Влияние меди на алюминий
Медь с алюминием имеют разные электрохимические потенциалы и при контакте образуют гальваническую пару – электрохимическая коррозия… Соединяют их вроде через прокладку…
Присутствие в одной отопительной системе медного теплообменника и алюминиевого радиатора – явление далеко не необычное… Надо специальный ингибитор добавлять – performax
При соединении меди и алюминия происходит химическая реакция с образованием интерметаллидов. Медь с алюминием образуют два вида интерметаллидов и все бы ничего, но они оба имеют более плотную кристаллическую упаковку. Именно поэтому контакт ослабевает.
Реакция меди и алюминия протекает только с наличием воды.
Воздух в системе отопления вещь неприятная но от попадания не затрахован нито, в первую очередь это кочество материалов, даже у солидных прохзводителей присутствует брак. Но с этим можно бороться, а как бить с долговечностью данной системы и электролизом. Внимание! Выбирая алюминиевый радиатор, следует помнить 1) Алюминий предъявляет повышенные требования к химическому составу теплоносителя (в частности, к показателю pH), по-скольку в процессе эксплуатации происходит активное выделение водорода (если теплоноситель “кислый”, то он вступает в реакцию с алюминием) 2) 2) Алюминиевые радиаторы не рекомендуется устанавливать с медными системами отопления. При условии установки автоматических кранов Маевского (воздухоотводчик), такая система будет функционировать
Медь не терпит двух соседей – алюминия и цинка. При установке на медных трубах алюминиевых радиаторов через теплоноситель (воду, или незамерзайку) образуется электрохимическая пара медь-алюминий. При этом выделяется водород, который постоянно завоздушивает систему. Особенно этот эффект становится заметным, если система отопления заполняется незамерзающим теплоносителем. На радиаторах приходится устанавливать автоматические воздушники, которые портят дизайн помещений, и увеличивается объем подпитки. Сами радиаторы при этом не разрушаются, т.к. расход алюминия на процесс ничтожен. Тем не менее, НИИ Сантехники (Москва, Локомотивный проезд, 21) в официальных бумагах не рекомендует устанавливать на медные трубопроводы алюминиевые радиаторы. При установке медных вставок на стальных оцинкованных трубопроводах (например, в системах центрального горячего водоснабжения), цинк с труб, расположенных “ниже по течению” от медной вставки, реагирует с медью с образованием крупных рыхлых хлопьев. При этом вода теряет прозрачность и становится непригодной для применения. НИИ Сантехники в своих рекомендациях ЗАПРЕЩАЕТ применение медных вставок на стальных оцинкованных трубопроводах.
studfiles.net
Медь и алюминий правильное соединение
Прежде всего, запомните основное правило, никогда не соединяйте напрямую медные и алюминиевые провода. Не буду вдаваться в подробности, скажу только одно, по истечении короткого промежутка времени происходит химическая реакция, и место соединения разрушается. При окислении проводов контакт ослабевает и вполне вероятен риск пожара, да и электричество может пропасть во всей квартире.
Для того, что бы соединить медь и алюминий существует несколько способов.
Клеммник – устройство, которое состоит из трубки, двух винтов, и пластмассовой изоляции. Вставляете с одной стороны медный провод с другой алюминиевый и зажимаете винтами. При выборе клеммника учитывайте сечение соединяемых проводов.
Если клеммник будет слишком большой, то провода не зажмутся как надо, если клемник будет по диаметру меньше кабеля, то тоже ничего не получиться.
Недостатки соединения через клеммник, это возможность покупки некачественного китайского клеммника трубка которого, при затягивании винтом, трескает, так что будьте внимательны.
Еще при соединении при помощи клеммника винты со временем ослабевают и их необходимо подтягивать, а это уже существенный недостаток.
На мой взгляд, при соединении меди и алюминия лучше всего использовать обыкновенный болтик с тремя шайбами, это старый дедовский способ который никогда не подведет. Делаем на проводах кольца, между этими кольцами ставим шайбу, со стороны гайки и головки ставим еще по шайбе и затягиваем всё это дело по самое не могу. После того как затяните, не забудьте тщательно заизолировать соединяемое место.
Контакт получается надежный медь и алюминий не соприкасаются, так как шайба выступает в роли прокладки.
Бывает такое что под рукой нет ни клеммника ни болтика с шайбами, делайте тогда скрутку и намажьте её солидолом….. Честно говоря, я этим способом не пользовался но старые электрики говорят что солидол не даёт запуститься химической реакции, которая разрушает провода.
Также в продаже есть куча различных клеммников, в которых провода зажимаются с помощью пружины. В такой клеммник просто вставляешь провода, и ничего крутить не надо, к ним я тоже отношусь с недоверием и стараюсь ими не пользоваться.
< Замкнуло проводку – ищем причины | Подключение счетчика электроэнергии > |
---|
< Предыдущая | Следующая > |
---|
elektro-blog.ru
проводники — Серебро, Медь, Алюминий.
Руководство по материалам электротехники для всех: проводники — Серебро, Медь, Алюминий.
От DA
10.10.2017 22:45Публикуем по частям руководство по материалам, используемым не только в электротехнике, но и вообще в технике, в том числе самодельщиками. С описанием, примерами применения, заметками по работе. Руководство написано максимально просто, и будет понятно всем, от школьника до пенсионера. В этой части начинаем разбирать проводники — Серебро, Медь, Алюминий.

Проводники
Двадцатый век — век пластмасс. До появления широкого спектра синтетических полимерных материалов, человек использовал в конструировании металлы и материалы природного происхождения — дерево, кожу и т.д. Сегодня мы завалены пластмассовыми изделиями, начиная от одноразовой посуды, заканчивая тяжелонагруженными деталями двигателей автомобилей. Пластмассы во многом превосходят металлы, но никогда не вытеснят их полностью, поэтому рассказ начнется с металлов. Металлам посвящены сотни книг, дисциплина, посвященная им, называется «металловедение». Нас интересуют металлы с точки зрения электронной техники. Как проводники, как часть электронных приборов. Все остальные применения — например такие, как конструкционные материалы, в данное пособие пока не вошли. Главное для электронной техники свойство металлов — это способность хорошо проводить электрический ток. Посмотрим на таблицу удельного сопротивления различных металлов:
Видим лидеров нашего списка: Ag, Cu, Au, Al.
Серебро
Ag — Серебро. Драгоценный металл. Серебро — самый дешевый из драгоценных металлов, но, тем не менее, слишком дорог, чтобы делать из него провода. На 5% лучшая электропроводность по сравнению с медью, при разнице в цене почти в 100 раз.
Примеры применения


Недостатки
Несмотря на то, что серебро — благородный металл, он окисляется в среде с содержанием серы: 4Ag + 2h3S + O2 → 2Ag2S + 2h3O Образуется темный налет — «патина». Также источником серы может служить резина, по- этому провод в резиновой изоляции и посеребренные контакты — плохое сочетание. Потемневшее серебро можно очистить химически. В отличии от чистки абразивными пастами (в том числе зубной пастой) это самый нежный способ чистки, не оставляющий царапин.
Медь
Cu — медь. Основной металл проводников тока. Обмотки электродвигателей, провода в изоляции, шины, гибкие проводники — чаще всего это именно медь. Медь нетрудно узнать по характерному красноватому цвету. Медь достаточно устойчива к коррозии.
Примеры применения


Интересные факты о меди
-
Медь — достаточно дорогой металл, поэтому недобросовестные производители стараются экономить на нем. Занижают сечение проводов (когда написано 0,75 мм2, а фактически 0,11 мм2). Окрашивают алюминий «под медь» в обмотках, внешне обмотка выглядит как медная, а стоит соскрести изоляцию — оказывается, что она сделана из алюминия. Этим грешат и китайские, и отечественные производители, кабель сечением 2,5 мм2 вполне может оказаться сечением 2,3 мм2, поэтому запас прочности и входной контроль не будут лишними. Разумеется, надежность контакта в электроарматуре жилы сечением 2,3 мм2, рассчитанной на жилу 2,5 мм2, будет невысокой.
-
Медь окрашивает пламя в зелёный цвет, это свойство использовали для обнаружения меди в руде, когда не был доступен химический анализ. Зеленый след в пламени — показатель наличия меди. (но не всегда, зеленую окраску пламени могут давать ионы бора)
-
Медь — мягкий металл, но если добавить к меди хотя бы 10% олова, получается твёрдый, упругий сплав — бронза. Именно освоение получения бронзы послужило названием к исторической эпохе — бронзовому веку. Добавка к меди бериллия дает бериллиевую бронзу — прочный упругий сплав, из которого изготавливают пружинящие контакты.
-
Медь — один из немногих мягких металлов с высокой температурой плавления, поэтому из меди изготавливают уплотнительные прокладки, например для высокотемпературной или вакуумной техники. Например, уплотнительная прокладка пробки картера двигателя автомобиля.
-
При механической обработке (например волочении) медь уплотняется и становится жёсткой. Для восстановления исходной мягкости и пластичности медь «отжигают» в защитной атмосфере, нагревая до 500-700 °C и выдерживая некоторое время. Поэтому некоторые медные изделия твёрдые, а некоторые мягкие, например медные трубы.
-
Медь не даёт искр. Для работы во взрывоопасных местах, например на газопроводе, используют искробезопасный инструмент, стальной инструмент покрытый слоем меди или инструмент изготовленный из сплавов меди — бронз. Если таким инструментом случайно чиркнуть по стальной поверхности он не даст опасных искр.
-
Так как температурный коэффициент сопротивления для чистой меди известен, из меди изготавливают термометры сопротивления (тип ТСМ — Термометр Сопротивления Медный, есть еще ТСП — Термометр Сопротивления Платиновый). Термометр сопротивления — это точно изготовленный резистор, навитый из медной проволоки. Измерив его сопротивление, можно по таблице или по формуле определить его температуру достаточно точно.
Алюминий
Al — Алюминий. «Крылатый металл» четвертый по проводимости после серебра, золота и меди. Алюминий хоть и проводит ток почти в полтора раза хуже меди, но он легче в 3,4 раза и в три раза дешевле. А если посчитать проводимость, то эквивалентный медному проводник из алюминия будет дешевле в 6,5 раз! Алюминий бы вытеснил медь, как проводник везде, если бы не пара его противных свойств, но об этом в недостатках. Чистый алюминий, как и чистое железо, в технике практически не применяется (исключения — провода и фольга). Любой «алюминиевый» предмет состоит из какого-нибудь сплава алюминия. Сплавы могут содержать кремний, магний, медь, цинк и другие металлы. Их свойства отличаются очень сильно, и это необходимо учитывать при обработке. Ниже перечислены несколько самых распространенных марок алюминия:
-
1199. Чистый 99,99% алюминий. Бывает почти исключительно в виде фольги.
-
1050 и 1060. Чистый 99,5% и 99,6% соответственно. Из-за высокой теплопроводности иногда используется как материал для радиаторов. Мягок, легко гнется. Провода, пищевая фольга, посуда.
-
6061 и 6082. Сплавы: 6061 — Si 0,6%, Mg 1,0%, Cu 0,28%, 6082 — Si, Mg, Mn. Первый более распространен в США, второй — в Европе. Легко точить, фрезеровать. Наилучший материал для самоделок. Прочен. Легко поддается сварке, паяется твердыми припоями. Легко анодируется. Плохо гнется. Не годится для литья.
-
6060. Состав: Mg, Si. Более мягок, чем 6061 и 6082, при обработке резанием слегка «пластилиновый», за что его не любят токари. Распространен и дешев, других особых преимуществ не имеет. Дешевый алюминиевый профиль из непонятного сплава имеет хорошиешансы оказаться им.
-
5083. Сплав с магнием (>4% Mg). Отличная коррозионная стойкость, устойчив в морской воде. Один из лучших вариантов для деталей, работающих под дождем. Тоже может встретиться в магазине стройматериалов, наряду с другими подобными марками.
-
44400, он же «силумин». Сплав с большим процентом кремния (Si >8%). Литейный. Низкая температура плавления, при пайке твердыми припоями риск расплавить саму деталь. Хрупок, при изгибе ломается. На изломе видны характерные кристаллы.
-
7075. 2,1-2,9% Mg, 5,1-6,1% Zn, 1,2-1,6% Cu. Очень своеобразный сплав, отличается даже цветом (пленка окислов слегка золотистая). Неожиданно твердый для алюминия, по твердости сравним с мягкой сталью. Плохо анодируется. Не паяется вообще. Не сваривается вообще. Не гнется и не куется вообще. Не годится для литья. Резанием обрабатывает ся отлично, прекрасно полируется. Хорош для ответственных деталей. Используется для винтов в велосипедах, в оружии (материал многих деталей винтовки M16).
Относительно невысокая температура плавления (660 °C у чистого, меньше 600 °C у литейных сплавов) алюминия делает возможным отливку деталей в песочные формы в условиях гаража/мастерской. Однако многие марки алюминия не годятся для литья.
Примеры применения



Недостатки

Интересные факты об алюминии
-
Алюминий — хороший восстановитель, что используется для восстановления других металлов, например титана из состояния диоксида. Теодор Грей (Настоятельно рекомендую книги Теодора Грея «Элементы. Путеводитель по периодической таблице», «Научные опыты с периодической таблицей», «Эксперименты. Опыты с периодической таблицей». Они очень хорошо сделаны визуально, и опыты в них не приторно безопасные, как в большинстве современных пособий, могут и бабахнуть.) в домашних условиях проводил такой опыт. В смеси с окислом железа алюминиевая пудра образует термит— адская смесь, которая горит разогреваясь до 2400°С при этом восстанавливается железо и весело стекает вниз, что используется для сварки рельсов, иным способом такой кусок железа качественно и быстро не прогреть. Термитные карандаши позволяют в полевых условиях сваривать провода, а бравый спецназовец термитной горелкой пережжет дужку самого крепкого замка.
-
Чтобы сделать бисквит нежным и воздушным используется пекарский порошок. Такой же порошок есть для того, что бы сделать пористым бетон — Алюминий + щелочь.
-
Алюминий — активный металл, но он быстро покрывается окисной пленкой, которая защищает его от разрушения. Рубин, сапфир, корунд — это всё названия одного и того же вещества — оксида алюминия Al2O3 Белые точильные круги и бруски состоят из электрокорунда — оксида алюминия.
Можно убедиться в активности алюминия простым опытом. Нарежьте алюминиевую фольгу в стакан, добавьте медный купорос и поваренную соль, залейте холодной водой. Спустя некоторое время смесь закипит, алюминий будет окисляться, восстанавливая медь, с выделением тепла. -
Алюминий неплохо поддается экструзии. Корпуса приборов из нарезанного и обработанного экструдированного профиля значительно дешевле литых.
Алюминиевый корпус внешнего аккумулятора для телефона. Экструдированный анодированный окрашенный профиль. -
Алюминий весьма посредственно паяется мягкими (оловянно-свинцовыми) припоями, неплохо паяется цинковыми припоями. При конструировании приборов это стоит помнить, соединить провод с алюминиевым шасси проще прикрутив винтом к запрессованной стойке, чем припаять. В твердых марках алюминия (6061, 6082, 7075) можно нарезать резьбу для винта непосредственно.
-
Алюминий можно сваривать аргоновой сваркой, но качественный шов получается только при TIG-сварке на переменном токе. Непрерывная смена полярности измельчает пленку окислов, которая в противном случае может попасть в шов. Учитывайте это при выборе сварочного аппарата для мастерской, если вам может потребоваться варить и алюминий.
Еще раз важное замечание. Алюминиевые и медные проводники напрямую соединять нельзя! Для соединения проводников из меди и алюминия используйте промежуточный металл, например, стальную клемму.
Источники
В крупных строительных магазинах (OBI, Leroy Merlin, Castorama) обычно есть в наличии алюминиевый профиль разных размеров и форм. Неплохим источником может послужить штампованная алюминиевая посуда — она очень дешева и существует разных форм. Но обратите внимание на марки. Если нужен 6061 и тем более 7075, придется покупать его у фирмы, специализирующейся по металлам. опубликовано econet.ru
www.navolne.life
Как называется сплав алюминия с медью? Производство сплавов металлов на основе меди и алюминия
Одним из самых распространенных металлов на Земле считается алюминий. Его еще называют «летающим металлом». Несмотря на то, что в природе он не встречается в чистом виде, его можно найти во многих минералах. А самый распространенный сплав, который используется для производства множества деталей и конструкций, – это дюралюминий (дюраль).
Его изобрел немецкий ученый Альфред Вильм, который работал на заводе Dürener Metallwerke AG (город Дюрен). Он определил, что сплав алюминия с медью обладает намного более лучшими характеристиками, чем сам металл в чистом виде.
Группа высокопрочных сплавов
На самом деле дюралюминий – это целая группа сплавов, в которых основным компонентом является алюминий, а его легирующими элементами – медь, цинк, марганец, магний. Но в целом их характеристика определяется не только составом, но и способом термообработки. В 1903 году впервые было обнаружено, что в процессе старения сплав алюминия с медью становится еще более прочным и твердым.
Как выяснилось позже, это объясняется тем, что когда после закалки металл находится несколько дней при комнатной температуре, его перенасыщенный твердый раствор распадается, а это, в свою очередь, сопровождается упрочнением материала.
Процесс старения и возврат к предыдущему состоянию
Как уже было сказано ранее, старение металла – важный процесс, который обуславливается структурными превращениями, вызывающими изменения физических и механических свойств. Оно может быть естественным и искусственным. В первом случае сплав выдерживают несколько суток при комнатной температуре.
При искусственном старении время обработки сокращается, но при этом увеличивается температура. Для того чтобы вернуть сплав к предыдущему состоянию, его необходимо на несколько секунд нагреть до 270 градусов и затем быстро остудить.
Производство алюминия
Для того чтобы изготовить сплав алюминия с медью, необходимо высокотехнологичное оборудование и, конечно же, сам металл. Его добывают из бокситов. Это горная порода, которую необходимо измельчить, добавить в неё воду и обработать паром под большим давлением. Таким образом из глинозема отделяют кремний. Затем густую массу помещают в специальную ванну с расправленным криолитом. Содержимое нагревают до 950 °С и через него пропускают электрический ток в 400 кА.
Это позволяет разорвать связь между атомами кислорода и алюминия. В результате последний оседает на дно в качестве жидкого металла. Так из жидкого алюминия делают отливки. Теперь металл полностью готов к механической обработке. Однако для того чтобы повысить его прочность, необходимо в него добавить легирующие элементы и таким образом получить высококачественный сплав алюминия с медью.
Производство дюрали
В общей сложности все алюминиевые сплавы делятся на две группы: литейные и деформированные. Процесс их производства зависит именно от того, какой вид должен получиться в конечном итоге. Кроме того, способ изготовления также зависит и от требуемых характеристик.
Для производства дюраля алюминиевые слитки расплавляют в электрической печи. Интересно, что это один из немногих металлов, который можно переводить из твердого состояния в жидкое и наоборот множество раз. Это не повлияет на его характеристики. В расплавленный алюминий по очереди добавляют медь и другие легирующие элементы, такие как марганец, железо, магний. Очень важно соблюдать процентное соотношение: 93% алюминия, 5% меди, остальные 2% приходятся на другие легирующие элементы.
Закалка и отжиг дюраля
Обязательным для такого сплава является процесс закалки. Время выдержки для небольших деталей составляет всего несколько минут, а температура – около 500 °С. Сразу после процедуры дюраль получается мягким и вязким. Он легко поддается деформации и обработке. Спустя некоторое время сплав твердеет и его механические свойства повышаются. Если превысить порог температуры, происходит окисление и материал теряет свои характеристики. После закалки его необходимо медленно остудить в прохладной воде.
Итак, вы уже знаете, как называется сплав алюминия с медью. Он нередко поддается деформации: холодному прокату, вытяжке, ковке. При этом возникает так называемая нагартовка. Это процесс, в ходе которого в структуре металла происходит передвижение и размножение дислокаций. В итоге сам сплав меняет свою структуру, становится более твердым и прочным. При этом снижается его пластичность и ударная вязкость. Для того чтобы деформации проходили более легко и нагартовка не разрушала металл, используют отжиг. Для этого сплав нагревают до 350 °С и затем остужают на воздухе.
Диаграмма состояния сплава (алюминий и медь)
Для того чтобы наиболее четко описать взаимодействие компонентов дюраля в твердом и жидком состоянии, а также объяснить характер изменения свойств сплава, используют диаграмму состояний.
Из неё видно, что наибольшая растворимость Cu в сплаве с алюминием наблюдается при температуре 548 °С и при этом она составляет 5,7 %. При повышении температуры она будет увеличиваться, а при понижении – уменьшаться. Минимальная растворимость (0,5 %) будет наблюдаться при комнатной температуре. Если же дюраль закалить выше 400 °С, он станет твердым однородным раствором – α.
Во время данного процесса будет происходить распад твердого раствора. Очень необычно ведёт себя сплав алюминия и меди, формула которого – CuAl2. Процесс сопровождается выделением избыточной фазы А1. Такой распад протекает в течение длительного времени. Это и есть то естественное старение, о котором мы уже ранее упоминали.
Свойства сплава
Легирование металла теми или иными элементами позволяет повысить его характеристики. Вы запомнили, как называется сплав алюминия с медью? Какими же свойствами он обладает?
Сам по себе алюминий очень легкий, мягкий и совершенно непрочный. Он растворим в слабо концентрированных щелочах и кислотах. Добавив к алюминию медь и магний, можно получить уже достаточно прочный сплав. Его эксплуатационные параметры достаточно легко улучшить – просто нужно оставить его полежать при комнатной температуре. Так, эффект старения увеличивает прочность дюраля, о чём мы говорили выше.
Сам по себе алюминий достаточно легкий. Незначительный процент меди не утяжеляет сплав. Еще одна положительная характеристика – это возможность многократно переплавлять сплав. При этом он не будет терять своих свойств. Единственное, что необходимо, так это после отливки дать ему «отдохнуть» пару суток.
Недостатком дюралюминия является его низкая коррозионная стойкость. Поэтому чаще всего такой материал покрывают чистым слоем алюминия или же красят лаками и красками.
Алюминиевые сплавы и их применение
Впервые дюраль был использован для изготовления дирижаблей. Легкость и прочность этого материала позволила создать отличный летательный аппарат. Для этого применялась марка Д16т. В настоящее время сплавы с алюминием, цинком, медью и другими легирующими элементами широко используются в космонавтике, авиации и иных областях машиностроения.
Так, например, использование дюралюминия при изготовлении авто может значительно снизить его вес и стоимость, но при этом оно будет достаточно прочным.
В общем, можно отметить, что ассортимент данного сплава достаточно широк: трубы, проволоки, листы, ленты, прутки и литые детали разных форм. Одной из самых востребованных и распространенных марок по-прежнему считается Д16т. Маленькая буква «т» в конце маркировки означает, что сплав закаленный и естественно состарился. Он используется:
- В конструкциях космических аппаратов, морских судов и самолетов.
- Для изготовления различных деталей для станков и машин.
- Для изготовления уличных табличек, дорожных знаков.
Название сплава алюминия и меди должен знать каждый. Дюраль используется и в нефтяной промышленности. Так, специальные трубы, изготовленные из него, могут обеспечить эксплуатацию скважины в течение 6-7 лет.
Как называется сплав алюминия и меди, запомнить легко. Итак, мы рассказали, каким свойствами он обладает и где применяется. Он с легкостью может заменить стальной прокат, в особенности если необходимо сделать конструкцию маловесной.
fb.ru
Пайка алюминия с медью своими руками в домашних условиях
Пайка алюминия всегда являлась достаточно сложным технологическим процессом, так как температура его плавления считается относительно низкой, а свойства соединения находятся на не самом высоком уровне. Пайка алюминия с медью становится еще более сложным и проблематичным процессом, так как медь туго плавится, хотя и нормально поддается пайке. Несмотря на сложность процесса, в нем периодически возникает потребность в различных производственных сферах и даже в домашней обстановке. В нормальных условиях, без каких-либо дополнительных средств и со стандартными материалами, получить качественное соединение и не повредить при этом металл заготовки будет практически невозможно.

Пайка алюминия с медью своими руками
Пайка меди с алюминием требует особого подхода, так как тут даже стандартный припой для пайки алюминия окажется неэффективным. Стоит сразу отметить, что у алюминия именно с медью получается большая конфликтность, так как со сталью процесс спаивания лучше. Этим пользуются многие мастера при создании сложных соединений. Необходимость в такой пайке возникает как при соединении труб или других крупных деталей, так и при контактах проводов, что с технической стороны происходит легче, проще и быстрее, так как нет больших нагрузок на конечное изделие.

Пайка алюминия с медью своими руками в домашних условиях
Преимущества
- Позволяет сделать сложное соединение, которое требует технология эксплуатации;
- Существует несколько различных способов, как произвести процесс, которые заметно отличаются друг от друга;
- Дает мастеру большой опыт и возможность работы с любыми видами металла.
Недостатки
- Высокий процент брака после завершения процесса;
- Пайка алюминий-медь требует большого количества различных дополнительных материалов, многие из которых являются узкоспециализированными, без которых невозможно получить качественное соединение;
- Иногда необходимо подбирать стальные муфты того же диаметра, что и свариваемые трубы;
- Процесс пайки оказывается весьма дорогостоящим благодаря использованию флюсов, специальных припоев и других дополнительных средств;
- Многие из дополнительных расходных материалов находятся в трудном доступе, так как не относятся к распространенным и часто употребляемым;
- Далеко не каждый метод пайки из существующих оказывается подходящим для конкретного случая;
- Справиться с работой может только мастер с большим опытом и в домашних условиях это трудноосуществимый процесс.
Трудности пайки
Основная трудность пайки заключается в том, что металлические изделия из этих материалов не могут нормально соединиться, так как даже при схватывании припоя шов может треснуть даже при относительно небольшом механическом воздействии. Положение усложняется оксидной пленкой алюминия, которая обволакивает материал припоя, мешая нормальному соединению, а также не плавится от температурного воздействия. С этим может помочь в борьбе хорошая очистка и обработка растворителем с последующим нанесением специализированного флюса.

Пайка алюминия с медью
Работа с медью также получается не простой в данном случае. Ведь даже припой для пайки медных труб оказывается не совсем подходящим для такого процесса. Он является тугоплавким, что и требуется для такого металла. В то же время алюминий может иметь более низкую температуру плавления, что приведет к его прогоранию прежде, чем расплавится сам припой. Таким образом, пайка алюминия с медью твердым припоем оказывается достаточно проблематичной. Припой для плавки алюминия может не подойти для меди, так как оказывается слишком легкоплавким, но это уже более подходящий вариант, так как многие мастера, особенно при работе в домашних условиях, используют серебряные припои.
Возможные способы пайки алюминия с медью
Пайка алюминия с медью в домашних условиях и на производстве может проводиться следующими способами:
- Пайка с помощью муфты. В данном случае между металлами вставляется стальная часть, так что и медь и алюминий припаиваются с различных сторон стали более удобными способами, что помогает получить надежное соединение, так как со сталью и другими сплавами они взаимодействуют намного лучше, чем между собой.
- При использовании специальных припоев. Современные разработки, к примеру, как присадочный материал марки Castolin и специально разработанные флюсы к нему, помогают решать многие сложные вопросы. Большим недостатком такого способа является высокая стоимость расходных материалов и слабая распространенность.

Припой для сварки алюминия с медью
- Поверхностная пайка. В данном случае из алюминия делают раструб, чтобы в него могла войти медная трубка. Края этого раструба запаивают легкоплавкими припоями, захватывая большую часть поверхности медной трубы, чтобы увеличит площадь соединения.
Материалы и инструмент
Вне зависимости от того, необходима вам пайка алюминия с медью провода, трубы или листов, для этого понадобятся:
- Горелка (газовая или бензиновая) или паяльник, в зависимости от условий, в которых это все проводится;
- Припой, который будет подходить для выбранного способа, так как для пайки через стальную муфту требуются расходные материалы, которые будут рассчитаны на пайку со сталью;
- Флюс, подобранный под припой, чтобы улучшить взаимодействие с разными металлами;
- Стальная, или из какого-либо другого сплава, муфта, если выбран именно этот метод;
- Инструменты для фиксации заготовок и разделки раструба.
Пошаговая инструкция
- Осуществляется полная подготовка всех металлических изделий, которые будут принимать участие в пайке. Это включает разделку кромок, подготовку раструба, механическая обработка щеткой и растворителями, чтобы снять все имеющиеся налеты и образовавшиеся пленки.
- Затем детали надежно фиксируются, чтобы во время процесса не было ни какого движения и смещения.
- На следующем этапе следует обработать концы деталей флюсом.
- Далее уже можно приступать к непосредственному спаиванию. Если выбран метод через муфту, то сначала она припаивается к одной заготовке, к примеру, медной трубе. Потом нужно выделить время на остывание и проверку качества, чтобы не было трещин и щелей. Только после этого следует приступать к соединению со второй частью, которое осуществляется точно также, но с помощью других расходных материалов.
- После окончания процедур дать шву остыть и проверить полностью готовое изделие на отсутствие брака, прежде чем пускать его в эксплуатацию.
«Важно!
При выборе расходных материалов нужно обращать внимание на прочность получаемого соединения, что особенно важно при работе с трубами, которые эксплуатируются под давлением.»
Таблица режимов
Вид припоя | Режим пайки | Максимальная прочность сплавов, кгс/мм2 | ||
АМц | АМг6 | Д20 | ||
П-300-А | 440° С, 20 минут | 11 | 22 | — |
П-425-А | 12 | 20,8 | 20,8 | |
34А | 550° С, 20 минут | 9-10 | — | 28,8 |
В-62 | 510° С, 15 минут | 12 | — | 23,8 |
Техника безопасности
Работа должна проводиться только в хорошо проветриваемых помещениях, так как испарения флюсов и припоев могут оказаться вредными для человека. При использовании газовой горелки она должна быть максимально удалена от источника огня. На рабочем месте не должны присутствовать лишние предметы, а также легковоспламеняющиеся вещи.
svarkaipayka.ru
Пайка алюминия с медью


О трудностях при пайке алюминия хорошо известно. Но следующим уровнем по сложности и трудности получения качественного и достаточно надежного соединения является пайка изделий из двух таких конфликтных и различных по своим свойствам металлов – алюминия и меди.
Этот процесс сложный, затратный, с большой вероятностью брака в работе. Но потребность в таких соединениях есть и, следовательно, такая технологическая операция становится необходимой в производственной или бытовой сфере.
Сразу предупреждение – стандартный флюс и припой, подходящий для пайки алюминия, неэффективен для такой же операции с медью. На практике приходится получать соединения из литых заготовок, листового материала, труб и проводов. Последний вариант полностью отрицается электриками, так как даже при отличном качестве пайки, надежности соединения и контакта – это место навсегда останется самым ненадежным и опасным в электропроводке из-за склонности к электрохимической коррозии. Вместо пайки лучше применять переходники и зажимы из металлов, которые не «конфликтуют» ни с алюминием, ни с медью. Но вернемся к пайке.

Преимущества:
- возможность осуществления сложного по технологии соединения;
- существование нескольких способов получения соединения деталей;
- получение работником ценного опыта при пайке технологически сложных соединений.

Недостатки:
- для осуществления пайки необходимо наличие дополнительных, часто узкоспециализированных и дорогостоящих, материалов;
- специальные расходные материалы не так часто применяются – поэтому не являются распространенными и легкодоступными для их приобретения;
- с пайкой алюминий-медь справится только опытный мастер;
- в частном (бытовом) порядке такая пайка является трудноосуществимой;
- иногда требуется изготовление или подборка стальных переходных муфт; при использовании таких муфт возрастает количество применяемых расходников (для каждого металла нужен свой флюс и припой).
Трудности пайки:
- оба металла имеют оксидные поверхностные пленки;
- медь является более тугоплавкой, что часто служит причиной преждевременного прогорания легкоплавкого алюминия в процессе работы;
- металлы имеют различные коэффициенты линейного расширения.
Способы пайки
1. С использованием муфты

Этот способ основан на способности обоих металлов надежно и вполне качественно паяться со сталями. Именно к стальным переходным муфтам с разных сторон и припаивают стыкуемые заготовки.
2. С применением специальных припоев

Самый известный припой – Castolin192FBK – продается в виде прутка с сердечником из флюса. Это жидкоплавкий, низкотемпературный (380°С-430°С) припой с хорошими смачивающими свойствами на основе цинка и алюминия. Из-за низкой текучести он является отличным помощником для устранения больших трещин или отверстий.
3. Поверхностная пайка
Суть метода – увеличить площадь контакта соединяемых деталей с припоем, которая повысит прочность соединения на разрыв, излом, кручение. Сначала из алюминиевого края заготовки получают раструб (воронку), в который должна войти медная проволока или трубка. Края полученной воронки запаивают припоем, который, стекая, заполняет весь объем раструба. Таким образом, припой соединяет детали в единое изделие. Чем глубже воронка, тем больше поверхность соединения.
Инструмент, материалы

- Условия работы определяют выбор главного инструмента – паяльника или горелки.
- Припой. Он может быть специальным для непосредственной пайки алюминия с медью. При использовании муфт в работе понадобятся припои для каждого металла, подходящие для пайки их со сталью.
- Флюс, подходящий для используемого конкретного вида припоя.
- Муфта, если выбран данный вид соединения.
- Фиксирующие положение деталей инструменты и приспособления.
- Для поверхностной пайки – приспособление для возможности разделки раструба.
Технология пайки

- Подготовительный этап, подразумевающий разделку кромок или, по необходимости, изготовление воронки-раструба.
- Механическая обработка кромок заготовок или концов проводов и трубок с обезжириванием и удалением окислов.
- Фиксация деталей перед пайкой.
- Обработка места стыка флюсом.
- Непосредственно пайка. Если для соединения выбрана муфта, то пайка производится поочередно с двух сторон. После пайки с одной стороны муфты и остывания, выполняется соединение с другой стороны и другими расходными материалами.
- После работы дать остыть стыковому шву. Остатки флюса нужно снять после окончания работы и остывания стыка.
- Проверить качество полностью готового изделия. При отсутствии брака считать его годным к эксплуатации.
Полезные советы
- Нельзя допускать нагревания открытым огнем самого припоя в месте стыка.
- При пайке нагрев производится с разных сторон стыка с перерывами. Тепло от нагретого участка металла должно плавно перейти на сам стык.
- Начинайте прогревать с меди.
- Чем медленнее будет расти температура в месте пайки, тем выше вероятность получения качественного соединения.
Техника безопасности
- Работы производить с использованием вытяжки над местом пайки или хорошей вентиляции в рабочем помещении.
- Обязательно выполнять все требования по безопасному использованию электроприборов.
- Не нарушать правила пожарной безопасности, используя горячий инструмент и открытый огонь при пайке.
- Пользоваться специальными подставками для горячего инструмента.
- Удалить из рабочей зоны все лишние предметы и вещи, особенно легковоспламеняющиеся.
svarkagid.com
Превращаем алюминий в медь!
Эта работа была прислана на наш “бессрочный” конкурс статей.
Здравствуй, о оверклокер!!!
Тебе не даёт покоя мысль о том, что твой проц или видюха раскалены до предела? Есть только два выхода: убиться или охладиться. Я расскажу о втором. Да к тому же я расскажу не о совсем традиционном методе охлаждения. Я расскажу, как сделать медь из алюминия.
Сразу предупреждаю: материал чисто теоретический, я не проделывал этого дома (да и где бы то ни было), поэтому никакой ответственности я НЕ несу. Я хочу описать способ химического превращения алюминиевого радиатора в медный (начинай вспоминать химию). Нам понадобится вот что (ниже объясню подробнее):
- Радиатор алюминиевый – 1 шт.
- Купорос медный – полкило больше, чем достаточно.
- Кислота или щёлочь (желательно кислота) – половина литра – больше, чем достаточно (будет раствор)
- Ёмкость, устойчивая к воздействию кислоты.
- Прибор для нагревания (газовая плита вполне подойдёт).
- Оверклокер со своим собственным мозгом (головным), прямыми руками и немного свободного времени.
Где достать?
(1) ты можешь найти в комповом магазе или использовать свой старый. В цветочном или хозяйственном магазине ты найдёшь (2). В качестве (3) можно использовать уксусную кислоту, которою ты можешь найти в бутылке с надписью “уксус” или в продуктовом магазине (рекомендую второй вариант, так как в уксусе кислоты максимум 9%, а в кислоте – ближе к ста). Если найдёшь более сильную кислоту (серную, соляную и пр.) – хорошо, но будь аккуратнее (позже расскажу, почему). (4) – может быть стеклянной или керамической, но не пластиковой (металлическую тоже лучше не использовать). (5) дожен быть у тебя дома на кухне. (6) – ты (по идее), найти ты себя можешь там, где ты сейчас находишься.
План действий:
Подготовить растворы кислоты и купороса (отдельно). Опустить радиатор в кислоту, чтобы снять защитную плёнку с металла. Опустить радиатор в купорос, после чего на нём выделится медь. Подготовить радиатор к использованию. Всё.
Теория:
Любишь химию? Впрочем, это совершенно неважно. Химия – наука страшная, потому что тебе может оторвать руки, ноги, голову и прочие выступающие части тела… Шутка 😉 Сначала расскажу тебе немного о растворах.
Раствор кислоты не стоит делать очень насыщенным, особенно если кислота сильная (неорганическая). Если же использовать уксусную кислоту (её легче достать), то можно сильно не разбавлять. Дело в том, что кислота нужна для того, чтобы снять с металла оксидную плёнку, которая мешает взаимодействовать металлу с медным купоросом, который представляет из себя соль (кристаллогидрат, но об этом позже). Вот пример взаимодействия оксида алюминия с кислотой (в данном случае с соляной):
Al2O3 + 6HCl = 2AlCl3 + 3H2O
Формула уксусной кислоты: CH3COOH – на всякий случай.
Сначала была кислота и оксид, а стала вода и соль. Главное, что мне хотелось бы сказать – не передержите радиатор в кислоте, ведь сам металл тоже взаимодействует с кислотой, а этого нам не надо. Сначала поэкспериментируй с отдельными кусками алюминия, чтобы на глаз определить скорость протекания реакции. Замечу, что оксид алюминия – амфотерный оксид, то есть взаимодействует как с кислотами, так и с щелочами. Можешь попробовать щёлочь, но я бы не рекомендовал, а вот по какой причине: Твой радиатор, скорее всего, сделан не из чистого алюминия, а из сплава. Алюминий слишком мягкий, поэтому, скорее всего он сплавлен со сталью (железом). Оксид железа не будет взаимодействовать со щёлочью, так как, по-моему, он слабо амфотерный, либо вообще основный (реагирует только с кислотами). При взаимодействии медного купороса с железом пройдёт тот же процесс, что и при взаимодействии с алюминием, поэтому желанного результата (получение меди) мы всё равно достигнем.
Ещё хотел бы предостеречь: НЕ надо использовать концентрированную (более 60%) серную или азотную кислоту – железо и алюминий в них пассивируются (образуется защитная плёнка). Разбавлять серную кислоту тоже занятие не из приятных (не знаю, как насчёт азотной): она взаимодействует с водой (гидролиз), при этом шипя, булькая и брызгаясь. Если надумаешь разбавлять, то вливай кислоту в воду, а не наоборот. Кислота тяжелее, поэтому реакция будет проходить не на поверхности воды, а поглубже, тогда брызг не будет. Да, кстати, если реакция оксида с кислотой проходит очень уж медленно, то надо всё это дело нагреть. Принцип Вант-Гоффа: При повышении температуры на каждые 10 градусов скорость реакции возрастает в 2-4 раза.
Вот тебе ещё полезная вещь – электрохимический ряд напряжений металлов:
Li, K, Ba, Ca, Na, Mg, Be, Al, Mn, Zn, Cr, Fe2+, Cd, Ni, Sn, Pb, Fe3+, H, Cu, Ag, Hg, Au.
Правило, которое должен знать каждый: Металл, стоящий в электрохимическом ряду напряжений металлов левее, вытесняет из растворов солей металл, стоящий правее. Мы имеем дело с алюминием и с железом (со степенью окисления 2+), которые стоят намного левее меди. Они будут вытеснять медь из медного купороса, а она будет выделяться на радиаторе. Реакции с металлами, стоящими в ряду напряжений в самом начале, будут проходить НУ ОЧЕНЬ активно… Иногда со взрывом… Это НЕ шутка! Хотя вряд ли ты найдёшь литиевый радиатор.
И ещё. Помни: медный купорос это кристаллогидрат, то есть его молекулы связаны с молекулами воды, хотя вещество в твёрдом состоянии:
CuSO4 * 5H2O
Поэтому разбавляй не очень сильно, ведь воды и так уже много. Реакции с алюминием и железом проходят вот так:
3CuSO4 + Al = Al(SO4)3 + 3Cu
2CuSO4 + Fe = Fe(SO4)2 + 2Cu
В этих реакциях без нагрева не обойтись. Надо кипятить радиатор 😉 ! Шутка, конечно же! А вот подогреть немного можно. А что делать? Только так можно ускорить процесс. Если немного отшлифовать поверхность радиатора (создать шероховатости), то меди выделится немного больше, хотя лучше подобной чушью не заниматься (микрограммы не играют роли).
Важно: Я искренне надеюсь на то, что тем, кто захочет проделать какие-либо из описанных мною реакций, не придёт в голову мысль вмешиваться в ход реакции руками или другими выступающими частями тела, о которых я писал выше. Химия – наука, не терпящая баловства! Ну вот уже и мораль прочитал 😉 .
Что дальше?
Если результат устраивает, то можешь тестировать заново рождённый радиатор, а можешь подшлифовать его или сделать что-нибудь в этом роде, если уж сильно хочется. Я уже говорил о том, что сначала надо проводить опыты над отдельными кусками алюминия (или железа), а уж потом переходить на радиатор. Кстати, перед опытами необходимо снять или счистить с радиатора неметаллические части (вентилятор, провода, термодатчики, термопаста) 😉
Что получилось?
Я уверен, что все оверклокеры знакомы с радиаторами из алюминия, в которых имеется медный пятак-вставка в подошве. В покрытом по моему способу слоем меди радиаторе (именно слоем, ведь изнутри он не реагировал) принцип охлаждения примерно такой же. Так вот, если сравнивать радиаторы со вставкой с тем, что по идее должно получиться после прочтения данного текста, то можно сказать о преимуществах и недостатках того, о чём я писал:
Преимущества:
Металлы плотнее соединены между собой, следовательно, тепло лучше передаётся между ними и они не распадаются (вставки-пятаки могут выпадать, а в моём способе слои металлов соединены химическим путём гораздо прочнее).
Имеется не только маленькое круглое пятно меди на подошве, а весь радиатор покрыт равномерным (при правильном проведении реакций) слоем меди, что благоприятно сказывается на температурном режиме охлаждаемого девайса.
Тепло хорошо проводится в рёбрах радиатора (если они были достаточно тонкие, то могли даже полностью стать медными), что обеспечивает (при хорошем продуве) сильную отдачу тепла, что нам и нужно.
Моим способом можно даже “сварить” две металлические детали, плотно прижав их друг к другу при проведении реакции в купоросе.
Недостатки:
Радиатор не полностью медный (как и в радиаторах с медными пятаками)
Может получиться не совсем ровная поверхность радиатора, если реакции проходили бурно (например, в кипящей воде), хотя это исправимо.
ВЫВОД:
Возможно, существенного улучшения ситуации с охлаждением и не произойдёт, но мне кажется, что пара-тройка градусов выигрыша тоже неплохо (искренне надеюсь на то, что этот выигрыш будет больше). Весь материал чисто теоретический и направлен на общее развитие умственных способностей оверклокера. Просто должно быть приятно осознание того, что всё сделано своими руками и продумано не хуже, чем у производителей радиаторов с медными вставками.
Послесловие…
Надеюсь, что интересно было не только мне. Весь материал придуман лично мною, поэтому, если мои идеи каким-либо образом совпадают или пересекаются с чужими, то довожу до общего сведения, что я ни у кого не воровал идеи, а это просто совпадение. Прошу прощения, если я допустил какие-либо ошибки или неточности в тексте.
Желаю успехов оверклокерам в их нелёгком деле!
Мне показалась очень интересной сама идея, поэтому статья опубликована, хотя я далёк от уверенности, что всё задуманное можно воплотить в жизнь. Автор не зря несколько раз подчёркивал, что материал чисто теоретический и прежде чем “варить” свой алюминиевый радиатор, нужно потренироваться на алюминиевых кусочках. Я бы даже посоветовал предварительно хорошенько разобрать статью с теоретической точки зрения, прежде чем переходить к практическим экспериментам. Самое первое предположение, которое приходит в голову, что радиатор покроется тончайшим слоем меди, если замещение всё же пойдёт, после чего реакция прекратится. Впрочем, полагаю, что хорошо разбирающиеся в химии читатели найдут ещё множество причин, по которым подобное превращение алюминиевого радиатора в медный невозможно. Предлагаю обсудить статью в конференции.
Doors4ever
overclockers.ru