Содержание

Заметки для мастера – Защита ламп накаливания от перегораний

 

          Защита лампы накаливания при включении

 

        Предлагаемое простое устройство (рис.1), лишено многих недостатков перед подобными схемами и обеспечивает плавное зажигание бытовой лампы накаливания.

 

Рис.1

        Подбирая соответствующие емкости и диоды, можно здесь подключить лампочку практически любой мощности и любого напряжения без понижающего трансформатора. Например, для сети 220В и 60 – ваттной лампы с теми же полупроводниковыми вентилями нужны конденсаторы, соответственно, по 5 мкФ.

 

Кружков.В

г. Орел

 

          Ограничитель броска тока при включении лампы

 

        Устройство, собранное по схеме на рис.2, задерживает подачу на лампу полного напряжения сети приблизительно на 0,2 секунды – продолжительность зарядки установленного в нем конденсатора.

 

 

Рис.2

         Этого вполне достаточно для эффективного ограничения броска тока через холодную спираль лампы.

Остаточное падение напряжения на огарничителе – около 5 В.

        Первоначально в ограничителе применялись резисторы МЛТ – 0,5, транзистор КТ940А, диода КД105Б, симистора КУ208Г. В дальнейшем в схеме использовались малогабаритные детали, типы которых указаны на схеме, и резисторы меньшей мощности. Такой вариант ограничителя можно смонтировать на печатной плате изображенной на рис.2.

        При мощности лампы EL1 более 100 Вт симистор МАС97 необходимо заменить на более мощным ВТ137 или ВТА12-600. Если такой тиристор снабдить теплоотводом, а вместо транзистора MJE13001 установить MJE13003, допустимая мощность нагрузки достигнет 2 кВт. Емкость конденсатора С1 можно увеличить до 470 мкФ.

 

Штепенко Е.

г. Северодонецк

Луганской обл. 

 

          Двухступенчатое включение лампы

 

        Резкое включение лампы накаливания при помощи обычного выключателя вредно как для глаз (резкий скачок света), так и для самой лампы, разрушающее воздействуя на ее нить накала.

 

Рис.3

        Схема показанная на рисунке 3 обеспечивает двухступенчатое включение лампы. При включении S1, первые 1-2 секунды лампа HL1 горит в пол накала, потому что через нее протекает ток только одной полуволны сетевого напряжения (через VD1). Одновременно, начинает заряжаться С1 через VD2 и R2, и, примерно, через 1-2 секунды напряжение на нем достигает порога открывания тиристора VS1, что и происходит. Через тиристор начинает на лампу поступать и вторая полуволна сетевого напряжения, – лампа зажигается в полный накал.

 

Мизин С.

 

               Чтобы лампа стала «вечной»

 

        Известно, что осветительная лампа чаще всего выходит из строя в момент зажигания. Именно в этот момент сопротивление нити лампы мало (примерно в 10 раз меньше раскаленной), и на ней рассеивается мощность, значительно превышающая номинальную. Нить не выдерживает и перегорает. Особенно часто такое случается с лампами до 500 Вт.

        Чтобы продлить срок службы лампы, нужно сначала подать на нее пониженное напряжение и немного разогреть нить лампы, а через некоторое время довести напряжение до номинального. Для этой цели используют автомат двухступенчатой подачи напряжения, который включают последовательно с сетевым выключателем, не нарушая остальной проводки. В квартирах и рабочих помещениях автомат может быть вмонтирован в той же коробке, что и выключатель.

        Схема автомата приведена на рис.4.

 

Рис.4

        При налаживании автомата, сначала отключают от деталей анод тиристора VS1. Подбором резистора R3 (вместо него удобно временно установить переменный резистор сопротивлением 15 кОм) добиваются на лампе напряжения примерно 200В (точнее всего измерения можно провести прибором тепловой системы) – несколько пониженное по сравнению с сетевым напряжение питания которое продлевает срок службы лампы. Затем измеряют сопротивление введенной части переменного резистора и впаивают в устройство постоянный резистор такого же или ближайшего номинала.

        Далее подключают тиристор VS1 и подбором резистора R1 добиваются, чтобы тиристор VS1 открывался раньше VS2. Это нетрудно определить по зажиганию лампы – сначала она должна гореть «вполнакала». Если автомат работает неустойчиво (лампа мигает), значит установлен очень «чувствительный» тиристор VS1 (включается при малом токе через управляющий электрод). В этом случае между управляющим электродом и катодом тиристора нужно включить резистор 1…2 кОм либо заменить тиристор.

        В схеме можно использовать тиристор VS1 – любой серии КУ201, КУ202, VS2 – КУ202К, КУ202Н. Диоды серии КД105Б. С этими деталями автомат способен управлять лампой мощностью до 60 Вт. Если же заменить диоды более мощными, например Д247, и установить их и тиристор VS2 на радиаторы, автомат можно использовать с лампами мощностью до 1 кВт.

 

Першиков В.

г. Белорецк

БЛОК ЗАЩИТЫ ЛАМП

   Многие недовольны цветом и яркостью ЛДС и LED ламп, поэтому до сих пор продолжают покупать лампочки накаливания. Многим они хороши, но долговечность хромает. Чтоб спираль меньше изнашивалась в момент включения лампы – советую собрать токоограничитель. Схема представляет собой ограничитель броска напряжения лампы накаливания. Сделал большое количество таких блоков защиты – более 10, все функционируют отлично. 

Электросхема ограничителя броска тока

   Устройство задерживает подачу на лампу полного напряжения сети приблизительно на пол секунды (зависит от продолжительности зарядки установленного в нем конденсатора). Этого достаточно для ограничения броска тока через холодную спираль лампы накаливания.

   Первоначально несколько экземпляров блока защиты было собрано с применением резисторов МЛТ-0,5, транзистора КТ940А, диода КД105Б, симистора КУ208Г. В дальнейшем перешел на малогабаритные детали, типы которых указаны на схеме, и резисторы меньшей мощности, в том числе предназначенные для поверхностного монтажа. Такой вариант ограничителя можно смонтировать на маленькой печатной плате. Два варианта разработанных для блока плат скачайте тут.


   При мощности лампы более 100 Вт, симистор МАС97 надо заменить более мощным ВТ137 или ВТА12-600, но лучше ставить его сразу – надёжнее будет.
Если тиристор снабдить теплоотводом, а вместо транзистора MJE13001 установить MJE13003, допустимая мощность нагрузки повысится до 2 кВт. Емкость конденсатора С1 можно увеличить до 470 мкФ. 


   Готовый блок засовывается в термоусадочную трубку и размещается в люстре или настенном выключателе. Автор схемы: Е. Штепенко, сборка и испытание – Александрович.

   Форум по источникам питания

   Форум по обсуждению материала БЛОК ЗАЩИТЫ ЛАМП






SMD ПРЕДОХРАНИТЕЛИ

Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.


Защита ламп. Блок защиты, схема от перегорания всех видов ламп

Осветительные лампы имеют небольшую долговечность, что является проблемой в современном мире.

Во время включения питания ламп происходит выход их из строя, что является актуальной проблемой.
Нить накаливания в холодном виде образует небольшое сопротивление. Оно слишком уменьшено, чем сопротивление раскаленной нити электротоком. Мы зажигаем свет, то нить лампы в холодном состоянии, и значение тока существенно выше номинала, поэтому она имеет свойство перегорать.

Лампы в светильниках и люстрах перегорают по различным причинам. Если она одна, то это уже лучше. Можно сэкономить на покупке лампочек, если знать основную причину. Кроме экономии у вас не выйдет из строя светильник, или того хуже, не случится пожар в доме.

Существует множество разных вариантов модуля защиты ламп. Некоторые способы защиты ламп разберем на примерах в материалах из жизни.

Полная защита осветительных ламп

Предлагаемый блок защиты ламп служит для продления срока службы ламп накаливания и от преждевременного выхода из строя накаливающей нити при резкой подаче напряжения при эксплуатации ламп.

Данный способ особенно подойдет для ламп, расположенных в труднодоступных местах (рекламные щиты, столбы для освещения). Этот прибор хорош и дома, так как в квартире нередко перегорают лампы. Установив это устройство, решается проблема частой замены ламп в связи с выходом их из строя.

Устройство защиты осветительных ламп создает медленный разогрев нити в течение нескольких секунд при включении света. Если напряжение внезапно отключится на короткое время, а затем снова включится, то процесс плавного нагрева нити повторится после вновь поданного напряжения. Происходит стабилизация питания, наибольшее значение его уменьшается до 220 вольт. Блок защиты ламп обладает минимальным временем реагирования на скачки напряжения – несколько миллисекунд. Контроллер управления имеет защиту.

Модуль защиты ламп выдерживает ток импульса 140 ампер, что дает возможность не ставить предохранитель, и быть уверенным в надежности системы и защите ламп.

Схема устройства:

Резистор для подстройки на 300 кОм изображен условно. При применении точных деталей он не нужен. В нашем случае R7 и R8 объединяются в одно сопротивление значением 1,15 мОм. Конкретное значение определяется выходом «Тест». Прибор подключается к сети с точным напряжением 220 вольт переменного тока, и регулировкой резистора ставится логическая единица на выходе «Тест». Для выбора порога стабильного напряжения меньше, чем 220 вольт, эту процедуру проводят при напряжении 215 вольт.

Мощностные характеристики ламп должны иметь границы наибольшим током триака ВТ139-600. Нельзя допустить ток выше 16 ампер. Прибор сочетается с лампами до 3,5 кВт мощности при условии, что триак будет установлен на радиаторе для теплоотвода. Без радиатора можно подсоединять лампы до 300 ватт. Для подключения к прибору ламп нагрузкой более 3500 ватт применяют триак мощнее.

Дроссель для подавления помех в схеме питающей цепи не предусмотрен, так как помехи могут поступать наружу от прибора только тогда, когда разогрев спирали ламп во время пуска за 2,5 секунды превышено напряжение питания сети более 220 вольт. Это незначительно, и триак после разогрева при малом напряжении открывается. Чтобы устройство стоило недорого, это можно не учитывать. Если необходимо полностью сделать защиту от помех радиоволн, то монтируют дроссель большой мощности между нагрузкой и вторым выводом, в этом нет особых проблем.

Контроллер схемы можно заменить другим, подходящим по параметрам. Также поступают и с триаком, подобного типа, подобранным по току нагрузки. Управляющий ток триака не рекомендуется подбирать выше 50 миллиампер. Защита ламп обеспечена.

Блок защиты ламп накаливания и галогенных

Он представляет собой конденсатор мощностью до 200 Вт. Существуют схемы защиты галогенных ламп и с большей мощностью. Он защищает лампы, плавный разогрев нити накаливания, что значительно замедлит процесс износа, увеличит срок службы.

Продемонстрируем его подключение на практике, на лампах накаливания и галогенных лампах. На энергосберегающие лампы он никак не действует.

Для сравнения результатов сначала подключим без блока защиты. Лампа зажигается мгновенно. Теперь подключим блок защиты ламп. Он подключается на фазовый провод. Для определения фазы пользуемся индикаторной отверткой. Подключаем блок с помощью зажимных клемм.

Данный блок предназначен для работы с трансформаторами и с понижающими катушками. Он не рассчитан на работу с люминесцентными лампами, электромоторами и подобными механизмами, приборами подобными ему.
Подключаем сеть, примерно две секунды лампа зажигается, очень плавный пуск. От резкого включения лампа не лопнет, и будет служить дольше.

Для сравнения подключим галогенную лампу. Вставляем лампу в патрон, подключаем к сети. Подключение защиты галогенных ламп получается аналогичным. Такой розжиг можно использовать там, где есть нить накаливания.

Еще можно поставить термистор. Деталь копеечная, но работает надежно, помех не создает. Нужно брать термистор большого размера для более медленного нагрева, с сопротивлением выше 0,5 кОм. Его можно легко встроить внутрь любого корпуса, выключателя. На выводы надевается изоляция, она не плавится, так как температура небольшая.

Обычные лампочки накаливания со спиралью лучше подключать на меньшее напряжение (180-200 В). Если напряжение 240 вольт, то можно две лампы соединить последовательно.

Галогеновые лампы любят постоянное точное напряжение, поэтому их необходимо подключать к стабильному напряжению, и сделать плавный пуск (блок защиты ламп).

Как сберечь лампы от перегорания?

Лампы бывают энергосберегающие, спиральные, диодные. Они часто сгорают, а мы не знаем почему, что происходит. Нужно понять, почему это происходит. Они сгорают из-за того, что существуют старые пылесосы, стиральные машины, моторы во дворе, у соседей есть старая техника. Люди ей пользуются, и при запуске этой техники происходит резкий скачок импульсной силы тока. Мотор взял на себя ток, запустился, затем идет резкий скачок в сеть, возникает большая сила тока.

Во время выплеска большой силы тока происходит сгорание ламп. Чтобы не было этой проблемы, продаются модули защиты ламп — сетевые фильтры. В нем находится варистор. Устройство защиты светодиодных ламп рассчитано на силу тока в 100 ампер. При резком скачке напряжения и силы тока варистор гасит эти скачки. В сетевом фильтре стоит один обыкновенный варистор, который стоит копейки.

Французские фильтры имеют два варистора, и стоят они дорого. За эти деньги можно купить несколько сотен варисторов. Для этого каждый может сделать такой фильтр. Иногда умельцы ставят варисторы прямо в корпус розетки. Если варистор будет стоять в другой комнате, то он не поможет для лампочки на кухне или в коридоре.
Поможет варистор, который находится ближе от этого объекта.

Конструкция патрона – причина перегорания ламп

Одной из причин перегорания ламп является конструкция патрона. На контактах колодки нет пружинящего эффекта.

Средний контакт патрона пружинит, а боковые контакты просто упираются. Нужно немного подогнуть усики, сделать так, чтобы они пружинили. Простые колодки намного надежнее. В них боковые усы пружинят, им ничто не мешает, лампы в них перегорают реже. Боковые ступеньки под контактами можно просто откусить плоскогубцами. Теперь у боковых контактов появился ход и хороший пружинящий эффект. Защита ламп сделана, они перестают перегорать.

Вечная лампа накаливания

Для изготовления понадобится лампа, цоколь от другой лампы накаливания, предварительно снятый и очищенный, два диода Д226, инструменты (кусачки, плоскогубцы), надфиль, паяльные принадлежности. Подключение через диод позволяет повысить срок в разы. Исходя из опыта, можно сказать, что в подвале у меня лампочка такой конструкции работает исправно уже несколько лет.

В качестве диода применяется любой, на напряжение не менее 350 В. Учитываем силу тока, которая должна быть, не менее 0,5 А. Можно использовать диоды Д245, а в нашем случае Д226. Такие диоды использовались в старых советских телевизорах, в любой старой радиотехнике. Их можно купить в магазине радиодеталей, стоят они копейки. Схема подключения лампы через диод простая, но создает хорошую защиту.

Берем диод и откусываем один вывод корпуса под корень. Второй вывод в виде трубочки тоже откусываем.

В трубочку вставляем проволочку и запаиваем. Получается так:

Теперь наш диод без проблем влезет в цоколь. Берем паяльник и припаиваем диод к цоколю лампы:

Теперь берем цоколь и надеваем его, и опаиваем конец провода. Лишнюю часть провода откусываем. Зафиксируем в 3-4 местах два цоколя между собой паяльником.


Вечная лампочка готова. Единственный недостаток этой лампочки – мерцающий свет. Для подъезда или подвала мерцание не играет важной роли.

Принцип диода можно применить, поставив диод не в лампочке, а в выключателе или в светильнике. Этот способ будет полезен тем, кто не особо дружит с электричеством.

Можно использовать такую схему подключения лампы накаливания:

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Почему так часто перегорают лампы накаливания » сайт для электриков

Проверка соединений проводов

Причина частого перегорания лампочек может также крыться в неисправности электрической проводки. Первоочередной проверке нужно подвергнуть подключения внутри электрощита, а также выполнить правильное подтягивание винтового соединения.

Многих интересует, почему когда перегорает лампочка выбивает автомат.

Если перегорание постоянно сопровождается выбиванием пробок или автоматов, рекомендуется произвести проверку соответствия мощности таких устройств и потребляемой электроэнергии.

При обнаружении значительной неисправности или недостаточных показателях мощности, такие приборы подлежат замене.

На следующем этапе осуществляется осмотр соединений электрических проводов внутри распаечных коробок. Обнаружение почерневших или расплавленных участков потребует тщательной зачистки всех окисленных контактов и подтягивания ослабших соединений. В сомнительных скрутках изоляция также подлежит замене или используется установка специальных соединителей.

Все работы осуществляются только в условиях полностью обесточенной электрической проводки

Особое внимание нужно удалять алюминиевыми электропроводами, которые характеризуются достаточно быстрым окислениям на участках скруток. При необходимости проверяются и ремонтируются подключения осветительных приборов к электрической проводке

Важно помнить, что объединение в одну скрутку электропроводов, изготовленных из разных металлов, категорически запрещено.

Пренебрежение таким правилом становится причиной образования «гальванической пары», склонной к сильному перегреву. Допускается применять для соединения специальные колодки.

Почему перегорают лампы

  • Ограниченный ресурс. Лампочки многих производителей не выдерживают постоянной эксплуатации. Замена штатных ламп на дешёвые китайские аналоги даёт о себе знать.
  • Попадание влаги внутрь фар. Это происходит из-за потрескавшихся или плохо прилегающих резиновых уплотнителей. Они расположены между корпусом и стеклом. Такую проблему диагностировать просто: фара регулярно запотевает изнутри. Также это проверяется путём осмотра.
  • Неправильная установка. Галогеновые фары страдают при несоблюдении элементарных правил монтажа. Например, неопытные автовладельцы начинают устанавливать лампы голыми руками, что делать запрещается: наличие жирных следов сокращает срок эксплуатации.
  • Неправильно подобранная мощность. Не рекомендуется ставить 100-ватные лампы. Нужно брать меньшую мощность, но увеличенную яркость. Это значительно улучшит обзор и продлит срок службы прибора.
  • Бракованные лампочки. Часто перегорает лампа ближнего света, когда наблюдаются значительные изъяны, допущенные при сборке. Колба наклоняется, спираль смещается с оси. Всё это негативно сказывается на работоспособности.
  • Разрядка аккумулятора. Так бывает, когда агрегат стареет, начинает быстро разряжаться. Для зарядки требуются большие токи, поэтому бортовая сеть автомобиля страдает от перенапряжения. Данная ситуация требует диагностики опытным автоэлектриком.
  • Проблемы с проводкой. Она может быть повреждена в результате неаккуратности самого автовладельца. Нужно проверить проводку, если у машины новый хозяин. Разобраться в электропроводке самостоятельно — довольно трудно. Любая неисправность бортовой электросети может стать причиной выхода из строя не только лампочки, но и других электроприборов.
  • Плохое качество лампы. Появилось немало недобросовестных производителей, предлагающих лампочки для фар с минимальным рабочим ресурсом.

Причины мигания лампочки и способы ее устранения

После выключения света часто мигает лампочка (это касается только энергосберегающих видов в сочетании с выключателем, имеющим подсветку). Явление неприятное, но нормальное. Дело в том, что для подсвечивания нужен электрический ток. Если он подходит к выключателю, то часть идет и на конденсатор в люстре. А энергосберегающим лампочкам не нужно много энергии, чтобы светиться. Потому и происходит мигание: накопил конденсатор энергию – произошло мерцание.

Если мигание люстры сильно мешает, то решить проблему можно самостоятельно тремя способами:

  1. Вскройте коробку выключателя и перережьте проводок, идущий к подсветке. Теперь электричество поступать к люстре в режиме отключения не будет;
  2. Установите новый выключатель, без подсветки;
  3. В один патрон люстры вставьте лампу накаливания, которая будет поглощать накопленное конденсатором электричество. Но для ее свечения энергии будет недостаточно.

Есть четвертый способ, но он трудный и требует вызова электрика. Речь идет о резисторе, подключенном параллельно мигающей лампочке. Он повышает сопротивление, уменьшая значение поступающего тока до такого, которое не способно вызвать свечение. При включенной люстре резистор не мешает обычной работе светильника.

Проблемы с освещением возникают и на фоне плохо сооруженной или старой проводки. При этом лампы могут перегорать только на одной, а не на всех сразу люстрах. Пригласите электрика, который проверит состояние проводки в каждой комнате. Решить проблему перегорающих, взрывающихся и мигающих лампочек иногда можно, сменив электропроводку на новую.

Как предотвратить перегорание ламп?

Невозможно себя обезопасить от всех вариантов поломки, но многие предотвратить допускается. Чтобы соединение проводов не привело к перегоранию ламп, следует использовать медную проводку с цельножильным кабелем типа ВВГ. Концы витого провода требуется пропаивать или обжимать специальными наконечниками. А если есть доступ к распределительной коробке, то необходимо пропаять и все соединения в ней. Другим способом соединить провода является клеммная колодка.

При замене выключателя целесообразно поставить диммер. Это предотвратит возможность выхода из строя лампы в момент включения, поскольку устройство защищает от перепада напряжения, короткого замыкания и перегрева.

Чтобы защитить свое жилище от повышенного напряжения, можно приобрести стабилизатор или реле напряжения. Данное оборудование дорогостоящее, поэтому не каждый может его себе позволить. Альтернативой станет смена ламп на светодиодные или люминесцентные. Это не только позволит уменьшить вероятность перегорания, но и сократит расходы на электроэнергию, увеличит освещенность комнаты в несколько раз.

Скачки напряжения могут нивелировать специальные устройства. От небольших скачков способны уберечь электронные блоки защиты, которые устанавливают по одному на каждый выключатель. Они позволяют совершать плавный запуск и подходят для ламп с нитью накаливания и энергосберегающих.

Как продлить жизнь?

Прежде всего, рассмотрим первую причину выхода прибора из строя – перегорание спирали из-за ее утончения. Для того чтобы решить эту проблему, достаточно уменьшить на приборе напряжение. В этом случае спираль будет работать с недонакалом и, естественно, проживет много дольше. Как уменьшить напряжение, если в сети оно постоянно держится на одном уровне? Ставить громоздкий понижающий трансформатор?

Это неоправданно дорого, да и технически трудновыполнимо – придется либо питать все лампочки от отдельной линии, либо ставить трансформатор на каждый светильник. Но можно обойтись и более простыми и бюджетными решениями.

Питание через диод

Как известно, большинство бытовых приборов, включая осветительные, питается от бытовой сети 220 В. Напряжение в сети переменное, то есть плавно изменяет свой знак 100 раз в секунду.

График, поясняющий понятие переменного напряжения

Что будет, если в этой синусоиде срезать одну полуволну?

Синусоида со срезанной полуволной

Очевидно, что действующее напряжение уменьшится вдвое, что и требуется для решения поставленной задачи. А срезать одну полуволну можно обычным диодом – ведь он пропускает ток только в одном направлении. Итак, чтобы уменьшить питающее лампу напряжение вдвое, достаточно включить ее через диод

При этом полярность включения полупроводника роли не играет – абсолютно не важно, верхняя или нижняя полуволна будет срезана

Схема подключения лампочки через диод

В результате лампа будет питаться пониженным напряжением и прослужит в десятки раз дольше. Схема предельно простая и ее сможет собрать практически каждый, кто знаком с основами электротехники. Но она, увы, имеет существенные недостатки. Во-первых, спектр излучения спирали, работающей практически в полнакала, сдвинется в «красную» сторону. То есть свет такой лампы будет тускло-желтым и неприятным.

Ну а во-вторых, после срезания одной полуволны частота питающего напряжения снизится вдвое и упадет до пятидесяти герц. Это не только неприятно, но и сильно утомляет глаза. Таким образом, за простоту схемы придется платить достаточно высокую цену. Поэтому использовать подобный вариант стоит лишь в местах, где редко бывают люди и не занимаются серьезной работой – на лестничных площадках, в кладовых и т.п.

Можно ли как-то обойти эти проблемы, не усложняя при этом схему? Первую проблему – желтый неприятный свет – обойти можно лишь частично. А вот второй вопрос решить можно.

Схема с гасящим конденсатором

Любой конденсатор, работая в цепях переменного тока, обладает некоторым реактивным сопротивлением тем большим, чем ниже частота напряжения и меньше емкость конденсатора. Причем сопротивление это будет действовать на обе полуволны.

Ограничение амплитуды синусоиды гасящим конденсатором

Поскольку напряжение в сети переменное, то включив последовательно с лампой конденсатор соответствующей емкости, можно снизить питающее напряжение без снижения частоты. Мерцание, появившееся при использовании диода, в этом случае не появится.

Схема подключения лампочки через гасящий конденсатор

Что касается яркости, то ее можно регулировать в широких пределах практически от 0 до 90-95%. Это очень удобно. Если снизить напряжение на лампе не вдвое, а, к примеру, всего на 10-20%, подобрав соответствующий конденсатор, то желтизна и снижение светового потока будет не так сильно заметно, а лампа прослужит пусть не так долго, как с диодом, но все равно много дольше, чем при включении напрямую.

Как подобрать гасящий конденсатор? Сделать это совсем не сложно – достаточно воспользоваться калькулятором и парой формул. Прежде всего, необходимо рассчитать ток через лампу при желаемом напряжении:

I = P/U

Где:

  • I – эффективный ток через лампу;
  • P – мощность, которую будет потреблять лампа при напряжении U;
  • U – желаемое напряжение.

Для того чтобы узнать, какую мощность будет потреблять лампа при пониженном напряжении, решим простую пропорцию:

Pном/U1 = P/U2 или P = U2*Pном/U1

Где:

  • Pном – мощность лампочки при номинальном напряжении;
  • U1 – номинальное напряжение питания лампочки;
  • P – мощность, потребляемая лампой при желаемом напряжении;
  • U2 – желаемое напряжение питания лампочки.

На самом деле зависимость мощности от напряжения нелинейна – при снижении напряжения тело накала будет нагреваться слабее, а значит, его сопротивление станет понижаться. Таким образом, реальная потребляемая мощность будет несколько выше расчетной.

Теперь нам нужна формула, приведенная ниже:

Здесь:

· C – емкость гасящего конденсатора;

· f – частота питающей сети;

· U – напряжение питающей сети;

· Uвых – желаемое питающее напряжение лампы;

· I – эффективный ток через лампу (см. первую формулу).

От чего зависит эксплуатационный срок осветительных приборов

Лампы могут быстро сгорать из-за низкого качества используемых материалов и пагубного воздействия внешних факторов. Если причины не связаны с ненадлежащим качеством продукции, продолжительность срока службы зависит от характеристик проводки и ее составляющих, а также режима эксплуатации.

Уровень напряжения в сети

Понижение или повышение напряжения за допустимые пределы – самая распространенная причина выхода из строя электрических приборов. ГОСТ 13109-97 гласит, что напряжение у однофазной сети должно находиться в диапазоне 198-242 В. Погрешность должна быть не более 10%.

Номинальное напряжение ламп накаливания составляет 240 В. Чтобы предотвратить быстрое сгорание, требуется дополнительно устанавливать стабилизаторы, которые помогут уберечь осветительные приборы и дорогостоящую бытовую технику.

Частое включение

У отключенного осветительного прибора нить накаливания охлажденная. При включении лампы сопротивление ниже, если сравнивать с раскаленной нитью. Слишком частое включение и выключение света в помещении сокращает срок эксплуатации всех видов ламп из-за нарушения целостности и повреждения нити накаливания под воздействием пускового тока.

Некачественные патроны

Неисправный патрон с плохими контактами

Проблема, которую можно решить самостоятельно – ослабление контактов в патроне. При замене старой лампы на новую новой нужно внимательно осмотреть цоколь и внутреннюю часть патрона. Не стоит оставлять без внимания появление нагара и участков со специфическими потемнениями.

При эксплуатации патрона винтового вида нужно отключить подачу электроэнергии в дом и убедиться, что напряжение отсутствует

После этого, специальной плоской отверткой с прорезиненной ручкой центральный контакт-лепесток осторожно отгибается. Такая простая манипуляция позволит улучшить контакты с лампой и свести к минимуму вероятность повторных сгораний

Патроны изготавливают из пластика или керамики. Второй вариант более предпочтительный.

Испорченный выключатель

Схема подключения диммера с проходным выключателем

В процессе эксплуатации одно- и двухклавишные выключатели изнашиваются, независимо от конструктивных особенностей. Сильнее всего износу подвержены контакты, которые склонны подгоранию при частом использовании клавиш.

Если в выключателе подгорели контакты, не исключена вероятность, что лампы будут быстро перегорать либо мерцать. Решить проблему поможет демонтаж и ремонт старого выключателя, возможно, замена новым. Также можно установить диммер – устройство, которое исключает вероятность скачков напряжения при включении. С его помощью можно регулировать яркость освещения.

Плохие контакты

Расплавленные провода внутри распаечной коробки

Причиной перегорания лампочки может быть неисправность проводки. Сначала проверяется подключение на распределительном щитке, а также проводится правильное подтягивание винтового соединения (при необходимости).

Если каждый раз, когда сгорает лампа, выбивает автомат или пробки, нужно провести проверку на соответствие мощности проводки и бытовых устройств. При выявлении недостаточных показателей мощности и существенной неисправности проводки электрический прибор подлежит замене.

Далее важно осмотреть соединения проводов, расположенных внутри распаечных коробок. Расплавленные или потемневшие участки требуют зачистки и подтягивания соединений, которые ослабли

Если на участке проводки имеется изоляционная скрутка сомнительного качества, ее требуется заменить или установить специальным соединителем.

Вибрация, температурные и механические воздействия

В процессе использования электрических приборов могут возникать сильные вибрации и удары, которые существенно сокращают срок службы осветительных приборов.

Для продления эксплуатационного периода важно свести к минимуму механические воздействия, включая толчки прибора и его тряску. Работа осветительных приборов в низких температурах провоцирует сильные тепловые перепады нити накаливания, что также негативно отражается на работе

Работа осветительных приборов в низких температурах провоцирует сильные тепловые перепады нити накаливания, что также негативно отражается на работе.

Как продлить срок службы ламп в фарах?

Чтобы не перегорела лампа ближнего света, желательно принимать профилактические меры и заранее предотвратить перегорание. Представим распространённые методы решения проблемы:

Установка противотуманных фар. Также можно задействовать дневные ходовые огни. Это даст возможность включать ближний свет только в тёмное время суток. Экономится эксплуатационный ресурс лампочек.
Покупка качественных ламп. В данном вопросе лучше не экономить. Не рекомендуется покупать лампочки б/у на развалах. Приобретение новых ламп по низкой цене — тоже не слишком разумный выбор. Желательно покупать световые приборы от проверенных производителей.
Следование рекомендациям производителя автомобиля. Изготовитель обычно рекомендует конкретные типы ламп, подходящие для конкретной модели авто.
Соблюдение правил безопасности при установке. Замена предполагает аккуратную работу: наденьте тканевые перчатки и установите лампу

Если вы заденете прибор пальцем — нужно обязательно протереть его с помощью спирта или обезжиривателя.
Обращайте внимание на напряжение. Если генератор автомобиля будет давать неподдерживаемое напряжение — это вызовет быструю поломку.
Поддержание должного состояния клемм и проводов

Всё должно быть зафиксировано и подключено грамотно.

Существует и ещё несколько обязательных условий, связанных с эксплуатацией световых приборов автомобиля:

  • Не следует заводить машину с включённым светом. Это касается даже габаритных и стоп-сигналов. Проблема заключается в скачке напряжения, когда автомобиль начинает заводиться.
  • При перегорании хотя бы одной лампочки — нужно сразу её заменять. Иначе перегорают лампы ближнего света и не только — связано это с напряжением в сети. Разница в 0,05-0,1 В — имеет значение. Это касается даже лампочек подсветки номерного знака.

Некоторые автовладельцы отмечают, что сначала лучше включить обогрев заднего стекла, чтобы напряжение падало. А потом уже включается и ближний свет.

Соблюдение вышеперечисленных рекомендаций поможет сохранять работоспособность фар даже при постоянных поездках со включенным ближним светом. Разумный подход к покупке качественных ламп позволит сэкономить средства. Но не нужно забывать, что перегорание — не обязательное следствие плохого качества, и часто лампа перегорает при неправильном использовании/установке.

Как предотвратить частое перегорание лампочек

Блок защиты галогенных ламп и ламп накаливания

Существует несколько профилактических мероприятий, которые позволят продлить эксплуатационный срок ламп в домашних условиях.

  • Применять диоды для защиты ламп. Как показывает практика, на качестве освещения диоды практически не сказываются, а срок службы продлевают значительно.
  • Регулярная профилактика патрона. Рекомендуется периодически осматривать и защищать контакты, при необходимости подтягивать соединения.
  • По возможности сократить влияние вибрации и толчков, особенно если речь идет о лампах накаливания.

Электрики с многолетним опытом рекомендуют устанавливать в люстры лампочки одинаковой мощности, это обеспечивает равномерное распределение нагрузки.

Уровень напряжения в сети

Изменение уровня напряжения является одной из наиболее распространенных причин.

В соответствии с ГОСТом 13109-97, однофазная электрическая сеть на 220В предусматривает наличие предельного допустимого напряжения на уровне 198-242В, то есть отклонение не должно превышать 10%.

Поэтому стандартная лампа накаливания должна быть рассчитана на номинальное напряжение в 240В, но в действительности повышение напряжения в сети является для осветительного прибора критичным.

В результате нить накаливания становится тоньше и достаточно быстро обрывается. Одним из вариантов предотвратить слишком частое перегорание ламп является установка стабилизатора напряжения, способного защитить осветительные приборы и бытовую технику от выхода из строя.

Также можно устанавливать на все выключатели специальные защитные блоки, способствующие плавному включению осветительного прибора и предотвращающие резкие всплески напряжения, которые возникают при включении.

При выборе и приобретении лампы рекомендуется обращать особое внимание на уровень номинального напряжения, который указывается на стеклянном баллоне или упаковке. Чем выше показатели – тем дольше срок эксплуатации.

Что делать в таких случаях

Многие хозяева квартир стремятся как можно быстрее установить, почему лампочки быстро перегорают, и что можно предпринять в подобных ситуациях. Кроме уже перечисленных способов устранения отрицательных факторов, необходимо использовать и другие рекомендации специалистов.

При стабильно повышенном напряжении следует воспользоваться блоком защиты ламп накаливания. С его помощью обеспечивается плавный пуск и защита ламп от перепадов напряжения. Такие блоки устанавливаются с каждым отдельным выключателем. При наличии большой управляемой мощности, данные устройства закрепляются на стенах и потолке.

Эффективно решить проблему поможет использование компактных люминесцентных ламп. Их незначительная мощность дает возможность неограниченного применения в пластиковых патронах, при том что освещенность в помещении увеличивается в несколько раз. При эксплуатации таких ламп не наступает превышение максимальной токовой нагрузки на патроны светильника и его токоведущие части. Если обычные меры не дали положительного результата, рекомендуется проверить всю электропроводку. Там, где это необходимо следует заменить или подтянуть контакты.

Что делать, чтобы продлить срок службы ламп накаливания

Как мы уже поняли, длительность эксплуатации лампы напрямую зависит от того, насколько грамотно и качественно проложена электропроводка, от того, какие приборы используются, от отсутствия или наличия скачков в электросети, механических воздействий, температуры окружающей среды и самого выключателя. Чем дольше включена лампочка, тем сильнее она греется и быстрее испаряется вольфрам. Чем больше она нагревается, тем ярче светит и тем раньше выйдет из строя.

Если в сети напряжение немного увеличивается, всего на каких-то пять процентов, жизненный цикл лампочки сокращается наполовину. Вместо тысячи часов она проработает всего пятьсот.

Это можно проследить по лампочкам в подъездах многоквартирных домов. Они включаются только на ночь. Ночью нагрузка минимальная, а напряжение, соответственно, возрастает. Так как волосок вольфрамовой нити пока лампочка выключена очень холоден, то прежде чем она заработает на полную мощность, неплохо было бы её прогреть небольшой силы током. Для этого были придуманы диммеры.

Рабочее напряжение

Выпускаемые в наши дни лампочки маркируются не определённым каким-то значением напряжения, а диапазоном, в котором они могут работать, например, от двухсот пятнадцати до двухсот двадцати пяти, от двухсот тридцати до двухсот сорока вольт. Если соблюдать эти рекомендации и следить, чтобы напряжение сети не выходило за эти рамки, то и лампочка будет светить ярко и работать долго.

Такой диапазон предусмотрен разработчиками потому, что на протяжении всей электрической линии напряжение далеко не одинаково. Там, где рядом стоит подстанция, оно, естественно, будет выше, а на удалении — напряжение будет падать.

Именно поэтому, покупая лампочку, смотрите каково напряжение тока в сети вашей квартиры. Приобретите себе мультиметр, точно так же, как у многих имеется тонометр дома. Если мультиметр покажет напряжение в двести тридцать вольт, то можно покупать лампы от 30 до 240 вольт.

Проверяйте состояние патронов

Если лампочки имеют тенденцию перегорать в одном и том же патроне, задумайтесь. Явно с ним что-то не так. Замерьте температуру внутри него, когда он работает. Если он слишком горячий, то прочистите все его контакты, немного согните центральный и боковой контакт.

Используйте защитный диод

Очень часто можно видеть, что электрики, устанавливая лампы в подъездах, не забывают и о специальных диодах перед ними. Напряжение не теряет своего качества от этого, зато источник света может дольше проработать. Для этого в последовательную цепь объединяют диод, резистор и саму лампочку.

Плохие или подгоревшие контакты в патроне

Традиционными отечественными светильниками используются пластиковые патроны. К сожалению, если светильники недорогие, то и патроны их изготовлены из некачественного пластика. Очень редко встречаются светильники с керамическими патронами.

Применение пластиковых патронов разрешается для ламп, мощность которых не превышает 40 Вт. Если мощность лампы выше, патроны начинают растрескиваться и через некоторое время выгорать. При эксплуатации контакты электрических патронов окисляются и подгорают – это ведет к избыточному нагреву лампы накаливания и выходу ее из строя.

Низкое качество производимых патронов, может послужить причиной частых сгораний ламп накаливания.

Постоянное перегорание лампочек в одном и том же осветительном приборе, сопровождающееся треском, а также изменение яркости лампы, происходит из-за того, что контакты в патронах ненадежны.

В этом случае производят зачистку контактов и замену подгоревших патронов. Лучшим вариантом все-таки является покупка нового светильника и его правильное подключение. Именно поэтому не рекомендуется использовать в осветительных приборах лампы, имеющие большую мощность, чем указана в инструкции.

Устройство защиты лампы накаливания – RadioRadar

Светотехника

   Проблему часто перегорающих осветительных ламп накаливания я решил, собрав предлагаемое вниманию читателей устройство защиты. Снабженные такими устройствами лампы работают без замены уже два года.

   Схема устройства представлена на рис. 1. Здесь EL1 – защищаемая лампа, SA1 – ее выключатель. Через выпрямитель на диодном мосте VD1 в цепь лампы включен составной транзистор VT1VT2. В момент замыкания контактов выключателя SA1 конденсатор С1 разряжен и составной транзистор закрыт. Поэтому через лампу течет лишь небольшой ток зарядки конденсатора С1, зависящий от номинала резистора R1.


Рис. 1

   График на рис. 2 показывает зависимость напряжения на конденсаторе от времени, прошедшего с момента включения. Когда напряжение достигает значения, достаточного для открывания составного транзистора, ток, текущий через лампу, плавно увеличивается до номинального, как показано на графике рис. 3. Дальнейший рост напряжения на конденсаторе прекращается, потому что участок база транзистора VT1 – эмиттер транзистора VT2 действует как своеобразный стабистор.


Рис. 2

   Транзистор VT2 следует установить на теплоотвод площадью, пропорциональной мощности защищаемой лампы или нескольких ламп, соединенных параллельно. Их суммарная мощность не должна превышать 240 Вт, при этом площадь рассеивающей поверхности теплоотвода должна быть не менее 400 см2. Допускается замена транзистора КТ840А на КТ828А или КТ828Б. Импортный диодный мост D3SB можно заменить любым другим на напряжение 300 В и ток 1…3А.


Рис. 3

   При первом включении защитного устройства измерьте напряжение между коллектором и эмиттером транзистора VT2 в установившемся режиме. Если оно больше 15…25 В, необходимо заменить резистор R1 другим меньшего номинала. Задержку включения можно изменять, подбирая конденсатор С1. Учтите, что между выключением лампы и ее повторным включением должно пройти достаточно времени, чтобы конденсатор С1 успвл разрядиться. Иначе защитное действие устройства будет неполным.

   Автор: В. Скублин, г. Караганда, Казахстан


Рекомендуем к данному материалу …

Мнения читателей
  • Техник/23.06.2011 – 06:10

    Вместо схемы можно поставить старый трансформатор РѕС‚ лампового приёмника. РќР° вторичную обмотку 250 вольт нужно подать 220 вольт. Рђ СЃРѕ РІС…РѕРґР° снять пониженное напряжение. Лампа будет светить дольС?Рµ так как РЅР° неё будет подано пониженное напряжение. Р? РЅРµ нужно перегорающих транзисторов СЃ радиаторами, РґРѕСЂРѕРіРёРјРё конденсаторами Рё резисторами.

  • Игорр/19.04.2011 – 15:54

    Почему не работает УЗЛ в схеме с выключателями с подсветкой.

  • OlegLOA/17.01.2011 – 01:07

    Я писал про эту схему, что ее применять для мощных ламп не советую.Вариант указанный по Вашей ссылке – очень хорош, но он требует 3-го провода от нагрузки (впрочем, от этого очень тяжело уйти, то что я написал про 3-й транзистор – тоже не пройдет, только источник тока, и падения меньше чем 5..7в сложно будет добиться). Были еще варианты с использованием дополнительного трансформатора но это уже слишком громоздко.Даже с полевиком с мощными лампами – это непростой вопрос. Потому что полевик в общем-то тоже будет работать в момент включения в активном режиме. Плюс возможные выбросы в сети.

  • Mazayac/29.08.2008 – 04:44

    Как раз схема на полевом транзисторе, до 250Вт работает без радиатора вообще:http://www.mastercity.ru/old_forum_archive/10/images/100231900011.jpg

  • OlegLOA/11.02.2008 – 23:23

    Видимо, автор схемы экспериментировал с маломощными лампами. Потому что КТ840 с лампами более 60..75Вт работать не будет – мощность слишком велика. Кроме того, совершенно непоятно, с какого бодуна выбрано рабочее напряжение конденсатора – чтоб конденсатор побольше был, или чтоб подороже стоил? Туда можно поставить конденсатор и на 6В, ибо именно в этой схеме напряжение на нем ограничено двумя последовательно соединенными переходами БЭ транзисторов, а это в сумме около 1,4-1,6В. Поэтому пока хотя-бы один из этих переходов не оборван – напряжение выше не будет. Если же озаботиться тем, чтоб конденсатор не “стрельнул” при обрыве транзистора – это можно сделать дешевле и меньшим по размерам методом – применив копеечный стабилитрон. И хорошо бы зашунтировать переходы БЭ резисторамиПадение напряжения 15..25В – это конечно круто, при этом лампа на 100Вт будет светить как 75-ка, да и греться сие устройство будет нехило. Поэтому либо пользуемся “как есть”, либо добиваемся падения до 5В на всем устройстве (вместе с мостом), а для этого прийдется либо поставить еще один транзистор (переходы всех трех обязательно зашунтировать резисторами, иначе возможна “свистопляска”), либо последовательно с резистором включить источник тока, а номинал резистора сильно уменьшить. Либо вместо составного транзистора применить мощный высоковольтный полевик (в этом случае обязательно параллельно конденсатору включить стабилитрон). Да, применять сие чудо для ламп мощностью более 100-150Вт не советую. Транзисторов сгорит много, греться будет сильно, даже с радиатором[email protected]

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу: