Содержание

Датчики присутствия для включения света своими руками

Датчики присутствия для включения света собственноручно

Кратко о датчиках

Датчики присутствия для включения света — одним из самых простых датчиков движения является концевой выключатель вмонтированный проем двери. Так же и принцип его работы не сложный — срабатывает, когда дверь открывается или закрывается. Довольно простенькая схема используется в холодильнике, в домашнем баре, которая при открывании двери включает освещение. Эту конструкцию можно применить в подсобном помещении, в прихожей квартиры, на входной двери подъезда. По этой аналогии можно изготовить «дежурку» выполненную на светодиодах, используя такой «концевик» либо сигнализацию, которая будет предупреждать при срабатывании.

Именно такие приборы, состоящие из электромеханического устройства геркона и магнита сейчас устанавливают в помещениях находящихся под охраной. Тем не менее это устройство имеет свое слабое звено — узко направленное применение. Если потребуется контролировать большие внешние территории, крупные помещения, то от них пользы не будет никакой. Что касается проходов открытого типа, то для них существуют приборы способные реагировать на любые изменения вокруг. В число таких датчиков входят фотореле, емкостные датчики, тепловые извещатели, а также акустическое реле.

Для контроля перемещения на определенном пространстве применяются датчики присутствия для включения света не только промышленного производства, но и изготовленные собственноручно. Широко используются фото приборы, устройства оценки эхо-сигналов, звуковые сигнализаторы. Они отлично справляются с работой оповещения при движении объекта в радиусе действия приборов. Принципиальная основа функционирования таких приборов заключается в создании импульсного сигнала и его фиксирование в момент отражения от предмета. В момент поступления импульса в такую область контроля, меняются свойства отражающего сигнала, и обнаружитель создает управляющий сигнал в выходной цепи.

Ниже показана принципиальная схема функционирования светочувствительного автомата и акустического реле:

Двери открывающиеся в автоматизированном режиме, акустические сигнализаторы, караульная спец сигнализация, и многая другая техника, точно фиксирующая позицию предмета.

В частности, примечательно было бы оборудовать датчиком присутствия ваше зеркало с эффектом светодиодной подсветки. Подключение иллюминации будет выполняться только в то время, когда вы приблизитесь к зеркалу. Кстати, такую схему можно собрать собственными руками в домашних условиях.

Принципиальные схемы устройств

Микроволновый прибор

Одним из самых востребованных сигнализаторов считаются датчики присутствия для включения света, прекрасно подходят для наблюдения за открытым пространством. Для этих же целей существует еще не менее эффективное устройство — емкостной датчик. Особенность действия этого прибора состоит в определении коэффициента трансформации радиоволн. Наверное многие из вас когда-либо подмечали в действии такой эффект. В момент приближения к включенному радиоприемнику появляется фоновый шум и он начинает уходить с настроенной волны. Если есть желание повторить схему датчика движения работающего по микроволновому принципу, то абзац размещенный ниже это для вас. Основой такого волнового уловителя является генератор сверхвысокочастотных колебаний и специализированная антенна.

Ниже описан метод изготовления датчика движения микроволнового типа с рабочей принципиальной схемой, в создании которой нет ничего сложного. Полевой транзистор КП306 VT1 выполняет роль генератора высоких частот, а также выполняет функции радиоприёмника. Выпрямительный диод VD1 используется для детектирования сигнала, направляя напряжение смещения на базовый переход транзистора VT2. Специфика трансформатора Т1 предусматривает работу каждой из обмоток на разных частотах.

В исходном положении, при котором на антенну нет внешнего влияния емкости, размах амплитуды симметрично уравновешиваются и на диоде VD1 отсутствует напряжение. Когда меняется частота, тогда происходит сложение амплитуд и диод выполняет их преобразование, в это время переходы транзистора VT2 переходят в открытое состояние. Для быстрого сравнивания значений двух сигналов друг с другом, в схеме предусмотрен компаратор, собранный на тиристоре VS1. Его основное назначение — управлять реле, рассчитанного на напряжение питания 12v.

Далее также показана проверенная схема реле присутствия, реализованная на недорогих электронных элементах. На ее основе можно собственноручно изготовить качественный волновой уловитель движения. А возможно кто-то найдет ему другое применение или просто использует для знакомства с прибором.

Тепловой датчик присутствия

Пироэлектрический инфракрасный сенсор движения входит в разряд самых распространенных тепловых датчиков применяемых в различных отраслях хозяйства. Его популярность обусловлено доступностью комплектующих, простотой изготовления и настройки, гарантированно широким диапазоном температурной составляющей.

Немало таких готовых приборов имеются в продаже. В основном такие сенсоры устанавливаются в светильники, приборы сигнализации и ряд других контроллеров. Тем не менее, доступная для изготовления схема в домашних условиях показана ниже:

Специализированный тепловой уловитель В1 и фотоэлемент VD1 образовывают комплекс автоматического управления световым излучением. Прибор сразу включается в работу как только начинает темнеть. За настройку параметра внешней освещенности отвечает подстроечный резистор R2. Сенсор срабатывает, как только движущий объект попадает в зону действия датчика. Контроль за временем действия прибора выполняется за счет интегрированного таймера, установка значений выставляется переменным резистором R5.

usilitelstabo.ru

Емкостной сенсорный датчик, электрическая схема, печатная плата

Емкостной датчик – это один из типов бесконтактных датчиков, принцип работы которого основан на изменении диэлектрической проницаемости среды между двух обкладок конденсатора. Одной обкладкой служит сенсорный датчик схемы в виде металлической пластины или провода, а второй – электропроводящее вещество, например, металл, вода или тело человека.

При разработке системы автоматического включения подачи воды в унитаз для биде возникла необходимость применения емкостного датчика присутствия и выключателя, обладающих высокой надежностью, устойчивостью к изменению внешней температуры, влажности, пыли и питающему напряжению. Хотелось также исключить необходимость прикосновения человека с органами управления системы. Предъявляемые требования могли обеспечить только схемы сенсорных датчиков, работающих на принципе изменения емкости. Готовой схемы удовлетворяющей необходимым требованиям не нашел, пришлось разработать самостоятельно.

Получился универсальный емкостной сенсорный датчик, который не требует настройки и реагирует на приближающиеся электропроводящие предметы, в том числе и человека, на расстояние до 5 см. Область применения предлагаемого сенсорного датчика не ограничена. Его можно применять, например, для включения освещения, систем охранной сигнализации, определения уровня воды и в многих других случаях.

Электрические принципиальные схемы

Для управления подачей воды в биде унитаза понадобилось два емкостных сенсорных датчика. Один датчик нужно было установить непосредственно на унитазе, он должен был выдавать сигнал логического нуля при присутствии человека, а при отсутствии сигнал логической единицы. Второй емкостной датчик должен был служить включателем воды и находиться в одном из двух логических состояний.

При поднесении к сенсору руки датчик должен был менять логическое состояние на выходе – из исходного единичного состояния переходить в состояние логического нуля, при повторном прикосновении руки из нулевого состояния переходить в состояние логической единицы. И так до бесконечности, пока на сенсорный включатель поступает разрешающий сигнал логического нуля с сенсорного датчика присутствия.

Схема емкостного сенсорного датчика

Основой схемы емкостного сенсорного датчика присутствия является задающий генератор прямоугольных импульсов, выполненный по классической схеме на двух логических элементах микросхемы D1.1 и D1.2. Частота генератора определяется номиналами элементов R1 и C1 и выбрана около 50 кГц. Значение частоты на работу емкостного датчика практически не влияет. Я менял частоту от 20 до 200 кГц и влияния на работу устройства визуально не заметил.

С 4 вывода микросхемы D1.2 сигнал прямоугольной формы через резистор R2 поступает на входы 8, 9 микросхемы D1.3 и через переменный резистор R3 на входы 12,13 D1.4. На вход микросхемы D1.3 сигнал поступает с небольшим изменением наклона фронта импульсов из-за установленного датчика, представляющего собой кусок провода или металлическую пластину. На входе D1.4, из за конденсатора С2, фронт изменяется на время, необходимое для его перезаряда. Благодаря наличию подстроечного резистора R3, есть возможность фронты импульса на входе D1.4, выставить равным фронту импульса на входе D1.3.

Если приблизить к антенне (сенсорному датчику) руку или металлический предмет, то емкость на входе микросхемы DD1.3 увеличится и фронт поступающего импульса задержатся во времени, относительно фронта импульса, поступающего на вход DD1.4. чтобы «уловить» эту задержку про инвертированные импульсы подаются на микросхему DD2.1, представляющую собой D триггер, работающий следующим образом. По положительному фронту импульса, поступающего на вход микросхемы C, на выход триггера передается сигнал, который в тот момент был на входе D. Следовательно, если сигнал на входе D не изменяется, поступающие импульсы на счетный вход C не оказывают влияния на уровень выходного сигнала. Это свойство D триггера и позволило сделать простой емкостной сенсорный датчик.

Когда емкость антенны, из за приближения к ней тела человека, на входе DD1.3 увеличивается, импульс задерживается и это фиксирует D триггер, изменяя свое выходное состояние. Светодиод HL1 служит для индикации наличия питающего напряжения, а HL2 для индикации приближения к сенсорному датчику.

Схема сенсорного включателя

Схему емкостного сенсорного датчика можно использовать и для работы сенсорного включателя, но с небольшой доработкой, так как ему необходимо не только реагировать на приближение тела человека, но и оставаться в установившемся состоянии после удаления руки. Для решения этой задачи пришлось к выходу сенсорного датчика добавить еще один D триггер, DD2.2, включенный по схеме делителя на два.

Схема емкостного датчика была немного доработана. Для исключения ложных срабатываний, так как человек может подносить и удалять руку медленно, из-за наличия помех датчик может выдавать на счетный вход D триггера несколько импульсов, нарушая необходимый алгоритм работы включателя. Поэтому была добавлена RC цепочка из элементов R4 и C5, которая на небольшое время блокировала возможность переключение D триггера.

Триггер DD2.2 работает так же, как и DD2.1, но сигнал на вход D подается не с других элементов, а с инверсного выхода DD2.2. В результате по положительному фронту импульса, приходящего на вход С сигнал на входе D изменяется на противоположный. Например, если в исходном состоянии на выводе 13 был логический ноль, то поднеся руку к сенсору один раз, триггер переключится и на выводе 13 установится логическая единица. При следующем воздействии на сенсор, на выводе 13 опять установится логический ноль.

Для блокировки включателя при отсутствии человека на унитазе, с сенсора на вход R (установка нуля на выходе триггера вне зависимости от сигналов на всех остальных его входах) микросхемы DD2.2 подается логическая единица. На выходе емкостного выключателя устанавливается логический ноль, который по жгуту подается на базу ключевого транзистора включения электромагнитного клапана в Блоке питания и коммутации.

Резистор R6, при отсутствии блокирующего сигнала с емкостного датчика в случае его отказа или обрыва управляющего провода, блокирует триггер по входу R, тем самым исключает возможность самопроизвольной подачи воды в биде. Конденсатор С6 защищает вход R от помех. Светодиод HL3 служит для индикации подачи воды в биде.

Конструкция и детали емкостных сенсорных датчиков

Когда я начал разрабатывать сенсорную систему подачи воды в биде, то наиболее трудной задачей мне казалась разработка емкостного датчика присутствия. Обусловлено это было рядом ограничений по установке и эксплуатации. Не хотелось, чтобы датчик был механически связан с крышкой унитаза, так как ее периодически надо снимать для мойки, и не мешал при санитарной обработке самого унитаза. Поэтому и выбрал в качестве реагирующего элемента емкость.

Сенсорного датчика присутствия

По выше опубликованной схеме сделал опытный образец. Детали емкостного датчика собраны на печатной плате, плата размещена в пластмассовой коробке и закрывается крышкой. Для подключения антенны в корпусе установлен одноштырьковый разъем, для подачи питающего напряжения и сигнала установлен четырех контактный разъем РШ2Н. Соединена печатная плата с разъемами пайкой медными проводниками в фторопластовой изоляции.

Сенсорный емкостной датчик собран на двух микросхемах КР561 серии, ЛЕ5 и ТМ2. Вместо микросхемы КР561ЛЕ5 можно применить КР561ЛА7. Подойдут и микросхемы 176 серии, импортные аналоги. Резисторы, конденсаторы и светодиоды подойдут любого типа. Конденсатор С2, для стабильной работы емкостного датчика при эксплуатации в условиях больших колебаниях температуры окружающей среды нужно брать с малым ТКЕ.

Установлен датчик под площадкой унитаза, на которой установлен сливной бачек в месте, куда в случае протечки из бачка вода попасть не сможет. К унитазу корпус датчика приклеен с помощью двустороннего скотча.

Антенный датчик емкостного сенсора представляет собой отрезок медного многожильного провода длинной 35 см в изоляции из фторопласта, приклеенного с помощью прозрачного скотча к внешней стенке чаши унитаза на сантиметр ниже плоскости очка. На фотографии сенсор хорошо виден.

Для настойки чувствительности сенсорного датчика необходимо после его установки на унитаз, изменяя сопротивление подстроечного резистора R3 добиться, чтобы светодиод HL2 погас. Далее положить руку на крышку унитаза над местом нахождения сенсора, светодиод HL2 должен загораться, если руку убрать, потухнуть. Так как бедро человека по массе больше руки, то при эксплуатации сенсорный датчик, после такой настройки, будет работать гарантировано.

Конструкция и детали емкостного сенсорного включателя

Схема емкостного сенсорного включателя имеет больше деталей и для их размещения понадобился корпус большего размера, да и по эстетическим соображениям, внешний вид корпуса, в котором был размещен сенсорный датчик присутствия не очень подходил для установки на видном месте. Внимание на себя обратила настенная розетка rj-11 для подключения телефона. По размерам она подходила и имела хороший внешний вид. Удалив из розетки все лишнее, разместил в ней печатную плату емкостного сенсорного выключателя.

Для закрепления печатной платы в основании корпуса была установлена короткая стойка и к ней с помощью винта прикручена печатная плата с деталями сенсорного выключателя.

Датчик емкостного сенсора сделал, приклеив ко дну крышки розетки клеем «Момент» лист латуни, предварительно вырезав в них окошко для светодиодов. При закрывании крышки, пружина (взята от кремневой зажигалки) соприкасается с латунным листом и таким образом обеспечивается электрический контакт между схемой и сенсором.

Крепится емкостной сенсорный включатель на стену с помощью одного самореза. Для этого в корпусе предусмотрено отверстие. Далее устанавливается плата, разъем и закрепляется защелками крышка.

Настройка емкостного выключателя практически не отличается от настройки сенсорного датчика присутствия, описанного выше. Для настойки нужно подать питающее напряжение и резистором отрегулировать, чтобы светодиод HL2 загорался, когда к датчику подносится рука, и гас, при ее удалении. Далее нужно активировать сенсорный датчик и поднести и удалить руку к сенсору выключателя. Должен мигнуть светодиод HL2 и загореться красный светодиод HL3. При удалении руки красный светодиод должен продолжать светиться. При повторном поднесении руки или удалении тела от датчика, светодиод HL3 должен погаснуть, то есть выключить подачу воды в биде.

Универсальная печатная плата

Представленные выше емкостные датчики собраны на печатных платах, несколько отличающихся от печатной платы приведенной ниже на фотографии. Это связано с объединением обеих печатных плат в одну универсальную. Если собирать сенсорный включатель, то необходимо только перерезать дорожку под номером 2. Если собирать сенсорный датчик присутствия, то удаляется дорожка номер 1 и не все элементы устанавливаются.

Не устанавливаются элементы, необходимые для работы сенсорного включателя, но мешающие работе датчика присутствия, R4, С5, R6, С6, HL2 и R4. Вместо R4 и С6 запаиваются проволочные перемычки. Цепочку R4, С5 можно оставить. Она не будет влиять на работу.

Ниже приведен рисунок печатной платы для накатки при использовании термического метода нанесения на фольгу дорожек.

Достаточно распечатать рисунок на глянцевой бумаге или кальке и шаблон готов для изготовления печатной платы.

Безотказная работа емкостных датчиков для сенсорной системы управления подачи воды в биде подтверждена на практике в течении трех лет постоянной эксплуатации. Сбоев в работе не зафиксировано.

Однако хочу заметить, что схема чувствительна к мощным импульсным помехам. Мне приходило письмо о помощи в настройке. Оказалось, что во время отладки схемы рядом находился паяльник с тиристорным регулятором температуры. После выключения паяльника схема заработала.

Еще был такой случай. Емкостной датчик был установлен в светильник, который подключался в одну розетку с холодильником. При его включении свет включался и при повторном выключался. Вопрос был решен подключением светильника в другую розетку.

Приходило письмо об успешном применении описанной схемы емкостного датчика для регулировки уровня воды в накопительном баке из пластика. В нижней и верхней части было приклеено силиконом по датчику, которые управляли включением и выключением электрического насоса.

ydoma.info

СХЕМА ИК ДАТЧИКА

   Схема ИК датчика разрабатывалась для установки включения освещения, при подходе к входным воротам. Схему можно применить в составе охранной сигнализации, включения освещения и т.д. Датчик работает на отражение ИК луча, так-же и на пересечение, режим работы выбирается переключением перемычки S5 (BARRIER). При попадании объекта в зону ИК датчика включается реле. Время задержки включенного состояния, выбирается перемычками S1-S4. Отсчет времени ведется после того, как перестанет срабатывать датчик присутствия. При установки фотодиода ФД-1, датчик срабатывает только в тёмное время суток. За 10 сек. до выключения, звучит звуковой сигнал. Зуммер установлен с внутренним генератором. Если ночной режим не надо - можно элементы R3-R4-ФД1-Т1 не устанавливать.


   В управление ик диодом, транзистор Т2 можно не устанавливать, он служит для повышения мощности ИК сигнала. В архиве прилагаются две прошивки с зуммером за десять секунд перед выключением, и без зуммера, других отличий нет. При изготовлении ИК датчика (в режиме отражения) инфракрасный излучатель и ИК-приёмник надо изолировать друг от друга, если будет засветка - трудно настроить. Рисунок печатной платы показан тут, а сам файл LAY находится в архиве.


Описание работы устройства

   На выводе RB3 (pin 9) каждые 0,5 сек присутствуют пачки импульсов (10 штук) промодулированные частотой 36 кГц для работы TSOP. Эти импульсы должны подаваться на инфракрасный светодиод (от ДУ). Фотоприемник (подключается к выводу RB1, pin 7) принимает сигнал, считает импульсы.

   Кнопка PRESENS только для отладки в Proteus. Ее просто не устанавливать, никаких перемычек не надо. Если кнопка BARRIER разомкнута, выбран режим на отражение. При этом, если количество принятых импульсов совпало с переданным, то включается свет (RA0, pin 17). Если кнопка BARRIER замкнута, выбран режим барьер. Свет в этом случае включается, если количество принятых импульсов равно 0.

   Время включенного света выставляется джамперами на выводах МК (pin 4-7). Отсчет времени ведется после того, как перестанет срабатывать датчик присутствия. Время рассчитывается по следующей формуле:

           Delay = (1 + RB4 + RB5 × 2 + RB6 × 4 + RB7 × 8) × 10, сек.

   Таким образом, минимальное время (все джамперы замкнуты на общий провод, RB4, RB5, RB6, RB7 = 0) составляет 10 сек. С дискретностью 10 сек установкой перемычек можно получить максимальное время (1 + 1 + 1×2 + 1×4 + 1×8) × 10 = 160 сек.

   Если установлен датчик день/ночь (Day), то при замкнутых контактах датчика устройство блокируется.


   Датчик день/ночь должен иметь сопротивление не менее 50 кОм ночью и не более 10 кОм днем. Или где-то в таких пределах, определите экспериментально. Лучше конечно дискретный, включено-выключено. К датчику не будет лишним тоже прицепить конденсатор, можно побольше.


   Если датчик (фоторезистор, фотодиод, фототранзистор и прочее фото) меняет свое сопротивление в указанных мною пределах, то его можно просто подключать к МК. Но лучше с транзистором - так надежнее. R6 не нужен, используется внутренний подтягивающий резистор МК. А R4 и R5 нужно подобрать для питания +5V и в зависимости от фотодатчика, а также от конкретных условий установки. Если проще, то настроить чувствительность. Авторы схемы: Александрович-SOIR (Soir&C.E.A)

   Форум по микроконтроллерам

   Обсудить статью СХЕМА ИК ДАТЧИКА

radioskot.ru

Датчики движения своими руками

Автор: Anbyc

Несколько датчиков движения своими руками.

В этой статье мы начнем путь от самых легких и примитивных схем и закончим более сложными и интересными решениями, но сначала небольшое предисловие.

Если вы читаете эту статью в надежде найти в ней схемы инфракрасных датчиков движения или схемы датчиков, которые достаточно сложно собрать в домашних условиях, то это статья не для вас. Но если вы решили развить свой кругозор и ваш выбор пал на изучение принципов работы датчиков движения, то это статья подходит вам как нельзя лучше.

Самый простой датчик движения который можно придумать – это датчик с применением проволочного резистора, или, как их правильно называть, потенциометрические резистивные преобразователи. Стоит сделать небольшую оговорку, что это не совсем датчик движения, а скорее датчик перемещения и попал в статью лишь благодаря своей простоте.

Предположим, на необходимо зафиксировать линейное передвижение малогабаритного объекта из точки А в точку Б. Тут нам и понадобиться подобный датчик, поскольку применение более сложных датчиков для таких целей просто нецелесообразно.

Рисунок 1:

Как видите все весьма просто, наш объект соединен с движком, который в свою очередь перемещается по резистору, изменяя напряжение на вольтметре. Было бы не совсем справедливо с моей стороны умолчать тот факт, что конструкция, показанная выше, не совсем рабочая. Проблема в том что преобразование линейного перемещения в напряжение происходит не по линейному закону, так как обычно эти датчики подключены к какой – нибудь нагрузке (в этой схеме вместо вольтметра). Но в схеме, показанной на рисунке 2, этот недостаток устранен.

Рисунок 2:

Назначение элементов:
GB1 – источник питания.
R1 – проволочный резистор.
R2 – резистор, который шунтирует верхние плече потенциометра. Зачем? Это вы увидите на рисунке 3.
R3 – сопротивление нагрузки, в качестве нагрузки сюда можно подключить любой тип индикации, начиная с обычных лампочек и заканчивая схемами, способными воспроизводить звуковой сигнал.
V – сюда можно подключить вольтметр.

Рисунок 3:

Красной линией показана кривая преобразования движения в напряжение, если в схеме нет R2. А зеленой, почти прямой линией, показано преобразование с R2.

Теперь обсудим достоинства и недостатки таких датчиков.
+ Сравнительно простые в исполнение.
+ Достаточно точные.

- Требуют небольшой отладки перед использованием. Заключается эта отладка в снятии графика как на рисунке 3 для того, что бы определить качество датчика.

Датчики движения с применением фотоэлементов.

Здесь уже предстоит более сложная, но и интересная работа. Мы пойдем по наиболее простому пути, и для сборки такого датчика придется раздобыть фототранзистор. Его можно спокойно приобрести в магазине или сделать самому, так как это достаточно не сложно. Возьмите транзистор, который имеет корпус как на рисунке 4.

Рисунок 4:

Отпилите верхнею часть корпуса так, что бы на верху образовалось своего рода окно или отделите корпус так, что бы открыть весь кристалл (рисунок 5).

Рисунок 5:

В этом случаи, если на транзистор попадет свет, он будет работать как фототранзистор, но возможно в некоторых случаях будет менее чувствительный.

Теперь нам нужно собрать две достаточно простые схемы. Одна схема будет представлять собой источник света, а другая будет схемой фотоприемника. Начнем с конца.

Рисунок 6:

Назначение элементов:
VT1 – фототранзистор
R1 – резистор, выполняющий две функции: устанавливает рабочую точку и играет роль коллекторной нагрузки. К сожалению его номинал подбирается опытным путем, поэтому наберитесь терпения.
C1 – конденсатор, его назначение будет подробнее описано ниже.
DA1 – операционный усилитель с обратной связью.
R2 – резистор, на котором реализована обратная связь ОУ. Чем больше его наминал, тем больше коэффициент усиления, но стоит помнить: чем больше Кu, тем меньше устойчивость усилителя. Ищите золотую середину.

Схема работает следующим образом. Попадание света на VT1 можно принять за подачу небольшого постоянного напряжения на базу транзистора. Тогда, после попадания луча света на VT1, он откроется, конденсатор С1 зарядится, и в момент, когда свет перестанет падать на транзистор, начнет разряжаться, при этом напряжение в точке А начнет плавно уменьшаться. Отсюда следует, что оно упадет и на выходе. Тогда зачем операционный усилитель? Ведь можно обойтись и без него. Возьмем и сделаем выход не после ОУ, а из точки А. Можно и так, но операционный усилитель усиливает сигнал, снятый в точке А, что бы этот датчик можно было соединить с различными устройствами.

По сути дела, это обычный фотодатчик, можете подумать вы, и я буду вынужден согласиться, но только с одной оговоркой. До тех пор, пока мы не затемним транзистор (окно, пропиленное в крышке VT, надо закрыть темным пропускающим свет материалом, что бы уменьшить влияние обычного освещения) и не поставим напротив него источник света. Тогда у нас появиться оптическая связь, и до тех пор, пока кто то не перекроет луч света, напряжение на выходе второй части датчика не будет меняться. Но как только оптическая связь разорвана, напряжение на выходе почти мгновенно станет равно нулю благодаря операционному усилителю.

Что использовать в качестве излучателя решайте сами, можете поставить простой светодиод, но тогда расстояние до фотоприемника придется сильно сократить. Или поставить обычный красный лазер, сильно выиграв в расстоянии. Хотите, что бы датчик был незаметен? Поставьте ИК диоды.

Так же не забывайте, что на излучатель можно поставить линзу, которая будет фокусировать излучение.

Я не буду приводить схемы излучателя, так как вам достаточно вбить в поисковике фразу: ” Как включить светодиод” и вы получите миллионы схем.

Нам так же необходимо анализировать информацию, полученную с датчика. Для этого добавим к схеме один новый элемент – реле.

Все очень просто: обмотку реле соединяем с нашим входом, на один из контактов подаем напряжение, у меня это 12В. Другой заземляем, а на третий подключаем, например, радиоприемник, как на рисунке 7.

Рисунок 7:

Тогда, пока на датчик падает свет, цепь питания приемника соединена с корпусом и радио молчит, но когда свет не достигает VT1, реле срабатывает и замыкает цепь питания с 12В, рисунок 8.

Рисунок 8:

И тогда наш радиоприемник заработает, таким образом подав вам звуковой сигнал. Вместо радиоприемника может быть все что вам захочется, была бы фантазия.

Важно так же уточнить: если вы решите собрать эту схему и не знакомы с реле, ознакомьтесь с принципом работы и основными параметрами, это знание сильно облегчит настройку датчика.

Перед завершением статьи, пару слов о плюсах и минусах.
+ Простая схема.
+ Возможность анализировать состояния датчика, не переводя аналоговый сигнал в цифровой.
- Сложная система калибровки.



radio-stv.ru

Бесконтактный датчик присутствия - Конструкции простой сложности - Схемы для начинающих

Предлагаю устройство из разряда "электрических фокусов", в основе которого лежит чувствительность полевых транзисторов к статическому электричеству и сетевым наводкам. За основу взята простая схема искателя скрытой проводки на полевом транзисторе, однако проведя ряд экспериментов и немного переработав ее, удалось получить вполне самостоятельный и надежный автомат, реагирующий на изменение электрического поля.

"Голубая мечта" лентяя - автоматизировать быт в доме до такой степени, чтобы все световые, нагревательные, ионизирующие и другие приборы включались автоматически, без воздействия привычных и не оригинальных электрических выключателей. Итак, вы приходите домой после утомительного и "непростого" дня, когда не хочется даже есть, а хочется только прилечь, не спеша подходите к любимому дивану, ложитесь, и, о чудо! Тут же мягким светом загорается бра. Остается взять в руки книжку, включить с помощью ПДУ телевизор или музыкальный центр.

Чтобы воплотить в реальность такие мысли, нужно совсем немного - собрать приведенную на рис.1 простую схему.

Рис.1. Принципиальная схема датчика
К контактам исполнительного реле подключается нагрузка. Фазный изолированный провод "Ф" диаметром 0,8...1 мм располагается "улиткой" из 5...6 витков и закрепляется на внутренней обшивке (стороне) сидения дивана (рис.2).

Рис.2. Схема установки датчика
На расстоянии 5...6 см от него, чуть ниже относительно плоскости кресла (дивана), ближе к полу, располагается антенна WA1 описываемого устройства, а рядом крепится и оно само в неэкранированном корпусе. Когда кто-либо садится (опирается, ложится) на диван, под весом человека он прогибается, и электрическое поле вокруг провода "Ф" приближается к датчику-антенне и улавливается им. В результате включается исполнительное устройство. При прекращении воздействия на диван антенна оказывается вне зоны воздействия электрического поля, реле отключается, бра гаснет.

Антенна представляет собой отрезок металлической спицы для вязания или аналогичной токопроводящей проволоки общей длиной до 20 см загнутый "вопросительным знаком".

Принцип действия устройства. Когда в зоне чувствительности антенны WA1 нет электрических (сетевых) наводок, полевой транзистор VT1 (хорошие результаты получаются с КП1ОЗД) открыт, и шунтирует остальную часть схемы, не давая на базу VT2 достаточного потенциала для открывания. Реле К1 обесточено.

При воздействии электрического поля на затвор VT1 он закрывается, выпрямленный диодной цепочкой и отфильтрованный С1 положительный потенциал поступает на базу VT2, открывает электронный ключ, включает реле и нагрузку. Резистор R2 следует подобрать для стабильного открывания ключа. Как показали опыты, номинал R1 может находится в пределах 100 кОм...5 МОм. Диоды VD1...VD3 - обязательно германиевые (типа Д2, Д9). Конденсатор С1 - типа К50-6, емкостью 50...200 мкФ. Резистор R3 ограничивает ток базы VT2. Вместо КТ312Б можно использовать КТ315 с любым буквенным индексом. Диод VD4 исключает дребезг контактов реле и сглаживает броски обратного тока через К1. Если дребезг контактов до конца устранить не удается, необходимо подключить параллельно реле электролитический конденсатор емкостью не более 50 мкФ в соответствующей полярности.

Налаживание устройства включает в себя подбор расстояния между антенной и фазным проводом, и подбор R2 в указанных пределах. При настройке его нужно заменить на подстроечный резистор сопротивлением 2,2 МОм с последовательно подключенным постоянным резистором на 100 кОм.

При изготовлении устройства следует соблюдать меры электробезопасности (при монтаже и подключении фазного провода) и меры защиты от статического электричества при работе с полевым транзистором. Производить его монтаж и настройку схемы следует, заземлив маломощный паяльник (не более 25 Вт) и надев на руку антистатический заземленный браслет.

Схема работоспособна при напряжении питания 9...12 В. Реле следует подобрать, исходя из этих параметров.

Хорошие результаты достигаются при использовании данного узла на полевом транзисторе в качестве устройства поиска неисправностей в высоковольтных цепях автомобилей.

Такую схему можно применить в качестве бесконтактного датчика-сигнализатора открывания двери (антенна удаляется от фазного провода) или в качестве своеобразного устройства ограничения доступа в какое-либо помещение. В этом случае в тонкую ячейку между замаскированным источником сетевых наводок и антенной устройства вставляют магнитную или металлическую карточку. В последнем случае принцип действия электроники должен быть изменен на обратный (срабатывание реле при прекращении воздействия наводок).

Автор: А.КАШКАРОВ, г. C.-Петербург

cxema.my1.ru

Датчик движения для включения света своими руками

Категория: Монтаж и настройка

Датчик движения для включения света повышает комфортабельность жилища. Он позволяет снизить расход электроэнергии. Такие датчики применяются также для создания охранной зоны. В зависимости от принципа работа подобные конструкции делятся на несколько типов, каждый из которых имеет свои особенности.

Общая информация

Датчик движения – это специальное устройство, которое посредством чувствительных элементов фиксирует присутствует человека или животного и автоматически включает свет. Он устанавливается, в основном, в коридорах и на придомовых территориях. То есть, в местах с относительно высоким потоком людей.

Прежде чем отвечать на вопрос, как сделать датчик движения, необходимо определиться с существующими типами таких устройств. Это оборудование классифицируется по месту установки. Датчики бывают:

  • наружные;
  • внутренние.

Первый тип устройств предъявляется более высокие требования к качеству и виду материала, из которого изготавливается его корпус. Наружные датчики отличаются между собой максимальной зоной охвата. Под последним термином понимается определенный участок территории, движение по которому способен «засечь» сенсор.

Самодельный датчик движения не предъявляет требований к типу осветительного прибора. Однако некоторые специализированные модели необходимо подключать к строго определенным прожекторам.

По механизму работы датчик движения для включения света бывает:

  1. Инфракрасным. Такие устройства реагируют на температуру объекта, попадающего в зону действия сенсора. Инфракрасные датчики в основном используются внутри помещений, так как они отличаются повышенной чувствительностью к изменениям окружающей среды.
  2. Микроволновым. Сенсор регистрирует изменения радиочастот. Он настраивается на определенный диапазон сигналов. В случае появления объекта в зоне «видимости» сенсор регистрирует его присутствие и передает информацию на сигнализатор. Тот включает свет.
  3. Ультразвуковым. Считается наиболее простым устройством для освещения. Эти датчики отличаются надежной конструкцией.

В домашних условиях проще сделать датчик движения своими руками с ультразвуковым или инфракрасным сенсором. К недостатку такого устройства следует отнести то, что оно реагирует на животных.

Условия для установки

Прежде чем создавать собственный датчик движения, необходимо определиться с рядом важных условий. Последние влияют на параметры будущего устройства. К числу таких условий относится:

  1. Выбор места установки. От этого параметра зависит конструкция датчика. В частности, если он используется на улице, то необходимо сделать для него влагостойкий корпус. Место установки также определяет уровень мощности, которым должен обладать сенсор.
  2. Наличие преград. Люстры, деревья и другие объекты мешают прохождению сигнала.

Важно отметить, что инфракрасные сенсоры не срабатывают, если в зоне их «видимости» располагается стекло.

Изготавливаем датчик

Ниже мы рассмотрим схему простого датчика движения, который будет состоять из передатчика, приемника и блока питания для них.

Блок питания

И приёмник и передатчик питаются постоянным стабилизированным напряжением 12-16 В. При этом их суммарное потребление не превышает 50 мА.

Таким образом в качестве блока питания можно использовать любой БП на 12 В, например от старого роутера. Или же можно собрать свой источник по одной из множества схем в интернет. Потребление у нас мизерное, поэтому подойдёт любая.

Передатчик

Передатчик собран на микросхеме NE555. В качестве передающего элемента используется ИК-диод LD274, угол обзора которого составляет 10 градусов, что необходимо учесть при монтаже передатчика.

Приёмник

В качестве чувствительного элемента здесь используется фототранзистор BPW40, а в качестве исполнительного органа – реле BS-115C. Фототранзистор имеет угол обзора 20 градусов, что также следует учесть при монтаже приёмника. Принимая во внимание чувствительность фотоприёмного элемента, расстояние от передатчика до приёмника составит порядка 5 метров, что весьма неплохо.

Заключение

В собранном виде наши приёмник и передатчик будут выглядеть следующим образом:

Остаётся только сделать, чтобы реле приёмника осуществляло коммутацию лампочки, светодиодной ленты или звуковой сигнализации (на ваше усмотрение).

simplelight.info

Датчик присутствия человека - Датчики - Схемы - Принципиальные схемы, статьи, журналы, книги, по электронике

Изображенная на рис. 2.7 электрическая схема, представляет собой чувствительную автономную сигнальную систему. Устройство реагирует в случае приближения человека (или любого другого объекта соответствующих габаритов) к антенне «А» на небольшое расстояние (0,5 м). Разумеется, датчик будет срабатывать (включать нагрузку в анодной цепи тиристора) и при непосредственном контакте с антенной. Чувствительность схемы обеспечена применением во входном каскаде полевого транзистора КП305 (в небольших пределах чувствительность можно регулировать, изменяя режим работы полевого транзистора путем корректировки сопротивления резистора R3). Датчик устройства используется для охраны входной двери. Напряжение питания — 4,5 В (три пальчиковых аккумулятора ААА), однако схема сохраняет работоспособность при падении напряжения до 2,7 В и увеличении напряжения до 5 В. Не рекомендую читателям питать схему от стационарного, да¬же очень стабильного источника напряжения, так как она работоспособна только при автономном режиме питания. Необходимо уделить внимание подбору соответствующего реле К1 для того, чтобы устройство надежно срабатывало и при понижении напряжения. Ток, потребляемый схемой в ждущем режиме, крайне незначителен, составляет 5—8 мА, что обеспечит (установлено практикой) десяти суточный режим беспрерывной работы в режиме ожидания. Датчик реагирует, когда кто-либо подходит слишком близко к антенне, касается дверной ручки или пытается открыть дверь ключом. Чувствительность настолько высока, что сигнализация сработает, даже если взломщик орудует в кожаных или резиновых перчатках. Реле будет включено до тех пор, пока кратковременным размыканием S1 не будет обесточена вся схема. Компактно смонтированное устройство нужно подвесить на внутреннюю сторону двери ближе к дверной ручке или замку (защелке). Элементы схемы монтируются на небольшой монтажной или печатной плате: необходимо следить за тем, чтобы длина проводников и выводов элементов была минимальной (для уменьшения помех, приводящих к возможностям ложного срабатывания), а также обеспечить меры безопасности для полевого транзистора, исключив воздействие на него статического электричества. Для этого следует заземлить жало маломощного паяльника, не будет лишним и применение антистатического заземленного браслета. Вместо К1 можно использовать зуммер от будильника типа «Слава» или аналогичного ему. В качестве Т1 применяется согласующий трансформатор СТ-1А, которым оснащались транзисторные портативные радиоприемники. Устройство компактно в изготовлении, помещается в небольшой диэлектрический не экранированный корпус размерами с мыльницу, за пределы корпуса выводится лишь антенна «А». В корпус размещены: монтажная плата, зуммер (реле), выключатель S1 и элементы питания. Антенна изготавливается из креп¬кой медной проволоки, которую, просунув в торце корпуса, припаивают к точке «А». Она представляет собой изогнутый в виде вопросительного знака (петли) кусок провода общей длиной 60—90 см. Конденсатор С2, при необходимости, нужно более точно подобрать для лучшего согласования с длиной и расположением антенны. Практикой установлено, что система надежно работает в сочетании с деревянными дверьми и установленными на них металлическими токо проводящими замками и защелками. К сожалению, металлические двери экранируют и перегружают маломощный генератор, что исключает их оснащение датчиками присутствия. В качестве транзистора VT2 можно использовать любой мало-мощный транзистор п-р-п структуры.

 Реле К1 на напряжение срабатывания, соответствующее напряжению питания схемы, например герконовое реле РЭС-55, обеспечивает стабильную коммутацию исполнительного устройства при относительно низких напряжениях. Исполнительное устройство (на которое подается питание с помощью контактов реле К1) на схеме не показано, однако подразумевается, что в его качестве радиолюбитель применит подходящую звуковую схему. На полевом транзисторе VT1 собран высокочастотный гене-ратор, частота которого будет изменяться в случае приближения к точке «А» любого крупного предмета, поглощающего ВЧ-излу- чение. Резистор R3 подключен параллельно обмотке обратной связи и регулирует чувствительность. Как действует электрическая схема: в охранном (ждущем) режиме при подаче питания полевой транзистор в сочетании с возбуждающейся обмоткой Т1 генерирует ВЧ-колебания. Со вторичной обмотки Т1 (правая по схеме) колебания выпрямля¬ются диодом VD1, и этот положительный потенциал удержи¬вает транзистор VT2 постоянно открытым. Напряжение «кол¬лектор-эмиттер» транзистора практически равно нулю. А это, в свою очередь, обеспечивает постоянно закрытое состояние тиристора VS1. Антенна в виде металлической петли нагружает (в случае при-ближении объекта к антенне) высокочастотный генератор, его генерация срывается, в результате прекращается подача поло-жительного открывающего напряжения на базу VT2, он закры-вается, а тиристор, наоборот, открывается и включает реле (зум-мер). Так как тиристор запитан от источника постоянного тока, он останется в открытом состоянии до тех пор, пока не разорвут питающую его цепь или не обесточат схему полностью. Этот простой датчик отличают следующие достоинства: пор-тативность, автономность, гальваническая развязка с сетью пере-менного тока, небольшие затраты на сборку и установку. Между тем польза от его применения очевидна, особенно в тех случаях, когда необходимо быстро и незаметно установить систему сигна-лизации.

radiotexno.3dn.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *