем у углеродистых.

Металлопленочные резисторы содержат резистивный элемент в виде очень тонкой (десятые доли микрометра) металлической пленки, осажденной на основание из керамики, стекла, слоистого пластика, ситалла или другого изоляционного материала. Гидрофобная эмаль – красная.

Основные типы металлопленочных резисторов: С2 МЛТ – теплостойкие; ОМЛТ – особые с повышенной надежностью; МТ – с повышенной теплостойкостью; МГП – герметичные, прецизионные; С2 –10 – ультравысокочастотные прецизионные; СП2-3 – переменные закрытой конструкции.

Композиционные резисторы используют для тех же целей, что и металлопленочные. Отличительными особенностями резисторов этой группы являются высокая вибропрочность за счет запрессовки выводов в основание резисторов, большой уровень собственных шумов и зависимость сопротивления от приложенного напряжения.

Резистивный элемент этих резисторов выполняется на основе композиций, состоящих из смеси порошкообразного проводника (сажа, графит и др.) и органического или неорганического диэлектрика.

Основные типы композиционных резисторов: С3-3, С3-3П, С3-4, СКИМ – лакопленочные; С3-13, С3-14, КВМ, КИМ, КЛМ – высокомегаомные лакопленочные; СП, СП3-1, СП3-22, СП3-27, СП3-26, СП3-39 – подстроечные лакопленочные; СП3-24, СП3-36, СП3-40, СП3-37, РП1-53, РП1-48 – подстроечные с прямолинейно перемещающейся системой; РП1-52 – субминиатюрные подстроечные; СП4-1а, СП4-2Ма – объемные регулировочные.

Проволочные резисторы обладают повышенной температурной стабильностью и термостойкостью. Эти резисторы обладают высокой допустимой мощностью рассеивания (десятки ватт) при относительно небольших размерах. Основными недостатками проволочных резисторов является ограниченный диапазон сопротивления и высокая стоимость, а также большая индуктивность и собственная емкость.

Конструктивно они выполнены намоткой провода из нихрома, манганина, константана на изолированный цилиндрический каркас.

Резисторы ПЭ, ПЭВ, ПЭВР, ПЭВТ (ПЭ – проволочные эмалированные, В– влагостойкие, Р – регулируемые с хомутиком, Т – термостойкие) – ранее выпущенные модификации. Современные – С5-35, С5-36, С5-378. С5-31 – микропроволочные миниатюрные.

 

Переменные резисторы

Резисторы переменного сопротивления делятся на регулировочные и подстроечные.

Если у постоянного резистора два вывода, то у переменного (регулировочного и подстроечного) три. Средний вывод – это движок, который перемещают выступающей наружу корпуса ручкой (осью).

Регулировочным резистором пользуются сравнительно часто, например, для регулирования громкости звука. Подстроечным же резистором подбирают какой-то режим конструкции либо при налаживании. Ручка (ось) его движка короткая, рассчитанная на регулировку отверткой.

На схемах указывают сопротивление между крайними выводами переменного резистора, сопротивления же между средним и крайним изменяется при вращении выступающей наружу оси резистора.

Наиболее часто в конструкциях используют регулировочные резисторы СП (сопротивление переменное), СПО (сопротивление переменное объемное). Мощность переменных резисторов на схеме не ставится. Большинство переменных резисторов общего назначения относится к композиционным непроволочным резисторам. Может быть одинарная или спаренная конструкция, с выключателем или без него, с экраном или без экрана и т.д.

 


Рекомендуемые страницы:

poisk-ru.ru

Лекция №2- Резисторы,конденсаторы

Резистор — элемент электрической цепи, играющий роль активного сопротивления электрическому току. В электронной аппаратуре используются для создания необходимого режима работы активных и нелинейных элементов схемы. Дискретные резисторы (оформленные в виде отдельных деталей) классифицируются по назначению, виду вольт – амперной характеристики, по способу монтажа, характеру изменения сопротивления в зависимости от окружающей температуры, конструкции, материала, технологии изготовления.

С практической точки зрения, наиболее важные параметры обычного резистора – это номинальная величина его сопротивления, и номинальная тепловая мощность, рассеиваемая длительное время, без значительных измененений характеристик и целостности конструкции.

В России приняты следующие принципы графические обозначения резисторов на схемах: 

 

Классификация резисторов.

Резисторы, как и некоторые другие элементы электроники, можно разделить по назначению на две группы. 
1. Резисторы общего назначения. 
Основная масса выпускаемых в мире радиодеталей – это резисторы общего назначения. Электронные схемы подавляющего большинства бытовых устройств широкого употребления (компьютеров, телевизоров, муз.центров и. т. д.), собраны с использованием таких резисторов. Резисторы одного и того же номинала, имеют разброс сопротивлений. Значение возможного отклонения от номинала указывается в процентах и называется – точностью. Резисторы общего назначения изготавливаются с точностью ±20 %, ±10 %, ±5 %.

2. Резисторы специального назначения – применяются в электронных схемах малосерийного и уникального промышленного оборудования, оборудования для научных лабораторий, в космической и военной областях. Это высокоомные резисторы, с величиной сопротивления до десятков Гом, высоковольтные – расcчитанные для работы с напряжениями порядка десятков киловольт, прецизионные – с точностью номинала до сотых процента.
Высокочастотные резисторы имеют очень малые значения собственной индуктивности и емкости, применяются для оборудования, работающего на частотах свыше 1 Ггерц.

Постоянные резисторы.

Название – постоянные резисторы, говорит за себя – значение их номинального сопротивления не изменяется(не должно меняться) в течении их эксплуатации.
Конструкция и материалы.
1. Проволочные резисторы – состоят конструктивно из провода, изготовленного из металла или сплава высокого удельного сопротвления, намотанного на каркас, как правило – керамический. Недостаток таких резисторов – довольно большая собственная индуктивность, достоинство- высокая точность номинала. 

Плёночные металлические резисторы – изготавливаются напылением металла с высоким удельным сопротивлением на керамическое основание. 
Является наиболее распространённым типом резисторов.

Угольные резисторы. Бывают плёночными и объёмными. Используют высокое удельное сопротивление графита.

Интегральный резистор – полупроводниковый. В зависимости от степени легирования, полупроводники способны изменять величину удельного сопротивления в весьма широких пределах.
Основной недостаток таких резисторов – большая нелинейность вольт-амперной характеристики.
Используются в составе интегральных микросхем, где применить другие типы резисторов невозможно или не технологично.

Переменные резисторы.

Конструктивно, переменные резисторы состоят из токопроводящей поверхности с двумя омическими контактами, по сути – открытого плоскостного постоянного резистора, проволочного или угольного, и скользящего по ней контакта – токосъемника.

Величину электрического сопротивления переменного резистора можно плавно изменять, от нуля, до номинального значения. Это достигается за счет перемещения скользящего контакта по токопроводящей поверхности.

На рисунке ниже, изображен переменный резистор без задней крышки и его схемное обозначение.

Предназначение подстроечных резисторов – точная настройка режимов работы электронных устройств. Причем, положение настройки как правило, не изменяется в течении всего дальнейшего срока эксплуатации устройства. Поэтому, устройство привода перемещения скользящего контакта приспособлено для регулирования с помощью отвертки, а к прочности проводящего слоя не прилагается особых требований.

Регулировочные резисторы предназначенны для регулярного применения – например, для изменения уровня громкости звуковоспроводящих устройств.
Их механические свойства должны соответствовать особым требованиям – проводящий слой, по которому скользит токосьемник должен отличаться особой устойчивостью к механическому воздействию. Привод для перемещения скользящего контакта снабжается удлиненной ручкой, для большего удобства в эксплуатации.

Существуют определенные числовые ряды, согласно которым в массовом производстве устанавливаются значения сопротивления. Ряд Е6 1,0  1,5  2,2  3,3  4,7  6,8. 
Первые две цифры номинала резистора ряда Е6 выбираются из этих чисел. Резистор этого ряда может быть например, 2,2 кОма или 22 Ома, или 2,2 мОма. 
Используют также ряды Е12 и Е24. Ряд Е12 – 1,0  1,2  1,5  1,8  2,2  2,7  3,3  3,9  4,7  5,6  6,8  8,2 
Ряд Е24 – 1,0  1,1  1,2  1,3   1,5  1,6  1,8  2,0  2,2  2,4 2,7  3,0  3,3  3,6  3,9  4,3  4,7  5,1  5,6  6,2  6,8  7,5  8,2  9,1
Резисторы, выпускаемые промышленностью характеризуются также определённым значением максимальной рассеиваемой мощности (выпускаются резисторы мощностью 0,125Вт 0,25Вт 0,5Вт ,1Вт ,2Вт ,5Вт)

Число-буквенная маркировка резисторов

При указании значения сопротивления резистора вместо десятичной запятой пишут букву, соответствующую единицам измерения (К — для килоомов, М — для мегаомов, E или R для единиц Ом).При этом, любой номинал отображается максимум – тремя символами. Например 5K6 обозначает резистор, сопротивлением 5,6 кОм, 1R0 — 1 Ом, М210 – 210кОм (0,21МОм) и т. д.

Резисторы с цветовой маркировкой.

Считается,что применение цветовой маркировки имеет ряд преимуществ, по сравнению с цифро-буквенной. Легче наносить номиналы на резисторы особо миниатюрного размера, внедрить автоматизацию сборки и. т. д. По личному мнению автора, если нужно узнать только сопротивление такого резистора, можно просто померить его, с помощью мультиметра (рекомендую).
Но цветовая маркировка кроме номинального сопротивления резистора, содержит в себе и другую информацию.
Итак: В первую очередь, необходимо определить – с какого конца резистора вести отсчет полосок. В резисторах советского образца первая полоска смещена ближе к краю. В современных резисторах с четырехполосной маркировкой, серебряная или золотая полоска расположена в конце ряда, обозначая соответственно – точность,10% или 5%.

Для резисторов с точностью 20 % используют маркировку с тремя полосками, Для очень точных резисторов применяется маркировка с пятью или шестью полосками. Первые две полоски означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает множитель, на который умножается число, состоящее из двух цифр, указанное первыми двумя полосками.

Если полосок 4, последняя указывает точность резистора. Если полосок 5, первые три полоски означают первые три знака номинала сопротивления, четвёртая — десятичный множитель, пятая — точность.

Если есть шестая полоска, то она может указывать либо температурный коэффициент либо – надежность резистора в процентах на тысячу часов работы. В последнем случае, она должна быть заметно шире остальных пяти полосок. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (% отказов на 1000 часов работы)

 

Цветовая кодировка резисторов

 

Цветкак числокак десятичный множителькак точность в %как ТКС в ppm/°Cкак % отказов
серебристый«0,01»±10
золотой«0,1»±5
чёрный01
коричневый1«10»±11001 %
красный2«100»±2500,1 %
оранжевый3«1000»150,01 %
жёлтый4«10 000»250,001 %
зелёный5«100 000»±0,5
синий6«1 000 000»±0,2510
фиолетовый7«10 000 000»±0,15
серый8«100 000 000»
белый9«1 000 000 000»1
отсутствует±20 %

Например,если резистор промаркирован четырью полосами:

красная, чёрная, красная и серебряная,

то первые две полоски означают 20,

третья 100,

четвёртая означает точность – 10 %.

Значит сопротивление резистора 20·100 Ом =2 кОм, точность ±10 %.

 

 

 

 

Электрические конденсаторы служат для накопления электроэнергии. Простейший конденсатор состоит из двух металлических пластин – обкладок и диэлектрика находящегося между ними. Если к конденсатору подключить источник питания, то на обкладках возникнут разноименные заряды и появится электрическое поле притягивающее их на встречу, друг к другу. Эти заряды остаются после отключения источника питания, энергия сохраняется в электрическом поле между обкладками.

 

 

Емкость конденсатора зависит от площади обкладок, расстояния между ними, а также величины электрической проницаемости диэлектрика, расположенного между ними – свойства присущего любому диэлектрику. Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:

C= e0*S/d

e0 – это величина электрической проницаемости диэлектрика, расположенного между обкладками.
S – площадь одной из обкладок(в метрах).
d – расстояние между обкладками(в метрах).
C – величина емкости в фарадах.

Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.
1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады: 
1 Микрофарада – одна миллионная часть фарады.10-6 
1 нанофарада – одна миллиардная часть фарады. 10-9 
1 пикофарада -10 -12 фарады.

На электрической схеме конденсаторы обозначаются в виде двух стилизованных обкладок.

Таким образом обозначаются подстроечные конденсаторы и конденсаторы переменной емкости.

Конструкция этих приборов позволяет им плавно изменять емкость, путем механического изменения расстояния между обкладками.
Отличие их между собой в том, что переменные конденсаторы предназначены для многократного изменения емкости в ходе работы устройств а подстроечные – для однократной настройки, в ходе первоначальной наладки.

Конденсаторы применяются для сглаживания пульсаций, как средство межкаскадной связи в усилителях переменных сигналов, фильтрации помех, настройки колебательных контуров, в качестве аварийных источников питания и. т. д. Электрические характеристики конденсаторов зависят от их конструкции и свойств применяемых материалов.

Выбирая конденсаторы для разработки конкретного устройства необходимо учитывать следующие параметры:
а) Требуемое значение емкости конденсатора (мкФ, нФ, пФ). 
б) Рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров). 
в) Требуемую точность (возможный разброс значений емкости конденсатора). 
г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды), 
д) стабильность конденсатора, 
е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре. (Может быть указано сопротивление диэлектрика конденсатора.) 

В табл. 1 – 3 приведены основные характеристики конденсаторов различных типов.

Таблица 1.
Характеристики керамических, электролитических конденсаторов и конденсаторов на основе металлизированной пленки.

Параметр конденсатораТип конденсатора
КерамическийЭлектролитическийНа основе металлизированной пленки
Диапазон изменения емкости конденсаторовОт 2,2 пФ до 10 нФОт 100 нФ до 68000 мкФ1 мкФ до 16 мкФ
Точность (возможный разброс значений емкости конденсатора), %± 10 и ±20±10 и ±50±20
Рабочее напряжение конденсаторов, В50 – 2506,3 – 400250 – 600
Стабильность конденсатораДостаточнаяПлохаяДостаточная
Диапазон изменения температуры окружающей среды, оСОт -85 до +85От -40 до +85От -25 до +85

В керамических конденсаторах диэлектриком является высококачественная керамика: ультрафарфор,тиконд,ультрастеатит и др. Обкладкой служит слой серебра, нанесенный на поверхность. Керамические конденсаторы применяются в разделительных цепях усилителей высокой частоты.

 

 

В электролитических полярных конденсаторах диэлектриком служит слой оксида, нанесенный на металлическую фольгу. Другая обкладка образуется из пропитанной электролитом бумажной ленты.

 

 

Электролитические конденсаторы отличаются большой емкостью, при относительно малых размерах. Эта их особенность определяется тем, что толщина оксида – диэлектрика очень мала.

При включении электролитических конденсаторов в цепь, необходимо соблюдать полярность. В случае нарушения полярности, такие конденсаторы взрываются. Что бы полностью избежать возможности взрыва, некоторые модели снабжаются предохранительными клапанами. Область применения электролитических конденсаторов – разделительные цепи усилителей звуковой частоты, сглаживающие фильтры источников питания постоянного тока.

Конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

 

Таблица 2. 
Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена.

Параметр конденсатораТип конденсатора
СлюдянойНа основе полиэстераНа основе полипропилена
Диапазон изменения емкости конденсаторовОт 2,2 пФ до 10 нФОт 10 нФ до 2,2 мкФОт 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), %± 1± 20± 20
Рабочее напряжение конденсаторов, В3502501000
Стабильность конденсатораОтличнаяХорошаяХорошая
Диапазон изменения температуры окружающей среды, оСОт -40 до +85От -40 до +100От -55 до +100

Слюдяные конденсаторы изготавливаются путем прокладывания между обкладками из фольги слюдяных пластин, или наоборот – металлизацией слюдяных пластин. Слюдяные конденсаторы находят применение в звуковоспроизводящих устройствах, фильтрах высокочастотных помех и генераторах. Конденсаторы на основе полиэстера – это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

 

 

Таблица 3.
Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала.

 

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторовОт 10 нФ до 10 мкФОт 10 пФ до 10 нФОт 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), %± 20± 2,5± 20
Рабочее напряжение конденсаторов, В63 – 6301606,3 – 35
Стабильность конденсатораОтличнаяХорошаяДостаточная
Диапазон изменения температуры окружающей среды, оСОт -55 до +100От -40 до +70От -55 до +85

Конденсаторы на основе поликарбоната используются в фильтрах, генераторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются тоже, во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения. 
В металлобумажных конденсаторах общего назначения, обкладки изготавливаются путем напыления металла на бумагу пропитанную специальным составом и покрытые тонким слоем лака.

 


Небольшие замечания и советы по работе с конденсаторами.

Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности.

Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике.

Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм.

Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.

 

Численно – буквенные обозначения конденсаторов.

На корпусе большинства конденсаторов написаны их номинальные емкость и напряжение. Иногда, конденсаторы маркируются надписью в две строки. На первой обозначается емкость и точность, на второй – допустимое рабочее напряжение и код материала. На корпусах некоторых керамических конденсаторов можно увидеть код, состоящий из трех цифр. Причем, последняя цифра показывает, сколько нужно нулей добавить к первым двум, чтобы получить емкость в пикофарадах. Например, если мы видим такие цифры – 233. Это означает, что его емкость – 23000 пикофарад.

Обозначения конденсаторов


В последнее время, очень часто применяется цветовая кодировка номиналов.

Цветовая кодировка керамических конденсаторов.

На корпусе конденсатора, слева – направо, или сверху – низ наносятся цветные полоски. Как правило, номинал емкости оказывается закодирован первыми тремя полосками. 
Каждому цвету, в первых двух полосках,соответствует своя цифра:
черный – цифра 0; 
коричневый – 1; 
красный – 2; 
оранжевый – 3; 
желтый – 4; 
зеленый – 5; 
голубой – 6; 
фиолетовый – 7; 
серый – 8; 
белый – 9. 
Таким образом, если например, первая полоска коричневая а вторая желтая, то это соответствует числу -14. Но это число не будет величиной номинальной емкости конденсатора, его еще необходимо умножить на множитель, закодированный третьей полоской.

В третьей полоске цвета имеют следующие значение: 
оранжевый – 1000; 
желтый – 10000; 
зеленый – 100000. 
Допустим, что цвет третьей полоски нашего конденсатора – желтый. Умножаем 14 на 10000, получаем емкость в пикофарадах -140000, иначе, 140 нанофарад или 0,14 микрофарад. Четвертая полоска обозначает допустимые отклонения от номинала емкости(точность), в процентах: 
белый – ± 10 %; 
черный – ± 20%. 
Пятая полоска – номинальное рабочее напряжение. Красный цвет – 250 Вольт, желтый – 400.

Цветовая кодировка электролитических конденсаторов.

Что касается малогабаритных электролитических конденсаторов, то их номинальная емкость кодируется с помощью двух полосок и одного цветового пятна. Первая и вторая полоска определяет число, а пятно – множитель. Цветовая кодировка первых двух полосок у электролитических конденсаторов полностью соответствует маркировке конденсаторов керамических. Необходимо учитывать, лишь то, что величина емкости у “электролитов” получается в микрофарадах, а не пикофарадах как у керамических конденсаторов. Цвета пятна, означающего множитель: 
черный – 1; 
коричневый – 10; 
красный – 100; 
серый – 0,01; 
белый – 0,1; 
Например, цвет первой полоски голубой( цифра 6), второй – оранжевый( цифра 3), при коричневом цвете пятна( множитель – 10). Это означает 63*10= 630 микрофарада. Если у электролитического конденсатора присутствует третья полоска, то она определяет его номинальное напряжение: 
белый цвет – 3 вольта; 
желтый – 6,3 вольт; 
черный – 10 вольт; 
зеленый – 16 вольт; 
голубой – 20 вольт; 
серый – 25 вольт; 
розовый – 35 вольт. 

 

 

Как работает дроссель.

 

В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели – индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества – значительная экономия электроэнергии и отсутствие сильного нагрева.

Каково устройство дросселя, на чем основан принцип его работы? 
Устроен дроссель очень просто – это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум – латинское название железа), в том или ином количестве.

Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам –индуктивности. Это явление легче всего понять, поставив несложный опыт.
Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).

Без дросселя, схема будет работать как обычно – цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.
Присмотревшись, можно заметить, что во первых, лампа загорается не сразу, а с некоторой задержкой, во вторых – при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит потому что, в момент включения ток в цепи возрастает не сразу – этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют – индуктивностью.

Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности – 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется – Э.Д.С. самоиндукции.

Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель – не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.

Графически это выглядит таким образом. 

Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется – возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется – реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого – магнитной проницаемостью, а так же его формы.

Магнитная проницаемость – число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале – в вакууме.) 
Т. е – магнитная проницаемость вакуума принята за еденицу.

В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1. 
В электромагнитах реле – сердечники подковоообразной и цилиндрической формы из специальных сталей.

Для намотки дросселей и трансформаторов используют замкнутые сердечники – магнитопроводы Ш – образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц – различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.

У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

Как работает трансформатор.

Рассмотрим работу дросселя собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно – нет.

Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться – перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее – номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить – наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной, а обмотка, с которой трансформированое напряжение снимается – вторичной.

 

Отношение числа витков вторичной(Np) и первичной (Ns) обмоток равно отношению соответствующих им напряжений – Up(напряжение первичной обмотки) и Us(напряжение вторичной обмотки).

 

 

Таким образом, устройство состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока можно использовать для изменения питающего напряжения – трансформации. Соответственно, оно так и называется – трансформатор.

Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток(Is). Это вызовет пропорциональное увеличение тока(Ip) и в первичной обмотке. Будет верным соотношение:

 

 

Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов. При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:
1. Допустимые токи и напряжения для первичной и вторичной обмоток.
2. Максимальную мощность трансформатора – мощность которая может длительное время передаваться через него, не вызывая перегрева обмоток. 
3. Диапазон рабочих частот трансформатора.

Параллельный колебательный контур.

Если соединить катушку индуктивности и конденсатор – получится очень интересный элемент радиотехники – колебательный контур. Если зарядить конденсатор или навести в катушке Э.Д.С., используя электромагнитное поле – в контуре начнут происходить следующие процессы: Конденсатор разряжаясь, возбуждает электромагнитное поле в катушке индуктивности. Когда заряд истощается, катушка индуктивности возвращает запасенную энергию обратно в конденсатор, но уже с противоположным знаком, за счет Э.Д.С. самоиндукции. Это будет повторяться снова и снова – в контуре возникнут электромагнитные колебания синусоидальной формы. Частота этих колебаний называется резонансной частотой контура, и зависит от величин емкости конденсатора(С), и индуктивности катушки (L).

Параллельный колебательный контур обладает очень большим сопротивлением на своей резонансной частоте. Это позволяет использовать его для частотной селекции(выделения) в входных цепях радиоаппаратуры и усилителях промежуточной частоты, а так же – в различных схемах задающих генераторов.

 

1-el.umi.ru

Добавить комментарий

Ваш адрес email не будет опубликован.