Содержание

для чего он нужен? Как узнать, какой резистор нужен?

При создании радиоэлектронных схем применяется множество различных элементов. Одни из наиболее используемых, без которых практически невозможно обойтись, — это резисторы. Что они собой являют? Какие типы есть? Какой их параметр наиболее важен? И какие особенности есть при последовательном и параллельном соединении?

Что такое резистор?

Так называют пассивный элемент электрической цепи, который оказывает сопротивление току во время его протекания. В больших схемах они применяются чаще, чем любой другой элемент электроники. Важным является обеспечение режима смещения транзисторов при использовании в усилительных каскадах. Но наиболее значимой функцией признают контроль и регулирование напряжения и значений токов в электрических цепях. Мы позднее рассмотрим, какие их типы бывают. В рамках статьи будет уделено внимание 5 основным, которые чаще всего используются, но могут быть и другие. Когда проводится расчет резисторов, то обязательно следует оценить, какая необходима мощность.

Хотите понять, что необходимо в конкретном случае?

Как узнать, какой резистор нужен при создании схем? Первоначально следует понять, что обязательным является знание силы тока или значение сопротивления нагрузки. В рамках статьи будет рассмотрено два варианта влияния на характеристики схемы:

1) Если ничего неизвестно, то берём переменный резистор и подключаем его последовательно с нагрузкой. Вращаем регулятор до того момента, пока у нас не будет нужное напряжение. Теперь вместо переменного сопротивления подключаем постоянное с необходимыми параметрами. Измерьте ток, что идёт после резистора и перемножает полученное значение с напряжением, что подаётся. Тогда будем знать, сколько и куда подавать.

2) Необходимо знать ранее указанные величины тока и нагрузки. Для повышения точности вычисления желательно также знать и значение внутреннего сопротивления источника питания.

Давайте смоделируем немного другие условия действий. Есть один резистор в качестве нагрузки, закон Ома и необходимость рассчитать необходимое для цепи сопротивление. Это довольно интересный момент и он заслуживает, чтобы ему было уделено внимание. Почему была выбрана именно такая формулировка? Дело в том, что люди, которые только начинают заниматься созданием схем, очень часто задают такой вопрос. Но, увы, цепь рассуждений, которой они идут, является немного неверной. Рассчитать необходимое значение с одним законом Ома здесь не выйдет. Необходимо дополнительно воспользоваться формулой вычисления добавочного резистора: СДБ = СН(НИП-НН)/НН=СН(х-1). Разберём формулу:

СДБ – сопротивление добавочного резистора;

НИП – напряжение источника питания;

СН – сопротивление нагрузки;

Х = НИП/НН;

НН – напряжение, что нужно получить на нагрузке.

Воспользуемся этой формулой. Допустим, что при сопротивлении в 1 Ом СДБ будет составлять 0,6 Ом. Если мы поставим 5 Ом, то конечный результат будет 3,3 Ом. Почему всё так? Это из-за того, что чем меньший показатель имеет сопротивление нагрузки, тем большая характеристика тока в цепи. При этом будет просаживаться источник питания, ведь он тоже создаёт определённые помехи для прохождения тока. А учитывая, что с этим будет падать и напряжение, то выходит, что нужен добавочный резистор с меньшими характеристиками для получения желаемого напряжения. Это напряжение буквально «на пальцах». Может быть сложно понять, что и как, но вы попробуйте.

Постоянный резистор

Так называют устройства, которые являются обладателями постоянного значения сопротивления. Эта характеристика резистора не меняется под действием внешних воздействий (температуры, протекающего тока, света, приложенного напряжения) в разумных рамках. Если так разобраться, то про все радиоэлементы можно сказать, что у них есть внутренние шумы и нестабильности из-за стороннего влияния. Но обычно это всё настолько ничтожно, что игнорируется любительской радиоэлектроникой и имеет смысл только при создании действительно сложных систем, которые даже не факт, что где-то собираются сейчас.

Переменный резистор

Так называют устройства, значение сопротивления которых можно изменить с помощью специальной ручки (она может быть ползункового, кнопочного или вращающегося типа). Зачем нужен резистор подобного типа? Хорошим примером применения данного элемента является регулятор громкости на звуковых колонках компьютера или мобильного телефона.

Построечный резистор

Так называются устройства, режим работы которых меняется лишь изредка. Чтобы регулировать значения сопротивления, необходимо с помощью отвертки покрутить шлиц, который имеет резистор. Для чего он нужен? Широкое распространение они получили на печатных платах радиосхем в качестве делителя тока или напряжения.

Фоторезистор

Это специальные устройства, которые могут менять значение своего сопротивления под влиянием света. Фоторезисторы производятся из полупроводниковых материалов. Если необходимо реагировать на наличие видимого света, то применяют селенид и сульфид кадмия. Чтобы регистрировать инфракрасное излучение, используют германий.

Терморезистор

Это специальное устройство, с помощью которого можно измерять температуру внешней среды. Терморезистор также используется в цепях термостабилизации для транзисторных каскадов. Как уже можно было догадаться, его сопротивление может меняться под воздействием температуры. В инкубаторах для цыплят, оранжереях, производственных аппаратах — везде можно найти этот резистор. Для чего он нужен? Чтобы при достижении определенной температурной границы включались системы отопления\охлаждения.

Рассеиваемая мощность

Это поглощаемая резистором энергия, которая образовывается током и напряжением. Из-за того, что происходит именно рассеивание, а не сохранение, данное устройство и называется пассивным. Благодаря этому о резисторе можно говорить как об активном элементе, который одинаково может работать в цепях переменного и постоянного токов.

Обозначение мощности рассеивания

Как понять, что может сделать постоянный резистор? Для этого необходимо посмотреть на его обозначение:

  1. Когда есть две косые линии, мощность рассеивания составляет 0,125 Вт.
  2. Есть одна косая линия — мощность рассеивания равняется 0,25 Вт.
  3. Одна горизонтальная линия — мощность рассеивания 0,5 Вт.
  4. Одна вертикальная линия — мощность рассеивания 1 Вт.
  5. Две вертикальные линии — мощность рассеивания 2 Вт.
  6. Две косые линии, что создают латинскую букву V, — мощность рассеивания 5 Вт.

Начиная от одного Ватта, для обозначения используются римские цифры.

Последовательное соединение

Когда имеет смысл применять подобный подход? Если надо получить значительное сопротивление, но есть резисторы с малым номиналом, то используют последовательно соединение. Чтобы оценить, что и как сделано в схеме, то нужно просуммировать их характеристики.

Параллельное соединение

А где необходим такой подход? Здесь общее сопротивление резисторов будет равняться сумме, которая является ему обратно пропорциональной. Эту величину также называют «проводимость». Вам может быть немного сложно понять, о чем автор ведёт речь, поэтому предлагаем взглянуть на такую формулу (С — сопротивление):

1/Собщее=1/С1+1/С2+…+1/Сх.

Применение

Вот мы и поняли, что такое резистор, для чего он нужен. Фото, размещённые в статье, позволяют понять, как он выглядит. Но хочется уделить внимание и его применению. Итак, резистор. Для чего он нужен в машине? Как вы знаете, в автомобилях используется значительное количество электроники. Вот для контроля её работы его и применяют. Для чего нужен резистор печки в автомобиле? Видели возможность переключения и настройки температурного режима? Вот для чего нужен резистор отопителя! Ведь без него можно было бы включить только заранее установленные настройки и всё. Теперь подумаем, зачем нужен резистор для светодиода? С его помощью можно регулировать яркость его свечения. Как вы могли догадаться, если внимательно читали статью, ответ на вопрос о том, какие резисторы нужны для светодиодов, — переменные!

Заключение

Как видите, резистор — это необходимая и полезная вещь, которая имеет широкие возможности применения. Теоретически обойтись без резистора можно в простейших схемах, на пару деталей, при том, что источники энергии будут очень точно выбраны. Но такое маловероятно, и для достижения необходимого значения этих показателей придётся длительное время подбирать их. Вот для упрощения процесса и применяются резисторы, ведь они позволяют проводить значительные перепады характеристик, открывая возможность даже кратного их изменения.

fb.ru

Для чего нужен резистор?

В любой электрической схеме используется резистор, который, несмотря на свой небольшой размер, играет важную роль в работе электрического прибора. Именно в этом и нужно разобраться, поскольку многие не знают, зачем нужен резистор в электрической цепи. Этот пассивный элемент обладает переменным или определенным значением сопротивления, которое и используется в электрических и электронных устройствах. Есть разные варианты резисторов, например, по назначению выделяются элементы общего и специального назначения. Ко второй группе относятся высокоомные, высоковольтные, высокочастотные и прецизионные резисторы.

Для чего нужен резистор?

Резистор предназначен для линейного преобразования силы тока в напряжение и наоборот. Еще он может поглощать электрическую энергию, удерживая ток, а также он способен делить и уменьшать напряжение. Выясняя, для чего нужен резистор в электрической цепи, можно подвести некую черту, то есть используют этот элемент для того, чтобы получить желаемые параметры тока.

Теперь поговорим о том, где именно используется резистор. На самом деле сферы его применения постоянно расширяются, например, он есть в низковольтных приборах, а также в мощных промышленных установках.

Многих также интересует, для чего нужен резистор в свече зажигания. Чаще всего этот элемент используется для того, чтобы уменьшить радиопомехи. Есть также свечи, в которых резистор направлен на ограничение тока, учитывайте закон Ома, благодаря чему снижается риск сгорания высоковольтной обмотки при замыкании электрода свечи на массу.

В том, зачем нужен резистор, разобрались, теперь рассмотрим еще некоторую полезную информацию, например, способы подключения резисторов в электрической цепи. Эти элементы могут подключаться последовательно от других деталей, включенных в сеть. Следующий вариант соединения – параллельное, и в таком случае сопротивление является обратной величиной номинальному значению. Есть смешанное соединение.

Часто электрические цепи выходят из строя именно из-за неисправности резисторов. Именно поэтому важно знать, как именно можно проверить работоспособность этого элемента. Для проведения процедуры необходимо иметь мультиметр, который устанавливают на измерение сопротивления. Данные, полученные в результате измерения, сравниваются с показателями, указанными на корпусе резистора. Если они не совпадают, значит, элементы необходимо заменять.

 

kak-bog.ru

Что такое резистор и для чего он нужен

Резисторы являются наиболее распространенными элементами в электронных схемах. Они состоят обычно из изоляционного корпуса с выводами соединенными материалом с известным удельным сопротивлением (ρ)

Резисторы обычно имеют вид стержня, трубки, пленки для поверхностного монтажа или проволоки определенной длины (l) и сечения (А).

Поэтому сопротивление резистора можно выразить следующей формулой:

R = ρ x l/A

Резисторы (сопротивление) оказывают сопротивление току, протекающему через них. Резисторы используют в основном для получения конкретных значений тока, а также применяются в делителях напряжения. И так основное предназначение резистора – это противодействие протеканию тока. Это действие они оказывают как для постоянного, так и для переменного тока.

Что такое резистор

Резисторы производят, в основном, в виде трубок из фарфора или керамики с металлическими выводами на обоих концах. На поверхности трубок может быть нанесен, например, слой углерода (у углеродных резисторов) или даже очень тонкий слой драгоценного металла (у металлизированных резисторов).

Так же резистор может быть выполнен из проволоки с высоким удельным сопротивлением (проволочные резисторы).

Основным параметром резистора является его постоянное сопротивление. В области больших частот у резистора, помимо сопротивления, появляются такие характеристики, как емкость и индуктивность. Эти параметры резистора можно представить в виде следующей модели:

где:

  • R = сопротивление резистивного материала,
  • CL = собственная емкость резистора,
  • LR = индуктивность резистора,
  • LS = индуктивность его выводов.

Здесь видно, что резистор имеет помимо собственного сопротивления еще и составляющие индукции и емкости. При применении в цепях переменного тока эти характеристики играют роль реактивного сопротивления, который в сочетании с собственным сопротивлением создают дополнительное сопротивление в схеме, которое в некоторых случаях необходимо учитывать.

Основными параметрами резисторов являются:

  • Номинальное сопротивление — дано с учетом больших допустимых отклонений, содержащихся в диапазоне 0,1…20%.
  • Номинальная мощность – максимально допустимая мощность рассеивания.

Номинальное напряжение – равно наибольшему напряжению, которое не вызывает изменения в свойствах резистора, и, в частности его повреждения. Номинальные значения напряжений для большинства резисторов составляет от нескольких десятков до нескольких сотен вольт.

На основании размера резистивного слоя или сечения проволоки можно определить значение сопротивления. В электронных схемах, в основном, используются резисторы многослойные. В случае работы с большими значениями тока и мощности, используются проволочные резистор.

Резисторы многослойные металлизированные являются термически стабильными, они надежные в работе и имеют низкий уровень шума (важно в профессиональной электронике).

Единицей измерения сопротивления является Ом (символ омега), и в основном на схемах обозначается буквой – R.

Из закона Ома: сопротивление резистора в 1 Ом — это такое сопротивление, когда при напряжении на его выводах в 1 вольт через него протекает ток равный 1 амперу.

Номинальный ряд и цветовая маркировка резисторов

Большинство производимых в мире резисторов имеют сопротивление из так называемого номинального ряда (Е). Каждый из видов номинального ряда поделен на декады, и в каждой десятке есть 6 (ряд E6), 12(ряд E12), (ряд E24) 24 значения.

Эти значения в декаде подобраны так, что с учетом допуска, сопротивления двух соседних значений перекрывают друг друга, и благодаря этому вы можете подобрать любые промежуточные сопротивления.

Стандартные допуски сопротивления резисторов равны 5, 10 или 20%. Соседние значения пересекаются в следующих случаях:

  • для ряда E6 с 20% допуском,
  • для ряда E12 с 10% допуском,
  • для ряда Е24 с 5% допуском.

Величина сопротивления и отклонение отмечаются на резисторе в виде нескольких цветных колец (или точек). Первые цветные кольца (2 или 3) определяют значение в Ом, а последнее кольцо – допуск (отклонение).У небольших резисторов, как правило, величина сопротивления, допуск и температурный коэффициент (ТКС) иногда наносится с помощью 4…6 цветных полос. Более подробно о цветовой маркировки резисторов читайте здесь.

В типоразмер и мощность резисторов

Как известно, напряжение, поданное на резистор, вызывает протекание в нем тока, а значит, на таком резисторе выделяется определенная часть мощности в виде тепла. Для исправного функционирования, это тепло резистор должен рассеивать в окружающее пространство. Эта его способность напрямую зависит его размеров.

В следующей в таблице приведены типичные значения номинальной мощности резисторов в соответствии с их размерами:

Номинальная мощность (Вт)

Примерные размеры (мм) длина х диаметр

0,1

5 … 7 х 1

0,2

5 х 1,6

0,33

7.5 х 2,5

0,5

10 х 3,7

1

18 х 7

2

24 х 8,5

fornk.ru

Ответы@Mail.Ru: Что такое резистор?

пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома: мгновенное значение напряжения на резисторе пропорционально току проходящему через него . На практике же резисторы в той или иной степени обладают также паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Сопротивляется.

Это регулятор

Это сопротивление или R. Вспомните закон Ома для участка цепи и вам сразу станет все ясно.

ты резистор .
это вещь, которая уменшает напряжение,
но как показала практика с силой тока он ничего не делает.
а по закону:
в*а=вт
так как резистор уменшает в то и исходная мощность падаеьт, вот и все.

резистор — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома: мгновенное значение напряжения на резисторе пропорционально току проходящему через него.

Это сопротивление.
По закону Ома, чем больше сопротивление в цепи тока, тем меньше сила тока и напряжение.

Иное название этого термина — «Сопротивление» ; см. также другие значения.
Рези́стор (англ. resistor, от лат. resisto — сопротивляюсь) , — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома: мгновенное значение напряжения на резисторе пропорционально току проходящему через него . На практике же резисторы в той или иной степени обладают также паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор- это сопротивление. Согласно закону Ома- сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
В технике применяются постоянные резисторы (сопротивления) и переменные (например-регулятор громкости радио).

Для меня это элемент схемы с линейной
характерикой. Хотя есть резисторы (переменные)
с логарифмической зависимостью.
Резистор может ограничивать ток.
А может делить напряжение (в схеме делителя).

Резистор нужен для уменьшение силы тока

Резистор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др.

Основные характеристики и параметры резисторов:

Номинальное сопротивление, — основной параметр.
Предельная рассеиваемая мощность.
Температурный коэффициент сопротивления.
Допустимое отклонение сопротивления от номинального значения (технологический разброс в процессе изготовления).
Предельное рабочее напряжение.
Избыточный шум.
Максимальная температура окружающей среды для номинальной мощности рассеивания.

Влагоустойчивость и термостойкость.

Коэффициент напряжения. Учитывает явление зависимости сопротивления некоторых видов резисторов от приложенного напряжения.

резистор это такая хрень ну мы ее подсоединяли на физике на л/р

touch.otvet.mail.ru

Резисторы переменные, постоянные вся истина!

Друзья, всем привет! На дворе зима а календарь говорит мне, что будни перетекают в приятные праздничные выходные, так что самое время для  новой статьи.  Для тех кто меня не знает, скажу, что меня зовут Владимир Васильев и я веду вот  этот  самый радиолюбительский блог, так что добро пожаловать!

В прошлой статье мы разбирались с понятием электрического тока и напряжения. В ней буквально на пальцах я постарался объяснить  что представляет собой электричество. В помощь применял некие «сантехнические аналогии».

Боле того, я наметил для себя написать ряд обучающих статей для совсем начинающих   радиолюбителей- электронщиков, так что дальше будет больше  — [urlspan]не пропустите.[/urlspan]


Содержание статьи


Сегодняшняя статья будет не исключением, сегодня я постараюсь как можно подробнее осветить тему резисторов. Резисторы хоть и являются, наверно самыми простыми радиокомпонентами, но у начинающих  могут вызвать массу вопросов. А отсутствие  ответов на них может привести к полному бардаку в голове и привести к отсутствию мотивации и желанию развиваться.

Что такое сопротивление?

Резистор — это пассивный элемент электрической цепи, обладающий фиксированным или переменным значением электрического сопротивления.

Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.

Чтобы ответить на этот вопрос, давайте вернемся снова к нашей сантехнической аналогии. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.

Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.

В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.

Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока измеряемую в амперах. Сопротивление которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов измеряемое в омах.

Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.

Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм². Величину сопротивления нетрудно оценить сравнив с медью у которой удельное сопротивление 0,0175Ом*мм². Неплохо да?

При пропускании тока через материал с высоким сопротивлением, мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.

Как выглядит резистор?

В природе встречаются абсолютно различные резисторы. Есть резисторы с постоянным сопротивление, есть резисторы с переменным сопротивлением. И каждый вид резисторов находит свое применение. Так давайте остановимся и постараемся уделить вниманием некоторые из них.

Постоянные резисторы.

Само название говорит о том, что они обладают постоянным фиксированным сопротивлением.  Каждый такой резистор изготавливается с определенным сопротивлением, определенной рассеиваемой мощностью.

Рассеиваемая мощность — это еще одна характеристика резисторов, так же как и сопротивление. Мощность рассеяний говорит о том, какую мощность может рассеять резистор в виде тепла (вы наверное замечали, что резистор во время работы может значительно нагреваться).

Естественно, что на заводе не могут изготавливать резисторы абсолютно любые. Поэтому постоянные резисторы имеют определенную точность указываемую в процентах. Эта величина показывает в каких пределах будет гулять результирующее сопротивление.И естественно, чем точнее резистор, тем дороже он будет. Так зачем переплачивать?

Также сама величина сопротивления не может быть любой. Обычно сопротивление постоянных резисторов соответствует определенному номинальному ряду сопротивлений. Эти сопротивления обычно выбираются из рядов типо Е3, Е6, Е12,Е24

Как видите резисторы из ряда Е24 имеют более богатый набор сопротивлений. Но это еще не предел так как существуют номинальные ряды E48, E96, E192.

На электрических схемах постоянные резисторы обозначаются эдаким прямоугольником с выводами. На самом условном графическом обозначении может надписываться мощность рассеяния.

Переменные резисторы

Вы когда-нибудь обращали внимание на различные «крутилки» в старой аналоговой технике. Например, задумывались ли о том что вы крутите, прибавляя громкость в старом, возможно даже ламповом телевизоре?

Многие регуляторы и различные «крутилки»представляют  собой переменные резисторы. Так же как и постоянные резисторы, переменные также имеют различную рассеивающую мощность. Однако их сопротивление может меняться в широких пределах.

Переменные резисторы служат для регулирования напряжения или тока в уже готовом изделии. Как я уже упоминал этим резистором может регулироваться сопротивление в схеме формирования звука. Тогда громкость звука будет меняться пропорционально углу поворота ручки резистора.  Так сам корпус находится внутри устройства, а та самая крутилка остается на поверхности.

Более того, бывают еще и сдвоенные , строенные , счетверенные и так далее переменные резисторы. Обычно их  применяют, когда нужно параллельное изменение сопротивления сразу в нескольких участках схемы.

 Условное графическое изображение резистора на электрических схемах.

Подстроечные резисторы.

Переменный резистор это очень хорошо, но что если нам нужно изменение или подстройка сопротивления лишь на этапе сборки изделия?

Переменный резистор нам в этом  не очень подходит. Переменный резистор обладает меньшей точностью нежели постоянный. Это плата за возможность регулировки, в результате которой сопротивление может гулять в некоторых пределах.

Конечно на этапе налаживания изделия может применяться так называемый подборочный резистор. Это обычный постоянный резистор, только при монтаже он подбирается из кучки резисторов с близкими номиналами.

 Подбор резисторов имеет место быть когда требуется регулировка параметров изделия и при этом требуется высокая точность работы (чтобы требуемый параметр как можно меньше плавал). Таким образом  нужно чтобы резистор был как можно большей точностью  1% или даже 0,5%.

Так для подстройки параметров схемы чаще всего применяют подстроечные резисторы. Эти резисторы специально придуманы для этих целей.  Подстройка осуществляется посредством тоненькой часовой отвертки, причем после достижения  требуемой величины сопротивления ползунок резистора часто фиксируют краской или клеем.

 Условное графическое изображение подстроечного резистора

Формулы и свойства

При выборе резистора, помимо его конструктивной особенности, следует обращать внимания на основные его характеристики. А основными его характеристиками, как я уже упоминал, являются сопротивление и мощность рассеяния.

Между этими двумя характеристиками есть взаимосвязь. Что это значит? Вот допустим в схеме у нас стоит резистор с определенной величиной сопротивления. Но по каким-либо причинам мы выясняем, что сопротивление резистора должно быть значительно меньше того, что есть сейчас. 

И вот что получается,  мы ставим резистор с значительно меньшим сопротивлением и в соответствии с законом Ома мы можем получить небольшое западло.

Так как сопротивление резистора было большим, а напряжение в цепи у нас фиксированное, то вот что получилось. При уменьшении номинала резистора общее сопротивление в цепи упало, следовательно ток в проводах возрос.

Но что если мы поставили резистор  с прежней мощностью рассеяния? При возросшем токе , новый резистор может и не выдержать нагрузки и умереть, его душа улетит вместе с клубком дыма из бездыханного тельца резистора 🙂

Выходит, что при номинале резистора 10 Ом, в цепи будет течь ток равный 1 А.  Мощность которая будет рассеиваться на резисторе будет равняться

Видите какие грабли могут подстерегать на пути.  Поэтому при выборе резистора, обязательно нужно  смотреть его допустимую мощность рассеяния.

Последовательное соединение резисторов

А давайте теперь  посмотрим как будут меняться свойства цепи при последовательном расположении резисторов. Итак у нас есть источник питания и далее стоят  последовательно три резистора с различным сопротивлением.

 

Попробуем определить какой ток протекает в цепи.

Здесь хочется упомянуть, для тех кто не в теме, что электрический ток в цепи только один.  Есть правило Кирхгофа, которое гласит что сумма токов втекающих в узел равно сумме токов вытекающих из узла. А так как в данной схеме у нас последовательное расположение резисторов и никаких узлов и в помине нет , то ясно, что ток будет один.

Для  определения тока, нам нужно определить полное сопротивление цепи. Находим сумму всех резисторов показанных на схеме. 

Здесь я приведу формулу  полного сопротивления  при последовательном расположении резисторов.

Полное сопротивление получилось равным 1101 Ом. Теперь зная что полное напряжение (напряжение источника питания)равно 10 В, а полное сопротивление равно 1101 Ом, тогда ток в цепи равняется I=U/R=10В/1101 Ом=0,009 А =9 мА

Зная ток мы можем определить напряжение, высаживаемое на каждом резисторе. Для этого также воспользуемся законом Ома. И получается напряжение на резисторе R1 будет равно U1=I*R1=0.009А*1000Ом=9В. Ну и тогда для остальных резисторов U2=0.9В, U3=0.09В. Теперь можно и проверить сложив все эти напряжения, ну и получив в результате значенье близкое напряжению питания.

Ах да вот вам и делитель напряжения. Если сделать отвод после каждого резистора то можно убедиться в наличии еще некоторого набора напряжений. Если при этом использовать равные сопротивления то эффект делителя напряжения будет еще более очевиден.

Кликните для увеличения

 

На изображении видно как меняется напряжение между разными точками -потенциалами.

Так как резисторы сами по себе являются хорошими потребителями тока, то понятно, что при использовании делителя напряжения, стоит выбирать резисторы с минимальными сопротивлениями. Кстати мощность расходуемая на каждом резисторе будет одинаковой.

Для резистора R1 мощность будет равняться P=I*R1=3.33A*3.33В=11,0889Вт.  Округляем и получаем 11Вт. И каждый резистор естественно должен быть на это рассчитан. Потребляемая мощность всей цепи будет P=I*U=3.33A*10В=33,3Вт.

Сейчас я вам покажу какая  мощность будет для резисторов имеющих разное сопротивление.

Кликните для увеличения

Мощность потребляемая всей цепочкой,  изображенной на рисунке, будет равняться P=I*U=0.09A*10В=0,9Вт.

Теперь рассчитаем мощность потребляемую каждым резистором:
Для резистора R1: P=I*U=0.09A*0.9В=0,081Вт;

Для  резистора R2: P=I*U=0.09A*0.09В=0,0081Вт;

Для резистора R3: P=I*U=0.09A*9В=0,81Вт.

Из этих наших расчетов становится понятной закономерность:

  • Чем больше общее сопротивление цепочки резисторов, тем меньше будет ток в цепи
  • Чем больше сопротивление конкретного резистора в цепи, тем большая мощность будет на нем выделяться и тем больше он будет греться.

Поэтому становится понятной необходимость подбирать номиналы резисторов в соответствии с их потребляемой мощностью.

Параллельное соединение резисторов

С последовательным расположение резисторов думаю более менее понятно. Так давайте рассмотрим параллельное соединение резисторов.

Здесь на этом изображении схемы показано различное расположение резисторов. Хотя в заголовке я упомянул о параллельном соединении, думаю наличие  последовательно соединенного резистора R1 позволит нам разобраться в некоторых тонкостях.

Итак суть заключается в том что последовательная схема соединения резисторов  является делителем напряжения, а вот параллельное соединение представляет собой делитель тока.

Рассмотрим это подробнее.

Ток течет от точки с большим потенциалом к точке с меньшим потенциалом. Естественно, что ток из точки с потенциалом 10В стремится к точке нулевого потенциала — земле.  Маршрут тока будет : Точка10В —>>точка А—>>точка В—>>Земля.

На участке пути Точка 10 —Точка А, ток будет максимальным, ну просто потому, что ток бежит по прямой и не разделяется на развилках.

Далее по правилу Кирхгофа, ток будет раздваиваться. Получается ток в цепи резисторов R2 и R4 будет одним а в цепи с резистором R3 другим. Сумма токов этих двух участков будет равняться току  на самом первом отрезке (от источника питания до точки А).

Давайте рассчитаем эту схему и узнаем  значение тока на каждом участке.

Для начала узнаем  сопротивление участка цепи резисторов R2, R4

 

Значение резистора R3 нам известен и равен 100Ом.

Теперь находим сопротивления участка АВ. Сопротивление цепи резисторов, соединенных параллельно будет вычислено по формуле:

Ага, подставили в формулу наши значения для суммы резисторов R2 и R4 (Сумма равна 30 Ом и подставляется вместо формульной R1) и значение резистора R3 равное 100 Ом (Подставляется вместо формульной R2). Вычисленное значение сопротивления на участке АВ равняется 23 Ом.

Как видите выполнив несложные вычисления наша схема упростилась и свернулась и стала нам уже более знакомой.

Ну и полное сопротивление цепи будет равняться R=R1+R2=23Ом+1Ом=24Ом. Это мы нашли уже по формуле для последовательного соединения. Мы это рассматривали так что на этом останавливаться не будем.

Теперь ток на участке до разветвлений (участок Точка 10В —>>Точка А)  мы сможем найти по формуле Ома.

I=U/R=10В/24Ом=0,42A . Получилось 0,42 ампера.  Как мы уже обсуждали этот ток будет один на всем пути от точки максимального потенциала, до точки А. На участке А В, значение тока будет равно сумме токов с участков полученных после разделения.

 Чтобы определить ток на каждом участке между точками А и В, нам нужно найти напряжение между точками А и В.

Оно как уже известно  будет меньше  напряжения питания 10В. Его мы найдем по формуле U=I*R=0.42A*23Ом=9,66В.

Как вы могли заметить полный ток в точе А (равный сумме токов параллельных участков) умножается на результирующее сопротивление  запараллеленных (сопротивление резистора R1 мы не учитываем) участков цепи.

Теперь мы можем найти ток в цепи резисторов R2, R4. Для этого напряжение между точками А и В разделим на сумму этих двух резисторов. I=U/(R2+R4)=9.66В/ 30Ом=0,322А.

Ток в цепи резистора R3 тоже найти не сложно. I=U/R3=9.66В/100Ом=0,097А.

Как видите при параллельно соединении резисторов ток делится пропорционально значениям сопротивлений. Чем больше сопротивление резистора, тем меньше будет ток на этом участке цепи.

В тоже время напряжение между точками А и В, будет относиться  к каждому из параллельных участков (напряжение U=9.66В мы использовали для расчетов и там и там ).

Здесь хочется сказать как напряжение и ток  распределяются  по схеме.

Как я уже говорил ток до разветвления равен сумме токов после развилки. Впрочем умный мужик Кирхгоф нам это уже рассказывал.

Получается следующее: Ток I на развилке разделится на три I1, I2, I3, а затем снова воссоединится  в I как было и в самом начале, получаем I=I1+I2+I3.

Для напряжения или разности потенциалов, что есть одно и тоже будет следующее. Разность потенциалов между точками А и С (далее буду говорить напряжение  AC), не равна  напряжениям BE, CF,DG. В тоже время напряжения BE, CF,DG , будут равны между собой. Напряжение на участке FH вообще равно нулю, так как напряжению просто не на чем высаживаться (нет резисторов).

Думаю тему параллельного соединения резисторов я раскрыл, но если есть еще какие-то вопросы то пишите в комментариях, чем смогу помогу 🙂

Преобразование звезды в треугольник и обратно

Существуют схемы, в которых резисторы соединены так, что не совсем понятно где есть последовательное соединение а где параллельное. И как же с этим быть?

Для этих ситуаций есть способы упрощения схем и вот одни из них это преобразование треугольника в эквивалентную звезду или наоборот, если это необходимо.

 

Для преобразования треугольника в звезду считать будем по формулам:

Для того чтобы совершить обратное преобразование нужно воспользоваться несколько другими формулами:

С вашего позволения я не буду приводить конкретные примеры, все что требуется это только подставить в формулы конкретные значения и получить результат.

Этот метод эквивалентного преобразования будет служить хорошим подспорьем в мутных случаях, когда не совсем понятно с какой стороны подступиться к схеме. А тут порой поменяв звезду на треугольник ситуация проясняется и становится более знакомой.

Ну чтож дорогие друзья вот и все, что я хотел вам сегодня рассказать. Мне кажется эта информация будет полезной для вас и принесет свои плоды.

Хочу еще добавить, что многое из того что я здесь выложил очень хорошо расписано в книгах «Искусство схемотехники» и «Занимательная микроэлектроника», так что рекомендую прочитать обзорные статьи и скачать себе эти книжки. А будет еще лучше, если вы их раздобудете где-нибудь в бумажном варианте.

P.S. У меня на днях возникла одна идея о том как можно получить интересный способ заработка на знаниях электроники и вообще радиолюбительском хобби так что обязательно [urlspan]подпишитесь на обновления.[/urlspan]

Кроме того относительно недавно появился еще один прогрессивный способ подписки через форму  сервиса Email рассылок, так что люди подписываются и получают некие приятные бонусы, так что добро пожаловать.

 

А на этом у меня действительно все, я желаю вам успехов во всем , прекрасного настроения и до новых встреч.

С н/п Владимир Васильев.

Конструктор ЗНАТОК 320-Znat «320 схем»

Конструктор ЗНАТОК 320-Znat «320 схем» — это инструмент, который позволит получить знания в области электроники и электротехники а также достичь понимания процессов происходящих в проводниках.

Конструктор представляет собой набор полноценных радиодеталей имеющих спец. конструктив,  позволяющий их монтаж без помощи паяльника. Радиокомпоненты монтируются на специальную плату — основание, что позволяет в конечном итоге получить вполне функциональные радиоконструкции.

Используя этот конструктор можно собрать до 320 различных схем,  для построения которых есть развернутое и красочное руководство.  А если подключить фантазию в этот творческий процесс то можно получить бесчисленное количество различных радиоконструкций и   научиться анализировать их работу. Этот опыт я считаю очень важен и для многих он может оказаться бесценным.

Вот несколько примеров того, что Вы можете сделать благодаря этому конструктору:

Летающий пропеллер;
Лампа,включаемая хлопком в ладоши или струей воздуха;
Управляемые звуки звездных войн, пожарной машины или скорой помощи;
Музыкальный вентилятор;
Электрическое световое ружье;
Изучение азбуки Морзе;
Детектор лжи;
Автоматический уличный фонарь;
Мегафон;
Радиостанция;
Электронный метроном;
Радиоприемники, в том числе FM диапазона;
Устройство, напоминающее о наступлении темноты или рассвета;
Сигнализация о том, что ребенок мокрый;
Защитная сигнализация;
Музыкальный дверной замок;
Лампы при параллельном и последовательном соединении;
Резистор как ограничитель тока;
Заряд и разряд конденсатора;
Тестер электропроводимости;
Усилительный эффект транзистора;
Схема Дарлингтона.

popayaem.ru

Что такое резистор — основные характеристики

Многие люди, даже далекие от вопросов физики, электротехники, электроники слышали о таком утермине, как «сопротивление», или же более новое слово – резистор. Однако мало кто знает, что это такое, и для чего его используют. Так что такое резистор?

Ответить на этот вопрос несложно. Резистор – один из наиболее распространенных электрических элементов в радиотехнике, теле-видео-аудиотехнике. Основной характеристикой резисторов является его сопротивление, которое измеряется в единицах измерения Омах. Есть два основных вида этих устройств: общего назначения и так называемые стабильные. Что такое резистор стабильный? Это довольно-таки дорогие устройства, которые используются в высокочастотной сверхточной аппаратуре. В основном же используют резисторы общего назначения.

Сопротивление резисторов общего назначения может варьировать приблизительно в пределах +/- 10%. Сопротивление зависит от так называемого температурного коэффициента сопротивления (в специализированной литературе можно встретить сокращение ТКС). У большинства стандартных резисторов этот коэффициент положительный. Это значит, что при увеличении температуры увеличивается и сопротивление.

Что такое резистор с точки зрения его характеристик? Одной из основополагающих характеристик резисторов можно назвать рассеиваемую мощность. Это та мощность, которую он сможет рассеять без получения повреждений. Мощность, как известно, измеряется в таких единицах измерения, как Ватты. Зная номинальное сопротивление и ток, протекающий по электрической цепи, можно вычислить и мощность. Находится она по формуле P=I^2 * R, где P — мощность, I – значение силы тока, R – номинальное сопротивление резистора. Отсюда можно сделать вывод, что такое резистор с точки зрения именно электротехники. Это основной структурный элемент любой электрической цепи, основной функцией которого является оказание номинального (известного) сопротивления протеканию электрического тока по этой цепи с целью регулирования напряжения и тока. Для цели регулирования напряжения в цепи часто используют так называемый балластный резистор. Что такое резистор балластный? Это устройство подключается в сеть и поглощает некоторое количество излишнего напряжения, тем самым выравнивания отдельные токи в ветках электрической цепи и поддерживая стабильность напряжения. На подобных принципах устроен и резистор для светодиода. Чтобы светодиод фактически сразу не сгорел от проходящих по нему токов, к нему последовательно подключают токогасительный резистор.

Сопротивление резистора зависит от материала, из которого он состоит. Также оно зависит от площади среза (чем больше площадь среза, тем меньше сопротивление), от длины резистора (чем он длиннее, тем, соответственно, сопротивление больше).

Резисторы удобно маркируются по цветам или же по цифровым обозначениям. С помощью подобной маркировки можно узнать самое важное свойство любого резистора, а именно значение его сопротивления. Узнать, что значит тот или иной цвет или цифра, можно в паспорте устройства или же у производителя или поставщика (например, на сайте).

fb.ru

Резисторы / Электроника / RoboCraft. Роботы? Это просто!

Резистор — самая простая и распространённая радиодеталь. Фактически это просто проводник с точно известным сопротивлением(маркированный и с выводами). Нужен он для выполнения закона ома=)

То есть, для ограничения тока. Если простым языком — чтоб тока больше чем надо, куда надо не пошло, а лишний улетел в тепло =)
Но из этого нехитрого назначения, столько всего полезного получается, что ниже вышла, просто неприличных размеров, простыня=)

На схемах обозначается, по отечественному — прямоугольничком, по зарубежному — угловатой пружинкой:

Номиналы

Основной параметр резистора — его сопротивление (их часто так и называют — “сопротивление”), измеряется оно в Омах(Ом, Ω ), если омов больше тысячи, то в КилоОмах (Ком, К), а если перевалили за миллион — в мегаомах (Мом).

Чтоб не говорить «пятнадцать тысяч ом» или не рисовать нули, говорят 15 кило ом.

Как граммы-килограммы=)

Значений сопротивлений резисторов (говорят «номиналов») не бесконечное множество — есть стандартные ряды значений. Так что не надо искать резистор 321ом — вряд ли найдёте, хотя в природе он наверное есть=) Но если вам срочно нужен именно он, то есть два выхода — простроечные-переменные резисторы (см ниже) или несколько соединённых резисторов.

Соединение резисторов

Соединять можно последовательно:


При этом сопротивления сложатся.

Ещё полезно знать(понимать), что ток через все последовательно соединённые резисторы будет одинаковый, а вот всё приложенное к ним напряжение поделится пропорционально сопротивлениям, согласно всё тому же закону Ома:


говорят — «на резисторе падает напряжение» На этом принципе строятся делители напряжения и шунты (см ниже).

А можно параллельно, тогда сопротивление цепочки уменьшится:


Проще параллелить одинаковые резисторы — общее сопротивление будет равно сопротивлению одного делённому на количество.

Тут тоже полезно знать(понимать), что при параллельном соединении напряжения на всех резисторах равны, а токи поделятся:


Старый немец Георг Ом рулит в электронике, ага=)

Ну и зачем они нужны?

В цифровой технике резисторы используются в основном для «подтяжки» — например подать на порт МК единичку(напр. питания), пока кнопка не нажата. Собственно резистор тут нужен не столько для подтяжки, сколько для ограничения тока, когда кнопку нажмут, ведь если его не будет — выйдет короткое замыкание:


Ещё часто светодиоду нужно ток ограничить:


Для обоих этих целей большого разнообразия номиналов не требуется:

Для подтяжки вообще не важно конкретное значение, скорее порядки — можно смело ставить единицы-десятки килоом.

Для светодиода, тоже необязательно выбирать резистор с точностью до 10ом — главное что бы ток был ниже номинального (см документацию, обычно — 20мА), а разница в свечении, скажем с 470ом и с 100ом весьма незначительна.

Второй вариант применения резисторов, как мы уже упомянули — делители напряжения(подробнее):


С помощью этой нехитрой схемы, применяя постоянные резисторы, можно измерять напряжения превышающие напряжения питания вашего контроллера — например контролировать заряд батареи.


А если подать на такую цепочку известное напряжение(стабилизированное напряжение питания, например) можно будет измерить сопротивление резистивного датчика, например фото- или терморезистора:


То есть померить температуру или узнать освещённость.

Кстати, обратите внимание на такую закономерность — если значок детали перечёркнут линией с «полкой» а на полке стоит значок какой-нибудь физической величины — то деталь эта чувствительна к этой самой величине. Например — тензорезистор, термистор, варистор. А если две стрелочки снаружи на деталь смотрят — то это неравнодушность к свету означает — фоторезистор например.

Мы уже сто раз сказали, что на резисторе падает напряжение пропорциональное его сопротивлению, но так же зависит это напряжение и от тока текущего через этот резистор. А значит зная сопротивление резистора и измерив напряжение на нём, можно измерить ток.

Например выяснить какой ток у нас потребляет двигатель и сделать вывод — буксуем, едем или застряли окончательно:


Тут тоже стоит обратить внимание на несколько вещей.

Во первых внутри значка резистора появились чёрточки — это так мощность любители ГОСТов обозначают.

На нерусских схемах просто рядом с резистором пишут, например — 5W.

Второй момент, это сопротивление нашего измерительного резистора (такой резистор называют «шунт»)

Оно довольно мало — это что бы не тратить зря энергию — мы же только измерить ток хотим, а не ограничить его — маршевым двигателям нужна вся доступная нам мощность! Да и выделится эта энергия исключительно в виде тепла:


Так что при неправильном расчёте/подборе вместо шунта(да кстати и вместо делителя и вместо балластного резистора) выйдет кипятильник.

А если мощность выделяемая на резисторе значительно превысит его рассеиваемую мощность — он зловонно сгорит:


Мощность стандартных современных резисторов — 1/4 вата (0,25вт).

0,25Вт это конечно не очень много, но тут дело ещё и в размере нагреваемой детали. 30Вт-ный паяльник греет довольно массивное жало градусов до 300 и бодро плавит не иллюзорные количества припоя. А для такой мелочи как резистор, хватит и полувата, что бы оставить вам на память о себе ожог.

Для шунтов применят резисторы мощностью в единицы-десятки ват:

Если мерить надо жуткие десятки-сотни ампер то на резисторы уже не размениваются, а ставят, собственно шунты:

(Фотка из вики)
А в народе применяют куски нержавейки, вольфрамовых электродов, отрезки нихрома и т.п.=)

Используя всё прочитанное, нетрудно догадаться, что вместо дефицитного, мощного, малоомного резистора можно поставить параллельно, например, десяток четверть-ватных одноомоников. Сопротивление их поделится на 10, а мощность этой колбасы вырастет в 10 раз(токи же поделятся).

Выйдет 0,1ома, 4Вт — вполне себе шунт на 0,5-6А.

Переменные и подстроечные резисторы

Вроде с постоянными резисторами справились. Осталось коротко отметить, что в случаях когда вам надо плавно чего-то настраивать/регулировать — громкость, яркость, задержку какую-нибудь — вам надо сообщить о своих намерениях контроллеру. Сделать это проще всего(в случае ардуины) изменением напряжения на его аналоговом входе. Перетыкать постоянные резисторы в делителе не очень удобно, поэтому лучше использовать переменный резистор:


Средний вывод(бегунок) — подвижный, механически связан с ручкой и перемещается по резистивной дорожке, подключенной к крайним выводам — её сопротивление — и есть номинал переменного резистора.

Поворачивая ручку вы меняете длину (а значит и сопротивление) участка дорожки между крайним выводом и бегунком. В среднем положении сопротивления левого и правого участков (говорят плечей) равны, в крайних положениях движок соединяется с соответствующим крайним выводом:


Так что в руках у нас готовый регулируемый делитель=)

Такое включение называют «потенциометр«(иногда и сам пер. резистор так называют), можно использовать не только для взаимодействия пользователя и девайса, но и для контроля положения (угла поворота), чего-нибудь как например в сервах. Только не стоит забывать об ограниченном ресурсе резистивной дорожки(стирается) и невысокой нагрузочной способности(механической) вала — см в конце.

Используя только одно плечо можно получить регулируемое сопротивление — такое включение называют «реостат».

Иногда, оставшуюся не подключённой ногу, замыкают на среднюю — что бы в воздухе не болталась — помехи не ловила.

Ещё важное наблюдение по условным обозначениям — если вы видите значок детали перечёркнутый стрелочкой — значит он регулируемый — его значение можно менять.

Но если крутить надо не беспрестанно, а только несколько раз за время эксплуатации девайса — торчащий вал может быть не удобен — место занимает, да и зацепить его можно, сбив тонкую настройку. В таких случаях применяют подстроечные резисторы (подстроечники, триммеры). Там всё тоже самое только вместо вала — шлиц под отвёртку:

Обозначаются, если по-честному, не со стрелочкой, а с этаким молоточком:

Вообще если уведите подобный молоточек на обозначении какой-либо детали — это подстрочный элемент — возможна регулировка.(ага, символ настройки — молоток=)

Маркировка

Со всеми вариантами обозначений и применений разобрались, осталось выяснить как выбрать нужный резистор из кучки для втыкания в девайс, собираемый по схеме.

Раньше, отечественные резисторы маркировались человеко-понятными надписями(вот прям так и писали «1кОм»), и всем было хорошо. Но монтажники-вредители имеют обыкновение втыкать их в плату как попало и надпись часто оказывалась не видна, или неумолимая агрессивная среда, порой уничтожала именно сторону с надписью. А ремонтники-сервисники потом рыдали, пытаясь выяснить сопротивление умершего резистора. В общем всё это, в конце концов, привело к появлению полосатых резисторов. Теперь как ни воткни — маркировка всегда видна, а вредоносной среде стало значительно сложнее стереть цветные кольца до полной не читаемости.

Вот только в мирных условиях отсутствия монтажников и едких растворителей, читать этот весёлый ГАИ-шный микрожезл, стало затруднительно=\ Или в таблицу глядеть или учить/запоминать или тестером тыкать. Что делать — прогресс.


Можно попробовать сочинить какую-нибудь мнемо-считалочку для запоминания. Тем более что в середине таблицы цвета расположены в классическом радужно-спектральном порядке: Каждый Охотник Желает Знать где Сидит Фазан.

Ещё можно воспользоваться ворохом программ на все возможные операционки и платформы. А некоторые из них могут сделать почти всё за вас=)

Так же встречается на переменных, подстроечных, и SMD — резисторах маркировка тремя (для особо точных — четырьмя) циферками — без букавок. Принцип тот же что и в цветовой маркировке: первые две(три) цифры — значение, последняя — степень десятки на которую это значение умножается. По простому — берём первые цифры и рисуем к ним количество ноликов указанное последней цифрой — получилось сопротивление в омах. Лишние нули переводим в десятичные приставки — кило- или мега-.

Если кто не в курсе — приставка кило- означает тысячу(применяя её, отбрасываем 3 нолика), мега- миллион (применяя её, отбрасываем 6 ноликов)

И напоследок пара моих любимых бородатейших баянов по сабжу:

robocraft.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о