Империя — Поисковый онлайн видео сервис

Надоело пропускать премьеры в кинотеатре из-за бешеного ритма жизни? Устали от того, что по телеканалам стоящие фильмы транслируются в неудобное для Вас время? В Вашей семье часто родные делят пульт от телевизора? Ребенок просит посмотреть мультфильмы для детей, когда Вы заняты, а на каналах нет хороших мультфильмов? И, в конце концов, Вы просто хотите расслабиться после трудового дня на диване в домашней одежде за просмотром интересного фильма или сериала?

Для этого лучше всего иметь всегда в закладках любимый сайт, который станет для Вас лучшим другом и помощником. «А как же выбрать такой сайт, когда их так много?» — спросите Вы. Лучшим выбором для Вас будет именно imperiya.by

Почему именно наш ресурс? Потому что он объединяет в себе множество положительных особенностей, которые делают его универсальным, удобным и простым. Вот список основных преимуществ ресурса.

  1. Бесплатный доступ. Многие сайты просят клиентов покупать подписку, чем наш портал не занимается, так как считает, что у людей должен быть свободный доступ в сети интернет ко всему. Мы не берем с наших зрителей плату за просмотр!

  2. Не нужно никакой регистрации и СМС на сомнительные номера телефонов. Мы не собираем конфиденциальную информацию о наших пользователях. Каждый имеет право на анонимность в интернете, что мы и поддерживаем.

  3. Отличное качество видео. Мы загружаем материалы исключительно в HD формате, что, безусловно, способно порадовать любимых пользователей. Ведь гораздо приятнее смотреть хороший фильм с качественной картинкой, чем с изображением низкого качества.

  4. Огромный выбор. Здесь Вы найдете видео на любой вкус. Даже самому заядлому киноману всегда найдется, что посмотреть у нас. Для детей есть мультфильмы в хорошем качестве, познавательные программы о животных и природе. Мужчины найдут для себя интересными каналы о новостях, спорте, автомобилях, а также о науке и технике. А для наших любимых женщин мы подобрали канала о моде и стиле, о знаменитостях, ну и конечно музыкальные клипы. Устроив вечер в кругу семьи, или с друзьями Вы сможете подобрать веселую семейную комедию. Влюбленная пара понежиться за просмотром любовной мелодрамы. После рабочего дня расслабиться помогает захватывающий сериал или детектив. Фильмы в HD формате нового времени и прошлых лет представлены на абсолютно любой вкус и могут удовлетворить потребности любого зрителя.

  5. Возможность скачивать видео. Абсолютно любой материал на сайте можно скачать к себе на компьютер или флешку. Если вдруг Вы соберетесь на дачу с ноутбуком, где нет интернета, или захотите посмотреть фильм на большом экране телевизора, то Вы всегда можете заранее скачать, а после посмотреть в нужный момент. При этом Вам не придется ждать своей очереди, чтобы скачать видео, как это бывает на торрентах или других похожих сайтах.

  6. Безопасность. Мы следим за чистотой контента, каждый файл перед закачкой проверяется. Поэтому на нашем сайте нет никаких вирусов и шпионских программ, и мы тщательно следим за этим.

  7. Новинки. Регулярно мы обновляем и добавляем на портал новые мультфильмы, сериалы, ТВ-шоу, музыкальные клипы, новости, обзоры, мультсериалы и т.д. и всё это Вы можете посмотреть совершенно бесплатно, без регистрации и смс. Мы стараемся для Вас, для наших любимых посетителей.

  8. Онлайн-просмотр. На нашем сайте не обязательно предварительно скачивать фильм, чтобы его посмотреть, достаточно просто включить и наслаждаться просмотром. Благодаря профессиональной настройке не будет никаких торможений, и ничто не сможет Вам помешать посмотреть интересный фильм.

  9. Закладка. На сайте можно нажатием одной кнопки со звездочкой отравить видео в закладки и вернуться к нему позже. У каждого, наверняка бывало, что увидел на сайте интересное видео, которое хочешь посмотреть, но прямо сейчас нет возможности. Данная кнопка поможет Вам в этом и, освободившись, Вы с легкостью сможете посмотреть, то что хотели.

  10. Удобный интерфейс. Поиск нужного видео не займет у Вас много времени, так как сайт лучшим образом адаптирован для пользователей, и всё интуитивно понятно. Даже ребенок сможет разобраться и включить для себя мультфильм или какую-нибудь программу о животных, природе.

Кино как искусство появилось сравнительно недавно, но уже успело тесно переплестись с нашей жизнью. Множество людей из-за спешки нашего времени уже годами не ходили в театр, в галерею или музеи. Однако трудно себе представить человека, который не смотрел сериал или фильм хотя бы месяц. Киноискусство является синтезом театра, музыки, изобразительного искусства и литературы. Таким образом, оно дает даже самому занятому человеку, у которого нет времени ходить по театрам и галереям, быть ближе к искусству и духовно совершенствоваться.

Также кино заняло сферу и общедоступного развлечения. Просмотр комедий, боевиков, вестернов и т.д. отлично вписывается в какой-нибудь вечер в кругу семьи. Ужастики отлично щекочут нервы даже самого бесстрашного человека. Мультфильмы обожают дети, а некоторые можно смотреть и всей семьей. Познавательные видео помогают расширить знания, посмотреть на мир шире и удовлетворить собственное природное любопытство.

Человек в двадцать первом веке уже не может представить свою жизнь без технологий будущего, кажется, в будущем машины, роботы и техника смогуд заменить человека, а точнее выполнение многих автоматических работ, по этому каждый хочет смотреть какие технологии будут в будущем. На imperiya.by Вам и не нужно откладывать просмотр, просто добавьте видео в закладки и в любой момент можете к нему вернутся и отлично провести время за просмотром качественного видео.

Не отказывайте себе в удовольствии, начните смотреть уже прямо сейчас! Знакомьтесь с обновлениями, с новинками, выбирайте то, что хотели бы посмотреть позже. Порадуйте себя и близких интересными фильмами в хорошем качестве!

imperiya.by

Сетевая светодиодная лампа с блоком питания на микросхеме VIPer22A

В последнее время лампы накаливания, имеющие весьма ограниченный ресурс около 1000 часов, и газоразрядные осветительные лампы с ресурсом примерно 20 000 часов энергично вытесняются светодиодными аналогами, способными функционировать без замены гораздо дольше – 100 000 часов. Они имеют наивысший среди искусственных источников света КПД преобразования электрической энергии в световую, что вынуждает правительства многих стран, в том числе и России, энергичнее внедрять энергосберегающие технологии в светотехнике. Этому также способствует неуклонное снижение стоимости сверхъярких светодиодов из-за конкуренции их мировых производителей.

К сожалению, в большинстве бытовых светодиодных ламп использованы простейшие сетевые блоки питания с балластным конденсатором. И это несмотря на то, что общеизвестные недостатки последних (бросок тока при включении, узкий интервал сетевого напряжения, соответствующий допустимым пределам тока через светодиоды, а также возможность повреждения при обрывах в нагрузке) приводят к преждевременному выходу светильников из строя. Это значит, что подобное схемотехническое решение в принципе не может обеспечить эффективную долговременную работу светодиодных источников света с предполагаемым ресурсом в 100 000 часов.

Предлагаемая конструкция простого малогабаритного сетевого ИИП для светодиодной лампы (рис. 1) свободна от таких недостатков и, несмотря на высокую надежность эксплуатации, очень дешева (примерно 50 руб без светодиодов). Использование средств автоматизированного проектирования данного устройства предоставляет возможность радиолюбителю самостоятельно гибко варьировать номенклатуру и число подключаемых светодиодов.
Работа подобного импульсного понижающего стабилизатора напряжения и физические принципы его функционирования описаны в [1] (рис.1,в и рис. 2,6).
Поэтому более подробно рассмотрим последовательность проектирования сетевого преобразователя для питания 17 ультраярких светодиодов, используемых в описываемом устройстве (рис. 1). Среди них EL1- EL8 – стандартные 5-миллиметровые светодиоды LC503TWN1-15G и EL9-EL11 – чип-све-тодиоды ARL-5060WYC по 3 шт. в прямоугольном корпусе PLCC6 размерами 5×5 мм с допустимым прямым током до 40 мА и прямым падением напряжения примерно 3,2 В на каждом диоде. Такой выбор светодиодов в экземпляре автора обусловлен необходимостью освещения компьютерной клавиатуры. Первые светодиоды обладают малым углом излучения – 15° по уровню половинной мощности, вторые – большим – 120°. В результате в суммарном световом пятне будут отсутствовать резкие границы, причем освещенность в центре больше, чем на периферии. Цветовой оттенок такого источника света – средний между холодным и теплым белым, что обусловлено параметрами использованных светодиодов.
Из конструктивных соображений однотипные светодиоды соединены последовательно, при этом получены показанные на рис. 1 две цепи (из 8 и 9 светодиодов соответственно), которые соединены параллельно через токо-ограничивающие резисторы R2 и R3 Выходное напряжение преобразователя для обеих цепей выбрано 32 В при токе нагрузки 40 мА.
Для проектирования преобразователя использована программа Non-Isolated VIPer Design Software v.2.3 (NIVDS), о которой рассказано в статье [2]. Интервал напряжения сети оставлен выбранный программой по умолчанию 88…264 В. Использован ШИ контроллер – микросхема VIPer22A с частотой преобразования 60 кГц, режим преобразования прерывистый (DCM – Discontinuous Current Mode), выходное напряжение – 32 В при токе 40 мА. Индуктивность накопительного дросселя L1, рассчитанная программой, составила 2,2 мГн. Другие параметры преобразователя: КПД – 74 %, максимальная амплитуда тока коммутирующего транзистора микросхемы DA1 – 169 мА, ее максимальная температура – 47 °С, эффективное значение потребляемого тока – 17 мА при максимальном сетевом напряжении 264 В.
Дроссель L1 – доработанный высокочастотный ДМ-0,1 500 мкГн. Для увеличения его индуктивности до 2,2 мГн к имеющейся обмотке добавляют, не изменяя направление намотки, 2 слоя по 100 витков провода ПЭВ-2 диаметром 0,12 мм. Изоляцию между добавляемыми слоями, а также общее покрытие дросселя выполняют клейкой лентой (скотчем). Отгибание выводов дросселя для монтажа на печатной плате производят не ближе 5 мм от ферритового корпуса, иначе заводские выводы обмотки будут повреждены. Вместо доработанного дросселя ДМ-0,1 можно применить катушки индуктивности КИГ-0,2-2200 или SDR1006-2200.

Чертеж печатной платы преобразователя, выполненной из односторонне фольгированного стеклотекстолита толщиной 1…1,2 мм, показан на рис. 2, а ее внешний вид – на рис. 3. Конденсатор С1 впаивают с зазором 7…8 мм до платы, так как его надо наклонить к центру платы, чтобы он разместился в примененном цоколе от сгоревшей энергосберегающей лампы.

В преобразователе могут быть использованы импортные оксидные конденсаторы с предельной рабочей температурой 105 °С. Конденсаторы С2 и С5 – пленочные или керамические с номинальным напряжением не менее 50 В. Плавкая перемычка FU1 – проволока от предохранителя с номинальным током 1 А. Прорезь защищает плату при перегорании FU1. Но прорезь не нужна, если перемычку заменить плавкой вставкой в керамическом корпусе (из серий ВП1-1, ВП1-2) или предохранительным резистором Р1-25 (или аналогичным импортным сопротивлением 8… 10 Ом). В случае использования предохранительного резистора сопротивление резистора R1 уменьшают до 10…12 Ом.

Светодиодная нагрузка R2R3EL1 – EL11 смонтирована на другой печатной плате из двусторонне фольгированного стеклотекстолита толщиной 0,5… 1 мм (рис. 4). Участок фольги многоугольной формы в центре платы предназначен для отвода тепла от светодиодов поверхностного монтажа EL9-EL11. Токоограничивающие резисторы R2 и R3 – РН1-12 типоразмера 1206. Две платы соединяют между собой пайкой в соответствующих контактных площадках трех отрезков медного провода диаметром 0,7 мм и длиной примерно 7 мм, на которые в качестве ограничительных букс надеты отрезки пустотелых пластиковых стержней от шариковых ручек. Два провода подают питание на плату со свето-диодами, а третий обеспечивает необходимую жесткость конструкции. При соединении смежными являются стороны, свободные от элементов на обеих платах. В отверстия контактных площадок, отмеченных звездочками, вставляют и с двух сторон пропаивают короткие отрезки провода. Вначале с помощью ЛАТР желательно убедиться в стабильности выходного напряжения 32 В во всем интервале изменения сетевого напряжения (88…264 В), при этом вместо светодиодов подключают резисторы общим сопротивлением 800 Ом Затем свето-диоды устанавливают на место, а вместо постоянных токоограничивающих резисторов R2 и R3 временно спаивают подстроечные сопротивлением 150 Ом При измерениях следует остерегаться электрического удара током, поскольку все элементы устройства гальванически связаны с питающей электросетью. Все изменения выполняют только в отключенном состоянии. Подстроечные резисторы регулируют диэлектрической отверткой. Ток через каждую цепь светодиодов контролируют миллиамперметром Хотя использованные светодиоды допускают прямой ток до 40 мА с соответствующим увеличением яркости свечения, в целях достижения заявленной долговечности светодиодов подстройкой резисторов ток устанавливают равным 20 мА. Примерно через 5 мин после включения стабилизируется тепловой режим светодиодов, поэтому необходима дополнительная подстройка тока. При наличии одного миллиамперметра ток в каждой светодиодной цепи регулируют по очереди. В завершение подстроечные резисторы заменяют постоянными найденного сопротивления.

С помощью инструмента Waveforms программа NIVDS позволяет смоделировать режимы ШИ контроллера. На рис. 5 показана диаграмма импульсного тока в контроллере при сетевом напряжении 220 В, практически совпавшая с результатами контрольных измерений. Интервал О…1,5мкс соответствует открытому состоянию коммутирующего транзистора микросхемы DA1 (прямой ход преобразователя). Синим цветом показан график тока в накопительном дросселе во время обратного хода преобразователя. Интервал 1,5… 13 мкс соответствует этапу передачи в нагрузку энергии, накопленной дросселем во время прямого хода. Интервал 13…16,6 мкс – так называемая бестоковая пауза б работе преобразователя, когда возникают свободные затухающие колебания напряжения и тока в выходной цепи. Более наглядно эти колебания иллюстрирует снятая диаграмма напряжения на истоке транзистора относительно общего провода питания (рис. 6), где хорошо заметно, что затухающие колебания напряжения происходят относительно уровня 32 В, соответствующего выходному напряжению преобразователя. Выходной фильтр С4С5 снижает пульсации выходного напряжения до 300 мВ.

Как видно из рис. 5 и 6, пиковый ток коммутирующего транзистора микросхемы (169 мА) в несколько раз меньше максимально допустимого значения 700 мА, напряжение на стоке этого транзистора (300 В) также меньше максимально допустимого 730 В Это обеспечивает работу преобразователя с большим запасом электрической прочности, что наряду со встроенной в микросхему тепловой защитой, а также защитой от замыканий и обрывов в нагрузке гарантирует многолетнюю надежную работу описанного устройства.

Внешний вид светодиодной лампы показан на рис. 7. В ней использован отражатель от неисправного карманного фонаря.


Литература
1. Косенко С. Особенности работы индуктивных элементов в однотактных преобразователях. – Радио. 2005. № 7. с. 30-32.
2. Косенко С. Автоматизированное проектирование малогабаритных ИИП на микросхемах VIPer – Радио, 2008, № 5, с. 32. 33.

nauchebe.net

Сетевая светодиодная лампа с блоком питания на микросхеме VIPer22A

Светотехника

Главная  Радиолюбителю  Светотехника


В последнее время лампы накаливания, имеющие весьма ограниченный ресурс около 1000 часов, и газоразрядные осветительные лампы с ресурсом примерно 20 000 часов энергично вытесняются светодиодными аналогами, способными функционировать без замены гораздо дольше — 100 000 часов. Они имеют наивысший среди искусственных источников света КПД преобразования электрической энергии в световую, что вынуждает правительства многих стран, в том числе и России, энергичнее внедрять энергосберегающие технологии в светотехнике. Этому также способствует неуклонное снижение стоимости сверхъярких светодиодов из-за конкуренции их мировых производителей.

К сожалению, в большинстве бытовых светодиодных ламп использованы простейшие сетевые блоки питания с балластным конденсатором. И это несмотря на то, что общеизвестные недостатки последних (бросок тока при включении, узкий интервал сетевого напряжения, соответствующий допустимым пределам тока через светодиоды, а также возможность повреждения при обрывах в нагрузке) приводят к преждевременному выходу светильников из строя. Это значит, что подобное схемотехническое решение в принципе не может обеспечить эффективную долговременную работу светодиодных источников света с предполагаемым ресурсом в 100 000 часов.

Рис. 1

Предлагаемая конструкция простого малогабаритного сетевого ИИП для светодиодной лампы (рис. 1) свободна от таких недостатков и, несмотря на высокую надежность эксплуатации, очень дешева (примерно 50 руб без светодиодов). Использование средств автоматизированного проектирования данного устройства предоставляет возможность радиолюбителю самостоятельно гибко варьировать номенклатуру и число подключаемых светодиодов.
Работа подобного импульсного понижающего стабилизатора напряжения и физические принципы его функционирования описаны в [1] (рис.1,в и рис. 2,6). Поэтому более подробно рассмотрим последовательность проектирования сетевого преобразователя для питания 17 ультраярких светодиодов, используемых в описываемом устройстве (рис. 1). Среди них EL1- EL8 — стандартные 5-миллиметровые светодиоды LC503TWN1-15G и EL9-EL11 — чип-све-тодиоды ARL-5060WYC по 3 шт. в прямоугольном корпусе PLCC6 размерами 5×5 мм с допустимым прямым током до 40 мА и прямым падением напряжения примерно 3,2 В на каждом диоде. Такой выбор светодиодов в экземпляре автора обусловлен необходимостью освещения компьютерной клавиатуры. Первые светодиоды обладают малым углом излучения — 15° по уровню половинной мощности, вторые — большим — 120°. В результате в суммарном световом пятне будут отсутствовать резкие границы, причем освещенность в центре больше, чем на периферии. Цветовой оттенок такого источника света — средний между холодным и теплым белым, что обусловлено параметрами использованных светодиодов.
Из конструктивных соображений однотипные светодиоды соединены последовательно, при этом получены показанные на рис. 1 две цепи (из 8 и 9 светодиодов соответственно), которые соединены параллельно через токо-ограничивающие резисторы R2 и R3 Выходное напряжение преобразователя для обеих цепей выбрано 32 В при токе нагрузки 40 мА.
Для проектирования преобразователя использована программа Non-Isolated VIPer Design Software v.2.3 (NIVDS), о которой рассказано в статье [2]. Интервал напряжения сети оставлен выбранный программой по умолчанию 88…264 В. Использован ШИ контроллер — микросхема VIPer22A с частотой преобразования 60 кГц, режим преобразования прерывистый (DCM — Discontinuous Current Mode), выходное напряжение — 32 В при токе 40 мА. Индуктивность накопительного дросселя L1, рассчитанная программой, составила 2,2 мГн. Другие параметры преобразователя: КПД — 74 %, максимальная амплитуда тока коммутирующего транзистора микросхемы DA1 — 169 мА, ее максимальная температура — 47 °С, эффективное значение потребляемого тока — 17 мА при максимальном сетевом напряжении 264 В.
Дроссель L1 — доработанный высокочастотный ДМ-0,1 500 мкГн. Для увеличения его индуктивности до 2,2 мГн к имеющейся обмотке добавляют, не изменяя направление намотки, 2 слоя по 100 витков провода ПЭВ-2 диаметром 0,12 мм. Изоляцию между добавляемыми слоями, а также общее покрытие дросселя выполняют клейкой лентой (скотчем). Отгибание выводов дросселя для монтажа на печатной плате производят не ближе 5 мм от ферритового корпуса, иначе заводские выводы обмотки будут повреждены. Вместо доработанного дросселя ДМ-0,1 можно применить катушки индуктивности КИГ-0,2-2200 или SDR1006-2200.

Рис. 2

Чертеж печатной платы преобразователя, выполненной из односторонне фольгированного стеклотекстолита толщиной 1…1,2 мм, показан на рис. 2, а ее внешний вид — на рис. 3. Конденсатор С1 впаивают с зазором 7…8 мм до платы, так как его надо наклонить к центру платы, чтобы он разместился в примененном цоколе от сгоревшей энергосберегающей лампы.

Рис. 3

В преобразователе могут быть использованы импортные оксидные конденсаторы с предельной рабочей температурой 105 °С. Конденсаторы С2 и С5 — пленочные или керамические с номинальным напряжением не менее 50 В. Плавкая перемычка FU1 — проволока от предохранителя с номинальным током 1 А. Прорезь защищает плату при перегорании FU1. Но прорезь не нужна, если перемычку заменить плавкой вставкой в керамическом корпусе (из серий ВП1-1, ВП1-2) или предохранительным резистором Р1-25 (или аналогичным импортным сопротивлением 8… 10 Ом). В случае использования предохранительного резистора сопротивление резистора R1 уменьшают до 10…12 Ом.

Рис. 4

Светодиодная нагрузка R2R3EL1 — EL11 смонтирована на другой печатной плате из двусторонне фольгированного стеклотекстолита толщиной 0,5… 1 мм (рис. 4). Участок фольги многоугольной формы в центре платы предназначен для отвода тепла от светодиодов поверхностного монтажа EL9-EL11. Токоограничивающие резисторы R2 и R3 — РН1-12 типоразмера 1206. Две платы соединяют между собой пайкой в соответствующих контактных площадках трех отрезков медного провода диаметром 0,7 мм и длиной примерно 7 мм, на которые в качестве ограничительных букс надеты отрезки пустотелых пластиковых стержней от шариковых ручек. Два провода подают питание на плату со свето-диодами, а третий обеспечивает необходимую жесткость конструкции. При соединении смежными являются стороны, свободные от элементов на обеих платах. В отверстия контактных площадок, отмеченных звездочками, вставляют и с двух сторон пропаивают короткие отрезки провода. Вначале с помощью ЛАТР желательно убедиться в стабильности выходного напряжения 32 В во всем интервале изменения сетевого напряжения (88…264 В), при этом вместо светодиодов подключают резисторы общим сопротивлением 800 Ом Затем свето-диоды устанавливают на место, а вместо постоянных токоограничивающих резисторов R2 и R3 временно спаивают подстроечные сопротивлением 150 Ом При измерениях следует остерегаться электрического удара током, поскольку все элементы устройства гальванически связаны с питающей электросетью. Все изменения выполняют только в отключенном состоянии. Подстроечные резисторы регулируют диэлектрической отверткой. Ток через каждую цепь светодиодов контролируют миллиамперметром Хотя использованные светодиоды допускают прямой ток до 40 мА с соответствующим увеличением яркости свечения, в целях достижения заявленной долговечности светодиодов подстройкой резисторов ток устанавливают равным 20 мА. Примерно через 5 мин после включения стабилизируется тепловой режим светодиодов, поэтому необходима дополнительная подстройка тока. При наличии одного миллиамперметра ток в каждой светодиодной цепи регулируют по очереди. В завершение подстроечные резисторы заменяют постоянными найденного сопротивления.

Рис. 5

С помощью инструмента Waveforms программа NIVDS позволяет смоделировать режимы ШИ контроллера. На рис. 5 показана диаграмма импульсного тока в контроллере при сетевом напряжении 220 В, практически совпавшая с результатами контрольных измерений. Интервал О…1,5мкс соответствует открытому состоянию коммутирующего транзистора микросхемы DA1 (прямой ход преобразователя). Синим цветом показан график тока в накопительном дросселе во время обратного хода преобразователя. Интервал 1,5… 13 мкс соответствует этапу передачи в нагрузку энергии, накопленной дросселем во время прямого хода. Интервал 13…16,6 мкс — так называемая бестоковая пауза б работе преобразователя, когда возникают свободные затухающие колебания напряжения и тока в выходной цепи. Более наглядно эти колебания иллюстрирует снятая диаграмма напряжения на истоке транзистора относительно общего провода питания (рис. 6), где хорошо заметно, что затухающие колебания напряжения происходят относительно уровня 32 В, соответствующего выходному напряжению преобразователя. Выходной фильтр С4С5 снижает пульсации выходного напряжения до 300 мВ.

Рис. 6

Как видно из рис. 5 и 6, пиковый ток коммутирующего транзистора микросхемы (169 мА) в несколько раз меньше максимально допустимого значения 700 мА, напряжение на стоке этого транзистора (300 В) также меньше максимально допустимого 730 В Это обеспечивает работу преобразователя с большим запасом электрической прочности, что наряду со встроенной в микросхему тепловой защитой, а также защитой от замыканий и обрывов в нагрузке гарантирует многолетнюю надежную работу описанного устройства.

Внешний вид светодиодной лампы показан на рис. 7. В ней использован отражатель от неисправного карманного фонаря.

Литература

1. Косенко С. Особенности работы индуктивных элементов в однотактных преобразователях. — Радио. 2005. № 7. с. 30-32.
2. Косенко С. Автоматизированное проектирование малогабаритных ИИП на микросхемах VIPer — Радио, 2008, № 5, с. 32. 33.

Автор: С. Косенко, г. Воронеж

Дата публикации: 19.04.2010

Рекомендуем к данному материалу …

Мнения читателей
  • стас / 14.09.2011 — 14:41
    что означает на рис.1 FB,PWC, DRAIN,Udd, SOURCE для чего оно вобще преднозначено.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

Отправить ответ

avatar
  Подписаться  
Уведомление о