Замеры сопротивления изоляции электроустановки | Перестройка МСК
Механические повреждения изоляции электропроводки, а также ее перегрев из-за ненадлежащего крепления жил проводов к зажимам, неполадок в электрических выключателях, несоответствия сечения жил провода к протекающему по нему току, может стать причиной возникновения пожароопасной ситуации.
Сотрудники электролаборатории «Перестройка МСК» в кратчайшие сроки проведут замеры сопротивления изоляции, предоставят документацию для инспектирующих организаций, разработают проект электроснабжения квартиры, загородного дома и других объектов любой сложности.
Мы проводим замеры сопротивления изоляции на самых разных объектах – промышленных предприятиях, административных зданиях и сооружениях, торговых комплексах, жилых домах и квартирах, развлекательных комплексах, заправочных станциях и т.д.
Услуги, оказываемые нашей компанией, имеют необходимые допуски и разрешения. Документация установленного образца, предоставляемая нами по окончании измерительных работ, позволит вам без проблем взаимодействовать с проверяющими госорганами.
Надежная электропроводка – гарантия вашей безопасности! Не экономьте на своей безопасности, доверьте ее профессионалам. Если вы ищите специалистов для замеры сопротивления изоляции кабеля и электрооборудования в Москве и Московской области, обращайтесь в компанию «Перестройка МСК».
Каждая организация, в ведении которой находится электроустановка, должна проводить планово-предупредительные работы по ремонту электрооборудования, а также проводить периодические испытания и измерений, обследования электропроводки.Периодичность измерений и испытаний составляется на основе требований Правил технической эксплуатации электроустановок потребителей (ПТЭЭП). Например, по поводу замера сопротивления изоляции в документе сказано, что испытания проводят не реже 1 раза в 3 года.
Замеры сопротивления изоляции определяют запас прочности и выявляют дефекты кабеля. Они проводятся как в процессе монтажа электроустановки, так и в процессе приемо-сдаточных и пусконаладочных работ.
Сначала персонал определяет отсутствие напряжения на кабеле. Проводит визуальный осмотр кабеля (если это возможно) и определяет, есть ли места перегрева или оголенные участки.
Затем специалисты проводят измерение сопротивления изоляции между двумя точками электроустановки. Измеряют сопротивление между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом.
Полученные результаты, характеризующие ток утечки постоянного напряжения между точками измерения, записывают в протокол. Если данные собираются для проверяющей комиссии, протокол имеет право составлять только специализированная электролаборатория.При измерениях руководствуются ПТЭЭП.
Кстати,этот документ, помимо периодичности испытаний, оговаривает еще и величину испытательного напряжения и норму значения сопротивления для каждого вида электрооборудования (ПТЭЭП приложение 3.1, таблица 37).
После проведения испытаний, и обработки полученных данных по измерениям, специалисты электролаборатории предоставляют заказчику протоколы испытаний и измерений.
Ростехнадзор разъясняет: Проведение электроизмерительных, электромонтажных на подъемных сооружениях
Вопрос от 17.07.2019:
В управление поступило обращение по вопросу эксплуатации электрооборудования потребителя, переданного на обслуживание специализированной организации по договору, и о работах с настила мостового крана?
Ответ: В соответствии с Положением о Федеральной службе по экологическому, технологическому и атомному надзору, утвержденным постановлением Правительства Российской Федерации от 30.07.2004 № 401, Федеральная служба по экологическому, технологическому и атомному надзору является органом федерального государственного энергетического надзора и осуществляет контроль и надзор в сфере безопасности электрических и тепловых установок и сетей (кроме бытовых установок и сетей).
В соответствии с пунктом 46.1. Правил по охране труда при эксплуатации электроустановок, утвержденных Приказом Минтруда Российской Федерации от 24. 07.2013 № 328н (далее – ПОТЭЭ) – к командированному персоналу относятся работники организаций, направляемые для выполнения работ в действующих, строящихся, технически перевооружаемых, реконструируемых электроустановках, не состоящие в штате организаций – владельцев электроустановки. То есть работники специализированной организации, эксплуатирующие электроустановки потребителя являются командированным персоналом.
Согласно пункта 46.7. ПОТЭЭ – командирующая организация несет ответственность за соответствие присвоенных командированному персоналу групп и прав, предоставляемых ему в соответствии с пунктом 46.3 Правил, а также за соблюдение им Правил. К работам допускается подготовленный персонал, прошедший стажировку. Для этого в соответствии с пунктом 46.3. ПОТЭЭ – командирующая организация в сопроводительном письме должна указать цель командировки, а также работников, которым будет предоставлено право выдачи наряда, право быть ответственными руководителями, производителями работ, членами бригады, а также подтвердить группы этих работников.
В соответствии с пунктом 2.12.14. Правил технической эксплуатации электроустановок потребителей (ПТЭЭП) – при высоте подвеса светильников до 5 м допускается их обслуживание с приставных лестниц и стремянок. В случае расположения светильников на большей высоте разрешается их обслуживание с мостовых кранов, стационарных мостиков и передвижных устройств при соблюдении мер безопасности, установленных правилами безопасности при эксплуатации электроустановок и местными инструкциями.
Согласно пункта 2.6. ПОТЭЭ – работы, выполняемые на высоте более 5 м от поверхности земли, перекрытия или рабочего настила, над которыми производятся работы непосредственно с конструкций или оборудования при их монтаже или ремонте с обязательным применением средств защиты от падения с высоты, относятся к специальным работам. Работники, обладающие правом проведения специальных работ, должны иметь об этом запись в удостоверении о проверке знаний правил работы в электроустановках, форма которого предусмотрена приложением № 2 ПОТЭЭ.
Так же в соответствии с пунктом 3.1. Правил по охране труда при работе на высоте, утверждённых приказом Минтруда России от 28.03.2014 № 155н, зарегистрированным в Минюсте России 05.09.2014 № 33990 – в зависимости от условий производства все работы на высоте делятся на:
- а) работы на высоте с применением средств подмащивания (например, леса, подмости, вышки, люльки, лестницы и другие средства подмащивания), а также работы, выполняемые на площадках с защитными ограждениями высотой 1,1 м и более;
- б) работы без применения средств подмащивания, выполняемые на высоте 5 м и более, а также работы, выполняемые на расстоянии менее 2 м от не ограждённых перепадов по высоте более 5 м на площадках при отсутствии защитных ограждений либо при высоте защитных ограждений, составляющей менее 1,1 м.
Вопрос от 25.09. 2018:
В управление поступило обращение о разъяснении периодичности проверки заземления электрических кранов, с определением его сопротивления, понятие заземления электрических кранов, целесообразность ежегодной проверки, что входит в проверку, а также периодичность измерения сопротивления заземления рельсовых путей ПС?
Ответ: Согласно ч.1 ст.9 Федерального закона № 116-ФЗ «О промышленной безопасности опасных производственных объектов»:
Организация, эксплуатирующая опасный производственный объект, обязана: соблюдать положения настоящего Федерального закона, других федеральных законов, принимаемых в соответствии с ними нормативных правовых актов Президента Российской Федерации, нормативных правовых актов Правительства Российской Федерации, а также федеральных норм и правил в области промышленной безопасности.
Федеральными нормами и правилами «Правила безопасности опасных производственных объектов, на которых используются подъемные сооружения», утвержденные приказом Федеральной службы по экологическому, технологическому и атомному надзору от 12. 11.2013 № 533, зарегистрированные в Министерстве Юстиции Российской Федерации от 31.12.2013 за per. № 30992 (далее — ФНП по ПС), установлены требования к периодичности проверок заземления электрических кранов (подъемных сооружений) и измерения сопротивления заземления рельсовых путей подъемных сооружений (далее – ПС).
В соответствии с п.п.216, 217, 218 ФПН по ПС:
Периодическое комплексное обследование рельсовых путей проводится специализированными организациями и включает выполнение комплекса работ, в том числе подготовку результатов комплексного обследования: оформление инструментальных замеров, включая измерения сопротивления его заземления, и составление ведомости дефектов. Комплексное обследование рельсовых путей (наземных и надземных) должно проводиться не реже одного раза в три года, а также после подтоплений, наводнений, землетрясений, селей, произошедших на территории нахождения ПС.
В соответствии с п. 174 «г» ФНП по ПС:
состояние изоляции проводов и заземления электрического крана с определением их сопротивления проверяется при техническом освидетельствовании.
Согласно п. 169 ФНП по ПС: ПС в течение срока службы должны подвергаться периодическому техническому освидетельствованию:
а) частичному – не реже одного раза в 12 месяцев;
б) полному – не реже одного раза в 3 года, за исключением редко используемых ПС (ПС для обслуживания машинных залов, электрических и насосных станций, компрессорных установок, а также других ПС, используемых только при ремонте оборудования, для которых полное техническое освидетельствование проводят 1 раз в 5 лет).
Пунктом 170 ФНП по ПС установлены случаи, после которых проводится внеочередное полное техническое освидетельствование ПС, а также п.62 ФНП по ПС предусмотрено, что после монтажа и наладки ПС к акту о монтаже прилагаются протоколы замера сопротивления изоляции проводов и системы заземления.
В соответствии с п. 172 ФНП по ПС:
Результатом технического освидетельствования является следующее:
а) ПС и его установка на месте эксплуатации соответствуют требованиям эксплуатационной документации и настоящих ФНП;
б) ПС находится в состоянии, обеспечивающем его безопасную работу.
Согласно п. 194 ФНП по ПС: записью в паспорте действующего ПС, подвергнутого периодическому техническому освидетельствованию, должно подтверждаться, что ПС отвечает требованиям настоящих ФНП, находится в работоспособном состоянии и выдержало испытания.
В соответствии с п.255 ФНП по ПС:
Эксплуатирующая организация не должна допускать ПС в работу, если при проверке установлено, что:
д) на ПС выявлены технические неисправности, в том числе: неработоспособность заземления, гидро-, пневмо- или электрооборудования, указателей, ограничителей (ограничители рабочих параметров и ограничители рабочих движений), регистраторов, средств автоматической остановки, блокировок и защит (приведены в паспорте или руководстве по эксплуатации ПС).
Таким образом, проверка заземления электрических кранов (ПС) при периодических технических освидетельствованиях целесообразна и необходима для обеспечения безопасной эксплуатации подъемных сооружений.
Согласно п. 1.7.28. Правил устройства электроустановок: «Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством».
Заземление электроустановок, в том числе кранов, выполняется в соответствии с утвержденной проектной документацией, выполненной согласно требованиям Правил устройства электроустановок.
В соответствии с п. 3.6.2 Правил технической эксплуатации электроустановок потребителей (далее — ПТЭЭП), утвержденных приказом Минэнерго РФ № 6 от 13.01.2003г. (зарегистрированных в Минюсте РФ 22.01.2003, регистрационный № 4145) сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее – К), при текущем ремонте (далее – Т) и при межремонтных испытаниях и измерениях, т.е. при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом электрооборудования в ремонт (далее – М), определяет руководитель Потребителя на основе приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий. Указанная для отдельных видов электрооборудования периодичность испытаний в разделах 1 – 28 является рекомендуемой и может быть изменена решением технического руководителя Потребителя.
Согласно п. 3.6.3. ПТЭЭП для видов электрооборудования, не включенных в настоящие нормы, нормы и сроки испытаний и измерений параметров должен устанавливать технический руководитель Потребителя с учетом инструкций (рекомендаций) заводов-изготовителей.
В разделе 26 приложения 3 ПТЭЭП указаны требования к проверке заземляющих устройств, в том числе кранов. При этом установлено, что проверка наличия цепи заземления проводится не реже 1 раза в год.
При возникновении несогласованности требований правил применяются те требования, которые не ведут к снижению надежности и безопасности эксплуатации электроустановок.
Вопрос от 10.07.2015 – Журнал “Безопасность труда в промышленности”:
B соответствии с п. 174 Федеральных норм и правил в области промышленной безопасности «Правила безопасности опасных производственных объектов, на которых используются подъемные сооружения» (далее — ФНП по ПС) при техническом освидетельствовании подъемных сооружений (ПС) должны проверять изоляцию проводов и заземление электрических кранов с определением их сопротивления.Прошу разъяснить, разрешается ли при техническом освидетельствовании ПС, поднадзорных Ростехнадзору, проводить испытания изоляции проводов и заземления электрических кранов с определением их сопротивления обученным работникам из числа электротехнического персонала эксплуатирующей организации или эти испытания следует выполнять с применением установок (электролабораторий), которые должны быть зарегистрированы в федеральном органе исполнительной власти, осуществляющем федеральный государственный энергетический надзор? Какие требования распространяются на данные испытания для электрических кранов (кран-балок), неподнадзорных Ростехнадзору? Е.Г. Илюхин
На вопросы читателя отвечает начальник Управления государственного строительного надзора Ростехнадзора М.А. Климова.
Согласно Инструкции о порядке допуска в эксплуатацию электроустановок для производства испытаний (измерений) — электролабораторий, введенной в действие письмом Минэнерго России от 13 марта 2001 г. № 32-01-04/55, регистрация электролабораторий не нужна, если испытания и измерения в процессе монтажа, наладки и эксплуатации электрооборудования не требуют оформления протоколов или других официальных документов. При этом в организации должны быть в наличии необходимые поверенные приборы, методики измерений, электротехнический персонал, прошедший проверку знаний и имеющий соответствующую группу по электробезопасности согласно требованиям, которые определены в главе XXXIX Правил по охране труда при эксплуатации электроустановок, утвержденных приказом Минтруда России от 24 июля 2013 г. № 328н.
Таким образом, организация может проводить испытания (измерения) изоляции проводов, сопротивления заземления электрических кранов (кран-балок) в соответствии с нормами, указанными в приложении № 3 Правил технической эксплуатации электроустановок потребителей (далее — ПТЭЭП), утвержденных приказом Минэнерго России от 13 января 2003 г. № 6, с составлением документов для собственных нужд в целях проверки электробезопасности.
Замер сопротивления Изоляции | ИЗМЕРЕНИЕ проводятся аттестованной ЭлектроЛабораторией в Москве и МО
Мероприятия по измерению сопротивления изоляции проводятся с целью исключения утечки тока, сохранения безопасности человека и работоспособности приборов. При этом исследование лицензированной электролабораторией осуществляется измерение изоляционного сопротивления проводки, кабеля и точек соединения электролинии. Эти электроизмерения выполняются с использованием специального оборудования – мегаомметра, который улавливает показатели утечки тока между 2 цепями электросети. Чем они выше, тем ниже изоляционное сопротивление, а это уже повод для беспокойства и тщательной ревизии электроустановки.
Специалисты компании ТМ-Электро выполняют замеры сопротивления изоляции электрооборудования с помощью современных цифровых электроизмерительных приборов компаний Sonel и Merten.
Профессиональное лабораторное измерительное оборудование позволяет провести измерение сопротивления изоляции более точно, не мешая работе организации Заказчика и выпонять поставленные задачи в кратчайшие сроки по невысокой цене. Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей). Например, для изоляции электропроводки осветительной сети составляет 1 раз в 3 года. Эти же нормы действуют для электроустановок офисных помещений и торговых павильонов, складов, предприятиях и общественных заведениях.
Внешняя электропроводка и электроустановки в особо опасных помещениях, должны проходить замер сопротивления изоляции ежегодно. Также необходимо ежегодно выполнять измерения сопротивления изоляции проводов, кабелей, кабельных трасс,электрооборудования и электроустановки в школах, институтах, детских, медицинских и оздоровительных учреждениях, в жилых многоквартирных домах.
Какие бывают измерения сопротивления изоляции:
Лабораторные измерения проводятся c определенной периодичностью, в случае:
- Приемо-сдаточные испытания;
- Выполняются после того, как завершены все электромонтажные мероприятия (новое строительство или реконструкция).
- Эксплуатационные испытания;
- Проводятся на промышленных или торговых объектах в соответствии с требованиями пожарного надзора, Ростехнадзора, прочих контролирующих организаций, с периодичностью, необходимой для нормального функционирования объекта, согласно ПУЭ.
- Профилактические испытания.
Измерения электрики осуществляются для предотвращения возгорания или поражения человека электрическим током. Периодичность проведения определяется ответственным за электрохозяйство. Профессионально замерить сопротивление изоляции могут только опытные инженеры лаборатории по электрике, имеющие необходимый допуск, к производству электроизмерительных работ.
Также, организация оказывающая услуги электроизмерения обязана иметь действующее Свидетельство о регистрации электролаборатории выданное Ростехнадзором. Свидетельство выдается сроком на 3 года и должно быть актуально на момент исследования.
Юридическую силу имеют документы выданные только лицензированной электролабораторией и только после проведения реального исследования объекта.

Большое доверие вызывает компания, в которой имеется свой полный штат сотрудников электроизмерительной лаборатории и парк приборов необходимых для проверки электрики. Привлечение не обладающих должным опытом лиц для оказания услуги замера сопротивления изоляции приводит к снижению качества работ и не нужным рискам для Заказчика.
Компания ТМ-Электро обладает своим полным парком электроизмерительного оборудования для проведения любых измерений и испытаний, в штате компании только профессиональные сотрудники, постоянно повышающие свою квалификацию, имеющие группы допуска и все необходимые разрешения и свидетельства. Гарантируем точное соблюдение сроков и условия договора. Грамотно составим Технический отчет и дадим рекомендации. В случае необходимости предоставим свою электромонтажную бригаду.
Измерение сопротивления изоляции электрических аппаратов, вторичных цепей и электропроводок напряжением до 1кВ (1000В).
Измерение сопротивления изоляции является, пожалуй, самым необходимым лабораторным испытанием. В Техническом отчете – Протокол №3. Если говорить кратко, то это измерение нужно для проверки состояния изоляции проводов и кабелей. Сопротивление изоляции силовых кабельных линий до 1000 В измеряется мегаомметром или современным электронным оборудованием на напряжение 2500 В в течение одной минуты. Показатели сопротивления изоляции должны быть не менее 0,5 МОм. Полученные данные заносятся в журнал протокола с соответствующей пометкой “соответствует” или “не соответствует”.
При несоответствии нормативным значениям кабельную трассу рекомендуется заменить.
Очень часто изоляция кабеля повреждается при выполнении электромонтажных работ, при протаскивании через гильзы, отверстия с острой кромкой, при общестроительных работах (например, шурупом, во время крепления гипсокартона, плохо заизолированы кабельные муфты в земле) и т.д. В этих случаях очень помогут измерения сопротивления изоляции при выполнении комплекса приемо-сдаточных испытаний. Своевременно обнаруженный дефект проще устранить.
Периодичность проведения испытаний, обычно 1 раз в 3 года. Школьные и дошкольные учреждения 1 раз в год. По Нормативной документации Правительства г. Москвы изоляция бытовых стационарных электроплит измеряется не реже 1 раза в год в нагретом состоянии плиты. Сопротивление изоляции должно быть не менее 1 МОм.
Изоляция силовых и осветительных электропроводок измеряется мегаомметром на 1000В при снятых плавких вставках на участке между снятыми предохранителями или за последними предохранителями между любым проводом и землёй, а также между двумя проводами. Проверка состояния таких цепей, провода, кабеля, электроприборов и аппаратов должна проводиться путём тщательного внешнего осмотра не реже 1 раза в год!
Стоит напомнить, что работы связанные с напряжением должен проводить только подготовленный технический персонал, прошедший необходимое обучение, получивший соответствующие удостоверения с правом проведения измерительных работ. Все испытания проводятся правильно откалиброванным оборудованием, прошедшим ежегодную поверку в сертифицированном центре.
Использование современного электронного оборудования компаний Sonel, Metrel, Fluke – гарантирует качество и удобство проведения работ.
Внимание, остерегайтесь пользоваться услугами неатестованных лабораторий и частников! Грамотные инженеры с современным оборудованием не нанесут вреда вашей электроустановке и подключенным приборам. При заказе работ требуйте документы подтверждающие квалификацию инженеров, свидетельство на лабораторию и поверку измерительных приборов. Не соглашайтесь на Технические отчеты “без выезда”! Ни одна уважающая себя лаборатория не будет даже предлагать подобные работы, т.к. это влечёт за собой административную и уголовную ответсвенность. Скорее всего, подобная организация пришла на рынок ненадолго и ответственность за выполненние работ ляжет на энергетическую службу предприятия Заказчика работ или директора.
Сопротивление изоляции — ИТЦ «Качество»
Наша компания предоставляет услуги по профессиональному измерению сопротивления изоляции. Квалифицированные специалисты готовы провести полный комплекс операций, связанных с данной сферой деятельности электролаборатории. Замер сопротивления изоляции может осуществляться в комплексе с другими измерениями или самостоятельно. Для оформления заявки на вызов специалиста позвоните по телефонам, указанным на странице «Контакты»
Понятие сопротивления изоляции
Как известно электроснабжение различных систем осуществляется с помощью проводов и кабелей. Для нормального функционирования электроснабжения и безопасности электросистемы в целом необходимо периодически проводить испытания сопротивления изоляции.
Состояние изоляции элементов, находящихся под напряжением, может влиять на потери электроэнергии, которые могут быть связаны с появлением токов утечки из-за некачественно заизолированных или поврежденных участков электроцепи. Также безопасность эксплуатации электроустановок для человека и их длительная безаварийная работа зависит от такой характеристики как сопротивление изоляции. Для того чтобы избежать аварийных ситуаций и других проблем, необходимо в первую очередь строго придерживаться правил эксплуатации электросетей, а также регулярно проводить измерение сопротивления изоляции кабеля.
Важность измерения и испытания сопротивления изоляции
Испытание и измерение сопротивления изоляции являются достаточно важными моментами в диагностике электрики. Поэтому заводские работы по измерению и испытанию сопротивления изоляции при производстве кабельной продукции нельзя назвать случайным. Так же измерить сопротивление необходимо после проведения монтажных работ. Впоследствии измерение сопротивления изоляции проводится с определенной периодичностью, так как погодные условия, условия и сроки эксплуатации электросети, возможный риск физических повреждений и другие моменты могут привести к возникновению неожиданных проблем. Поэтому, не дожидаясь проверки Ростехнадзора или пожарных, разумно вовремя вызвать сотрудников электролаборатории и получить техническую документацию в виде отчета по результатам проведения такой операции как измерение сопротивления изоляции проводов и кабелей.
Процедура измерения сопротивления изоляции
Замеры сопротивления изоляции с использованием специального оборудования и методов должны регулярно проводиться на всех электросетях и линиях. Только таким образом можно предупредить аварию, так как при выявлении на ранней стадии изношенности, линию можно вовремя заменить и избежать таким образом аварийных ситуаций.
Грамотно измерить сопротивление изоляции могут лица, имеющие группу допуска по электробезопасности не ниже III. Сами же испытания сопротивления изоляции представляют собой приложение повышенного напряжения к испытываемой линии или оборудованию.
Измерение сопротивления изоляции, так же как и другие виды испытаний, выполняемые с помощью специальных устройств, могут проводить специалисты электролабораторий, для проведения измерительных и испытательных работ они должны иметь соответствующее разрешение и допуск.
Замер изоляции выполняется несколько раз, как правило, количество замеров изоляции зависит от числа групповых линий. Количество измерений зависит от числа проводов в электролинии.
Измерение сопротивления изоляции позволяет выявить:
- коэффициент абсорбции, который определяет увлажнение электроизоляции;
- коэффициент поляризации, он является одним из основных параметров, который показывает, насколько изношена старая изоляция. Данный коэффициент указывает способность перемещения заряженных частиц диэлектрика под воздействием электрического поля.
Результаты замера сопротивления изоляции основываются на показателях, величина которых позволяет принять решение о пригодности электроизоляции и ее замене:
Показатель сопротивления постоянному току можно определить с помощью измерения тока утечки, который проходит через изоляцию во время прохождения через проводник тока. Наличие грубых внешних и внутренних дефектов (увлажнение, поверхностное загрязнение, повреждение) снижает сопротивление изоляции.
Заказать выезд специалиста, узнать стоимость работ или измерений, получить профессиональную консультацию можно по телефону 8 (918) 205-80-92 и почте elektrolab@itcentr. net
Периодичность замеров изоляции
Что такое сопротивление изоляции.
Это отношение напряжения, приложенного к диэлектрику, к протекающему сквозь него току. Диэлектрик это такое вещество, которое практически не проводит ток.
В электротехнике в качестве диэлектриков используют:
- в проводах и кабелях диэлектрическую резину, различные пластики, бумагу пропитанную маслом;
- в электрооборудовании, шинопроводах – органические и керамические изоляторы.
- в электродвигателях – лаковую пропитку обмоток;
Удовлетворительным считается сопротивление изоляции при котором каждая цепь с соединенными электроприемниками имеет сопротивление не менее нормированного значения для конкретного вида оборудования.
Сопротивление изоляции измеряется в Омах, кОмах, МОмах и ГОмах.
Ухудшения изоляции — причины
При эксплуатации электрооборудования со временем происходит ухудшение изоляции. Основными причинами ухудшения изоляции являются:
- электрические – в основном локальные (точечные) пробои изоляции.
Связаны с ионизацией при большой напряженности электрического поля;
- тепловые перегрузки – в результате повышенных нагрузок возникает процесс перегрева токоведущих частей электроустановок или жил кабельных линий, электропроводок. Это приводит к изменениям свойств изоляции. Например пластик расплавляется, а резина пересыхает и трескается;
- механические нагрузки – возникают в кабельных линиях, проложенных в земле. Причиной являются изменения температуры окружающей срезы, промерзания и оттаивания грунта. В керамических изоляторах в следствии внутренних напряжений. Проявляются в порывах и растяжениях кабелей, трещинах и сколах на изоляторах.
- воздействие воды и агрессивных сред.
- неправильные действия со стороны персонала.
Как следствие, ухудшение изоляции может привести к однофазным и многофазным коротким замыканиям, а при неполных коротких замыканиях (без металлического контакта), привести к возникновению пожара.
Ввиду вышесказанного регулярное проведение замеров сопротивления изоляции просто необходимо.
С какой периодичностью проводить замеры сопротивления изоляции.
Периодичность замеров сопротивления изоляции электрооборудования, кабельных линий и электропроводок определяется НТД: ПТЭЭП, РД 34.45-51.300-97 и др.
Согласно НТД замер сопротивления изоляции в электроустановках потребителей (жилые дома, помещения, производства) проводится один раз в три года.
В специальных установках и установках с наличием опасных факторов: повышенная влажность, агрессивная среда, проводящая пыль, взрывопожароопасные, пожароопасные один раз в год.
Для сварочных аппаратов измерение сопротивления изоляции проводится не реже 1 раза в 6 месяцев.
Максимальный интервал между измерениями сопротивления изоляции может составлять не более 3 лет. Органы Ростехнадзора имеют право производить проверку состояния оборудования потребителей не чаще чем 1 раз в 3 года. При проверке инспектор обязательно потребует наличия протоколов. Среди них должен быть протокол измерения сопротивления изоляции.
Все сказанное, в основном касалось оборудования с напряжением до 1000 В. У высоковольтного оборудования сопротивление изоляции является сопутствующим высоковольтным испытаниям. В большей мере оно контролирует состояние изоляции до и после испытания.
Есть некоторые исключения. Например, вентильные разрядники допускается не подвергать испытанию на пробой, если сопротивление изоляции не менее 1 000 МОм. Эти измерения следует проводить ежегодно, перед началом сезона гроз.
Измерения сопротивления изоляции — порядок проведения.
Кто проводит периодические измерения сопротивления изоляции?
Согласно Правил по охране труда при эксплуатации электроустановок это специально обученный работник из числа электротехнического персонала. К нему относятся работники электротехнической лаборатории, имеющей регистрационное свидетельство Ростехнадзора с правом проведения данного вида работ.
По результатам измерений составляется отчет, в котором указывается выявленное дефектное оборудование, рекомендации по устранению выявленных дефектов, и выдаются протоколы на электрооборудование, кабельные линии и электропроводку, прошедшие измерения сопротивления изоляции, с заключением о соответствии параметров оборудования (в конкретном случае изоляции) требованиям нормативной документации и пригодности к дальнейшей эксплуатации.
Электролаборатория «Антар» всегда готова оказать качественные услуги по проверке вашего оборудования.
Количество измерений сопротивления изоляции в смете
Главная » Разное » Количество измерений сопротивления изоляции в сметеКак в локальном сметном расчёте по ФЕРп 01-11-028-01 “Измерение сопротивления изоляции мегомметром” указана единица измерений — 1 линия? | ЭлектроАС
Дата: 18 мая, 2009 | Рубрика: Вопросы и Ответы, Электроизмерения
Метки: Замер сопротивления изоляции, Смета, Электроизмерения
Нужен электромонтаж или электроизмерения? Звоните нам!
Евгений
Здравствуйте, скажите, пожалуйста, в локальном сметном расчёте по ФЕРп 01-11-028-01 “Измерение сопротивления изоляции мегомметром” указана единица измерений — 1 линия. А что входит в понятие “линия”? Это замер 1 кабеля (2-х, 3-х,4-х,5-жильного)или же это один замер между каждой жилы в кабеле (между А-В или В-С или С-А и т. д.)
В локальном сметном расчёте 5.1-162-1 «Измерение сопротивления изоляции мегомметром кабельных и других линий» указана единица измерения «измерение». Это означает, что специалисты электролаборатории в смете берут цену за один замер сопротивления изоляции. Например, чтобы выполнить измерение сопротивления изоляции кабеля ВВгнг 5 х 4, надо провести 10 измерений, соответственно и в смете Вы указываете 10 измерений, а не 1 линию электропередачи. Посмотрите статью «Электролаборатория. Смета на проведение комплекса электроизмерений электросети. Расчёт стоимости работ на электроизмерения.», там есть локальная смета на комплекс электроизмерений.
Экспертиза проекта электроснабжения, шефмонтаж, технический надзор, электроизмерения: +7(926)210-83-75
Срочная платная консультация инженера-энергетика +7(925)705-93-63
Оставить Комментарий
elektroas.ru
Металлосвязь | точка | 30 | ||
Сопротивление изоляции кабеля 3-х жильного | линия | 90 | ||
Сопротивление изоляции кабеля 5-и жильного | линия | 120 | ||
Петля «фаза-ноль» | токоприемник | 140 | ||
Проверка УЗО | штука | 120 | ||
Прогрузка автоматов до 200А | штука | 150 | ||
Прогрузка автоматов от 200А до 800А | штука | 450 | ||
Прогрузка автоматов свыше 800А | штука | 790 | ||
Проверка контура заземления | точка | 850 | ||
Проверка молниезащиты | точка | 340 | ||
Проверка АВР | точка | 5000 | ||
Итого: |
t-zamer. ru
допустимые значения измерений, минимальные нормы для кабелей и приборов
Во многом безопасность электрической сети определяется качеством изоляции. Периодическое ее испытание позволяет предотвратить возникновение различных аварий и даже поражение током живого организма. Суть тестирования заключается в замере сопротивления изоляции с помощью специальных приборов. Любое отклонение от требуемых норм является причиной замены или ремонта электрооборудования.
Суть измерений
Под сопротивлением изоляции понимается способность материала не пропускать через себя электрический ток. Для каждого диэлектрика, в зависимости от места использования, установлены свои нормативные требования. Периодичность проверки и необходимые значения указываются в «Правилах устройства электроустановок» (ПУЭ) и в «Правилах технической эксплуатации электроустановок потребителями» (ПТЭЭП).
Все виды испытаний можно условно разделить на три группы:
- проводимые производителем на заводе;
- выполняемые непосредственно на объекте после модернизации или проведения ремонта;
- запланированные согласно требованиям правил безопасности и нормам.
Возможные повреждения, кроме заводских дефектов, чаще всего возникают из-за условий эксплуатации. Это воздействие сверхтоков, вызывающих перегрев защитной оболочки, влияние химических реагентов, механические разрывы, вызванные как ошибками монтажа, так и грызунами. Цель измерений заключается в предотвращении поражения человека электрическим током и обеспечения пожарной безопасности.
Повреждение изоляции вызывает пробой. Это ситуация, при которой между двумя изолированными друг от друга проводниками появляется электрический контакт. Например, между рядом лежащими проводами в кабеле или при прикосновении человека к частям электроустановки. Обычно при пробое наблюдается прожженное отверстие и изменение цвета изоляционного материала. В основе механизма пробоя твердого диэлектрика лежит электронный лавинообразный процесс. Наступает он из-за образования в материале так называемого плазменного газоразрядного канала.
К измерению изоляции допускается только специалист, имеющий удостоверение о проверке знаний и группу допуска не ниже третьей, если замеры проводятся в сети с напряжением до 1 кВ, и не ниже четвертой — при измерении выше 1 кВ.
После завершения измерения электрического сопротивления изоляции, полученные результаты обрабатываются и делается вывод о возможности дальнейшей эксплуатации сети. Так, большое значение для достоверности результата имеет температура окружающей среды. Нормирование измерений в ПУЭ указано для 20 °C, поэтому если работы выполняют при другой температуре, то полученные данные пересчитывают по формуле: R=K*Rиз, где K — коэффициент приведения указанный в дополнениях к ПУЭ.
Используемые приборы
Приборы, с помощью которых проводят измерения, условно разделяются на две группы: щитовые измерители и мегомметры. Первые применяются с подвижными или стационарными электроустановками с отдельной нейтралью. В типовую конструкцию приборов контроля изоляции щитовой входит индикаторная и релейная часть. Эти измерители могут работать в непрерывном режиме и использоваться в сетях переменного напряжения 220 В или 380 В разной частоты.
В большинстве же случаев проведение измерений осуществляется мегомметром. Его отличие от обыкновенного омметра в том, что он работает с довольно высокими значениями напряжения, которые прибор сам и генерирует. Существует два типа мегомметров:
- Аналоговые. В них для получения необходимой величины напряжения используется механический генератор, представляющий собой динамо-машину. Этот тип часто называют «стрелочным» из-за наличия градуированной шкалы и динамической головки со стрелкой. В принципе измерения лежит магнитоэлектрический эффект. Чем больше значение тока протекает через катушку, тем, в соответствии с законом электромагнитной индукции, на больший угол отклоняется и стрелка. Приборы относятся к простому типу устройств с хорошей надежностью.
На сегодня уже морально устарели, так как обладают значительной массой и габаритами.
- Цифровые. В схеме современного устройства используется мощный генератор сигнала, собранный на интегральной микросхеме (ШИМ контроллер) и полевых транзисторах. Дискретные мегомметры, в зависимости от своей конструкции, могут работать от сетевого адаптера или независимого источника питания, например, аккумуляторной батареи. Результаты выводятся на жидкокристаллический дисплей. Работа построена на сравнении измеренного сигнала с эталонным и обработкой данных в специальном блоке — анализаторе. Прибор обладает небольшим весом и размерами, но для работы с ним необходима определенная квалификация.
Главным параметром, характеризующим работу измерителя, является погрешность выдаваемого результата. Кроме того, к его основным техническим параметрам относят: пределы сопротивления, величину генерируемого напряжения, температурный диапазон.
Методика испытания
Для того чтобы правильно измерить сопротивление изоляции, необходимо подготовить как предмет испытаний, так и сам прибор. Температура в помещении должна находиться в пределах 25±10 °C с относительной влажностью не более 80%. Перед началом работ следует отключить измеряемый объект от питающей сети. Убедиться в том, что на отключенной линии не выполняются работы и никто не прикасается к токоведущим частям. Все предохранители, лампы и тому подобные электрические приборы должны быть сняты.
Перед испытанием с отключенных токоведущих частей снимается остаточный заряд. Делается это путем их соединения с шиной заземления. Контактная перемычка убирается только после подключения измерителя. По окончании испытания остаточный заряд снова снимается кратковременным восстановлением заземления.
В стандартную комплектацию мегомметра входит три щупа. К ним подключается: защитное заземление, тестируемая линия, экран. Последний используется для исключения токов утечки.
Методику измерения можно представить следующим образом:
- В соответствии с требованиями ПУЭ, предъявляемыми к линии, выбирается тестовое напряжение. Например, для домашней проводки устанавливается значение от 100 В до 500 В. При работе с цифровым прибором для этого необходимо нажать кнопку «Тест», а на аналоговом покрутить ручку до того момента, пока индикатор не сообщит о появлении нужной величины напряжения.
- Линейный вывод тестера подключается к проверяемой жиле кабеля, а земляной — к остальным проводам, объединенным в жгут. То есть каждая жила проверяется относительно остальных проводов, электрически связанных между собой.
- Каждая жила испытывается относительно земли, при этом остальные провода к заземлению не подключаются.
- Если полученные данные оказываются неудовлетворительными, то измерения проводят отдельно для каждой жилы по отношению ко всем взятым проводникам в кабеле.
- Все полученные значения записывают, а затем их сравнивают с нормами ПУЭ и ПТЭЭП.
Следует отметить, что если по каким-либо причинам в низковольтной сети перед испытанием отключить нагрузку не представляется возможным, то замер фазного и нулевого проводников проводится только относительно РЕ (земли). При этом рабочие нули следует отключить от нейтральной шины. Если же это не выполнить, то полученные данные для любого провода будут одинаковы и равны сопротивлению проводника с наихудшими параметрами.
Допустимые значения
Минимальное показание измеренных напряжений должно быть выше нормированных значений. Необходимая величина сопротивления закладывается заводом изготовителем кабельной или электротехнической продукции, согласно действующим техническим условиям.
Выпускаемая электротехническая продукция различается на несколько типов и бывает: общего применения, силовой, контрольной и распределительной. Между собой изделия разделяют не только по физическим характеристикам, но и конструктивным. Их разнообразие обусловлено средой окружения, в которой они используются. Например, кабель, предназначенный для прокладки в земле, усиливается металлической лентой и состоит из нескольких слоев изоляции.
Измеряется сопротивление изоляции в Омах. Но из-за больших величин с показателем всегда используется приставка мега. Указываемое число обычно рассчитано для определенной длины, чаще всего это километр. Если же длина меньше, то просто выполняется перерасчет.
Для кабелей, использующихся в связи и передающих низкочастотный сигнал, сопротивление изоляции, должно быть не менее 5 тыс. МОм/км. А вот для магистральных линий — выше 10 тыс. МОм/км. Но при этом всегда минимальное необходимое значение указывается в паспорте на изделие.
В общем же случае приняты следующие нормы сопротивления изоляции:
- кабель, проложенный в помещении с нормальными условиями окружающей среды, — 0,50 МОм;
- электроплиты, не предназначенные для переноса, — 1 МОм;
- электрощитовые, содержащие распределительные части и магистральные провода, — 1 МОм;
- изделия, на которые подается напряжение до 50 В, — 0,3 МОм;
- электромоторы и другие приборы, работающие при напряжении 100−380 вольт, — 0,5 МОм;
- устройства, подключаемые к электрической линии, предназначенной для передачи сигнала с амплитудой до 1 кВ, — 1 МОм.
Для кабелей, подключенных к силовым линиям, действует немного другая норма. Так, провода, используемые в электрической сети с напряжением более 1 кВ, должны иметь значение сопротивления не менее 10 МОм. Для остальных же, кроме контрольных, минимальный порог снижен вдвое. Для контрольных проводов норматив требует значение сопротивления не менее 1 МОм.
Контроль над изоляцией
Сопротивление изоляции относится к важному параметру электротехнической продукции. Именно от нахождения параметра в установленных нормах зависит безопасность работы. Поэтому важно периодически замерять величину, вовремя выявляя отклонения. Кроме того, для промышленных объектов предусмотрена обязательная периодичность проведения измерений.
В соответствии с установленными нормами и правилами, измерения изоляции должны осуществляться:
- для передвижных или переносных установок не реже одного раза в полугодии;
- для внешних приборов и кабелей наружной прокладки, а также в помещениях с повышенной опасностью — не менее одного раза в год;
- для всех остальных случаев не реже одного раза в три года.
То есть в помещениях, например, таких как офис, магазин, школа, измерение на сопротивление должно выполняться не реже одного раза в 36 месяцев. После окончания испытаний в обязательном порядке составляется акт, в котором указываются измеренные данные. Если замеры неудовлетворительные, то электрический участок выводится в ремонт до момента его приведения к требуемым нормам.
Требования безопасности
Одно из основополагающих правил при исследовании изоляции заключается в том, что приступать к работе, не удостоверившись в отсутствии напряжения на измеряемом участке, нельзя. Прибор, используемый для испытаний, должен быть поверенным или хотя бы быть сертифицированным.
Использовать необходимо лишь только тот мегомметр, выдаваемое напряжение которого соответствует установленным нормам. Так, для сетей или оборудования с напряжением до 50 В, используется тестер, выдающий 100 В. Применение прибора с меньшим значением не даст правдивости информации о состоянии участка, а большего — может привести к повреждениям.
Измерение сопротивления мегомметром необходимо выполнять только на отключенных токоведущих частях, с обязательным снятием остаточного заряда. При этом заземление с токопроводящих частей снимается лишь после подключения тестера. Соединительные провода подсоединяются с помощью изолирующих штанг. При работе прикасаться к токоведущим частям, даже в диэлектрических перчатках, запрещено.
Загрузка…proagregat.com
Обязаны ли мы выполнять замеры сопротивления изоляции, если в смете у нас не было данного вида работ? | ЭлектроАС
Дата: 16 мая, 2012 | Рубрика: Вопросы и Ответы, Электроизмерения, Электромонтажные работы
Метки: Замер сопротивления изоляции, Электроизмерения, Электролаборатория
Нужен электромонтаж или электроизмерения? Звоните нам!
Иван
Мы выполняли электромонтажные работы по прокладке кабеля в кабель-канале по офисным помещениям. Сейчас заказчик требует, чтобы мы выполнили замеры сопротивления изоляции проложенных кабельных линий, хотя в смете и видах работ у нас этого не было. Скажите, вправе ли заказчик требовать и за чей счет должны проходить электроизмерения?
Ответ:
Если при заключении договора подряда на электромонтажные работы не было предусмотрено, что подрядчик обязан своими силами или за собственные средства выполнить комплекс электроизмерений, в который входит измерение сопротивления изоляции (смета является неотъемлемой частью договора), то данный вид работ обязан произвести заказчик за свой счет.
Так же хотим Вас предупредить, что электроизмерения и испытания имеет право проводить только специально подготовленный персонал, который прошёл проверку знаний и имеет соответствующую группу по электробезопасности, а также имеет право на проведение специальных работ (электроизмерения).
Для выполнения проверки и испытаний электроустановок требуется привлекать зарегистрированную электролабораторию. Электролаборатория должна иметь свидетельство о регистрации, выданное федеральной службой по экологическому, технологическому и атомному надзору.
Не требуется регистрация электролаборатории в Ростехнадзоре, которая не оформляет на результаты проводимых испытаний соответствующие акты и протоколы, то есть проводят электроизмерения без составления технического отчёта.
ПУЭ-7
1.8.1
Электрооборудование до 500 кВ, вновь вводимое в эксплуатацию, должно быть подвергнуто приемо-сдаточным испытаниям в соответствии с требованиями настоящей главы. Приемо-сдаточные испытания рекомендуется проводить в нормальных условиях окружающей среды, указанных в государственных стандартах.
При проведении приемо-сдаточных испытаний электрооборудования, не охваченного настоящими нормами, следует руководствоваться инструкциями заводов-изготовителей.
1.8.3
Помимо испытаний, предусмотренных настоящей главой, все электрооборудование должно пройти проверку работы механической части в соответствии с заводскими и монтажными инструкциями.
1.8.4
Заключение о пригодности оборудования к эксплуатации дается на основании результатов всех испытаний и измерений, относящихся к данной единице оборудования.
1.8.5
Все измерения, испытания и опробования в соответствии с действующими нормативно-техническими документами, инструкциями заводов-изготовителей и настоящими нормами, произведенные персоналом монтажных наладочных организаций непосредственно перед вводом электрооборудования в эксплуатацию, должны быть оформлены соответствующими актами и/или протоколами.
ПТЭЭП
3.6.13.
Результаты испытаний, измерений и опробований должны быть оформлены протоколами или актами, которые хранятся вместе с паспортами на электрооборудование.
Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок
ПОТ РМ-016-2001 РД 153-34.0-03.150-00
5.1.1
К проведению испытаний электрооборудования допускается персонал, прошедший специальную подготовку и проверку знаний и требований, содержащихся в настоящем разделе, комиссией, в состав которой включаются специалисты по испытаниям оборудования, имеющие группу V – в электроустановках напряжением выше 1000 В и группу IV – в электроустановках напряжением до 1000 В.
Право на проведение испытаний подтверждается записью в строке «Свидетельство на право проведения специальных работ» удостоверения о проверке знаний норм и правил работы в электроустановках (приложение N 2 к настоящим Правилам).
Испытательные установки (электролаборатории) должны быть зарегистрированы в органах Госэнергонадзора.
Производитель работ, занятый испытаниями электрооборудования, а также работники, проводящие испытания единолично с использованием стационарных испытательных установок, должны пройти месячную стажировку под контролем опытного работника.
«Методические рекомендации о порядке допуска в эксплуатацию электроустановок для производства испытаний (измерений) – электролабораторий»
п.11.
Регистрация электролаборатории не требуется, если испытания и измерения в процессе монтажа, наладки и эксплуатации электрооборудования не требуют оформления протоколов или других официальных документов.
elektroas.ru
Электроизмерения в электроустановках до 1000 В
Проводим приемо-сдаточные испытания электроустановок новых объектов, а также плановые проверки действующих электроустановок напряжением до 1000 В.
Периодичность проведения электроизмерений зависит от многих факторов. Как правило, сроки и периодичность плановых проверок действующих электроустановок определяет технический руководитель организации-владельца. Однако, по многим типам оборудования и категориям использования помещений существуют установленные нормативы периодичности испытаний, превышение которых грозит их владельцу применение санкций административного характера со стороны контролирующих органов (Ростехнадзор и Прокуратура РФ). Эти нормативы прописаны в следующих документах: ПУЭ, ПТЭЭП, ГОСТ Р 50571.16-99, РД 34.45-51.300-97, РД 153-34.0-20.525-00, ПОТ РМ-011-2000, ПОТ Р М-016-2001 РД 153-34.0-03.150-00, а также в некоторых других отраслевых правилах, в нормативных документах Минздрава и других министерств и ведомств.
При отсутствии графика планово-предупредительных ремонтных работ целесообразно ориентироваться на прил. 3 ПТЭЭП, где в п. 2.12.17. установлена периодичность измерения сопротивления изоляции не реже одного раза в три года, и на ГОСТ Р 50571.16-99 (МЭК 60364-6-61-86), прил. F, регламентирующий периодичность замеров сопротивления изоляции также — один раз в три года. В состав технического отчета помимо протокола замеров сопротивления изоляции должны включаться также протоколы проверки непрерывности защитных проводников, измерения полного сопротивления цепи «фаза-нуль» и проверка исправности УЗО.
Для большинства потребителей электроэнергии сроки следующие:
- периодичность проверки сопротивления изоляции — 1 раз в 3 года;
- периодичность измерение сопротивления петли «фаза-нуль» — 1 раз в 3 года;
- периодичность замера переходных сопротивлений — 1 раз в 3 года;
- периодичность проверки УЗО — 1 раз в 3 года;
- периодичность проверки стационарных электроплит — 1 раз в год.
Для лифтов, грузоподъемных кранов, а также, школ, детских садов и учреждений здравоохранения сроки следующие:
- периодичность измерения сопротивления изоляции — 1 раз в год
- периодичность замеров сопротивления петли «фаза-нуль» — 1 раз в год
- периодичность проверки переходных сопротивлений — 1 раз в год
- периодичность проверки УЗО — 1 раз в год.
Кроме перечисленного, для любых потребителей замер показателей качества электрической энергии должен проводиться не реже 1 раза в 2 года (п. 1.2.6 ПТЭЭП).
Мы проводим следующие испытания и измерения в электроустановках напряжением до 1 кВ:
1. Заземляющие устройства.
1.1. Проверка элементов заземляющего устройства.
1.2. Проверка цепи между заземлителями и заземляемыми элементами.
1.3. Проверка цепи «фаза-нуль» в электроустановках 1 кВ с системой TN.
1.4. Измерение сопротивления заземляющих устройств.
1.5. Измерение напряжения прикосновения (в электроустановках, выполненных по нормам на напряжение прикосновения).
2. Электрические аппараты, вторичные цепи, электрооборудование и электропроводки напряжением до 1 кВ.
2.1. Измерение сопротивления изоляции.
2.2. Проверка целостности и фазировки жил кабеля.
2.3. Проверка устройств защитного отключения (УЗО).
2.4. Проверка показателей качества электрической энергии.
Наша лаборатория аттестована в соответствии с законодательством РФ (рег. № 53-186-15 от 08.07.2015г.), все применяемые приборы прошли государственную поверку, персонал аттестован на право проведения измерений и испытаний в электроустановках напряжением до 1000 В.
Приглашаем к сотрудничеству.
Узнайте, как проводится проверка сопротивления изоляции
Разработанный в начале 20 века тест сопротивления изоляции (IR) является старейшим и наиболее широко используемым тестом для оценки качества изоляции. Проверка сопротивления изоляции – это второй тест, требуемый стандартами испытаний на электробезопасность. Тест сопротивления изоляции заключается в измерении сопротивления изоляции тестируемого устройства, при котором фаза и нейтраль замыкаются накоротко.Измеренное сопротивление должно быть выше указанного в международных стандартах предела. Мегаомметр (также называемый тестером сопротивления изоляции, тераомметром) используется для измерения омического значения изолятора при постоянном напряжении с большой стабильностью.
Изоляция не может быть идеальной так же, как что-то не может быть без трения. Это означает, что всегда будет проходить небольшой ток. Это известно как «ток утечки». Это приемлемо с хорошей изоляцией, но если изоляция ухудшится, утечка может вызвать проблемы.Так что же делает изоляцию «хорошей»? Что ж, ему нужно высокое сопротивление току, и он должен быть в состоянии выдерживать высокое сопротивление в течение длительного времени
Почему проводится проверка сопротивления изоляции?Изоляция начинает стареть сразу после ее изготовления. С возрастом его изоляционные свойства ухудшаются. Любые суровые условия установки, особенно с экстремальными температурами и / или химическим загрязнением, ускоряют этот процесс. Напряжения из-за различных факторов, таких как:
- Электрические напряжения: В основном связаны с повышенным и пониженным напряжением.
- Механические напряжения: Частые запуски и остановки могут вызвать механические нагрузки.
- Проблемы с балансировкой вращающегося оборудования и любые прямые нагрузки на кабели и установки в целом.
- Химическая нагрузка: Близость химикатов, масел, агрессивных паров и пыли в целом влияет на изоляционные характеристики материалов.
- Напряжения, связанные с колебаниями температуры: В сочетании с механическими напряжениями, вызванными последовательностями пуска и останова, напряжения расширения и сжатия влияют на свойства изоляционных материалов.Эксплуатация при экстремальных температурах также приводит к старению материалов.
- Загрязнение окружающей среды вызывает ускорение старения изоляции.
Этот износ может снизить удельное электрическое сопротивление изоляционных материалов, тем самым увеличивая токи утечки, которые приводят к инцидентам, которые могут быть серьезными как с точки зрения безопасности (людей и имущества), так и затрат, связанных с остановками производства. Таким образом, важно быстро определить это ухудшение, чтобы можно было предпринять корректирующие действия.В дополнение к измерениям, проводимым на новом и отремонтированном оборудовании во время ввода в эксплуатацию, регулярные испытания изоляции на установках и оборудовании помогают избежать таких инцидентов за счет профилактического обслуживания. Эти испытания обнаруживают старение и преждевременное ухудшение изоляционных свойств до того, как они достигнут уровня, который может вызвать описанные выше инциденты.
Это испытание часто используется в качестве приемочного испытания заказчиком с минимальным сопротивлением изоляции на единицу длины, часто указываемым заказчиком.Результаты, полученные при ИК-тесте, не предназначены для использования при обнаружении локализованных дефектов в изоляции, как при истинном тесте HIPOT, а скорее дают информацию о качестве материала, используемого в качестве изоляции.
Производители проводов и кабелей используют испытание сопротивления изоляции для отслеживания процессов производства изоляции и выявления возникающих проблем до того, как переменные процесса выйдут за допустимые пределы.
Что делается во время измерения сопротивления изоляции?Измерение сопротивления изоляции – это стандартное стандартное испытание, выполняемое для всех типов электрических проводов и кабелей.Его цель – измерить сопротивление изоляции при постоянном напряжении с высокой стабильностью, обычно 50, 100, 250, 500 или 1000 В постоянного тока. Омическое значение сопротивления изоляции выражается в мегомах (МОм). В соответствии с конкретными стандартами испытание сопротивления изоляции может проводиться при напряжении до 1500 В постоянного тока. Благодаря стабильности источника напряжения можно регулировать испытательное напряжение с шагом в 1 вольт.
Стабильность напряжения критична; нерегулируемое напряжение резко упадет при плохой изоляции, что приведет к ошибочным измерениям.
После того, как все необходимые подключения выполнены, вы прикладываете испытательное напряжение в течение одной минуты. В течение этого интервала сопротивление должно падать или оставаться относительно стабильным. В более крупных изоляционных системах будет наблюдаться неуклонное снижение, в то время как меньшие системы останутся стабильными, поскольку емкостные токи и токи поглощения падают до нуля быстрее в меньших системах изоляции. Через одну минуту прочтите и запишите значение сопротивления
.Выбор ИК-тестеров (Megger):
Напряжение Уровень | ИК-тестер |
650 В | 500 В постоянного тока |
1.1КВ | 1 кВ постоянного тока |
3,3 кВ | 2,5 кВ постоянного тока |
66кВ и выше | 5 кВ постоянного тока |
Измерение сопротивления изоляции выполняется с помощью ИК-тестера. Это портативный инструмент, который представляет собой более или менее омметр со встроенным генератором, который используется для выработки высокого постоянного напряжения. Напряжение обычно составляет не менее 500 В и заставляет ток течь по поверхности изоляции.Это дает показание ИК в омах.
Измерение сопротивления изоляции основано на законе Ома. (R = V / I). Подавая известное напряжение постоянного тока ниже, чем напряжение для испытания диэлектрика, а затем измеряя протекающий ток, очень просто определить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому, измеряя протекающий слабый ток, мегомметр показывает значение сопротивления изоляции, предоставляя результат в кВт, МВт, ГВт, а также TW (на некоторых моделях).Это сопротивление характеризует качество изоляции между двумя проводниками и дает хорошее представление о рисках протекания токов утечки.
Что ж, если вы смотрите на большое количество ИК-излучения, у вас хорошая изоляция. С другой стороны, если он относительно низкий, значит, изоляция плохая.
Однако это еще не все – на ИК может влиять множество факторов, в том числе температура и влажность. Со временем вам придется провести ряд тестов, чтобы убедиться, что значение IR остается более или менее неизменным.Значение сопротивления изоляции часто выражается в гигаомах [ГОм].
Хорошая изоляция – это когда показания мегомметра сначала увеличиваются, а затем остаются постоянными. Плохая изоляция – это когда показания мегомметра сначала увеличиваются, а затем уменьшаются.
Ожидаемое значение IR попадает в Temp. От 20 до 30 градусов по Цельсию. Если эта температура снизится на 10 градусов по Цельсию, значения ИК увеличатся в два раза. Если выше температура увеличится на 70 градусов по Цельсию, значения ИК уменьшатся в 700 раз.
Для измерения большого электрического сопротивления измерительное напряжение должно быть намного выше, чем при стандартных измерениях сопротивления.Это напряжение часто находится в диапазоне от 100 до 1000 В постоянного тока, и его нельзя использовать для измерения сопротивления электронных компонентов, поскольку они могут быть повреждены.
Сопротивление высокого значенияДля измерения сопротивления высокого значения используются методы измерения тока низкого значения. Источник постоянного напряжения применяется к измеряемому сопротивлению, и результирующий ток считывается высокочувствительной схемой амперметра, которая может отображать значение сопротивления.
В нашем ассортименте тестеров сопротивления изоляции используются два типа цепей амперметра, каждая из которых выбирается в зависимости от измеряемых значений сопротивления.
Цепь шунтирующего амперметраВход вольтметра, связанный с сопротивлением, образует цепь шунтирующего амперметра. Эта настройка позволяет измерять любое значение I, множество комбинаций чувствительности и значений RI. Эта схема используется для измерения тока высоких значений, которые соответствуют измерению сопротивления низких значений.
Цепь амперметра обратной связиЭта схема чаще всего используется в наших приборах. Он охватывает измерение сопротивления высоких значений.
Действительно, значение высокого сопротивления зависит от приложенного к нему напряжения. Другие факторы влияют на измерение сопротивления высокого значения. Температура и относительная влажность – два важных параметра, которые влияют на значение сопротивления изолятора.
Разница между испытанием на диэлектрическую прочность и испытанием на ИК-излучениеИспытание на электрическую прочность, также называемое «испытанием на пробой», измеряет способность изоляции выдерживать скачки напряжения средней продолжительности без искрового пробоя.В действительности, этот скачок напряжения может быть вызван молнией или индукцией, вызванной неисправностью в линии электропередачи. Основная цель этого испытания – убедиться, что соблюдаются правила строительства, касающиеся путей утечки и зазоров. Этот тест часто выполняется с применением переменного напряжения, но также может выполняться с постоянным напряжением. Для этого типа измерения требуется высокопроизводительный тестер. Полученный результат представляет собой значение напряжения, обычно выражаемое в киловольтах (кВ). Диэлектрические испытания могут иметь разрушительные последствия в случае неисправности в зависимости от уровней испытаний и доступной энергии в приборе.По этой причине он зарезервирован для типовых испытаний нового или отремонтированного оборудования.
Однако измерение сопротивления изоляции не является разрушающим при нормальных условиях испытаний. Выполняется путем подачи постоянного напряжения с меньшей амплитудой, чем при испытании диэлектрической проницаемости, и дает результат, выраженный в кВт, МВт, ГВт или ТВт. Это сопротивление указывает на качество изоляции между двумя проводниками. Поскольку он является неразрушающим, он особенно полезен для контроля старения изоляции в течение срока службы электрического оборудования или установок.Это измерение выполняется с помощью измерителя сопротивления изоляции, также называемого мегомметром
. Факторы, влияющие на значения сопротивления изоляции:- Емкостной зарядный ток: ток, который начинается с высокого уровня и падает после того, как изоляция была заряжена до полного напряжения (подобно потоку воды в садовом шланге, когда вы впервые открываете кран).
- Ток поглощения: Также изначально высокий ток, который затем падает (по причинам, обсуждаемым в разделе «Метод сопротивления времени»).
- Ток проводимости или утечки Небольшой, по существу, постоянный ток как через изоляцию, так и над ней.
- Все тестируемое оборудование должно быть отключено и изолировано.
- Оборудование должно быть разряжено (шунтировано или закорочено) по крайней мере до тех пор, пока подавалось испытательное напряжение, чтобы быть абсолютно безопасным для человека, проводящего испытание.
- Никогда не используйте Megger во взрывоопасной атмосфере.
- Убедитесь, что все переключатели заблокированы, а концы кабеля промаркированы должным образом для безопасности.
- При проверке заземления убедитесь, что дальний конец проводника не соприкасается, в противном случае проверка покажет неисправную изоляцию, хотя на самом деле это не так.
- Убедитесь, что все соединения в испытательной цепи затянуты.
- Концы кабеля, которые необходимо изолировать, должны быть отключены от источника питания и защищены от контакта с источником питания, земли или случайного контакта.
- Установка защитных ограждений с предупреждающими знаками и открытый канал связи между испытательным персоналом.
Мегаомметр обычно оснащен тремя выводами.
- Клемма «LINE» (или «L») является так называемой «горячей» клеммой и подключается к проводнику, сопротивление изоляции которого вы измеряете. Помните: эти тесты выполняются при обесточенной цепи.
- Клемма «EARTH» (или «E») подключается к другой стороне изоляции, заземляющему проводнику.
- Клемма «GUARD» (или «G») обеспечивает обратную цепь, которая обходит счетчик. Например, если вы измеряете цепь, имеющую ток, который вы не хотите включать, вы подключаете эту часть цепи к клемме «GUARD». Это самый простой из тестов.
Мультиметр может измерять различные величины, в том числе электрическое сопротивление, которое измеряется в омах.Его работа, в частности, для измерения сопротивления, обеспечивается действием внутренней батареи (низкое напряжение), которая пропускает небольшой ток через измеряемое сопротивление или, в случае его отсутствия, через проводник или обмотку. Полученное значение в омах относится к электрическому сопротивлению, которое заставляет ток проходить через проводник, и увеличивается в зависимости от его долготы и сечения.
С другой стороны, мегомметр, также известный как Megger, часто используется для измерения сопротивления изоляции изолированного тела.Для своей работы он использует генератор постоянного тока или аккумулятор, способный генерировать значения выходного напряжения до 5000 В. Результаты, полученные при испытании на сопротивление, относятся к сопротивлению изоляции, которое имеет изолированный элемент, относящийся к активному элементу или проводнику.
Несмотря на некоторое сходство между обоими инструментами, сопротивление изоляции в обязательном порядке измеряется с помощью мегомметра (или аналогичного устройства), поскольку он может генерировать высокое напряжение, которое создает момент напряжения в изоляции.Сопротивление изоляции обычно рассчитывается в мега- или тераомах, включая
.В заключение, мультиметр измеряет электрическое сопротивление проводника (катушки), в то время как мегомметр измеряет сопротивление изоляции изолированной группы (две катушки относительно массы), что не может сделать мультиметр.
Типы испытаний сопротивления изоляции Кратковременный или точечный тест
В этом методе вы просто подключаете прибор Megger к проверяемой изоляции и используете его в течение короткого определенного периода времени, вы просто выбираете точку на кривой возрастающего сопротивления. значения; довольно часто значение будет меньше для 30 секунд, больше для 60 секунд.Помните также, что температура и влажность, а также состояние изоляции влияют на чтение.
Если тестируемое устройство имеет очень маленькую емкость, например, короткая проводка в доме, то все, что необходимо, – это точечный тест. В течение многих лет специалисты по техническому обслуживанию использовали правило одного МОм для определения допустимого нижнего предела сопротивления изоляции. Можно сформулировать правило: сопротивление изоляции должно составлять приблизительно один МОм на каждые 1000 вольт рабочего напряжения при минимальном значении в один МОм.
Метод сопротивления времени
Этот метод практически не зависит от температуры и часто может дать вам окончательную информацию без учета прошлых испытаний. Он основан на поглощающем эффекте хорошей изоляции по сравнению с влажной или загрязненной изоляцией. Испытания этим методом иногда называют испытаниями на абсорбцию.
Этот тест имеет ценность еще и потому, что он не зависит от размера оборудования. Увеличение сопротивления чистой и сухой изоляции происходит одинаково, независимо от того, большой или маленький двигатель.Таким образом, вы можете сравнить несколько двигателей и установить стандарты для новых, независимо от их номинальной мощности.
Сопротивление изоляции должно быть выполнено для предотвращения таких опасностей, как поражение электрическим током и короткое замыкание, вызванное тем, что изоляция электрических устройств, деталей и оборудования, используемого на промышленных предприятиях, зданиях и других объектах, ухудшается в течение длительного периода использования.
Основы сопротивления изоляции
Одной из важнейших задач электрического монтажа и технического обслуживания является снятие показаний сопротивления изоляции (JR).Это делается для проверки целостности изоляционного материала, будь то изоляция проводов и кабелей или изоляция обмоток двигателя / генератора. Любая электрическая изоляция должна иметь характеристики, противоположные проводнику: она должна сопротивляться прохождению тока, удерживая его внутри проводника.
Использование закона Ома
Чтобы лучше понять закон Ома (E = I x R), давайте воспользуемся аналогией для описания функции сопротивления – это очень похоже на трубу, несущую воду. Как показано на рис. 1, давление воды, создаваемое насосом, заставляет воду течь по трубе.Этому потоку воды существует некоторое сопротивление в виде трения по внутренней стенке трубы. Если труба дает протечку, давление воды падает.
[Рис. 1 ИЛЛЮСТРАЦИЯ ОПРЕДЕЛЕНА]
Если взглянуть на аналогию с точки зрения «электричества», напряжение – это «электрическое давление», которое заставляет ток течь по проводнику. (См. Рис. 2.) Здесь также есть сопротивление потоку, но оно гораздо меньше через проводник, чем через изоляцию. Очевидно, что чем выше напряжение, тем больше будет тока.И чем ниже сопротивление проводника, тем больше тока у нас будет при том же напряжении. Это в основном то, что выражает закон Ома.
[Рисунок 2 ИЛЛЮСТРАЦИЯ ОПРЕДЕЛЕНА]
Все мы знаем, что нет идеальной изоляции (с бесконечным сопротивлением). Таким образом, некоторое количество электричества течет по изоляции или через нее на землю. Этот ток называется током утечки. Это может быть всего одна миллионная часть ампера (один микроампер), но, тем не менее, ток. И не забывайте, что более высокое напряжение вызовет больший ток утечки.Ток утечки не вредит хорошей изоляции, но становится настоящей проблемой при ее ухудшении.
Итак, как определить, какая изоляция «хорошая»? Основываясь на нашем обсуждении здесь, может показаться, что изоляция с относительно высоким сопротивлением току подойдет. Мы также можем сказать, что «хорошая» изоляция обладает способностью сохранять высокое сопротивление. Тем не менее, вам понадобится способ измерить это сопротивление, чтобы сделать такое определение. Это основа для ИК-тестирования. Регулярно проводя измерения, вы можете анализировать тенденции целостности любой изоляции.
Измерительный ИК
Для измерения ИК-излучения вы должны использовать ИК-тестер, который представляет собой портативный прибор, который по сути является измерителем сопротивления или омметром со встроенным генератором постоянного тока с ручным или линейным управлением, который вырабатывает высокое постоянное напряжение. Это напряжение (обычно 500 В или более) вызывает небольшой ток, протекающий через поверхности изоляции. Тестер обеспечивает прямое считывание ИК-сигналов в омах или мегомах.
Итак, вы используете ИК-тестер и проводите измерения.Что они имеют в виду? Основываясь на нашем предыдущем теоретическом обсуждении, высокое значение сопротивления указывало бы на «хорошую» изоляцию, тогда как относительно низкое значение сопротивления указывало бы на «плохую» изоляцию. Однако в реальном мире фактические значения сопротивления могут быть выше или ниже из-за воздействия таких факторов, как температура, влажность, содержание влаги в изоляции и даже человека, проводящего испытания. Кроме того, показания ИК-излучения могут сильно отличаться для одного и того же двигателя, испытанного в три разных дня.
Что действительно важно, так это динамика показаний за определенный период времени.Продолжающееся уменьшение показаний IR через определенный интервал следует интерпретировать как предупреждение о нерешенных проблемах. Таким образом, вы можете получить очень хорошее представление о состоянии изоляции благодаря хорошему ведению документации и здравому смыслу.
Общие правила
Следует помнить одно важное замечание: каждый из этих периодических тестов должен проводиться по возможности одинаково. Другими словами, вы должны использовать одни и те же тестовые соединения при одном и том же приложенном тестовом напряжении в течение одного и того же промежутка времени.Если возможно, попробуйте провести тестирование при той же температуре или скорректируйте измерения до той же температуры. Полезный совет – записывать относительную влажность рядом с тестируемым оборудованием во время каждого теста; это поможет вам оценить показания. Производители комплектов для тестирования ИК-сигналов могут предоставить полезную информацию о коррекции температуры и влажности.
Основываясь на ваших наблюдениях за данными испытаний, вы можете принять несколько разумных решений. В таблице ниже приведены некоторые полезные рекомендации.
Что можно и чего нельзя делать при измерении сопротивления изоляции трансформатора
Измерение сопротивления изоляции
Это испытание проводится при номинальном напряжении или выше, чтобы определить, есть ли пути с низким сопротивлением к земле или между обмоткой и обмоткой в результате намотки ухудшение изоляции. На значения тестовых измерений влияют такие переменные, как температура, влажность, испытательное напряжение и размер трансформатора.
Что можно и чего нельзя делать при измерении сопротивления изоляции трансформатора (фото: sonel.pl)Это испытание следует проводить до и после ремонта или при выполнении технического обслуживания. Данные испытаний должны быть записаны для будущих сравнительных целей. Для сравнения значения испытаний следует нормализовать до 20 ° C.
Общее практическое правило, которое используется для приемлемых значений для безопасного включения питания: 1 МОм на 1000 В приложенного испытательного напряжения плюс 1 МОм . Примеры значений сопротивления хороших систем изоляции приведены в таблице 1.
ТАБЛИЦА 1 – Типичные значения сопротивления изоляции для силовых и распределительных трансформаторов
Напряжение обмотки трансформатора (кВ) | Заземление обмотки (МОм) | ||||
22 ° C | 30 ° C | 40 ° C | 50 ° C | 60 ° C | |
6.6 | 400 | 200 | 100 | 50 | 25 |
6,6 – 19 | 800 | 400 | 200 | 100 | 50 |
22-45 | 1000 | 500 | 250 | 125 | 65 |
≥ 66 | 1200 | 600 | 300 | 100 | 75 |
Процедуры испытаний //
Процедуры испытаний следующие :
- Не отсоединяйте заземление от бака и сердечника трансформатора.Убедитесь, что бак и сердечник трансформатора заземлены.
- Отсоедините все высоковольтные, низковольтные и нейтральные соединения, молниеотводы, системы вентиляции, счетчики или любые низковольтные системы управления, подключенные к обмотке трансформатора.
- Перед началом испытания соедините перемычками все высоковольтные вводы, убедившись, что в перемычках нет металлических и заземленных частей. Также соедините вместе все низковольтные вводы и вводы нейтрали, убедившись, что в перемычках нет металлических и заземленных частей.
- Используйте мегомметр с минимальной шкалой 20000 МОм .
- Затем измеряется сопротивление между каждым набором обмоток и землей. У обмоток, которые должны быть измерены, должно быть отключено заземление, чтобы измерить сопротивление изоляции.
- Показания мегомметра должны сохраняться в течение периода 1 мин . Для двухобмоточного трансформатора снимите следующие показания:
- Обмотка высокого напряжения к обмотке низкого напряжения и к земле
- Обмотка высокого напряжения к земле
- Обмотка низкого напряжения к обмотке высокого напряжения и к земле
- Обмотка низкого напряжения к земле
- Обмотка высокого напряжения к обмотке низкого напряжения
Подключения для этих испытаний показаны на рисунках 1a – e и 2a – e для однофазных и трехфазных трансформаторов соответственно.Показания мегомметра следует записывать вместе с температурой испытания (° C).
Показания должны быть скорректированы до 20 ° C с помощью поправочных коэффициентов , указанных в таблице 1.
Рисунок 1 – Контрольные соединения сопротивления изоляции однофазного трансформатора.Примечание: на рисунке (e) поменяйте местами выводы L и E для измерения от высокой обмотки к малой обмоткеПРИМЕЧАНИЕ! Если скорректированные значения полевых испытаний составляют половину или более заводских показаний изоляции или 1000 МОм , в зависимости от того, какое из значений меньше, то система изоляции трансформатора считается безопасной для испытания высокого напряжения .
Для трехобмоточных трансформаторов испытание должно проводиться следующим образом //
- От высокого к низкому, третичного и заземленного (H-LTG)
- От третичного до высокого, низкого и наземного (T-HLG)
- От низкого до высокого, третичного и наземного (L-HTG)
- От высокого, низкого и третичного до земли (HLT-G)
- От высокого и третьего уровня к низкому и заземленному (HT-LG)
- От низкого и третьего уровня к высокому и заземленному (LT-HG)
- Высокий и низкий уровень к третичному и заземленному (HL-TG)
Кроме того, не проводите испытание сопротивления изоляции трансформатора, когда он находится в вакууме, из-за возможности пробоя на землю.
Чаще всего используются тестовые соединения, показанные на рис. 2a, c и e. Тестовые соединения на рис. 2b и d дают более точные результаты . Показания, полученные в соединениях на рисунках 2a и b, практически равны показаниям в тестовых соединениях на рисунках 2c и d соответственно.
Рисунок 2 – Контрольные соединения сопротивления изоляции трехфазного трансформатораГде:
- Соединение высокой обмотки с низкой обмоткой на землю;
- Соединение высокой обмотки с землей и низкой обмотки защищено;
- Подключение низкой обмотки к высокой обмотке на землю;
- Подключение низкой обмотки к земле и высокой защищенной обмотки;
- Соединение для высокой обмотки с низкой обмоткой.
Приемлемые значения сопротивления изоляции для сухих трансформаторов и трансформаторов с композитным наполнением должны быть сопоставимы с таковыми для вращающегося оборудования класса A, хотя стандартные минимальные значения отсутствуют.
Масляные трансформаторы или регуляторы напряжения представляют особую проблему, поскольку состояние масла оказывает заметное влияние на сопротивление изоляции обмоток .
При отсутствии более надежных данных предлагается следующая формула:
IR = CE / √ кВА
где //
- IR – минимальное сопротивление изоляции 500 В постоянного тока в мегаомах за 1 мин. от обмотки к земле, с другой обмоткой или обмотками защищенными, или от обмотки к обмотке с защищенным сердечником
- C – постоянная величина для измерений при 20 ° C
- E – номинальное напряжение тестируемой обмотки кВА – номинальное емкость испытуемой обмотки
Значения C при 20 ° C | ||
60 Гц | 50 Гц | |
Цистерна маслонаполненного типа | 1.5 | 1,0 |
Без маслонаполненного типа | 30,0 | 20,0 |
Сухого или смешанного типа | 30,0 | 20,0 |
Эта формула предназначена для однофазных трансформаторов. Если испытываемые трансформаторы относятся к трехфазному типу и три отдельные обмотки испытываются как одна, тогда:
- E – номинальное напряжение одной из однофазных обмоток (между фазами для блоки, соединенные треугольником, и блоки, соединенные фазой с нейтралью или звездой)
- кВА – это номинальная мощность тестируемой трехфазной обмотки.
Испытание силового трансформатора (ВИДЕО)
Измерение сопротивления обмотки постоянного тока и проверка устройства РПН.
Ссылка // Техническое обслуживание и испытания электрического силового оборудования Полом Гиллом (приобретите бумажную копию на Amazon)
Как выбрать тестер сопротивления изоляции
Если вы не были в восторге от нашего жуткого блога или у вас не было радости, когда мы бросили вам праздничное приветствие, то вам, вероятно, тоже не понравится блог на этой неделе.Извините заранее. Но подождите, прежде чем уйти – просто выслушайте нас. Если вы не знали, День святого Валентина приходится на пятницу. Если вы действительно не подозревали – поддерживайте вас; Они продают в магазине розовые и красные конфеты уже больше месяца, поэтому мы впечатлены вашим пренебрежением к приближающемуся празднику.
Независимо от вашего статуса отношений, мы здесь не для того, чтобы продавать вам шоколад, и мы определенно не сможем помочь вам найти вторую половинку к пятнице.
Но мы можем помочь вам найти другую любовь – идеальный тестер сопротивления изоляции.
Да, мы это сказали. Мы знаем, что найти идеальный вариант может быть непросто; с бесконечными опциями, функциями, приложениями и надстройками задача кажется значительно более сложной, чем должна быть. Мы собираемся рассказать вам потрясающую правду в этот канун Дня святого Валентина.
Все наши тестеры изоляции выполняют, по сути, одно и то же испытание.
Ага, вы все правильно прочитали. Кроме того, они проводят этот тест одинаково надежно и точно, независимо от модели.Когда дело доходит до доработок и дополнительных функций, вам нужно принять решение. Не волнуйтесь, мы здесь, чтобы помочь – это буквально цель этого блога. Именно эти дополнительные функции отделяют одну модель от другой и могут помочь вам найти устройство, которое соответствует потребностям вашего конкретного приложения – до некоторой степени.
К счастью, когда дело доходит до выбора тестировщика, вам не нужно следовать своему сердцу, вам просто нужно выполнить эти девять простых шагов. После того, как вы изучите наш контрольный список, количество потенциальных партнеров должно значительно сократиться.На данный момент это зависит от личных предпочтений, поэтому мы дадим вам возможность следовать своему сердцу.
Итак, как выбрать тестер изоляции?
1. Испытательное напряжение
Первое, на что вам нужно обратить внимание при выборе тестера изоляции, – это ваша должность. Если вы этого не знаете, не переходите к шагу 2; не пройти, пройти; не собирайте 200 долларов. Мы рекомендуем сначала поговорить со своим отделом кадров, указать название должности, а затем снова перейти к шагу 1.
Как только все будет установлено, вы готовы посмотреть на тестовое напряжение. Если вы электрик и заинтересованы только в испытании установки, вам, вероятно, понадобится только одно напряжение. В то же время, если вы в большей степени специалист по ремонту и техническому обслуживанию, вам, вероятно, понадобится прибор с диагностическими возможностями, который может сравнивать различные тесты при разных напряжениях. Верно?
Вы также должны основывать свои требования к напряжению на номинальном напряжении оборудования, с которым вы работаете, в частности, будете ли вы проводить испытания на уровне или выше номинального, т.е.е. стресс-тесты.
Следует иметь в виду, что повсеместное повреждение изоляции, такое как попадание влаги, обнаруживается при любом напряжении; в то время как механическое повреждение обычно требует более высокого напряжения для обнаружения, способного вызвать дугу в воздушном зазоре.
Имея на выбор модели на 1 кВ, 2,5 кВ и 5 кВ, это может быть наиболее важным решением, которое вам необходимо принять. Но помня о нашем вышеупомянутом совете, вы на правильном пути к тому, чтобы найти свою вечность.
2. Диапазон измерения
К сожалению, вы еще не закончили, даже близко.Если вы электрик или ремонтник – в первую очередь заинтересованы в проверке, – вы можете обойтись без прибора, который дает бесконечные показания, поскольку вы просто озабочены достижением или превышением определенного сопротивления, а не знанием конкретного измерения. Это больше похоже на испытание «прошел или провалил».
Однако, если вы работаете в сфере профилактического обслуживания, очень важно точно знать, как ваши измерения меняются с течением времени, особенно в отношении верхних значений сопротивления.Благодаря недавним технологическим обновлениям, некоторые приборы позволяют проводить испытания в тераомном диапазоне (ТОм), что дает вам возможность различать измерения повышенного сопротивления с течением времени. Может быть полезно определить точные значения сопротивления изоляции вашего нового оборудования, а затем выбрать тестер, который действительно может измерить этих значений .
3. Источник питания
Тест одинаков, независимо от используемого источника питания.В конце концов, все сводится к следующему: щелочные батареи (например, AA), ручные рукоятки и аккумуляторные батареи могут обеспечивать тот же уровень напряжения, который вы ищете – даже 1000 вольт, хотите верьте, хотите нет. Как и все, у каждого есть свои преимущества и недостатки.
Например, батареи освобождают оператора от физического «проворачивания», в то время как ручные ручки снимают зависимость от батарей или возможность человеческой ошибки. В то же время, если вам нужно проводить тест в течение 10 или более минут (например, тест на индекс поляризации), то ручные маневры могут стать настоящей болью.Если вы не искали тренировки, в идеале вы не должны ломать голову в течение 10 минут. Перезаряжаемые батареи, вероятно, наиболее удобны, если вы не забыли перезарядить – тогда одноразовые предметы для вас!
4. Обнаружение напряжения
Каждая из наших моделей обнаруживает нежелательное напряжение на тестируемом элементе, и это здорово. Однако решать вам, хотите ли вы звуковой предупреждающий сигнал или визуальное отображение на мониторе.
5. Дисплей
Это подводит нас к следующей рассматриваемой функции – дисплею.Цифровой или аналоговый? Опять же, это во многом вопрос личных предпочтений. Если вы действительно нерешительны, некоторые новые модели объединяют обе возможности в одном устройстве, так что обратите внимание на них.
6. Ω / kΩ Диапазоны
Хорошо, их обычно называют диапазонами «непрерывности» и «сопротивления», что значительно увеличивает глубину ваших возможностей тестирования. Если вы смотрите на двух (или более) тестеров с похожими функциями, диапазоны Ω / kΩ могут помочь вам различить их и укрепить ваше решение.Диапазоны сопротивления могут помочь вам проверить целостность цепей и соединений, а диапазоны в киломах могут помочь определить области ухудшения изоляции.
Электрики, вам понадобится диапазон в омах; ремонтники, мужчины и женщины, проверьте диапазон в киломах; и ремонт людей, вам, вероятно, понадобятся обе функции!
7. Терминал охраны
Если вы хотите исключить определенные компоненты утечки из ваших измерений, вам следует принять во внимание защитный терминал.В то время как электрикам, вероятно, не понадобится этот третий терминал, обслуживающий персонал должен, а ремонтники определенно понадобятся.
8. Цена
Финиш, дамы и господа! Это быстрый. От нескольких сотен до нескольких тысяч долларов у нас есть тестер изоляции на любой бюджет. Не позволяйте ценнику ввести вас в заблуждение. Независимо от вашего бюджета, вы найдете модель, которая не только соответствует вашим требованиям к испытаниям, но и предлагает ряд дополнительных функций.
9. «Дополнительные» функции
Говоря об особенностях, есть несколько дополнительных, о которых следует знать.
При выборе тестера учитывайте следующее утверждение. От одной модели к другой точность и надежность измерений никогда не меняются; это дополнительные возможности и гибкость тестирования, которые меняются между модулями.
Новые модели предлагают предварительно запрограммированные стандартизованные тесты, такие как индекс поляризации, ступенчатое напряжение и диэлектрический разряд, а также расчет и сохранение результатов, возможности загрузки, тесты по времени, измерения тока утечки и «режим горения».
В зависимости от вашей ситуации они могут понадобиться, а могут и не потребоваться, но они, безусловно, удобны. Мы рекомендуем, если он соответствует вашему бюджету – дерзайте!
Вот и все. Девять вещей, которые следует учитывать при поиске идеальной пары.
– Мередит Кентон / Помощник по цифровому маркетингу / Valley Forge, Пенсильвания
Как измерить сопротивление изоляции электродвигателя ~ Изучение электротехники
Пользовательский поиск
Чтобы продлить срок службы электрических систем и двигателей, необходимо регулярно проверять сопротивление изоляции.Спустя годы, после многих циклов эксплуатации, электродвигатели подвергаются воздействию таких факторов окружающей среды, как грязь, жир, температура, напряжение и вибрация. Эти условия могут привести к нарушению изоляции, что может привести к производственным потерям или даже пожарам.
Эффективная система сопротивления изоляции двигателя имеет высокое сопротивление, обычно (при абсолютном минимуме) более нескольких мегаом (МОм). Плохая система изоляции имеет более низкое сопротивление изоляции. Оптимальное сопротивление изоляции электродвигателя часто определяется спецификациями производителя, критичностью области применения, в которой используется электродвигатель, и окружающей средой, в которой он расположен. Практически невозможно
определить правила для фактического минимального значения сопротивления изоляции электродвигателя, поскольку сопротивление варьируется в зависимости от метода конструкции, состояния используемого изоляционного материала, номинального напряжения, размера и типа. Общее практическое правило – 10 МОм или более. Система изоляции электродвигателя считается в хорошем состоянии, если:
Типичный уровень сопротивления изоляции для электродвигателей
Нет правил для определения минимального значения сопротивления изоляции для двигателя.Большинство доступных данных являются эмпирическими. Ниже перечислены двигатели от компании grundfos, ведущего производителя электродвигателей:
Уровень сопротивления изоляции | Уровень изоляции |
---|---|
2 МОм или менее | Плохо |
2 – 5 МОм | критическое |
5-10 МОм | Ненормальное |
10-50 МОм | Хорошо |
50 – 100 МОм | Очень хорошо |
100 МОм или более | Отлично |
Как измерить сопротивление изоляции двигателя
Измерение сопротивления изоляции осуществляется с помощью мегаомметра – омметра с высоким сопротивлением.Для измерения сопротивления изоляции между обмотками и землей двигателя прикладывается постоянное напряжение 500 В или 1000 В, как показано ниже:
Во время измерения и сразу после него не прикасайтесь к клеммам двигателя, так как некоторые из них находятся под опасным напряжением, которое может быть фатальным.
Минимальное сопротивление изоляции двигателя, измеренное относительно земли при 500 В, может быть измерено при температуре обмотки от -15 ° C до 20 ° C. Максимальное сопротивление изоляции можно измерить при 500 В с рабочей температурой обмоток 80-120 ° C в зависимости от типа двигателя и КПД
Как рассчитать минимальное сопротивление изоляции двигателей
Минимальное сопротивление изоляции любого двигателя, Rmin, может быть рассчитывается путем умножения номинального напряжения VR на постоянный коэффициент 0.5 МОм / кВ:
Регулярные проверки сопротивления изоляции двигателя Ключом к продлению срока службы любого электрического устройства являются периодические проверки и техническое обслуживание. Сопротивление изоляции хранящихся и действующих двигателей следует регулярно проверять:
(a) Если сопротивление изоляции нового, очищенного или отремонтированного двигателя, которое хранилось в течение некоторого времени, меньше 10 МОм, причина может заключаться в том, что обмотки влажный и необходимо сушить.
(b) Для работающего двигателя минимальное сопротивление изоляции может упасть до критического уровня.Если измеренное значение сопротивления изоляции превышает расчетное значение минимального сопротивления изоляции, двигатель может продолжать работать. Однако, если оно упадет ниже этого предела, двигатель необходимо немедленно остановить, чтобы предотвратить нанесение вреда персоналу из-за высокого напряжения утечки
Проверка сопротивления изоляции | SCHLEICH
Чувствую ли я себя в безопасности?
Я все делаю правильно?
Вы узнаете наверняка через несколько минут.
Испытания на безопасность являются обязательными и являются частью каждой окончательной проверки вашего электрического изделия.
Узнайте самые важные факты об испытании сопротивления изоляции .
Мы объясняем ПОЧЕМУ? ГДЕ? КАК? а также КОГДА НЕТ!
А если вы хотите узнать больше, вы можете бесплатно скачать еще более подробную информацию в конце этой страницы!
ПОЧЕМУ?
Надежная изоляция – это основная защитная мера для обеспечения электробезопасности. Это гарантирует, что пользователь не прикасается к токоведущим проводам и что не может произойти короткое замыкание между проводниками или корпусом оборудования.Потому что, если это произойдет, опасный для жизни ток может протекать через пользователя, если он или она коснется корпуса. Очевидно, что защитный заземляющий провод должен гарантировать, что этого не произойдет. Но в худшем случае он тоже может быть бракованным. И это также было бы лишь уклонением от следствия, а не от причины.
Для гарантии всего этого изоляция должна работать безупречно! И вы должны доказать и задокументировать это, выполнив испытание сопротивления изоляции перед поставкой электрического изделия.
Проверка сопротивления изоляции – это стандартная проверка. Это означает, что каждая деталь, то есть каждое отдельное электрическое изделие, которое вы выставляете на рынок, обязательно требует испытания сопротивления изоляции.
ГДЕ?
Это несколько сложнее, чем, например, с проводом защитного заземления. В принципе, между токоведущими проводниками или между ними и частями корпуса должна быть хорошая изоляция. Обычно это делается путем изоляции электрических проводов от опасного контакта, т.е.е. покрытие их изоляционным материалом. Но эту защитную оболочку необходимо снимать не позднее, чем при подсоединении электрического провода к другим электрическим компонентам. В этих точках обеспечивается изоляция на безопасном расстоянии. Тогда это вопрос безопасных расстояний через зазоры и пути утечки.
Кроме того, токопроводящие жилы могут быть изолированы друг от друга, например, с помощью литейных смесей, изолирующей фольги или твердых тел.
Когда какой тип изоляции используется?
Это всегда связано с конструкцией электрического изделия, типом спецификации, например, высокой температурой или механической нагрузкой и т. Д.
Теперь понятно, что изоляция в светильнике, утюге, электродвигателе или высоковольтном изоляторе на электростанции имеет очень разные требования и конструкции.
Из этого разнообразия от случая к случаю возникают довольно сложные электротехнические изоляционные конструкции.
КАК?
Поскольку изоляция «имеет какое-то отношение к напряжению», испытание проводится с определенным уровнем испытательного напряжения. Это может быть увеличено или применено непосредственно к тестируемому устройству в полном объеме.
Цель состоит в том, чтобы измерить ток, а затем рассчитать сопротивление изоляции, так как это критерий оценки изоляции. Оно должно быть равным указанному минимальному сопротивлению или превышать его.
Нижний предел сопротивления изоляции может быть определен по-разному от продукта к продукту и в разных регионах / континентах. Поэтому вы всегда должны брать параметры теста из стандарта, применимого к продукту и региону.
Часто сопротивление изоляции измеряется одно за другим между всеми проводниками, входящими в электрическое изделие.Это могут быть комбинированные группы проводников или отдельные проводники и, конечно же, корпус или его части. Быстро становится ясно, что испытание может и должно проводиться в самых разных местах, в зависимости от сложности электрического изделия.
Это можно сделать путем сканирования контрольных точек с помощью тестового щупа – подход, который может быстро оказаться длительным и дорогостоящим.
Таким образом, в течение 25 лет комплексные испытания всегда выполнялись автоматически в любых контрольных точках с помощью типовой матрицы SCHLEICH , которая полностью программируется:
Коммутационные матрицы SCHLEICH гибко переключаются по 2- и 4-проводной технологии.В особенности 4-проводная технология имеет большое значение в автоматизированных системах и установках. Это гарантирует безопасное управление контактом испытательного напряжения и, следовательно, стабильность процесса.
Параметры испытаний | типовые нормативные значения | SCHLEICH | от стандартного к индивидуальному |
минимально допустимое сопротивление изоляции | 1, 2, 100 МОм | от 100 кОм до 10 ТОм |
минимальное необходимое испытательное напряжение | 500 В постоянного тока | от 30 до 50 000 В постоянного тока |
макс.ток проверки безопасности по SCHLEICH | 3 – 12 мА | от 3 до 100 мА |
минимальная продолжительность теста | 1 с | от 0,1 с до 1 мес |
рампа пуска | выкл; 1 с – 1 мин | выкл; от 0,5 сек до 1 месяца |
пандус | выкл; 1 с – 1 мин | выкл; от 0,5 сек до 1 месяца |
испытание ступенчатого напряжения | выкл; за 5 шагов | выкл; за любое количество шагов |
DAR / PI | выкл; 3–5 | выкл; 1–10 |
При таком диапазоне требований, конечно, идеально использовать испытательное устройство, которое соответствует как можно большему количеству мировых стандартов.
В этом сила SCHLEICH.
ПРОДОЛЖИТЕЛЬНОСТЬ ТЕСТА?
Изоляция всегда состоит из сопротивления изоляции и конденсатора? Почему конденсатор? Это вообще было встроено? …
Измерение изоляции всегда проводится между электрическими проводниками и / или частями корпуса. В абстрактном смысле эти два компонента образуют две металлические поверхности, между которыми есть определенное расстояние. Между ними утеплитель. И эта структура соответствует конденсатору.Следовательно, вся изоляционная конструкция также ведет себя подобно конденсатору.
После подачи испытательного напряжения сначала заряжается конденсатор. Только когда конденсатор заряжен, остается только ток через сопротивление изоляции.
Становится ясно, что поэтому измерение сопротивления изоляции во многих случаях не может быть выполнено в течение десятых долей секунды из-за физических ограничений. Тестер мог – но тестируемое устройство «еще не готово».
емкостная часть изоляции | типичное время испытаний | Примеры |
низкий | 1 с | Хозтовары, лампы, агрегаты, электроинструменты, машины и оборудование… |
средний | 10-30 с | электродвигатели малые и средние, преобразователи частоты… |
высокая | 60-600 с | большие электродвигатели / генераторы, кабельные барабаны / кабели, длиной несколько сотен метров |
Сложные конструкции, такие как электродвигатели, обмотки в целом и длинные кабели / заземляющие кабели, по-прежнему проявляют поляризационные эффекты.Подробное описание этого явления выходит за рамки данной статьи, но его можно прочитать в бесплатном скачивании.
КОГДА НЕТ?
Проверка сопротивления изоляции обычно требуется всегда. Если, в качестве альтернативы, не требуется испытание высоким напряжением.
Испытание высоким напряжением еще более интенсивно и очень надежно обнаруживает слабые места изоляции. Однако он также имеет решающий недостаток, поскольку точное измерение сопротивления изоляции в МОм или ГОм невозможно при высоком напряжении переменного тока.Таким образом, оценка NOGO основана на слишком высоком токе утечки, а не на слишком низком сопротивлении изоляции!
Использование обоих методов испытаний также часто встречается в стандартах.
Испытание сопротивления изоляции постоянным током 500 В для очень точного определения сопротивления изоляции и испытание высоким напряжением переменным током и, как правило, испытательным напряжением 1500 или 1800 В с током короткого замыкания 100 мА и мощностью 500 ВА.
Все готово? Хотите подробностей?
Наша миссия – ноу-хау, ноу-хау, ноу-хау … Те, кто разбирается в методах испытаний с технической и нормативной уверенностью, извлекут из своего тестового устройства максимальную отдачу.
– Дипл. Ing. Мартин Ларманн
Да – расскажите подробнее. Я хочу максимальной безопасности для наших клиентов, нашей компании и себя.
Пришлите мне более подробную информацию из справочника SCHLEICH по методам испытаний.
Ручной
Тестер сопротивления PE и сопротивления изоляции- Испытание сопротивления защитного проводника до 10 A AC
- испытание сопротивления изоляции до 1000 В
- мобильный – Легкий – Внутренний / Открытый
- транспортировочный чемодан – ремень для переноски
- Программное обеспечение для ПК
- привлекательные затраты на приобретение…
- больничная служба
- Испытание молниезащиты лопастей ротора ветряных турбин…
читать далее
GLP1-g
PE-проводник, изоляция, устройство для проверки высокого напряжения и работоспособностиСамый маленький тестер безопасности в мире!
- Тестеры сопротивления PE / GB Измерители сопротивления изоляции
- – IR
- тестеры высокого напряжения AC / DC
- Тестеры безопасности и работоспособности
- Более 50 конфигураций устройств – объединение до 9 методов испытаний в одном устройстве
- Цепь безопасности PLe, SIL3, Kat4 (в зависимости от варианта устройства и степени риска)
- для настольного монтажа или для монтажа в 19-дюймовую стойку
- ½ 19 ″ или 19 ″ формат
читать далее
GLP2-BASIC
Защитный провод, изоляция, высокое напряжение, ток утечки и тестер функций- Измерители сопротивления изоляции – IR
- тестеры высокого напряжения AC / DC
- Тестеры «все в одном»
- Тестеры безопасности и работоспособности
- ок.40 вариантов устройства – объединены до 21 метода испытаний
- Цепь безопасности PLe, SIL3, Kat4 (в зависимости от варианта устройства и степени риска)
- сеть
- протокол и печать этикеток
- сканер…
- Технологический пакет для еще большей эргономики
- для настольного монтажа или для монтажа в 19-дюймовую стойку
читать далее
GLP2-МОДУЛЬНЫЙ
Комбинированный тестер с 25 методами тестирования- «Все в одном»
- тестеры безопасности
- Тестеры безопасности и работоспособности
- Возможна модульная комбинация из более чем 25 методов испытаний
- до 250 тестовых соединений
- большие коммутационные матричные модули для всех методов испытаний
- PLe, SIL3, Kat4 Цепь безопасности (в зависимости от варианта устройства и степени риска)
- сеть
- протокол и печать этикеток
- сканер…
- Технологический пакет для еще большей эргономики
читать далее
GLP3
Неограниченное количество передовых технологий тестирования.ТОП-класс испытательной и измерительной техники для безопасности и функционального тестирования.
- «Все в одном»
- Тестеры безопасности и работоспособности
- для сложных проектов
- для комплексной автоматизации
- для самых высоких требований
- модульное сочетание более 30 методов испытаний
- до 350 тестовых соединений
- большие коммутационные матричные модули для всех методов испытаний
- PLe, SIL3, Kat4 цепь безопасности
- Окна 10 ®
- сеть
- протокол и печать этикеток
- промышленность 4.0
- интерфейсы к MES, ERP, SPS…
читать далее
MotorAnalyzer2
R2 Тестер экспертного уровня для вашего автосервисаПроверьте исправность своего мотора!
- машины асинхронные, синхронные и постоянного тока, тормоза, трансформаторы, катушки…
- Ремонт, обслуживание, обслуживание, обслуживание
- ALL-IN-ONE – 15 методов испытаний в одном приборе
- Испытание импульсным напряжением до 3 кВ!
- высокое напряжение постоянного тока и изоляция до 6 кВ
- сопротивление, индуктивность, импеданс, емкость, тест RIC
- поиск и устранение неисправностей
- регулировка нейтральной зоны на двигателях постоянного тока
- легкий переносной
- Работа от аккумулятора или от сети
- Программное обеспечение для ПК для печати и сохранения
читать далее
MTC2
Измеритель импульсных перенапряжений на 6, 12, 15, 25, 30, 40 или 50 кВСовременный тестер обмоток.
- Испытание на импульсные перенапряжения плюс измерение частичных разрядов в соответствии со стандартами
- сопротивление
- сопротивление изоляции
- высокое напряжение постоянного тока плюс индекс поляризации / DAR
- высокое напряжение переменного тока
идеально подходит для обслуживания, производства, автоматизации, контроля качества, лаборатории, НИОКР…
читать далее
MTC3
Неограниченное количество передовых технологий тестирования.Надежные испытания обмоток для производства, исследований и качества.
▪ стандартные двигатели
▪ специальные двигатели
▪ автомобильные приводы
▪ трансформаторы
▪ катушки…
▪ ALL-IN-1 с более чем 20 методами испытаний
▪ поточное испытание частичных разрядов
▪ интерфейсы для автоматизации, такие как PROFINET, EtherCAT, TCP / IP…
▪ интерфейсы к системам ERP, MES и CAQ…
читать далее
Как выбрать лучший тестер сопротивления изоляции
Пытаетесь выбрать тестер сопротивления изоляции? Не уверены, какая именно модель, какие функции или какое выходное испытательное напряжение вам нужно?
При выборе лучшего тестера сопротивления изоляции необходимо учитывать шесть факторов, в том числе:
- Какое оборудование необходимо тестировать?
- Какие требования к напряжению?
- Где будут проходить испытания?
- На какие вопросы мне поможет тестер сопротивления изоляции?
- Каков уровень опыта специалиста, проводящего тесты?
- Какую роль играет безопасность при выборе нового инструмента?
Выбранный вами тестер изоляции должен соответствовать вашим требованиям к испытаниям.Многие портативные тестеры изоляции могут подавать испытательное напряжение до 1000 вольт.
Обзор продуктов
Перед тем, как исследовать эти шесть вопросов, давайте рассмотрим соответствующие продукты.
Характеристики тестера изоляции | Инструменты два в одном: тест изоляции плюс цифровой мультиметр | Автономные инструменты: специальные тестеры изоляции | ||||
---|---|---|---|---|---|---|
Fluke 1587 FC Мультиметр изоляции | Fluke 1577 Мультиметр изоляции | Fluke 1503 Измеритель сопротивления изоляции | Fluke 1507 Тестер сопротивления изоляции | Fluke 1550C FC Цифровой тестер сопротивления изоляции 5 кВ | Fluke 1555 FC Измеритель сопротивления изоляции 10 кВ | |
Испытательные напряжения | 50 В 100 В 9017 500 250 В В 1000 В | 500 В 1000 В | 500 В 1000 В | 50 В 100 В 500 В 1000 В | 250 В 5000 В | 250 В 10 000 В |
Изоляция диапазон сопротивления | 0.От 01 МОм до 2 ГОм | от 0,01 МОм до 600 ГОм | от 0,01 МОм до 2000 ГОм | от 0,01 МОм до 10 ГОм | от 200 кОм до 1 ТОм | от 200 кОм до 2 ТОм |
PI / DAR | x | x | x | |||
Автоматический разряд | x | x | x | x | x | x |
Испытание с заданным темпом (поломка) | x | x | ||||
Сравнение пройден / не пройден | x | x | x | |||
Приблиз.Количество тестов IRT | 1,000 | 1,000 | 2,000 | 2,000 | Разное | Разное |
Напряжение> 30 В предупреждение | x | x | x | x | x | x |
Память | x | x | ||||
Дистанционный испытательный датчик | x | x | x | x | ||
Lo Ом / земля- непрерывность связи | Источник 200 мА (разрешение 10 мОм) | Источник 200 мА (разрешение 10 мОм) | ||||
Дисплей | Цифровой ЖК-дисплей | Цифровой ЖК-дисплей | Цифровой ЖК-дисплей | Цифровой ЖК-дисплей | Цифровой ЖК-дисплей / аналоговый | Цифровой ЖК-дисплей / аналоговый |
Удержание / блокировка | x | 90 057 xx | x | x | x | |
Характеристики мультиметра | ||||||
1577: напряжение переменного / постоянного тока, ток, сопротивление, звуковой сигнал непрерывности, подсветка | ||||||
1587 только: температура ( контакт), фильтр нижних частот, емкость, проверка диодов, частота, МИН. / МАКС. |
Какое оборудование нуждается в проверке?
Сначала составьте список типового оборудования, которое, как вы ожидаете, потребует проверки сопротивления изоляции.Запишите номинальное напряжение оборудования (указано на паспортной табличке оборудования) и приблизительное количество испытаний сопротивления изоляции, которые вы планируете проводить ежегодно. Номинальное напряжение поможет определить, какое испытательное напряжение необходимо от тестера. Ежегодное количество оценок сопротивления изоляции может вызывать удивление. Чем больше тестов предстоит провести, тем важнее станут общее качество, долговечность и удобство тестового прибора.
Каковы требования к напряжению?
Выходное испытательное напряжение, прикладываемое к оборудованию, должно основываться на рекомендованном изготовителем испытательном напряжении сопротивления изоляции постоянного тока.Если испытательное напряжение не указано, используйте данные передового опыта. См. Таблицу рекомендаций Международной ассоциации электрических испытаний. Убедитесь, что вы выбрали тестер сопротивления изоляции, который будет обеспечивать необходимое выходное испытательное напряжение. Не все тестеры сопротивления изоляции одинаковы: некоторые могут подавать только до 1000 В постоянного тока, а другие могут подавать испытательное напряжение постоянного тока 5000 В или более.
Где будут проходить испытания?
Рассмотрение условий тестирования и других возможных применений тестера сопротивления изоляции поможет в выборе дополнительных функций.Например, возможность использовать один прибор как для проверки сопротивления изоляции, так и в качестве обычного цифрового мультиметра может добавить удобства. Поскольку все цепи и оборудование должны быть проверены как обесточенные до того, как измеритель сопротивления изоляции будет подключен к оборудованию, часто бывает менее удобно носить с собой цифровой мультиметр для проверки напряжения и тестер сопротивления изоляции в разные места.
Номинальное напряжение оборудования | Минимальное сопротивление изоляции испытательное напряжение постоянного тока | Рекомендуемое минимальное сопротивление изоляции в МОмах |
---|---|---|
250 | 500 | 25 |
600 | 1,000 | 100 |
1,000 | 1,000 | 100 |
5,000 | 2,500 | 1,000 |
15,000 | 2,500 | 5,000 |
Рекомендуемые испытательные напряжения и минимальные значения изоляции.Международная ассоциация электрических испытаний (NETA) предоставляет репрезентативные испытания и минимальные значения изоляции для различных номинальных напряжений оборудования для использования, когда данные производителя недоступны.
Размышляя об окружающей среде для тестирования, задайте себе следующие вопросы:
- «Будет ли тестер сопротивления изоляции использоваться для поиска и устранения неисправностей, профилактического обслуживания или и того, и другого?»
- «Где будет использоваться испытательный прибор – только в магазине или на промышленном предприятии?»
Некоторые тестеры сопротивления изоляции могут быть относительно большими и не очень портативными, в то время как другие можно легко переносить.
Специалисты по обслуживанию систем отопления, вентиляции и кондиционирования воздуха не только проверяют неисправность изоляции, но также обычно проверяют наличие открытых предохранителей и неисправных конденсаторов. Технические специалисты, которые часто проводят проверки напряжения, проверки конденсаторов, измерения температуры и испытания сопротивления изоляции, могут предпочесть испытательный инструмент, который объединяет все эти функции в одном приборе. Такие тестовые инструменты доступны.
Также учитывайте особенности, необходимые в зависимости от типа выполняемого испытания сопротивления изоляции. На самом деле, может прийти в голову один вопрос: «Если нужен только один простой тест изоляции, зачем вообще покупать тестер сопротивления изоляции, если стандартный мультиметр уже может измерять сопротивление?» Чтобы ответить на этот вопрос и лучше понять некоторые функции, которые могут потребоваться в тестере сопротивления изоляции, необходимо понять, что происходит в процессе измерения сопротивления изоляции и для чего предназначен тест.
Что вы узнаете из теста сопротивления изоляции
Тестирование сопротивления изоляции дает качественную оценку состояния изоляции проводов и внутренней изоляции различных частей электрического оборудования. В начале испытания сопротивления изоляции подайте напряжение постоянного тока на проверяемый провод или оборудование. Некоторый ток течет из испытательного оборудования в проводник и начинает заряжать изоляцию. Этот ток называется емкостным зарядным током, и его можно наблюдать на лицевой панели счетчика.
Когда зарядный ток начинает расти, показания сопротивления на лицевой стороне измерителя будут указывать на низкое значение. Думайте об этом как о том, что электроны начинают поступать внутрь самой изоляции и накапливаться в ней. Чем больше тока выходит из испытательного комплекта, тем ниже значение МОм. Изоляция быстро заряжается, и показания счетчика начинают устанавливаться при более высоком значении МОм – при условии хорошего качества изоляции.
Следующий ток, который течет, – это ток поглощения или поляризации.Величина потребляемого тока зависит от загрязнения изоляции. Например, если в изоляции присутствует влага, ток поглощения будет высоким, что указывает на более низкое значение сопротивления. Однако важно понимать, что этот ток поглощения требует больше времени, чем ток емкостной зарядки. Следовательно, тестер изоляции, работающий слишком короткое время, будет наблюдать только емкостной зарядный ток и не начнет показывать наличие загрязнений в изоляции.
Наконец, ток, протекающий через поврежденную изоляцию в нетоковедущие металлические компоненты, называется током утечки. Этот ток чаще всего учитывается при испытании сопротивления изоляции. Однако для более точного поиска и устранения неисправностей и обслуживания необходимо также учитывать ток поглощения или поляризации. Некоторые тестеры сопротивления изоляции можно запрограммировать на выполнение тестов, необходимых для учета всех токов.
Будете ли вы измерять ток поляризации?
Поскольку для формирования тока поляризации требуется больше времени, тестер сопротивления изоляции должен работать дольше.Промышленный стандарт для этого теста – десять минут. Чтобы определить степень загрязнения и общее состояние изоляции, снимите показания измерителя сопротивления изоляции через одну минуту и еще одно показание через десять минут. Показания за десять минут делятся на показания за одну минуту, чтобы получить индекс поляризации. В рамках программы регулярного технического обслуживания следует записывать как значения точечного считывания, так и значения индекса поляризации. Всегда сравнивайте самые последние показания с предыдущими.Индекс поляризации никогда не должен быть меньше 1,0.
Будете ли вы измерять ток утечки?
В то время как все тестеры сопротивления изоляции будут показывать ток утечки и предоставлять информацию, помогающую оценить загрязнение изоляции, для промышленных сред вам следует рассмотреть те тестеры, которые автоматически получают эти данные. Чтобы получить ток утечки, приложите испытательное напряжение к проверяемому компоненту, а затем через одну минуту снимите показание сопротивления. Это часто называют тестом на чтение.Тест точечного считывания позволяет стабилизировать токи емкостной зарядки и является отраслевым стандартом для определения тока утечки через изоляцию. Минимальные значения сопротивления изоляции в МОм должны основываться на тесте на точечное считывание.
Какой у вас уровень опыта?
Качество любого испытательного прибора зависит от уровня знаний и опыта человека, использующего это оборудование и интерпретирующего его показания. При выборе измерителя сопротивления изоляции учитывайте опыт лиц, которые будут проводить испытания сопротивления изоляции.Очевидно, что следует учитывать простоту и ограниченные функции, если потребности приложения минимальны, а уровень опыта минимален. Однако обучение тестированию сопротивления изоляции необязательно. Для этой цели доступны руководства производителей и базовые тексты. Для неопытного персонала рассмотрите возможность обучения на рабочем месте для правильного и безопасного использования тестеров сопротивления изоляции. Убедитесь, что приобретенный тестер сопротивления изоляции соответствует требованиям приложения для выходного испытательного напряжения и других функций.Затем проведите обучение тех, кто будет проводить тесты.
Какую роль играет безопасность при тестировании и устранении неисправностей?
Безопасность превыше всего, когда речь идет о тестировании и устранении неисправностей. Поскольку тестер сопротивления изоляции выдает значительные постоянные напряжения, его нельзя подключать к цепи под напряжением. Также выход тестера может вывести из строя электронные схемы. Никогда не подключайте тестер сопротивления изоляции к электронным источникам питания, ПЛК, преобразователям частоты, системам ИБП, зарядным устройствам или другим твердотельным устройствам.Некоторые тестеры сопротивления изоляции имеют встроенную систему предупреждения, которая сообщит техническим специалистам о наличии напряжения в цепи.
Как и все испытательные инструменты, тестеры сопротивления изоляции должны быть аттестованы для их применения, подходить для среды, в которой они будут работать, и проверяться национально признанной испытательной лабораторией. Если он также используется в качестве мультиметра, тестер сопротивления изоляции должен иметь номинальную категорию. Измерительные провода должны быть прочными, рассчитанными и испытанными.
Изоляция может удерживать значительный заряд напряжения в течение некоторого времени после завершения испытания сопротивления изоляции.Большинство тестеров автоматически разряжают изоляцию после завершения теста; некоторые не будут. Это важный момент, который следует учитывать при выборе измерителя сопротивления изоляции. Некоторые тестеры показывают уровни напряжения, а также значения сопротивления изоляции. На таких тестерах можно наблюдать спад уровня напряжения до нуля после отключения тестового выходного напряжения. Некоторые производители рекомендуют, чтобы тестер сопротивления изоляции оставался подключенным к тестируемой цепи или компоненту после завершения теста до четырех раз, пока тест проводился, чтобы гарантировать безопасный разряд.Большинство техников заземляют проверяемую цепь после завершения проверки, чтобы убедиться, что изоляция разряжена.