Содержание

Что такое «сверхвысокий диапазон» и какова расшифровка СВЧ?

Расшифровка СВЧ – это «сверхвысокие частоты». Многие подумают, что это нечто сложное из области заумной физики и математики, и что это их не касается. Однако дело обстоит совсем иначе. Устройства СВЧ давно и плотно вошли в нашу жизнь, и их можно встретить повсеместно. Но что же это такое?

Диапазон сверхвысоких частот

Расшифровка СВЧ – сверхвысокие частоты электромагнитного излучения, которые расположены в спектре между частотой инфракрасной дальней области и ультравысокими частотами. Длина волн данного диапазона составляет от тридцати сантиметров до одного миллиметра. Именно поэтому СВЧ иногда называют сантиметровыми и дециметровыми волнами. В зарубежной технической литературе расшифровка СВЧ – микроволновый диапазон. Имеется в виду, что длина волн очень мала в сравнении с волнами радиовещания, которые имеют порядок в несколько сотен метров.

Свойства СВЧ-диапазона

По своей длине данный тип волн – промежуточный между излучением света и радиосигналами, поэтому он и обладает свойствами обоих видов. Например, как и свет, эти волны распространяются по прямой траектории и перекрываются практически всеми более-менее твердыми объектами. Аналогично световому излучению, СВЧ может фокусироваться, отражаться, распространятся в виде лучей. Несмотря на то что расшифровка СВЧ акцентирует внимание на «сверх»-высоком диапазоне, многие антенны и радиолокационные устройства являют собой несколько увеличенный вариант зеркал, линз и других оптических элементов.

Генерация

Так как излучение сверхвысоких частот схоже с радиоволнами, то и генерируется оно схожими методами. Расшифровка СВЧ предполагает применение к ней классической теории радиоволн, однако благодаря повышенному диапазону существует возможность повысить эффективность его использования. К примеру, один только луч может «нести» сразу до тысячи телефонных разговоров одновременно. Сходства СВЧ-волн и света, выражающихся в повышенной плотности переносимой информации, оказались полезными для радиолокационной техники.

Применение сверхвысоких частот в радиолокации

Волны сантиметрового и дециметрового диапазонов стали предметом интереса еще во времена Второй мировой войны. В то время возникла потребность в эффективном и новаторском средстве обнаружения. Тогда исследовали СВЧ-волны на предмет их применения в радиолокации. Суть заключается в том, что интенсивные и короткие импульсы запускаются в пространство, а затем часть этих лучей регистрируется после возвращения от искомых удаленных объектов.

Применение сверхвысоких частот в области связи

Как мы уже говорили, расшифровка СВЧ – сверхвысокие частоты. Инженеры и техники решили применить эти радиоволны в связи. Во всех странах активно используют коммерческие линии связи, основанные на передаче волн высоких диапазонов. Такие радиосигналы идут не по кривой земной поверхности, а по прямой, через ретрансляционные станции связи, расположенные на высотах с интервалами около пятидесяти километров.

Для передачи не нужны большие затраты электроэнергии, так как СВЧ-волны допускают узконаправленные прием и передачу, а также на станциях усиливаются электронными усилителями перед ретрансляцией. Система антенн, башен, передатчиков и приемников кажется дорогой, но все это окупается информационной емкостью подобных каналов связи.

Применение сверхвысоких частот в области спутниковой связи

Система радиобашен для ретрансляции СВЧ-сигналов на большие расстояния может существовать только на суше. Для межконтинентальных переговоров используют искусственные спутники, которые находятся на геостационарной орбите Земли и выполняют функции ретрансляторов. Каждый спутник предоставляет несколько тысяч каналов связи высокого качества своим клиентам для передачи телевизионных и телефонных сигналов одновременно.

Термообработка продуктов

Первые попытки применения сверхвысоких частот для обработки пищевых продуктов получили положительные, и даже восторженные отзывы. СВЧ-печи на сегодняшний день применяют как в домашних условиях, так и в крупной пищевой промышленности. Генерируемая электронными высокомощными лампами энергия концентрируется в незначительном объеме, что позволяет термически обработать продукцию чисто, компактно и бесшумно.

Встраиваемая СВЧ-печь получила наибольшее распространение в домашнем хозяйстве, и ее можно найти на многих кухнях. Также подобные устройства бытового назначения применяются во всех местах, где необходим быстрый подогрев и подготовка блюд. Печь СВЧ с грилем, например, является абсолютно необходимым элементом для любого уважающего себя ресторана.

Основные источники излучения

Прогресс в использовании СВЧ-волн связан с такими электровакуумными приборами, как клистрон и магнетрон, которые способны генерировать огромное количество энергии высокой частоты. Использование магнетрона базируется на принципе объемного резонатора, стенки которого являются индуктивностью, а пространство между стенами – емкостью резонансной цепи. Размеры данного элемента выбирают по необходимой резонансной сверхвысокой частоте, которая бы соответствовала нужным соотношениям между емкостью и индуктивностью.

Итак, расшифровка СВЧ — сверхвысокие частоты. Размер генератора напрямую влияет на мощность подобных излучений. Магнетроны малого размера для высоких частот являются такими маленькими, что их мощности не могут достичь нужных величин. Проблема также стоит и с использованием тяжелых магнитов. В клистроне она частично решена, так как в этом электровакуумном приборе не нужно внешнее поле.

fb.ru

Принцип работы микроволновой печи: схемы, частота и видео

Как именно она работает микроволновая печь? Что заставляет нагреваться еду, воду и другие вещества, в то время как воздух или стекло в микроволновке почти не нагреваются? Как правильно обращаться с микроволновкой, чтобы не испортить ее саму и приготавливаемое блюдо? Ответы на эти вопросы вы найдете в нашей статье!

Принцип работы микроволновки

Правильное полное название микроволновки – печь с токами сверхвысокой частоты (СВЧ). Внутри нее (за приборной панелью) есть специальное устройство для излучения радиоволн – магнетрон, что можно увидеть из схемы:

Когда работает магнетрон, выделяемые им электромагнитные колебания определенной частоты заставляют дипольные молекулы внутри печи колебаться с той же частотой. Самой распространенной в природе дипольной молекулой является молекула воды (в продуктах – еще жиры и сахара). На молекулярном уровне высокая частота колебаний превращается в повышение температуры, поэтому любые продукты с высоким содержанием воды быстро разогреваются. Если же молекул воды внутри продуктов (или материалов) очень мало или нет совсем, нагрев почти не происходит.

Глубина проникновения микроволн небольшая – 2-3 сантиметра, однако поверхность приготовляемого блюда СВЧ-волны пронзают легко, а в глубине они встречают сопротивление молекул воды, поэтому продукт фактически прогревается изнутри.

Любые токопроводящие материалы внутри микроволновки нагреваются. Разная способность проводить ток в нашем случае обозначает разную скорость нагревания.

Чтобы нагрев продуктов происходил равномерно, используется несколько подходов:

  • Диск из жаропрочного стекла в нижней части СВЧ-печи. Он вращается вместе с блюдом, подставляя под излучение магнетрона все его стороны.
  • Микроволны. Они подаются по специальному волноводу (широкой трубке) от магнетрона на вращающийся отражатель, расположенный обычно в верхней части СВЧ-печи. В таких микроволновках можно разогревать неподвижные блюда большого размера и веса.

Еще бывают так называемые инверторные СВЧ-печи. Они отличаются от обычных моделей тем, что магнетрон работает непрерывно, но со снижением потребляемой мощности. Это достигается за счет использования в печи так называемого инвертора (преобразователя постоянного тока в переменный) вместо традиционного трансформатора.

В инверторных печах лучше сохраняются витамины, и меньше разрушается структура поверхности блюда, но принципиальной разницы нет.

Во многих моделях микроволновок магнетрон закрыт специальной полупрозрачной пластинкой. Она прозрачна для СВЧ-лучей, но не позволяет пару, брызгам жира и прочим посторонним веществам попадать внутрь микроволновки через отверстие в экранировании. Не вынимайте эту пластину, а если это требуется для чистки от жира, то после полного высыхания обязательно верните на место.

Всё о чистке микроволновой печи ищите в этой статье: https://sovetexpert.ru/chistka-mikrovolnovoj-pechi.html.

Несмотря на распространенное мнение, СВЧ-излучение не убивает микробы. По крайней мере, научно это не доказано. С другой стороны, комплексное воздействие высокой температуры и микроволн на молекулы воды внутри бактерий и вирусов в течение нескольких минут уменьшает их количество многократно, а с теми, что остались, ваша иммунная система справляется самостоятельно.

Частота работы микроволновки

Большинство магнетронов излучает волны на частоте 2450 МГц (мегагерц, или миллионов колебаний в секунду). Это волны дециметровой длины (длиной в 12,25 см). Некоторые промышленные установки, например в США, работают с частотой 915 МГц. Вынужденные колебания молекул воды не являются резонансными колебаниями, так как для них резонансная частота на порядок выше – 22,24 ГГц (гигагерц, или миллиардов колебаний в секунду).

Бояться вредного излучения от микроволновки не надо. Первый массовый выпуск микроволновок был произведен в Японии фирмой «Sharp» в 1962 г. С тех пор прошло очень много лет, десятки миллионов японцев десятилетиями разогревают еду в СВЧ-печах и при этом средняя продолжительность жизни японцев является предметов зависти всего мира.

На дистанции в полметра от СВЧ-печи воздействие микроволн ослабевает в 100 раз, поэтому при опасении получить облучение достаточно держаться от микроволновки на расстоянии вытянутой руки.

Больше информации о влиянии микроволновой печи на человека вы можете найти тут. Только научные факты!

Как работает гриль в микроволновке?

Гриль позволяет вам жарить продукты в СВЧ-печи с помощью обычного жара, а не микроволн. Именно она делает на блюдах аппетитную корочку, которая при обычной СВЧ-обработке не появляется.

Спираль гриля находится в верхней части печи и бывают двух видов:

  • ТЭНы (теплоэлектронагреватели). ТЭН – это металлическая трубка, внутри которой находится тонкая спираль из сплава никеля и хрома. Через спираль проходит ток, и она нагревается.
  • Кварцевые. Кварцевый гриль – это тоже ТЭН, только вместо металлической трубки – стеклянная оболочка, между спиралью и трубкой – изолирующий кварцевый песок.

Обычные металлические ТЭНы часто можно регулировать – перемещать к задней стенке или опускать, зато стеклянную поверхность кварцевого гриля легче чистить (жир и нагар не въедается в стекло так, как в металл).

Бывают конструкции СВЧ-печей с грилем и конвекцией. Конвекция – это просто обдув горячим воздухом вашего блюда во время приготовления. Для такого обдува в микроволновке устанавливают вентилятор, сдувающий разогретый воздух от спирали гриля в сторону блюда.

Большинство моделей микроволновок позволяют одновременно использовать и ТЭН, и СВЧ. Однако имейте в виду, что такая комбинация может сильно нагревать розетку и провода в вашем помещении.

Читайте в следующей статье о принципах выбора микроволновой печи под свои запросы: https://sovetexpert.ru/kakuyu-kupit-mikrovolnovku.html.

Инструкция по работе с микроволновой печью

Чтобы правильно обращаться со своей микроволновой, нужно внимательно подходить ко всем пунктам – начиная с выбора посуды и заканчивая правильным выключением после применения.

Какую посуду использоваться?

Лучший материал для разогрева в микроволновке – жаропрочная стеклянная посуда. Также хорошо подходят фарфор и другие керамические изделия, бумага (картон). Сквозь них микроволны проходят очень легко и почти не нагревают их. А вот от посуды из следующих материалов надо отказаться:

  • Пластика. Хорошо пропускает СВЧ-излучение, но из-за токсичных компонентов при изготовлении (например, пенополистирол) может представлять опасность для вашего здоровья.
  • Металлов. Они проводят электрический ток, не пропуская микроволны. Так что приготовить или просто разогреть блюдо в алюминиевой кастрюле или чугунном горшке не получится. Металл просто не пропустит электромагнитные волны к продуктам, и они останутся холодными. Сам металл при этом, конечно, нагреется, и от его тепла могут нагреться и продукты. Но это может привести к поломке СВЧ-печи, да и ждать приготовления блюда придется долго. Инструкцию по ремонту микроволновых печей читайте тут.

Некоторые материалы могут содержать металлы, и об этом заранее бывает трудно догадаться. Например, это хрусталь. Так стоит внимательно на ярлыке прочитать, какие материалы использовались при производстве конкретной посуды.

  • Меламина. Это легкий и красивый материал для посуды, похожий на фарфор, но его нельзя ставить в СВЧ-печь. Дело в том, что при нагреве он выделяет токсины, опасные для вашего здоровья.

Что касается формы посуды, то она может быть любой, но не с узким горлом, поскольку при использовании для разогрева в микроволновке она может быть опасной. Дело в том, что некоторые жидкости нагреваются до температуры кипения, но бурного перемешивания внутри объема при этом не происходит. А вот когда вы достанете такой кувшин или колбу из СВЧ-печи, жидкость мгновенно взбурлит, кипящая пена выльется из емкости, и можно получить ожог. Например, так ведут себя при некоторых условиях дистиллированная вода и некоторые очищенные масла растительного происхождения.

Рекомендуем прочесть статью о том, какая посуда подойдет для микроволновки.

Правильное обращение с продуктами

Изначально стоит точно определить, что нельзя размораживать в микроволновке:

  • Сливочное масло. Если его положить в микроволновку и оставить надолго, оно не просто растает, а еще и вскипит, испачкав всю печь изнутри. Так происходит потому, что внутри масла есть не только собственно масло, но и вода. Она вскипает при 100 градусах, а масло примерно при 120. Так что вода может перейти в пар еще до таяния масла, и водяной пар разнесет масло по всей печке.

Примерно то же самое может происходить с другими продуктами, которые иногда нужно растопить, например, с шоколадом, поэтому это лучше делать не в микроволновке, а на пару.

  • Продукты с плотной оболочкой. Например, это яйца, помидоры, цельная печень птицы. При нагреве некоторая часть воды не просто постепенно нагревается, а сразу превращается в пар. Если греть продукты долго, то еще больше пара образуется от прямого нагрева. Этому пару некуда выйти, поэтому давление внутри емкости растет и приводит к взрыву.
  • Герметично закрытую посуду. Например, консервы и бутылки. Причина та же, что и в предыдущих пунктах – высока вероятность взрыва.

Далее во внимание стоит принять советы, как правильно обращаться с продуктами при разогреве или готовке в микроволновке:

  • Сосиски, плотно упакованные в оболочку, перед СВЧ-разогревом обязательно нужно проткнуть вилкой, чтобы создать отверстия для выхода пара, иначе он разворотит сосиски изнутри.
  • В яйцах и другие продуктах нужно разрушить все внешние и внутренние оболочки, например, сделать омлет или разрезать печень.
  • Для варки яиц и других продуктов в микроволновке используются специальные кастрюльки с экранированием. В нее наливается вода, она-то и греется от СВЧ-волн, а до яиц электромагнитное излучение не доходит – их закрывает экран.
  • Если в микроволновку ставится небольшое по объему блюдо, следует добавить к нему обычный стакан с водой. Так вы избежите перегрева магнетрона.
  • Любые жидкие блюда в микроволновке лучше посолить заранее, а не после приготовления. Так вы сэкономите время и электроэнергию. Дело в том, что дистиллированная (несоленая) вода в микроволновке греется и закипает, но дольше, чем обычная вода.
  • Очень сильно замороженный продукт (мясо, например) будет размораживаться в микроволновке довольно долго, и включать СВЧ-печь при этом нужно на минимальную мощность. Причина в том, что молекулы льда – не молекулы воды, СВЧ-волны не расшатывают их так интенсивно. Кроме того, молекулы льда образуют достаточно жесткую структуру и их не так легко «раскачать», как молекулы воды.

Сухой хлеб часто рекомендуют «размягчить» в микроволновке, но он может загореться при длительном воздействии и максимальной мощности СВЧ-излучения. Это же может произойти даже с попкорном, рассчитанным на приготовление именно в микроволновке. Следовательно, когда в микроволновую печь помещаются такие продукты, нужно быть бдительным.

Правила включения/выключения

Нельзя включать пустую микроволновку, тем более на полную мощность:

  1. Внутри печи все стенки (и даже дверца) являются специальным металлизированным экраном, отражающим микроволны обратно внутрь микроволновки. Единственное место, где нет экрана – отверстие для выхода электромагнитных волн из магнетрона.
  2. Когда на поддоне находятся продукты, микроволны расходуют свою энергию на нагрев этих продуктов. Если же энергию впитывать нечему, СВЧ-излучение отражается от стенок экранирующих поверхностей, при этом плотность волн возрастает все больше.
  3. СВЧ-излучение попадает обратно в магнетрон, и если он состоит из металла, то просто перегреется и может выйти из строя.

Считается, что после разогрева блюда в СВЧ-печи лучше дать ему постоять 3-5 минут. Тогда успевают нейтрализоваться так называемые «свободные радикалы», то есть части молекул, распавшихся на части под воздействием микроволн.

Видео: Как работает микроволновка?

Все вышесказанное о принципе работы устройства хорошо иллюстрируется в следующем видео:

После прочтения нашей статьи вы стали намного лучше разбираться в принципе работы СВЧ-печи. Теперь вы знаете, что она может делать лучше обычной духовки и электроплитки, а что не может, и какие действия вообще недопустимы при работе с микроволновкой.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

sovetexpert.ru

СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН | Энциклопедия Кругосвет

Содержание статьи

СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН, частотный диапазон электромагнитного излучения (100ё300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Этот частотный диапазон соответствует длинам волн от 30 см до 1 мм; поэтому его называют также диапазоном дециметровых и сантиметровых волн. В англоязычных странах он называется микроволновым диапазоном; имеется в виду, что длины волн очень малы по сравнению с длинами волн обычного радиовещания, имеющими порядок нескольких сотен метров.

Так как по длине волны излучение СВЧ-диапазона является промежуточным между световым излучением и обычными радиоволнами, оно обладает некоторыми свойствами и света, и радиоволн. Например, оно, как и свет, распространяется по прямой и перекрывается почти всеми твердыми объектами. Во многом аналогично свету оно фокусируется, распространяется в виде луча и отражается. Многие радиолокационные антенны и другие СВЧ-устройства представляют собой как бы увеличенные варианты оптических элементов типа зеркал и линз.

В то же время СВЧ-излучение сходно с радиоизлучением вещательных диапазонов в том отношении, что оно генерируется аналогичными методами. К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство связи, основываясь на тех же принципах. Но благодаря более высоким частотам оно дает более широкие возможности передачи информации, что позволяет повысить эффективность связи. Например, один СВЧ-луч может нести одновременно несколько сотен телефонных разговоров. Сходство СВЧ-излучения со светом и повышенная плотность переносимой им информации оказались очень полезны для радиолокационной и других областей техники.

ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

Радиолокация.

Волны дециметрово-сантиметрового диапазона оставались предметом чисто научного любопытства до начала Второй мировой войны, когда возникла настоятельная необходимость в новом и эффективном электронном средстве раннего обнаружения. Только тогда начались интенсивные исследования СВЧ-радиолокации, хотя принципиальная ее возможность была продемонстрирована еще в 1923 в Научно-исследовательской лаборатории ВМС США. Суть радиолокации в том, что в пространство испускаются короткие, интенсивные импульсы СВЧ-излучения, а затем регистрируется часть этого излучения, вернувшаяся от искомого удаленного объекта – морского судна или самолета. См. также РАДИОЛОКАЦИЯ.

Связь.

Радиоволны СВЧ-диапазона широко применяются в технике связи. Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами ок. 50 км. Параболические или рупорные антенны, смонтированные на башнях, принимают и передают дальше СВЧ-сигналы. На каждой станции перед ретрансляцией сигнал усиливается электронным усилителем. Поскольку СВЧ-излучение допускает узконаправленные прием и передачу, для передачи не требуется больших затрат электроэнергии.

Хотя система башен, антенн, приемников и передатчиков может показаться весьма дорогостоящей, в конечном счете все это с лихвой окупается благодаря большой информационной емкости СВЧ-каналов связи. Города Соединенных Штатов соединены между собой сложной сетью более чем из 4000 ретрансляционных СВЧ-звеньев, образующих систему связи, которая простирается от одного океанского побережья до другого. Каналы этой сети способны пропускать тысячи телефонных разговоров и многочисленные телевизионные программы одновременно.

Спутники связи.

Система ретрансляционных радиобашен, необходимая для передачи СВЧ-излучения на большие расстояния, может быть построена, конечно, только на суше. Для межконтинентальной же связи требуется иной способ ретрансляции. Здесь на помощь приходят связные искусственные спутники Земли; выведенные на геостационарную орбиту, они могут выполнять функции ретрансляционных станций СВЧ-связи.

Электронное устройство, называемое активно-ретрансляционным ИСЗ, принимает, усиливает и ретранслирует СВЧ-сигналы, передаваемые наземными станциями. Первые экспериментальные ИСЗ такого типа («Телстар», «Релэй» и «Синком») успешно осуществляли уже в начале 1960-х годов ретрансляцию телевизионного вещания с одного континента на другой. На основе этого опыта были разработаны коммерческие спутники межконтинентальной и внутренней связи. Спутники последней межконтинентальной серии «Интелсат» были выведены в различные точки геостационарной орбиты таким образом, что зоны их охвата, перекрываясь, обеспечивают обслуживание абонентов во всем мире. Каждый спутник серии «Интелсат» последних модификаций предоставляет клиентам тысячи каналов высококачественной связи для одновременной передачи телефонных, телевизионных, факсимильных сигналов и цифровых данных.

Термообработка пищевых продуктов.

СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Такие устройства применяются на самолетных бортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, где требуются быстрые подготовка продуктов и приготовление блюд. Промышленность выпускает также СВЧ-печи бытового назначения.

Научные исследования.

СВЧ-излучение сыграло важную роль в исследованиях электронных свойств твердых тел. Когда такое тело оказывается в магнитном поле, свободные электроны в нем начинают вращаться вокруг магнитных силовых линий в плоскости, перпендикулярной направлению магнитного поля. Частота вращения, называемая циклотронной, прямо пропорциональна напряженности магнитного поля и обратно пропорциональна эффективной массе электрона. (Эффективная масса определяет ускорение электрона под воздействием какой-либо силы в кристалле. Она отличается от массы свободного электрона, которой определяется ускорение электрона под действием какой-либо силы в вакууме. Различие обусловлено наличием сил притяжения и отталкивания, с которыми действуют на электрон в кристалле окружающие атомы и другие электроны.) Если на твердое тело, находящееся в магнитном поле, падает излучение СВЧ-диапазона, то это излучение сильно поглощается, когда его частота равна циклотронной частоте электрона. Данное явление называется циклотронным резонансом; оно позволяет измерить эффективную массу электрона. Такие измерения дали много ценной информации об электронных свойствах полупроводников, металлов и металлоидов.

Излучение СВЧ-диапазона играет важную роль также в исследованиях космического пространства. Астрономы многое узнали о нашей Галактике, исследуя излучение с длиной волны 21 см, испускаемое газообразным водородом в межзвездном пространстве. Теперь можно измерять скорость и определять направление движения рукавов Галактики, а также расположение и плотность областей газообразного водорода в космосе.

ИСТОЧНИКИ СВЧ-ИЗЛУЧЕНИЯ

Быстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов – магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии. Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным.

Двумя главными недостатками триода как СВЧ-генератора являются конечное время пролета электрона и межэлектродная емкость. Первый связан с тем, что электрону требуется некоторое (хотя и малое) время, чтобы пролететь между электродами вакуумной лампы. За это время СВЧ-поле успевает изменить свое направление на обратное, так что и электрон вынужден повернуть обратно, не долетев до другого электрода. В результате электроны без всякой пользы колеблются внутри лампы, не отдавая свою энергию в колебательный контур внешней цепи.

Магнетрон.

В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения – принцип объемного резонатора. Подобно тому как у органной трубы данного размера имеются собственные акустические резонансные частоты, так и у объемного резонатора имеются собственные электромагнитные резонансы. Стенки резонатора действуют как индуктивность, а пространство между ними – как емкость некой резонансной цепи. Таким образом, объемный резонатор подобен параллельному резонансному контуру низкочастотного генератора с отдельными конденсатором и катушкой индуктивности. Размеры объемного резонатора выбираются, конечно, так, чтобы данному сочетанию емкости и индуктивности соответствовала нужная резонансная сверхвысокая частота.

В магнетроне (рис. 1) предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита. При этом электроны, испускаемые катодом, под действием магнитного поля вынуждены двигаться по круговым траекториям. Их скорость такова, что они в строго определенное время пересекают на периферии открытые пазы резонаторов. При этом они отдают свою кинетическую энергию, возбуждая колебания в резонаторах. Затем электроны возвращаются на катод, и процесс повторяется. Благодаря такому устройству время пролета и межэлектродные емкости не мешают генерации СВЧ-энергии.

Магнетроны могут быть сделаны большого размера, и тогда они дают мощные импульсы СВЧ-энергии. Но у магнетрона имеются свои недостатки. Например, резонаторы для очень высоких частот становятся столь малыми, что их трудно изготавливать, а сам такой магнетрон из-за своих малых размеров не может быть достаточно мощным. Кроме того, для магнетрона нужен тяжелый магнит, причем требуемая масса магнита возрастает с увеличением мощности прибора. Поэтому для самолетных бортовых установок мощные магнетроны не подходят.

Клистрон.

Для этого электровакуумного прибора, основанного на несколько ином принципе, не требуется внешнее магнитное поле. В клистроне (рис. 2) электроны движутся по прямой от катода к отражательной пластине, а затем обратно. При этом они пересекают открытый зазор объемного резонатора в форме бублика. Управляющая сетка и сетки резонатора группируют электроны в отдельные «сгустки», так что электроны пересекают зазор резонатора только в определенные моменты времени. Промежутки между сгустками согласованы с резонансной частотой резонатора таким образом, что кинетическая энергия электронов передается резонатору, вследствие чего в нем устанавливаются мощные электромагнитные колебания. Этот процесс можно сравнить с ритмичным раскачиванием первоначально неподвижных качелей.

Первые клистроны были довольно маломощными приборами, но позднее они побили все рекорды магнетронов как СВЧ-генераторов большой мощности. Были созданы клистроны, выдававшие до 10 млн. ватт мощности в импульсе и до 100 тыс. ватт в непрерывном режиме. Система клистронов исследовательского линейного ускорителя частиц выдает 50 млн. ватт СВЧ-мощности в импульсе.

Клистроны могут работать на частотах до 120 млрд. герц; однако при этом их выходная мощность, как правило, не превышает одного ватта. Разрабатываются варианты конструкции клистрона, рассчитанного на большие выходные мощности в миллиметровом диапазоне.

Клистроны могут также служить усилителями СВЧ-сигналов. Для этого нужно входной сигнал подавать на сетки объемного резонатора, и тогда плотность электронных сгустков будет изменяться в соответствии с этим сигналом.

Лампа бегущей волны (ЛБВ).

Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку. Внутри трубки имеется замедляющая проволочная спираль. Вдоль оси спирали проходит электронный луч, а по самой спирали бежит волна усиливаемого сигнала. Диаметр, длина и шаг спирали, а также скорость электронов подобраны таким образом, что электроны отдают часть своей кинетической энергии бегущей волне.

Радиоволны распространяются со скоростью света, тогда как скорость электронов в луче значительно меньше. Однако, поскольку СВЧ-сигнал вынужден идти по спирали, скорость его продвижения вдоль оси трубки близка к скорости электронного луча. Поэтому бегущая волна достаточно долго взаимодействует с электронами и усиливается, поглощая их энергию.

Если на лампу не подается внешний сигнал, то усиливается случайный электрический шум на некоторой резонансной частоте и ЛБВ бегущей волны работает как СВЧ-генератор, а не усилитель.

Выходная мощность ЛБВ значительно меньше, чем у магнетронов и клистронов на той же частоте. Однако ЛБВ допускают настройку в необычайно широком частотном диапазоне и могут служить очень чувствительными малошумящими усилителями. Такое сочетание свойств делает ЛБВ очень ценным прибором СВЧ-техники.

Плоские вакуумные триоды.

Хотя клистроны и магнетроны более предпочтительны как СВЧ-генераторы, благодаря усовершенствованиям в какой-то мере восстановлена важная роль вакуумных триодов, особенно в качестве усилителей на частотах до 3 млрд. герц.

Трудности, связанные с временем пролета, устранены благодаря очень малым расстояниям между электродами. Нежелательные межэлектродные емкости сведены к минимуму, поскольку электроды сделаны сетчатыми, а все внешние соединения выполняются на больших кольцах, находящихся вне лампы. Как и принято в СВЧ-технике, применен объемный резонатор. Резонатор плотно охватывает лампу, и кольцевые соединители обеспечивают контакт по всей окружности резонатора.

Генератор на диоде Ганна.

Такой полупроводниковый СВЧ-генератор был предложен в 1963 Дж.Ганном, сотрудником Уотсоновского научно-исследовательского центра корпорации ИБМ. В настоящее время подобные приборы дают мощности лишь порядка милливатт на частотах не более 24 млрд. герц. Но в этих пределах он имеет несомненные преимущества перед маломощными клистронами.

Поскольку диод Ганна представляет собой монокристалл арсенида галлия, он в принципе более стабилен и долговечен, нежели клистрон, в котором должен быть нагреваемый катод для создания потока электронов и необходим высокий вакуум. Кроме того, диод Ганна работает при сравнительно низком напряжении питания, тогда как для питания клистрона нужны громоздкие и дорогостоящие источники питания с напряжением от 1000 до 5000 В.

СХЕМНЫЕ КОМПОНЕНТЫ

Коаксиальные кабели и волноводы.

Для передачи электромагнитных волн СВЧ-диапазона не через эфир, а по металлическим проводникам нужны специальные методы и проводники особой формы. Обычные провода, по которым передается электричество, пригодные для передачи низкочастотных радиосигналов, неэффективны на сверхвысоких частотах.

Любой отрезок провода имеет емкость и индуктивность. Эти т.н. распределенные параметры приобретают очень важное значение в СВЧ-технике. Сочетание емкости проводника с его собственной индуктивностью на сверхвысоких частотах играет роль резонансного контура, почти полностью блокирующего передачу. Поскольку в проводных линиях передачи невозможно устранить влияние распределенных параметров, приходится обращаться к другим принципам передачи СВЧ-волн. Эти принципы воплощены в коаксиальных кабелях и волноводах.

Коаксиальный кабель состоит из внутреннего провода и охватывающего его цилиндрического наружного проводника. Промежуток между ними заполнен пластиковым диэлектриком, например тефлоном или полиэтиленом. С первого взгляда это может показаться похожим на пару обычных проводов, но на сверхвысоких частотах их функция иная. СВЧ-сигнал, введенный с одного конца кабеля, на самом деле распространяется не по металлу проводников, а по заполненному изолирующим материалом промежутку между ними.

Коаксиальные кабели хорошо передают СВЧ-сигналы частотой до нескольких миллиардов герц, но на более высоких частотах их эффективность снижается, и они непригодны для передачи больших мощностей.

Обычные каналы для передачи волн СВЧ-диапазона имеют форму волноводов. Волновод – это тщательно обработанная металлическая труба прямоугольного или кругового поперечного сечения, внутри которой распространяется СВЧ-сигнал. Упрощенно говоря, волновод направляет волну, заставляя ее то и дело отражаться от стенок. Но на самом деле распространение волны по волноводу есть распространение колебаний электрического и магнитного полей волны, как и в свободном пространстве. Такое распространение в волноводе возможно лишь при условии, что его размеры находятся в определенном соотношении с частотой передаваемого сигнала. Поэтому волновод точно рассчитывается, так же точно обрабатывается и предназначается только для узкого интервала частот. Другие частоты он передает плохо либо вообще не передает. Типичное распределение электрического и магнитного полей внутри волновода показано на рис. 3.

Чем выше частота волны, тем меньше размеры соответствующего ей прямоугольного волновода; в конце концов эти размеры оказываются столь малы, что чрезмерно усложняется его изготовление и снижается передаваемая им предельная мощность. Поэтому были начаты разработки круговых волноводов (кругового поперечного сечения), которые могут иметь достаточно большие размеры даже на высоких частотах СВЧ-диапазона. Применение кругового волновода сдерживается некоторыми трудностями. Например, такой волновод должен быть прямым, иначе его эффективность снижается. Прямоугольные же волноводы легко изгибать, им можно придавать нужную криволинейную форму, и это никак не сказывается на распространении сигнала. Радиолокационные и другие СВЧ-установки обычно выглядят как запутанные лабиринты из волноводных трактов, соединяющих разные компоненты и передающих сигнал от одного прибора другому в пределах системы.

Твердотельные компоненты.

Твердотельные компоненты, например полупроводниковые и ферритовые, играют важную роль в СВЧ-технике. Так, для детектирования, переключения, выпрямления, частотного преобразования и усиления СВЧ-сигналов применяются германиевые и кремниевые диоды.

Для усиления применяются также специальные диоды – варикапы (с управляемой емкостью) – в схеме, называемой параметрическим усилителем. Широко распространенные усилители такого рода служат для усиления крайне малых сигналов, так как они почти не вносят собственные шумы и искажения.

Твердотельным СВЧ-усилителем с низким уровнем шума является и рубиновый мазер. Такой мазер, действие которого основано на квантовомеханических принципах, усиливает СВЧ-сигнал за счет переходов между уровнями внутренней энергии атомов в кристалле рубина. Рубин (или другой подходящий материал мазера) погружается в жидкий гелий, так что усилитель работает при чрезвычайно низких температурах (лишь на несколько градусов превышающих температуру абсолютного нуля). Поэтому уровень тепловых шумов в схеме очень низок, благодаря чему мазер пригоден для радиоастрономических, сверхчувствительных радиолокационных и других измерений, в которых нужно обнаруживать и усиливать крайне слабые СВЧ-сигналы. См. также КВАНТОВЫЕ ГЕНЕРАТОРЫ И УСИЛИТЕЛИ.

Для изготовления СВЧ-переключателей, фильтров и циркуляторов широко применяются ферритовые материалы, такие, как оксид магния-железа и железо-иттриевый гранат. Ферритовые устройства управляются посредством магнитных полей, причем для управления потоком мощного СВЧ-сигнала достаточно слабого магнитного поля. Ферритовые переключатели имеют то преимущество перед механическими, что в них нет движущихся частей, подверженных износу, а переключение осуществляется весьма быстро. На рис. 4 представлено типичное ферритовое устройство – циркулятор. Действуя подобно кольцевой транспортной развязке, циркулятор обеспечивает следование сигнала только по определенным трактам, соединяющим различные компоненты. Циркуляторы и другие ферритовые переключающие устройства применяются при подключении нескольких компонентов СВЧ-системы к одной и той же антенне. На рис. 4 циркулятор не пропускает передаваемый сигнал на приемник, а принимаемый сигнал – на передатчик.

В СВЧ-технике находит применение и туннельный диод – сравнительно новый полупроводниковый прибор, работающий на частотах до 10 млрд. герц. Он используется в генераторах, усилителях, частотных преобразователях и переключателях. Его рабочие мощности невелики, но это первый полупроводниковый прибор, способный эффективно работать на столь высоких частотах. См. также ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ.

Антенны.

СВЧ-антенны отличаются большим разнообразием необычных форм. Размер антенны приблизительно пропорционален длине волны сигнала, а поэтому для СВЧ-диапазона вполне приемлемы конструкции, которые были бы слишком громоздки на более низких частотах.

В конструкциях многих антенн учитываются те свойства СВЧ-излучения, которые сближают его со светом. Типичными примерами могут служить рупорные антенны, параболические отражатели, металлические и диэлектрические линзы. Применяются также винтовые и спиральные антенны, часто изготавливаемые в виде печатных схем.

Группы щелевых волноводов можно расположить так, чтобы получилась нужная диаграмма направленности для излучаемой энергии. Часто применяются также диполи типа хорошо известных телевизионных антенн, устанавливаемых на крышах. В таких антеннах нередко имеются одинаковые элементы, расположенные с интервалами, равными длине волны, и повышающие направленность за счет интерференции.

СВЧ-антенны обычно проектируют так, чтобы они были предельно направленными, поскольку во многих СВЧ-системах очень важно, чтобы энергия передавалась и принималась в точно заданном направлении. Направленность антенны возрастает с увеличением ее диаметра. Но можно уменьшить антенну, сохранив ее направленность, если перейти на более высокие рабочие частоты.

Многие «зеркальные» антенны с параболическим или сферическим металлическим отражателем спроектированы специально для приема крайне слабых сигналов, приходящих, например, от межпланетных космических аппаратов или от далеких галактик. В Аресибо (Пуэрто-Рико) действует один из крупнейших радиотелескопов с металлическим отражателем в виде сферического сегмента, диаметр которого равен 300 м. Антенна имеет неподвижное («меридианное») основание; ее приемный радиолуч перемещается по небосводу благодаря вращению Земли. Самая большая (76 м) полностью подвижная антенна расположена в Джодрелл-Бенке (Великобритания).

Новое в области антенн – антенна с электронным управлением направленностью; такую антенну не нужно механически поворачивать. Она состоит из многочисленных элементов – вибраторов, которые можно электронными средствами по-разному соединять между собой и тем самым обеспечивать чувствительность «антенной решетки» в любом нужном направлении. См. также АНТЕННЫ.

www.krugosvet.ru

СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН — это… Что такое СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН?



СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН
частотный диапазон электромагнитного излучения (100е300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Этот частотный диапазон соответствует длинам волн от 30 см до 1 мм; поэтому его называют также диапазоном дециметровых и сантиметровых волн. В англоязычных странах он называется микроволновым диапазоном; имеется в виду, что длины волн очень малы по сравнению с длинами волн обычного радиовещания, имеющими порядок нескольких сотен метров. Так как по длине волны излучение СВЧ-диапазона является промежуточным между световым излучением и обычными радиоволнами, оно обладает некоторыми свойствами и света, и радиоволн. Например, оно, как и свет, распространяется по прямой и перекрывается почти всеми твердыми объектами. Во многом аналогично свету оно фокусируется, распространяется в виде луча и отражается. Многие радиолокационные антенны и другие СВЧ-устройства представляют собой как бы увеличенные варианты оптических элементов типа зеркал и линз. В то же время СВЧ-излучение сходно с радиоизлучением вещательных диапазонов в том отношении, что оно генерируется аналогичными методами. К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство связи, основываясь на тех же принципах. Но благодаря более высоким частотам оно дает более широкие возможности передачи информации, что позволяет повысить эффективность связи. Например, один СВЧ-луч может нести одновременно несколько сотен телефонных разговоров. Сходство СВЧ-излучения со светом и повышенная плотность переносимой им информации оказались очень полезны для радиолокационной и других областей техники.
ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ
Радиолокация. Волны дециметрово-сантиметрового диапазона оставались предметом чисто научного любопытства до начала Второй мировой войны, когда возникла настоятельная необходимость в новом и эффективном электронном средстве раннего обнаружения. Только тогда начались интенсивные исследования СВЧ-радиолокации, хотя принципиальная ее возможность была продемонстрирована еще в 1923 в Научно-исследовательской лаборатории ВМС США.


Суть радиолокации в том, что в пространство испускаются короткие, интенсивные импульсы СВЧ-излучения, а затем регистрируется часть этого излучения, вернувшаяся от искомого удаленного объекта — морского судна или самолета. См. также РАДИОЛОКАЦИЯ.
Связь. Радиоволны СВЧ-диапазона широко применяются в технике связи. Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами ок. 50 км. Параболические или рупорные антенны, смонтированные на башнях, принимают и передают дальше СВЧ-сигналы. На каждой станции перед ретрансляцией сигнал усиливается электронным усилителем. Поскольку СВЧ-излучение допускает узконаправленные прием и передачу, для передачи не требуется больших затрат электроэнергии. Хотя система башен, антенн, приемников и передатчиков может показаться весьма дорогостоящей, в конечном счете все это с лихвой окупается благодаря большой информационной емкости СВЧ-каналов связи. Города Соединенных Штатов соединены между собой сложной сетью более чем из 4000 ретрансляционных СВЧ-звеньев, образующих систему связи, которая простирается от одного океанского побережья до другого. Каналы этой сети способны пропускать тысячи телефонных разговоров и многочисленные телевизионные программы одновременно.
Спутники связи. Система ретрансляционных радиобашен, необходимая для передачи СВЧ-излучения на большие расстояния, может быть построена, конечно, только на суше. Для межконтинентальной же связи требуется иной способ ретрансляции. Здесь на помощь приходят связные искусственные спутники Земли; выведенные на геостационарную орбиту, они могут выполнять функции ретрансляционных станций СВЧ-связи. Электронное устройство, называемое активно-ретрансляционным ИСЗ, принимает, усиливает и ретранслирует СВЧ-сигналы, передаваемые наземными станциями. Первые экспериментальные ИСЗ такого типа («Телстар», «Релэй» и «Синком») успешно осуществляли уже в начале 1960-х годов ретрансляцию телевизионного вещания с одного континента на другой. На основе этого опыта были разработаны коммерческие спутники межконтинентальной и внутренней связи. Спутники последней межконтинентальной серии «Интелсат» были выведены в различные точки геостационарной орбиты таким образом, что зоны их охвата, перекрываясь, обеспечивают обслуживание абонентов во всем мире. Каждый спутник серии «Интелсат» последних модификаций предоставляет клиентам тысячи каналов высококачественной связи для одновременной передачи телефонных, телевизионных, факсимильных сигналов и цифровых данных.
Термообработка пищевых продуктов. СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Такие устройства применяются на самолетных бортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, где требуются быстрые подготовка продуктов и приготовление блюд. Промышленность выпускает также СВЧ-печи бытового назначения.
Научные исследования. СВЧ-излучение сыграло важную роль в исследованиях электронных свойств твердых тел. Когда такое тело оказывается в магнитном поле, свободные электроны в нем начинают вращаться вокруг магнитных силовых линий в плоскости, перпендикулярной направлению магнитного поля. Частота вращения, называемая циклотронной, прямо пропорциональна напряженности магнитного поля и обратно пропорциональна эффективной массе электрона. (Эффективная масса определяет ускорение электрона под воздействием какой-либо силы в кристалле. Она отличается от массы свободного электрона, которой определяется ускорение электрона под действием какой-либо силы в вакууме. Различие обусловлено наличием сил притяжения и отталкивания, с которыми действуют на электрон в кристалле окружающие атомы и другие электроны.) Если на твердое тело, находящееся в магнитном поле, падает излучение СВЧ-диапазона, то это излучение сильно поглощается, когда его частота равна циклотронной частоте электрона. Данное явление называется циклотронным резонансом; оно позволяет измерить эффективную массу электрона. Такие измерения дали много ценной информации об электронных свойствах полупроводников, металлов и металлоидов. Излучение СВЧ-диапазона играет важную роль также в исследованиях космического пространства. Астрономы многое узнали о нашей Галактике, исследуя излучение с длиной волны 21 см, испускаемое газообразным водородом в межзвездном пространстве. Теперь можно измерять скорость и определять направление движения рукавов Галактики, а также расположение и плотность областей газообразного водорода в космосе.
ИСТОЧНИКИ СВЧ-ИЗЛУЧЕНИЯ
Быстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов — магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии. Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным. Двумя главными недостатками триода как СВЧ-генератора являются конечное время пролета электрона и межэлектродная емкость. Первый связан с тем, что электрону требуется некоторое (хотя и малое) время, чтобы пролететь между электродами вакуумной лампы. За это время СВЧ-поле успевает изменить свое направление на обратное, так что и электрон вынужден повернуть обратно, не долетев до другого электрода. В результате электроны без всякой пользы колеблются внутри лампы, не отдавая свою энергию в колебательный контур внешней цепи.
Магнетрон. В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения — принцип объемного резонатора. Подобно тому как у органной трубы данного размера имеются собственные акустические резонансные частоты, так и у объемного резонатора имеются собственные электромагнитные резонансы. Стенки резонатора действуют как индуктивность, а пространство между ними — как емкость некой резонансной цепи. Таким образом, объемный резонатор подобен параллельному резонансному контуру низкочастотного генератора с отдельными конденсатором и катушкой индуктивности. Размеры объемного резонатора выбираются, конечно, так, чтобы данному сочетанию емкости и индуктивности соответствовала нужная резонансная сверхвысокая частота. В магнетроне (рис. 1) предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита. При этом электроны, испускаемые катодом, под действием магнитного поля вынуждены двигаться по круговым траекториям. Их скорость такова, что они в строго определенное время пересекают на периферии открытые пазы резонаторов. При этом они отдают свою кинетическую энергию, возбуждая колебания в резонаторах. Затем электроны возвращаются на катод, и процесс повторяется. Благодаря такому устройству время пролета и межэлектродные емкости не мешают генерации СВЧ-энергии.

Рис. 1. МАГНЕТРОН (вид с частичным вырезом, показывающим внутреннее устройство). Представляет собой двухэлектродную электронную лампу, которая генерирует СВЧ-излучение за счет движения электронов под действием взаимно перпендикулярных электрического и магнитного полей. Применяется в качестве генераторной лампы радио- и радиолокационных передатчиков СВЧ-диапазона. 1 — катод; 2 — токоподводы нагревателя; 3 — анодный блок; 4 — объемные резонаторы; 5 — выходная петля связи; 6 — коаксиальный кабель.
Магнетроны могут быть сделаны большого размера, и тогда они дают мощные импульсы СВЧ-энергии. Но у магнетрона имеются свои недостатки. Например, резонаторы для очень высоких частот становятся столь малыми, что их трудно изготавливать, а сам такой магнетрон из-за своих малых размеров не может быть достаточно мощным. Кроме того, для магнетрона нужен тяжелый магнит, причем требуемая масса магнита возрастает с увеличением мощности прибора. Поэтому для самолетных бортовых установок мощные магнетроны не подходят.
Клистрон. Для этого электровакуумного прибора, основанного на несколько ином принципе, не требуется внешнее магнитное поле. В клистроне (рис. 2) электроны движутся по прямой от катода к отражательной пластине, а затем обратно. При этом они пересекают открытый зазор объемного резонатора в форме бублика. Управляющая сетка и сетки резонатора группируют электроны в отдельные «сгустки», так что электроны пересекают зазор резонатора только в определенные моменты времени. Промежутки между сгустками согласованы с резонансной частотой резонатора таким образом, что кинетическая энергия электронов передается резонатору, вследствие чего в нем устанавливаются мощные электромагнитные колебания. Этот процесс можно сравнить с ритмичным раскачиванием первоначально неподвижных качелей.

Рис. 2. КЛИСТРОН, электровакуумный прибор отражательного типа. Применяется в СВЧ-технике. Изменяющиеся электрические поля периодически группируют электроны в «сгустки». Электронный пучок, модулированный по скорости, поступает в объемный резонатор, где и вызывает генерацию или усиление. 1 — катод; 2 — резонатор; 3 — отражательная пластина; 4 — резонаторные сетки; 5 — выходная петля связи; 6 — управляющая сетка.



Первые клистроны были довольно маломощными приборами, но позднее они побили все рекорды магнетронов как СВЧ-генераторов большой мощности. Были созданы клистроны, выдававшие до 10 млн. ватт мощности в импульсе и до 100 тыс. ватт в непрерывном режиме. Система клистронов исследовательского линейного ускорителя частиц выдает 50 млн. ватт СВЧ-мощности в импульсе. Клистроны могут работать на частотах до 120 млрд. герц; однако при этом их выходная мощность, как правило, не превышает одного ватта. Разрабатываются варианты конструкции клистрона, рассчитанного на большие выходные мощности в миллиметровом диапазоне. Клистроны могут также служить усилителями СВЧ-сигналов. Для этого нужно входной сигнал подавать на сетки объемного резонатора, и тогда плотность электронных сгустков будет изменяться в соответствии с этим сигналом.
Лампа бегущей волны (ЛБВ). Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона — лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку. Внутри трубки имеется замедляющая проволочная спираль. Вдоль оси спирали проходит электронный луч, а по самой спирали бежит волна усиливаемого сигнала. Диаметр, длина и шаг спирали, а также скорость электронов подобраны таким образом, что электроны отдают часть своей кинетической энергии бегущей волне. Радиоволны распространяются со скоростью света, тогда как скорость электронов в луче значительно меньше. Однако, поскольку СВЧ-сигнал вынужден идти по спирали, скорость его продвижения вдоль оси трубки близка к скорости электронного луча. Поэтому бегущая волна достаточно долго взаимодействует с электронами и усиливается, поглощая их энергию. Если на лампу не подается внешний сигнал, то усиливается случайный электрический шум на некоторой резонансной частоте и ЛБВ бегущей волны работает как СВЧ-генератор, а не усилитель. Выходная мощность ЛБВ значительно меньше, чем у магнетронов и клистронов на той же частоте. Однако ЛБВ допускают настройку в необычайно широком частотном диапазоне и могут служить очень чувствительными малошумящими усилителями. Такое сочетание свойств делает ЛБВ очень ценным прибором СВЧ-техники.
Плоские вакуумные триоды. Хотя клистроны и магнетроны более предпочтительны как СВЧ-генераторы, благодаря усовершенствованиям в какой-то мере восстановлена важная роль вакуумных триодов, особенно в качестве усилителей на частотах до 3 млрд. герц. Трудности, связанные с временем пролета, устранены благодаря очень малым расстояниям между электродами. Нежелательные межэлектродные емкости сведены к минимуму, поскольку электроды сделаны сетчатыми, а все внешние соединения выполняются на больших кольцах, находящихся вне лампы. Как и принято в СВЧ-технике, применен объемный резонатор. Резонатор плотно охватывает лампу, и кольцевые соединители обеспечивают контакт по всей окружности резонатора.
Генератор на диоде Ганна. Такой полупроводниковый СВЧ-генератор был предложен в 1963 Дж.Ганном, сотрудником Уотсоновского научно-исследовательского центра корпорации ИБМ. В настоящее время подобные приборы дают мощности лишь порядка милливатт на частотах не более 24 млрд. герц. Но в этих пределах он имеет несомненные преимущества перед маломощными клистронами. Поскольку диод Ганна представляет собой монокристалл арсенида галлия, он в принципе более стабилен и долговечен, нежели клистрон, в котором должен быть нагреваемый катод для создания потока электронов и необходим высокий вакуум. Кроме того, диод Ганна работает при сравнительно низком напряжении питания, тогда как для питания клистрона нужны громоздкие и дорогостоящие источники питания с напряжением от 1000 до 5000 В.
СХЕМНЫЕ КОМПОНЕНТЫ
Коаксиальные кабели и волноводы. Для передачи электромагнитных волн СВЧ-диапазона не через эфир, а по металлическим проводникам нужны специальные методы и проводники особой формы. Обычные провода, по которым передается электричество, пригодные для передачи низкочастотных радиосигналов, неэффективны на сверхвысоких частотах. Любой отрезок провода имеет емкость и индуктивность. Эти т.н. распределенные параметры приобретают очень важное значение в СВЧ-технике. Сочетание емкости проводника с его собственной индуктивностью на сверхвысоких частотах играет роль резонансного контура, почти полностью блокирующего передачу. Поскольку в проводных линиях передачи невозможно устранить влияние распределенных параметров, приходится обращаться к другим принципам передачи СВЧ-волн. Эти принципы воплощены в коаксиальных кабелях и волноводах. Коаксиальный кабель состоит из внутреннего провода и охватывающего его цилиндрического наружного проводника. Промежуток между ними заполнен пластиковым диэлектриком, например тефлоном или полиэтиленом. С первого взгляда это может показаться похожим на пару обычных проводов, но на сверхвысоких частотах их функция иная. СВЧ-сигнал, введенный с одного конца кабеля, на самом деле распространяется не по металлу проводников, а по заполненному изолирующим материалом промежутку между ними. Коаксиальные кабели хорошо передают СВЧ-сигналы частотой до нескольких миллиардов герц, но на более высоких частотах их эффективность снижается, и они непригодны для передачи больших мощностей. Обычные каналы для передачи волн СВЧ-диапазона имеют форму волноводов. Волновод — это тщательно обработанная металлическая труба прямоугольного или кругового поперечного сечения, внутри которой распространяется СВЧ-сигнал. Упрощенно говоря, волновод направляет волну, заставляя ее то и дело отражаться от стенок. Но на самом деле распространение волны по волноводу есть распространение колебаний электрического и магнитного полей волны, как и в свободном пространстве. Такое распространение в волноводе возможно лишь при условии, что его размеры находятся в определенном соотношении с частотой передаваемого сигнала. Поэтому волновод точно рассчитывается, так же точно обрабатывается и предназначается только для узкого интервала частот. Другие частоты он передает плохо либо вообще не передает. Типичное распределение электрического и магнитного полей внутри волновода показано на рис. 3.

Рис. 3. ТИПИЧНОЕ РАСПРЕДЕЛЕНИЕ электрического и магнитного полей в волноводе прямоугольного сечения. Волновод — это металлическая труба прямоугольного или кругового поперечного сечения, внутри которой распространяются СВЧ-волны. Выбор поперечного сечения определяется нужным набором частот.
Чем выше частота волны, тем меньше размеры соответствующего ей прямоугольного волновода; в конце концов эти размеры оказываются столь малы, что чрезмерно усложняется его изготовление и снижается передаваемая им предельная мощность. Поэтому были начаты разработки круговых волноводов (кругового поперечного сечения), которые могут иметь достаточно большие размеры даже на высоких частотах СВЧ-диапазона. Применение кругового волновода сдерживается некоторыми трудностями. Например, такой волновод должен быть прямым, иначе его эффективность снижается. Прямоугольные же волноводы легко изгибать, им можно придавать нужную криволинейную форму, и это никак не сказывается на распространении сигнала. Радиолокационные и другие СВЧ-установки обычно выглядят как запутанные лабиринты из волноводных трактов, соединяющих разные компоненты и передающих сигнал от одного прибора другому в пределах системы.
Твердотельные компоненты. Твердотельные компоненты, например полупроводниковые и ферритовые, играют важную роль в СВЧ-технике. Так, для детектирования, переключения, выпрямления, частотного преобразования и усиления СВЧ-сигналов применяются германиевые и кремниевые диоды. Для усиления применяются также специальные диоды — варикапы (с управляемой емкостью) — в схеме, называемой параметрическим усилителем. Широко распространенные усилители такого рода служат для усиления крайне малых сигналов, так как они почти не вносят собственные шумы и искажения. Твердотельным СВЧ-усилителем с низким уровнем шума является и рубиновый мазер. Такой мазер, действие которого основано на квантовомеханических принципах, усиливает СВЧ-сигнал за счет переходов между уровнями внутренней энергии атомов в кристалле рубина. Рубин (или другой подходящий материал мазера) погружается в жидкий гелий, так что усилитель работает при чрезвычайно низких температурах (лишь на несколько градусов превышающих температуру абсолютного нуля). Поэтому уровень тепловых шумов в схеме очень низок, благодаря чему мазер пригоден для радиоастрономических, сверхчувствительных радиолокационных и других измерений, в которых нужно обнаруживать и усиливать крайне слабые СВЧ-сигналы.
См. также КВАНТОВЫЕ ГЕНЕРАТОРЫ И УСИЛИТЕЛИ. Для изготовления СВЧ-переключателей, фильтров и циркуляторов широко применяются ферритовые материалы, такие, как оксид магния-железа и железо-иттриевый гранат. Ферритовые устройства управляются посредством магнитных полей, причем для управления потоком мощного СВЧ-сигнала достаточно слабого магнитного поля. Ферритовые переключатели имеют то преимущество перед механическими, что в них нет движущихся частей, подверженных износу, а переключение осуществляется весьма быстро. На рис. 4 представлено типичное ферритовое устройство — циркулятор. Действуя подобно кольцевой транспортной развязке, циркулятор обеспечивает следование сигнала только по определенным трактам, соединяющим различные компоненты. Циркуляторы и другие ферритовые переключающие устройства применяются при подключении нескольких компонентов СВЧ-системы к одной и той же антенне. На рис. 4 циркулятор не пропускает передаваемый сигнал на приемник, а принимаемый сигнал — на передатчик.

Рис. 4. ЦИРКУЛЯТОР. Волноводное устройство, которое вынуждает сигнал распространяться в том или ином направлении. Циркулятор позволяет радиостанции работать с одной антенной, не пропуская передаваемый сигнал в приемник, а принимаемый — в передатчик.
В СВЧ-технике находит применение и туннельный диод — сравнительно новый полупроводниковый прибор, работающий на частотах до 10 млрд. герц. Он используется в генераторах, усилителях, частотных преобразователях и переключателях. Его рабочие мощности невелики, но это первый полупроводниковый прибор, способный эффективно работать на столь высоких частотах.
См. также ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ.
Антенны. СВЧ-антенны отличаются большим разнообразием необычных форм. Размер антенны приблизительно пропорционален длине волны сигнала, а поэтому для СВЧ-диапазона вполне приемлемы конструкции, которые были бы слишком громоздки на более низких частотах. В конструкциях многих антенн учитываются те свойства СВЧ-излучения, которые сближают его со светом. Типичными примерами могут служить рупорные антенны, параболические отражатели, металлические и диэлектрические линзы. Применяются также винтовые и спиральные антенны, часто изготавливаемые в виде печатных схем. Группы щелевых волноводов можно расположить так, чтобы получилась нужная диаграмма направленности для излучаемой энергии. Часто применяются также диполи типа хорошо известных телевизионных антенн, устанавливаемых на крышах. В таких антеннах нередко имеются одинаковые элементы, расположенные с интервалами, равными длине волны, и повышающие направленность за счет интерференции. СВЧ-антенны обычно проектируют так, чтобы они были предельно направленными, поскольку во многих СВЧ-системах очень важно, чтобы энергия передавалась и принималась в точно заданном направлении. Направленность антенны возрастает с увеличением ее диаметра. Но можно уменьшить антенну, сохранив ее направленность, если перейти на более высокие рабочие частоты. Многие «зеркальные» антенны с параболическим или сферическим металлическим отражателем спроектированы специально для приема крайне слабых сигналов, приходящих, например, от межпланетных космических аппаратов или от далеких галактик. В Аресибо (Пуэрто-Рико) действует один из крупнейших радиотелескопов с металлическим отражателем в виде сферического сегмента, диаметр которого равен 300 м. Антенна имеет неподвижное («меридианное») основание; ее приемный радиолуч перемещается по небосводу благодаря вращению Земли. Самая большая (76 м) полностью подвижная антенна расположена в Джодрелл-Бенке (Великобритания). Новое в области антенн — антенна с электронным управлением направленностью; такую антенну не нужно механически поворачивать. Она состоит из многочисленных элементов — вибраторов, которые можно электронными средствами по-разному соединять между собой и тем самым обеспечивать чувствительность «антенной решетки» в любом нужном направлении.
См. также АНТЕННА.
ЛИТЕРАТУРА
СВЧ-полупроводниковые приборы и их применение. М., 1972 Мощные электровакуумные приборы СВЧ. М., 1974 Полупроводниковые приборы в схемах СВЧ. М., 1979

Энциклопедия Кольера. — Открытое общество.
2000.

  • КИБЕРНЕТИКА
  • ДИНАМИКА

Смотреть что такое «СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН» в других словарях:

  • диапазон сверхвысоких частот — СВЧ диапазон — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы СВЧ диапазон EN microwave …   Справочник технического переводчика

  • Диапазон сверхвысоких частот (СВЧ) — По ГОСТ 24375 80 Источник: ГОСТ Р 50765 95: Аппаратура радиорелейная. Классификация. Основные параметры цепей стыка …   Словарь-справочник терминов нормативно-технической документации

  • Сверхвысоких частот техника —         техника СВЧ, область науки и техники, связанная с изучением и использованием свойств электромагнитных колебаний и волн в диапазоне частот от 300 Мгц до 300 Ггц. Эти границы условны: в некоторых случаях нижней границей диапазона СВЧ… …   Большая советская энциклопедия

  • диапазон сверхвысоких частот — superaukštųjų dažnių diapazonas statusas T sritis radioelektronika atitikmenys: angl. superhigh frequency band vok. Superhochfrequenzband, n rus. диапазон сверхвысоких частот, m pranc. gamme de fréquences supérieures, f …   Radioelektronikos terminų žodynas

  • ГОСТ 18238-72: Линии передачи сверхвысоких частот. Термины и определения — Терминология ГОСТ 18238 72: Линии передачи сверхвысоких частот. Термины и определения оригинал документа: 19. Бегущая волна Электромагнитная волна определенного типа, распространяющаяся в линии передачи только в одном направлении Определения… …   Словарь-справочник терминов нормативно-технической документации

  • диапазон частот (в радиосвязи) — диапазон частот Полоса частот, которой присвоено условное наименование. Примечание. Термины видовых понятий образуют в соответствии с наименованием конкретных частот, например «диапазон звуковых частот», «диапазон средних… …   Справочник технического переводчика

  • диапазон — 3.9 диапазон (range): Диапазон между пределами, выраженными заявленными значениями нижнего и верхнего пределов. Примечание Термин «диапазон», как правило, используют в различных модификациях. Он может представлять собой различные характеристики,… …   Словарь-справочник терминов нормативно-технической документации

  • основной диапазон — 3.6 основной диапазон: Диапазон измерений, имеющий наименьшую нормированную погрешность. Примечание Если наименьшая погрешность нормирована для нескольких диапазонов измерений, за основной диапазон принимают любой из них. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Основной диапазон частот линии передачи — 34. Основной диапазон частот линии передачи Диапазон частот, в котором возможно распространение волн основного типа без распространения волн высших типов Источник: ГОСТ 18238 72: Линии передачи сверхвысоких частот. Термины и определения о …   Словарь-справочник терминов нормативно-технической документации

  • основной диапазон частот линии передачи — Диапазон частот, в котором возможно распространение волн основного типа без распространения волн высших типов. [ГОСТ 18238 72] Тематики линии передачи сверхвысоких частот …   Справочник технического переводчика

dic.academic.ru

Радиоволны профессиональные вредности

Радиоволны широко используются в радиосвязи, радиовещании, телевидении, медицине, радиолокации, радионавигации, радиоастрономии, ядерной физике, металлургической промышленности (при сварке, закалке, плавке, выбраковке металлических изделий, склейке пластмасс и деревянных изделий и т. д.).

В настоящее время принята следующая классификация радиочастот (таблица 1).

Таблица 1








ЧастотыВысокие частоты (ВЧ)Ультравысокие частоты (УВЧ)Сверхвысокие частоты (СВЧ)
 100 кГц— 30 МГц30—300 МГц300—300 000 МГц
Длины волнДлинныеСредниеКороткиеУльтракороткиеМикроволны
дециметровыесантиметровыемиллиметровые
 3—1 км1 км — 100 м100—10 м10—1 м1 м—10 см10—1 см1 см— 1 мм

Радиоволны в медицине используют для лечебных целей в форме синусоидальных модулированных токов (5 кГц), терапии надтональной частотой (20 кГц), дарсонвализации (110 кГц), диатермии (1,5—1,8 МГц), индуктотермии (13,56 и 40,68 МГц), УВЧ-терапии (40,68 МГц), дециметровой терапии (460 МГц) и микроволновой терапии (2375 МГц) — см. Дарсонвализация, Диатермия, Импульсный ток, Индуктотермия, Микроволновая  терапия,   УВЧ-терапия.

Профессиональные вредности радиоволн. Искусственными источниками электромагнитных полей ВЧ, УВЧ, СВЧ могут являться различные типы генераторов, индукторы, блоки передатчиков, фидерные линии, конденсаторы, антенные системы и др. Лица, работающие с генераторами и передающей системой электромагнитных колебаний радиочастот, могут подвергаться воздействию различных диапазонов ВЧ, УВЧ, СВЧ. При конструировании, испытании, настройке и эксплуатации станций, отдельных блоков, генерирующих электромагнитную энергию, возможно излучение волн в рабочее помещение. Это бывает при плохой экранировке блоков передатчиков, волноводных трактов, нерациональном расположении антенно-фидерных систем и т. п., а также при нарушении техники безопасности. Иногда возможно облучение персонала и населения, не связанного профессионально с излучающей аппаратурой, но попадающего под воздействие радиоволн от мощных антенных систем.

Интенсивность полей ВЧ и УВЧ принято оценивать по напряженности электрической (Е) и магнитной (И) составляющих. Для Е интенсивность выражается в вольтах на 1 м (в/м), для Я — в амперах на 1 л (а/м). В диапазоне СВЧ интенсивность облучения оценивается по плотности потока мощности (ППМ) и выражается в ваттах на 1 см2 (Вт/см2), милливаттах (мвт/см2), микроваттах (мквт/см2).

Измерение напряженности ВЧ и УВЧ осуществляется прибором ИЭМП-1, в диапазоне СВЧ по плотности потока мощности — прибором ПО-1.

В целях предотвращения переоблучения и сохранения здоровья трудящихся в СССР введены «Санитарные нормы и правила при работе с источниками электромагнитных полей высоких, ультравысоких и сверхвысоких частот», устанавливающие предельно допустимые уровни (таблица 2).

Таблица 2






ДиапазонПредельно допустимые уровни
по Епо НПлотность потока мощности
По электрической составляющей

100 кГц—30 МГц (ВЧ)

30—300 МГц (УВЧ)

По магнитной составляющей

100 кГц — 1,5 МГц

По СВЧ

300—300 000 МГц

в течение рабочего дня

в течение 2 часовв
течение 15—20 минут

для населения и лиц, профессионально не связанных с СВЧ-облучением


20 В/м

5 В/м




5 А/м




Не более 10 мкВт/см2

Не более 100 мкВт/см2

Не более 1000 мкВт/см2 с обязательным применением защитных очков

1 мкВт/см2

Систематическое облучение радиоволнами с уровнями, превышающими допустимые, может привести к значительным изменениям некоторых систем организма человека.

Отмечается развитие астенического синдрома различной степени выраженности. При этом характерны жалобы на головные боли, понижение работоспособности, расстройство сна, раздражительность, повышенную потливость, ослабление памяти, иногда снижение половой потенции. При длительных и частых облучениях выше предельно допустимых уровней могут возникать тремор век и пальцев
вытянутых рук, повышение сухожильных рефлексов, вегетативные расстройства (красный стойкий дермографизм, акроцианоз, гипергидроз и др.), чувство страха, галлюцинации, обморочное состояние и др. Результаты электроэнцефалограммы указывают на функциональные сдвиги в виде развития торможения в корковых клетках.


Со стороны сердечно-сосудистой системы изменения чаще идут по типу нейроциркуляторной дистонии с характерными жалобами: боли в области сердца, одышка, особенно при физической нагрузке, ощущение сердцебиения и «замирания» сердца. Объективно: брадикардия, гипотония, приглушение первого тона сердца, иногда систолический шум на верхушке, синусовая аритмия, признаки гипоксии миокарда и др. Иногда наблюдается лейкопения, относительный лимфоцитоз, эозинофилия, увеличение числа эритроцитов. Однако изменения состава периферической крови не являются стойкими, а иногда по своим показателям противоречивы.

Отмечаются слезотечение, резь в глазах, ощущение «песка» за веками конъюнктивиты. При грубых нарушениях техники безопасности при работе с источниками излучения, главным образом СВЧ диапазона, может развиться катаракта.

Со стороны эндокринной системы отмечено усиление функции гипофиза и коры надпочечников, а также повышение активности щитовидной железы.

Необходимо иметь в виду, что клиническая   картина   при воздействии электромагнитных излучений различных   диапазонов (ВЧ, УВЧ, СВЧ) имеет свои особенности и может значительно варьировать. Все  вышеперечисленные изменения в большинстве  своем обратимы.

Профилактика: при проектировании, размещении, строительстве, приемке и эксплуатации всех типов станций радиочастотного диапазона для предотвращения переоблучения людей необходимо особое внимание уделять экранировке рабочего места или обеспечению дистанционного управления, рациональному размещению блоков приемопередающей аппаратуры, сокращению времени пребывания людей в местах вероятного облучения в соответствии с нормативами, использованию при необходимости индивидуальных средств защиты (комбинезоны, очки и др.). Систематические измерения интенсивности ВЧ—УВЧ и СВЧ-полей.

При приеме на работу проводятся обязательные предварительные медосмотры. Периодические медосмотры по показаниям, но не реже 1 раза в год. Лица с наличием выраженного воздействия электромагнитных полей радиочастот, а также с общими заболеваниями, течение которых может ухудшиться в условиях хронического воздействия полей радиочастот, и женщины в период беременности и кормления переводятся на другую работу.

К работе с источниками электромагнитных полей допускаются только лица старше 18 лет. Как лечебные средства применяются общеукрепляющие, тонизирующие и симптоматические препараты.

www.medical-enc.ru

Сверхвысокие частоты и их применение

Сверхвысокие
частоты(СВЧ)-
область радиочастот от 300 Мгцдо
300 Ггц,
охватывающая дециметровые
волны,
сантиметровые
волны и
миллиметровые
волны.
Микроволны
являются одной из форм электромагнитной
энергии, как и световые волны или
радиоволны. Это очень короткие
электромагнитные волны, которые
перемещаются со скоростью света (299,79
км в секунду). Классификация электромагнитных
волн представлена на рис 1.

Рисунок 1.
Классификация электромагнитных волн

Микроволновое
излучение используется для СВЧ-радиолокации.
Суть радиолокации в том, что в пространство
испускаются короткие, интенсивные
импульсы СВЧ-излучения, а затем
регистрируется часть этого излучения,
вернувшаяся от искомого удаленного
объекта — морского судна или самолета.

Радиоволны
СВЧ-диапазона широко применяются в
технике связи. Поскольку такие радиоволны
не следуют за кривизной земной поверхности,
а распространяются по прямой, эти линии
связи, как правило, состоят из
ретрансляционных станций, установленных
на вершинах холмов или на радиобашнях
с интервалами ок. 50 км. Параболические
или рупорные антенны, смонтированные
на башнях, принимают и передают дальше
СВЧ-сигналы. На каждой станции перед
ретрансляцией сигнал усиливается
электронным усилителем. Поскольку
СВЧ-излучение допускает узконаправленные
прием и передачу, для передачи не
требуется больших затрат электроэнергии.
Электронное устройство, называемое
активно-ретрансляционным ИСЗ, принимает,
усиливает и ретранслирует СВЧ-сигналы,
передаваемые наземными станциями.

СВЧ-излучение
применяется для термообработки пищевых
продуктов в домашних условиях и в пищевой
промышленности. Энергия, генерируемая
мощными электронными лампами, может
быть сконцентрирована в малом объеме
для высокоэффективной тепловой обработки
продуктов в т.н. микроволновых или
СВЧ-печах, отличающихся чистотой,
бесшумностью и компактностью. Такие
устройства применяются на самолетных
бортовых кухнях, в железнодорожных
вагонах-ресторанах и торговых автоматах,
где требуются быстрые подготовка
продуктов и приготовление блюд.
Промышленность выпускает также СВЧ-печи
бытового назначения.

СВЧ-излучение
сыграло важную роль в исследованиях
электронных свойств твердых тел. Когда
такое тело оказывается в магнитном
поле, свободные электроны в нем начинают
вращаться вокруг магнитных силовых
линий в плоскости, перпендикулярной
направлению магнитного поля. Частота
вращения, называемая циклотронной,
прямо пропорциональна напряженности
магнитного поля и обратно пропорциональна
эффективной массе электрона. Если на
твердое тело, находящееся в магнитном
поле, падает излучение СВЧ-диапазона,
то это излучение сильно поглощается,
когда его частота равна циклотронной
частоте электрона. Данное явление
называется циклотронным резонансом;
оно позволяет измерить эффективную
массу электрона. Такие измерения дали
много ценной информации об электронных
свойствах полупроводников, металлов и
металлоидов.

Предлагается   
использование   мощного 
микроволнового  излучение для прогрева
и очистки призабойной зоны, а также для
расплавления газогидратных и парафиновых
пробок в скважинах с целью повышения
нефтеотдачи, повышения извлечения
газового конденсата и увеличения
производительности скважин. Кроме того,
возможно использование  этих устройств
для борьбы подобными явлениями в системе
газопроводов, особенно в пиковые периоды
(например, при очень низких температурах
зимой или очень высоких  — летом).

Передавать
СВЧ излучение внутри скважины или
газопровода, как по волноводу, можно
почти без потерь  на расстояния до
нескольких км. При этом параметры системы
подбираются  таким образом, чтобы
выделение энергии для нагрева
самопроизвольно осуществлялось
непосредственно в объеме менее
радиационно-прозрачной фазы, а именно
— в пробках гидратов и парафинов (твердая
фаза) или в скоплениях воды и газового
конденсата (жидкая фаза), например,  в
призабойной зоне. Такое целенаправленное
дистанционное нагревание  приведет
к разрушению газовых  гидратов и
парафиновых пробок и к очистке скважины
или газопроводов  именно в тех местах,
где возникли препятствия. В случае
применения устройства на газовых
месторождениях, возможно использование
одного мощного СВЧ излучателя для группы
скважин.

            Из-за
высокой вязкости некоторых видов нефти
(или при низких температурах эксплуатации)
возникают сложности  с ее добычей из
скважин, перекачкой по локальным
трубопроводам малого диаметра, а также
с перегрузкой  в цистерны и из них: 
низкая скорость заполнения, малая
производительность, задержка составов
и т.п.

           
Предлагается 
с помощью СВЧ излучения прогревать 
весь объем нефти, содержащийся в скважине,
локальном трубопроводе или рукаве,
подсоединенном к цистерне. При нагревании
вязкость нефти будет уменьшаться, а
скорость ее переливания – увеличиваться.
Микроволновый нагрев относительно
небольшой массы нефти (до нескольких
тонн) не потребует использования очень
мощного оборудования и будет сравнительно
недорог. Излучение, при этом, будет
распространяться  внутри скважины
или рукава, как по волноводу, следуя за 
его изгибами. Такой нагрев будет очень
эффективен, т.к. СВЧ излучение действует
одновременно на весь облучаемый объем
и имеет  большой КПД, а нефть обладает
высокой поглощающей способностью в
микроволновой области. 

studfiles.net

Klinger, 1969

Короткие волны могут концентрироваться с помощью направленных антенн и излучаться в предварительно заданном направлении. Постоянно растущие потребности в международной радиосвязи принуждали к освоению диапазонов все более высоких частот, в которых могли бы быть размещены необходимые каналы связи. В то же время для целого ряда применений возникла необходимость в концентрированных, возможно более узких пучках излучаемых радиоволн. Это привело к исследованиям и освоению УКВ-диапазона, т. с. области длин волн от 10 м до 1 м.  Развитие техники УКВ началось еще в середине тридцатых годов, но пришло к завершению лишь позднее, когда стали широко использоваться УКВ-радиовещание и телевидение.

После 1945 г. стали приобретать вес большее и большее значение еще более короткие волны − дециметровые, сантиметровые и миллиметровые (диапазон сверхвысоких частот − СВЧ). Хотя уже три десятилетия тому назад была, правда ограниченная, возможность получения сверхвысоких частот и в то время начиналось применение их для различных целей, лишь вторая мировая война обусловила быстрое развитие техники СВЧ, равно как позднее космические исследования привели к ее широкому использованию. Техника СВЧ существенно отличается от техники радиовещательного и УКВ-диапазонов, причем не только со стороны аппаратуры, но и с точки зрения характерных для этого частотного диапазона специфических физических процессов. Для специалистов, которые до этого имели дело только с задачами радиотехники, техника СВЧ предлагает совершенно новые понятия и явления.

Правда, существует ряд книг по технике сверхвысоких частот, однако они рассчитаны на специалистов я этой области и для читателей без серьезного математического образования часто оказываются трудными. В противоположность этому, настоящая книга способствует введению в физику и технику СВЧ па основе наглядных представлений. В ней обсуждаются и основные положения техники сверхвысоких частот, и ее очень широко распространившиеся применения в промышленности и исследованиях. До сих пор, насколько я знаю, в немецкой литературе отсутствуют издания, предпринятые с такой целью. С этой книгой я обращаюсь к студентам, физикам и радиотехникам, а также ко всем тем, кто хотя и знаком с основами радиотехники и электроники, однако пока не смог приобрести знаний и навыков в этой специальной области − в области сверхвысоких частот.

Г. Клингер

ВВЕДЕНИЕ

По существующим нормам, к технике сверхвысоких частот относится область частот выше 300 Мгц или диапазон ноли с длиной от 1 м до 1 мм (дециметровые, сантиметровые и миллиметровые волны). Со стороны коротких волн к диапазону сверхвысоких частот (СВЧ) примыкает область субмиллиметровых волн (л = 1 мм + 0.1 мм). Субмиллиметровые волны часто считаются входящими в диапазон СВЧ.

В электромагнитном спектре диапазон сверхвысоких частот перебрасывает мост между областью собственно радиоволн и оптической областью спектра когерентных световых волн. Этому граничному положению соответствует то, что физика сверхвысоких частот частично основывается на закономерностях электротехники (максвелловская электродинамика), а в остальном − неоднократно прибегает к типичным волновым или квантовооптическим представлениям. С уменьшением длины волны, или соответственно с увеличением частоты, оптические свойства сверхвысокочастотных полей приобретают все большее значение. Это проявляется не только в особенностях распространения волн, но также и в процессах излучения или поглощения сверхвысоких частот материей, при которых определяющую роль играют квантовые эффекты.

Техника сверхвысоких частот отличается от обычной радиотехники (радиовещательный диапазон, короткие и ультракороткие волны) целым рядом характерных моментов. В то время как в радиотехнике объемные размеры таких высокочастотных элементов, как катушки индуктивности, конденсаторы и сопротивления, всегда малы по сравнению с длиной волны, на сверхвысоких частотах приходится иметь дело с такими длинами волн, которые оказываются одного порядка и меньше, чем протяженность элементов схем и приборов. В математических уравнениях, описывающих электромагнитное состояние таких систем, выступают частные производные по времени, а их решение − и здесь проявляется физическая сущность − приводит к волновым уравнениям. Физически это значит, что электромагнитное поле в таких системах не может уже считаться квазистационарным, как это имеет место на низких частотах, а, напротив, проявляется в форме волн. Примером этому могут служить колебания и волны в объемных резонаторах и волноводах.

Другой особенностью сверхвысоких частот являются эффекты, связанные с временами пролета в электронных потоках. Если на более низких частотах время пролета электронов в генераторных и усилительных лампах всегда меньше периода колебаний высокочастотных полей, то на сверхвысоких частотах они оказываются величинами одного порядка. Отсюда следует, что обычные для техники высоких частот генераторные и усилительные лампы на сверхвысоких частотах могут найти лишь ограниченное применение. Вместо них выступают лампы, использующие пролетные эффекты, такие как клистроны, магнетроны и лампы бегущей волны. Наконец, на субмиллиметровых волнах приходится применять генераторные лампы, которые основаны на использовании собственного электромагнитного излучения ускоренных электронов, движущихся в электрических и магнитных полях.

Для антенн на сверхвысоких частотах основой является также другая физическая точка зрения, чем на более длинных волнах. Размеры СВЧ-антенн, как правило, существенно больше длины волны, так что в этом частотном диапазоне при расчетах необходимо применять приближения, основанные на оптических закономерностях. Именно поэтому с помощью СВЧ-антенн удается получать концентрированные, остронаправленные пучки излучения: это достигается тем лучше, чем больше отношение размеров антенны к длине волны. Возможность обеспечения высокой концентрации СВЧ-излучения является решающей для таких применений, как направленная радиосвязь и радиолокационная техника. Вторым фактором, существенным с точки зрения технического значения диапазона СВЧ, является то чрезвычайно высокое значение несущих частот, что обеспечивает соответствующую информационную емкость радиопередач. Однако сверхвысокие частоты играют выдающуюся роль не только в технике беспроволочной связи, но и в научных исследованиях. Так, например, их применение в физике позволяет исследовать строение материи. Это − область задач СВЧ-спектроскопии. В астрономии и астрофизике изучают СВЧ-излучение удаленных планет, Млечного Пути и дискретных космических источников.

В биологии и биофизике исследование поглощения сверхвысоких частот биологическими объектами дает возможность понять молекулярное строение биологических сред. В медицине нагрев биологических тел сверхвысокочастотными полями используется в лечебных целях. Наконец, сверхвысокие, частоты применяются для диагностики плазмы, а также для ускорения электронов и протонов до релятивистских скоростей с целью бомбардировки атомных ядер и изучения ядерных реакций. Кроме того, в пауке и технике нее время возникают и другие, новые применения сверхвысоких частот. При изучении физики сверхвысокие частоты могут также сыграть свою роль, позволяя проводить перед большой аудиторией эффективные демонстрации явлений преломления, дифракции, интерференции и поляризации, что показывает к тому же одинаковую природу электрических и световых волн.

 

Содержание

   Предисловие
   Введение

   I. Резонаторы
1. Квазистационарный LС контур
2, Полый контур
3. Объемные резонаторы
4. Резонатор Фабри − Перо

   II. Передающие линии
1. Коаксиальные линии
2. Волноводы
3. Лучевые волноводы
4. Замедляющие линии

   III. Усилители а генераторы
1. Лампы, основанные на управлении плотностью тока (триады)
2. Электронно-лучевые лампы с управлением скоростями электронов
3. Лампы бегущей волны
4. Лампы обратной волны
5. Лампы со скрещенными нолями
6. Генераторы с релятивистскими электронами
7. Генераторы гармоник
8. Параметрический усилитель
9. Молекулярный усилитель
10. Лазер

   IV Антенны
1. Основные понятия и определения
2. Параболические антенны
3. Линзовые антенны
4. Спиральные антенны
5. Рупорные антенны
6. Щелевые антенны
7. Диэлектрические антенны (стержневые излучатели)

   V. Радиосвязь на сверхвысоких частотах
1. Распространение СВЧ-радиоволн
2. Шумы
3. Радиорелейные линии
4. Космическая радиосвязь
5. Межпланетная радиосвязь
6. Радиопередача по полым волноводам

   VI. Радиолокации
1, Принципы радиолокации
2, Импульсная радиолокация
3, Радиолокационные станции непрерывного действия
4. Формула радиолокации
5. Корреляционный метод
6. Радиолокационный ответчик

   VII. Радиоастрономия
1. Радиотелескопы
2. Радиоизлучение Солнца
3. Космические радиоволны

   VIII. Радиоспектроскопия
1. Радиоспектроскопы
2. Спектры вращения
3. Инверсионные спектры
4. Расщепление спектральных линий
5. Ширина липни
6. Химические применения

   IX. Парамагнитный резонанс
1. Сущность парамагнитного резонанса
2. Экспериментальные методы
3. Спектр парамагнитного резонанса

   X. Аномальная дисперсия и поглощение в жидкостях
1. Релаксационные явления а диэлектриках
2. Релаксация и форма молекулы
3. Релаксация и структура молекулы
4. Релаксация и структура жидкости

   XI. Диагностика плазмы

   XII. Применение сверхвысоких частот в промышленности, медицине и биологии
1. Применение в промышленности
2. СВЧ-терапия

   XIII. Методы измерений в технике сверхвысоких частот
1. Кристаллические детекторы
2. Измерение мощности
3. Измерение импеданса
4. Измерение затухания
5. Измерение длины полны и частоты
6. Измерение дифракции
7. Измерение дисперсии и поглощения

Литература

www.acutechinternational.com

Отправить ответ

avatar
  Подписаться  
Уведомление о