Содержание

Закон Ома | Физика

В предыдущих параграфах были рассмотрены три величины, характеризующие протекание электрического тока в цепи,— сила тока I, напряжение U и сопротивление R. Между этими величинами существует определенная связь. Закон, выражающий эту связь, был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя.

Выделим в произвольной электрической цепи участок, обладающий сопротивлением R и находящийся под напряжением U (рис. 37). Согласно закону Ома:
Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.

Математически закон Ома записывается в виде следующей формулы:

I = U/R      (14.1)

Закон Ома позволяет установить, что будет происходить с силой тока на участке цепи при изменении его сопротивления или напряжения.

1. При неизменном сопротивлении сила тока прямо пропорциональна напряжению: чем больше напряжение U на концах участка цепи, тем больше сила тока I на этом участке. Увеличив (или уменьшив) напряжение в несколько раз, мы во столько же раз увеличим (или уменьшим) силу тока.

Проиллюстрируем эту закономерность на опыте. Соберем электрическую цепь из источника тока, лампы, амперметра и ключа (рис. 38, а). В качестве источника тока будем использовать устройство, позволяющее регулировать выходное напряжение от 4 до 12 В. Измеряя силу тока в цепи при разных напряжениях, можно убедиться в том, что она действительно пропорциональна напряжению.

2. При неизменном напряжении сила тока обратно пропорциональна сопротивлению: чем больше сопротивление R участка цепи, тем меньше сила тока I в нем.

Для проверки этой закономерности заменим в используемой цепи лампу на магазин сопротивлений (рис. 38, б). Измеряя силу тока при разных сопротивлениях, мы увидим, что сила тока I и сопротивление R действительно находятся в обратно пропорциональной зависимости.

При уменьшении сопротивления сила тока возрастает. Если сила тока превысит допустимое для данной цепи значение, включенные в нее приборы могут выйти из строя; провода при этом могут раскалиться и стать причиной пожара. Именно такая ситуация возникает при

коротком замыкании. Так называют соединение двух точек электрической цепи, находящихся под некоторым напряжением, коротким проводником, обладающим очень малым сопротивлением.

Короткое замыкание может возникнуть при соприкосновении оголенных проводов, при небрежном ремонте проводки под током, при большом скоплении пыли на монтажных платах и даже при случайном попадании какого-нибудь насекомого внутрь прибора.

На законе Ома основан экспериментальный способ определения сопротивления. Из формулы (14.1) следует, что

R = U/I      (14.2)

Поэтому для нахождения сопротивления R участка цепи надо измерить на нем напряжение U, затем силу тока I, после чего разделить первую из этих величин на вторую. Соответствующая этому схема цепи изображена на рисунке 39.

Если, наоборот, известны сопротивление R и сила тока I на участке цепи, то закон Ома позволяет рассчитать напряжение U на его концах. Из формулы (14.1) получаем

U = IR     (14.3)

Чтобы найти напряжение U на концах участка цепи, надо силу тока I на этом участке умножить на его сопротивление R.

Опубликовав книгу, в которой излагался открытый им закон «Теоретические исследования электрических цепей», Георг Ом написал, что «рекомендует ее добрым людям с теплым чувством отца, не ослепленного обезьяньей любовью к детям, но довольствующегося указанием на открытый взгляд, с которым его дитя смотрит на злой мир». Мир действительно оказался для него злым, и уже через год после выхода его книги в одном из журналов появилась статья, в которой работы Ома были подвергнуты уничтожающей критике. «Тот, кто благоговейными глазами взирает на вселенную,— говорилось в статье,— должен отвернуться от этой книги, являющейся плодом неисправимых заблуждений, преследующих единственную цель — умалить величие природы».

Злобные и безосновательные нападки на Ома не прошли бесследно. Теорию Ома не приняли. И вместо продолжения научных исследований он должен был тратить время и энергию на полемику со своими оппонентами. В одном из своих писем Ом написал: «Рождение «Электрических цепей» принесло мне невыразимые страдания, и я готов проклясть час их зарождения».

Но это были временные трудности. Постепенно, сначала в России, а затем и в других странах, теория Ома получила полное признание. Закон Ома внес такую ясность в правила расчета токов и напряжений в электрических цепях, что американский ученый Дж. Генри, узнав об открытиях Ома, не удержался от восклицания: «Когда я первый раз прочел теорию Ома, то она мне показалась молнией, вдруг осветившей комнату, погруженную во мрак».

??? 1. Сформулируйте закон Ома. 2. Как изменится сила тока на участке цепи, если при неизменном сопротивлении увеличить напряжение на его концах? 3. Как изменится сила тока, если при неизменном напряжении увеличить сопротивление участка цепи? 4. Как с помощью вольтметра и амперметра можно измерить сопротивление проводника? 5. По какой формуле находится напряжение, если известны сила тока и сопротивление данного участка? 6. Что называют коротким замыканием? Почему при этом увеличивается сила тока? 7. Объясните причину короткого замыкания в ситуациях, изображенных на рисунке 40.

Закон Ома для участка цепи

Основным законом электротехники, при помощи которого можно изучать и рассчитывать электрические цепи, является закон Ома, устанавливающий соотношение между током, напряжением и сопротивлением. Необходимо отчетливо понимать его сущность и уметь правильно пользоваться им при решении практических задач. Часто в электротехнике допускаются ошибки из-за неумения правильно применить закон Ома. 

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. 

Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды. 

Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой: 

I = U/R. 


Магический треугольник  

Любой участок или элемент электрической цепи можно охарактеризовать при помощи трёх характеристик: тока, напряжения и сопротивления. 

Как использовать треугольник Ома: закрываем искомую величину - два других символа дадут формулу для её вычисления. Кстати, законом Ома называется только одна формула из треугольника – та, которая отражает зависимость тока от напряжения и сопротивления. Две другие формулы, хотя и являются её следствием, физического смысла не имеют.   

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

ампер = вольт/ом

Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление — в килоомах и мегаомах соответственно. 

Электротехника. Основы. Закон Ома - Всё об энергетике

Электротехника. Основы. Закон Ома

В электротехнике, как и в любой другой науке, существуют базовые понятия, без понимания которых не удастся овладеть этой областью знаний. Здесь такими понятиями являются электрическое напряжение, электрический ток и электрическое сопротивление.

Закон Ома

Закон Ома был открыт в результате экспериментов Георга Ома с гальванометром и простой электрической цепью из источника ЭДС и сопротивления. Со временем формула полученная Омом претерпела несколько изменений.

Закон Ома для участка цепи без ЭДС

Может быть сформулирован через сопротивление [1, стр.33][2, стр.15]:

\begin{equation} I = {U_{ab}\over R}; \end{equation}

Где:

  • I - ток через участок
    ab
    электрической цепи;
  • Uab - напряжение на участке ab электрической цепи;
  • R - сопротивление участка ab электрической цепи.

Или через проводимость:

\begin{equation} I = U_{ab} × G; \end{equation}

Где:

  • G - проводимость участка ab электрической цепи.

Формула (1, 2) справедлива для электрической цепи представленной ниже на рисунке 1.

Рисунок 1 - Участок цепи без ЭДС

Закон Ома для участка цепи содержащего ЭДС

Или обобщённый закон Ома. Формулируется следующим образом [1, стр.34][2, стр.17]:

\begin{equation} I = {U_{ab} + E\over R}; \end{equation}

Где:

  • I - ток через участок ac электрической цепи;
  • Uab - напряжение на участке ab электрической цепи;
  • E - ЭДС на участке электрической цепи;
  • R - сопротивление участка ab электрической цепи.

Или через проводимость:

\begin{equation} I = {(U_{ab} + E) × G}; \end{equation}

Где:

  • G - проводимость участка ab электрической цепи.

Формула (3, 4) справедлива для электрической цепи представленной ниже на рисунке 2.

Рисунок 2 - Участок цепи содержащий ЭДС

Закон Ома для полной цепи

Закон формулируется следующим образом [1, стр.34][2, стр.17]:

\begin{equation} I = {E\over {R + r}}; \end{equation}

Где:

  • I - ток в электрической цепи;
  • E - ЭДС электрической цепи;
  • R - сопротивление электрической цепи;
  • r - внутреннее сопротивление источника ЭДС.

Формулировка выражения (5) через проводимость неудобна и здесь приведена не будет. Ниже на рисунке 3 изображена схема электрической цепи для которой справедливо выражение (5).

Рисунок 3 - Полная цепь

На схеме видно, что R и r соединены последовательно, а в формуле это отражено как сумма R (сопротивления цепи) и r (внутреннего сопротивления источника ЭДС). Заменим выражение R + r на Rп

\begin{equation} I = {E\over R_п}; \end{equation}

Где:

  • Rп - полное сопротивление электрической цепи (включая сопротивление источника ЭДС).
Закон Ома в дифференциальной форме

Закон Ома в дифференциальной форме, представленный в выражении (7), справедлив для неоднородного, но изотропного вещества [3].

\begin{equation} \vec E = {ρ × \vec\jmath}; \end{equation}

Где:

  • \(\vec\jmath\) - плотность тока;
  • ρ - удельное сопротивление;
  • \(\vec E\) - напряжённость электрического поля.

Примеры применения

Ниже приведены несколько примеров для демонстрации применения разных формулировок закона Ома.

Пример 1

Схема задания приведена на рисунке 4. На схеме R = 5,2 Ом, U = 26 В. Определить I.

Рисунок 4 - Схема к 1 и 2-му примеру

Для решения задания воспользуемся выражением (1):

\begin{equation} I = {U\over R} = {26\over 5,2} = {5 \ А;} \end{equation}
Пример 2

Схема задания приведена на рисунке 4. К данному участку цепи приложено напряжение 24 В и по нему протекает ток 1,5 А. Определить проводимость участка цепи.

Для решения задания преобразуем выражение (2) относительно G:

\begin{equation} I = {U × G} \ \Rightarrow \ G = {I\over U} = {1,5\over 24} = {0,0625 \ См;} \end{equation}
Пример 3

Схема задания приведена на рисунке 5. На схеме U = 220 В, I = 0,5 А, R = 140 Ом. Определить E.

Рисунок 5 - Схема к 3-му примеру

Для решения задания преобразуем выражение (3) относительно E:

\begin{equation} I = {U - E\over R} \ \Rightarrow \ {I × R} = {U - E} \ \Rightarrow \ E = {U - I × R}; \end{equation}

Подставим в выражение (10) известные величины:

\begin{equation} E = {U - I × R} = {220 - 0,5 × 140} = {150 \ В;} \end{equation}

Пример 4

Сопротивление электрической цепи, приведенной на рисунке 3 составляет 12 Ом, напряжение источника ЭДС включенного в цепь - 9 В. Измерения показали, что по цепи протекает ток 0,72 А. Необходимо определить внутреннее сопротивление источника ЭДС.

Преобразуем выражение (5) относительно r:

\begin{equation} I = {E\over {R + r}} \ \Rightarrow \ {I × (R + r)} = E \ \Rightarrow \ {I × r} = {E - I × R} \ \Rightarrow \ r = {E - I × R\over I}; \end{equation}

Определим внутренней сопротивление источника ЭДС, подставив в выражение (10) известные величины:

\begin{equation} r = {E - I × R\over I} = {9 - 0,72 × 12\over 0,72} = {0,36\over 0,72} = {0,5 \ Ом;} \end{equation}

Использованные термины

Электрический потенциал точки:

Физическая величина, равная потенциальной энергии, которой обладает элементарный положительный заряд, помещенный в электрическое поле.

Потенциал обозначается буквой φ греческого алфавита и измеряется в вольтах (В). Он не имеет направления и записывается как скаляр.

Электрическое напряжение:

Физическая величина, равная количеству энергии, затраченной на перенос единичного заряда из точки А в точку Б электромагнитного поля, определяемая как разность потенциалов этих точек: Uab = φa - φb.

Напряжение обозначается буквой U (u) латинского алфавита и измеряется в вольтах (В). Напряжение - скалярная величина, но на электрических схемах указывают его положительное направление.

Электродвижущая сила (ЭДС):

Также как и напряжение это физическая величина, равная количеству энергии, затраченной на перенос единичного заряда из одной точки электромагнитного поля в другую.

ЭДС обозначается буквой E (e) латинского алфавита и измеряется в вольтах (В). ЭДС - скалярная величина, но на электрических схемах указывают её положительное направление. Она численно равна напряжению на зажимах не подключенного источника.

Электрическое ток:

Физическая величина, равная количеству заряженных частиц прошедших через поперечное сечение проводника за единицу времени. Как явление - направленное движение заряженных частиц.

Напряжение обозначается буквой I (i) латинского алфавита и измеряется в амперах (А). Ток, так же как и напряжение, величина скалярная, и на электрических схемах тоже указывают его положительное направление [2, стр.11].

Плотность тока:

Физическая величина, имеющая смысл силы электрического тока, протекающего через элемент поверхности единичной площади.

Плотность тока обозначается буквой \(\vec\jmath\) латинского алфавита и измеряется в амперах на метр квадратный (А/м2). Плотность тока - векторная величина [4].

Электрическое сопротивление:

Физическая величина, характеризующая способность проводника препятствовать прохождению по нему тока.

Сопротивление обозначается буквами R (r), X (x) или Z (z) латинского алфавита (последние два обозначения применяются для реактивного и комплексного сопротивления соответственно) и измеряется в омах (Ом). Как и предыдущие, сопротивление - скалярная величина.

Электрическая проводимость:

Физическая величина, характеризующая насколько хорошо проводник проводит электрический ток, является обратной сопротивлению: G = 1/R.

Проводимость обозначается буквами G (g) латинского алфавита и измеряется в сименсах (См). Так же как и сопротивление проводимость - скалярная величина.

Удельное сопротивление:

Физическая величина, численно равная сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м2.

Удельная проводимость обозначается буквами ρ греческого алфавита и измеряется в омах на метр (Ом×м). Является скалярной величиной. [3].

В дальнейшем при использовании вышеперечисленных терминов слово "электрический" будет упускаться.

Список использованных источников

  1. Бессонов, Л.А. Теоретические основы электротехники: учебник / Л.А. Бессонов - Москва: Высшая школа, 1996. - 623 с.
  2. Иванова, С.Г. Теоретические основы электротехники: Версия 1.0 [Электронный ресурс] : учеб. пособие / С. Г. Иванова, В. В. Новиков – Красноярск: ИПК СФУ, 2008. - 318 с.
  3. Википедия - Удельное электрическое сопротивление [электронный ресурс] - Режим доступа: https://ru.wikipedia.org/wiki/Удельное_электрическое_сопротивление
  4. Википедия - Плотность тока [электронный ресурс] - Режим доступа: https://ru.wikipedia.org/wiki/Плотность_тока

Есть ли отличия закона Ома для цепей переменного и постоянного напряжения?

Закон Ома является одним из основных законов электротехники. Он довольно прост и применяется при расчете практически любых электрических цепей. Но данный закон имеет некоторые особенности работы в цепях переменного и постоянного тока при наличии в цепи реактивных элементов. Эти особенности нужно помнить всегда.

Закон Ома для цепи постоянного тока

Классическая схема закона Ома выглядит так:

А звучит и того проще – ток, протекающей на участке цепи, будет равен отношению напряжения цепи к ее сопротивлению, что выражается формулой:

Но ведь мы знаем, что помимо активного сопротивления R, существует и реактивные сопротивления индуктивности ХL и емкости XC. А ведь согласитесь, что электрические схемы с чисто активным сопротивлением встречаются крайне редко. Давайте рассмотрим схему, в которой последовательно включена катушка индуктивности L, конденсатор С и резистор R:

Помимо чисто активного сопротивления R, индуктивность L и емкость С имеют и реактивные сопротивления  ХL и XC, которые выражены формулами:

Где ω это циклическая частота сети, равная ω = 2πf. f – частота сети в Гц.

Для постоянного тока частота равна нулю (f = 0), соответственно реактивное сопротивление индуктивности станет равным нулю (формула (1)), а емкости – бесконечности (2), что приведет к разрыву электрической цепи. Отсюда можно сделать вывод, что реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для цепи переменного тока

Если рассматривать классическую электрическую цепь и на переменном токе, то она практически ничем не будет отличаться от постоянного тока, только источником напряжения (вместо постоянного — переменное):

Соответственно и формула для такого контура останется прежней:

Но если мы усложним схему и добавим к ней реактивных элементов:

Ситуация изменится кардинально. Теперь f у нас не равна нулю, что сигнализирует о том, что помимо активного, в цепь вводится и реактивное сопротивление, которое также может влиять на величину тока, протекаемого в контуре и приводить к резонансу. Теперь полное сопротивление контура (обозначается как Z) и оно не равно активному Z ≠ R. Формула примет следующий вид:

Соответственно немного изменится и формула для закона Ома:

Почему это важно?

Знание этих нюансов позволит избежать серьезных проблем, которые могут возникнуть при неправильном подходе к решению некоторых электротехнических задач. Например, в контур переменного напряжения подключена катушка индуктивности со следующими параметрами: fном = 50 Гц, Uном = 220 В, R = 0,01 Ома, L = 0,03 Гн. Ток, протекающий через данную катушку будет равен:

Где:

В случае, если подать на эту же катушку постоянное напряжение с таким же значением, получим:

Мы видим, что ток катушки возрастает в разы, что приводит к выходу из строя элементов контура.

ЗАКОН ОМА - это... Что такое ЗАКОН ОМА?

  • ЗАКОН ОМА — один из основных законов электрического тока, согласно которому сила постоянного электрического тока / на участке электрической цепи прямо пропорциональна приложенному напряжению U и обратно пропорциональна электрическому сопротивлению R данного… …   Большая политехническая энциклопедия

  • закон Ома — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Ohm s law …   Справочник технического переводчика

  • Закон Ома —     Классическая электродинамика …   Википедия

  • закон Ома — Ohmo dėsnis statusas T sritis automatika atitikmenys: angl. Ohm s law vok. Ohmsches Gesetz, n rus. закон Ома, m pranc. loi d Ohm, f ryšiai: sinonimas – Omo dėsnis …   Automatikos terminų žodynas

  • закон Ома — Omo dėsnis statusas T sritis fizika atitikmenys: angl. Ohm’s law vok. Ohmsches Gesetz, n rus. закон Ома, m pranc. loi d’Ohm, f …   Fizikos terminų žodynas

  • закон Ома для магнитной цепи — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Rowland law …   Справочник технического переводчика

  • Закон Ома для полной цепи — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона …   Википедия

  • закон Ома в акустике — akustinis Omo dėsnis statusas T sritis fizika atitikmenys: angl. Ohm’s law of acoustics vok. akustisches Ohmsches Gesetz, n rus. закон Ома в акустике, m pranc. loi d’Ohm de l’acoustique, f …   Fizikos terminų žodynas

  • Акустический закон Ома — Феномен, заключающийся в том, что аудиальная система человека выполняет (в весьма приблизительном виде) анализ Фурье, разделяя сложную звуковую волну на составляющие ее компоненты. Функционально это означает, что в определенных пределах человек… …   Психология ощущений: глоссарий

  • обобщённый закон Ома — Соотношение, устанавливающее тензорную связь между вектором плотности электрического тока и системой обобщённых сил, вызывающих его протекание …   Политехнический терминологический толковый словарь

  • Как читается закон ома для участка цепи — MOREREMONTA

    Немецкий физик Георг Симон Ом (1787—1854) открыл основной закон электрической цепи.

    Закон Ома для участка цепи:

    Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

    1. I — сила тока (в системе СИ измеряется — Ампер)
    2. Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
    3. Формула: I=frac
    4. U — напряжение (в системе СИ измеряется — Вольт)

    Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.

    Формула: U=IR

  • R— электрическое сопротивление (в системе СИ измеряется — Ом).
  • Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
  • Формула R=frac
  • Определение единицы сопротивления — Ом

    1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1(Вольт) протекает ток 1 (Ампер).

    Закон Ома для полной цепи

    Определение: Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника

    Формула I=frac <varepsilon>

    • varepsilon — ЭДС источника напряжения, В;
    • I — сила тока в цепи, А;
    • R — сопротивление всех внешних элементов цепи, Ом;
    • r — внутреннее сопротивление источника напряжения, Ом.

    Как запомнить формулы закона Ома

    Треугольник Ома поможет запомнить закон. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления.

    .

    • U — электрическое напряжение;
    • I — сила тока;
    • P — электрическая мощность;
    • R — электрическое сопротивление

    Смотри также:

    Для закрепления своих знаний решай задания и варианты ЕГЭ по физике с ответами и пояснениями.

    Скажу сразу, что закон Ома – основной закон электротехники и применяется для расчета таких величин, как: ток, напряжение и сопротивление в цепи.

    Рассмотрим электрическую цепь, приведенную на рисунке 1.

    Рисунок 1. Простейшая цепь, поясняющея закон Ома.

    Мы знаем, что электрический ток, то есть поток электронов, возникает в цепи между двумя точками (на рисунке А и Б) с разными потенциалами. Тогда следует считать, что чем больше разность потенциалов, тем большее количество электронов переместятся из точки с низким потенциалом (Б) в точку с высоким потенциалом (А). Количественно ток выражается суммой зарядов прошедших через заданную точку и увеличение разности потенциалов, то есть приложенного напряжения к резистору R, приведет к увеличению тока через резистор.

    С другой стороны сопротивление резистора противодействует электрическому току. Тогда следует сказать, что чем больше сопротивление резистора, тем меньше будет средняя скорость электронов в цепи, а это ведет к уменьшению тока через резистор.

    Совокупность двух этих зависимостей (тока от напряжения и сопротивления) известна как закон Ома для участка цепи и записывается в следующем виде:

    I=U/R

    Это выражение читается следующим образом: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

    Следует знать что:

    I – величина тока, протекающего через участок цепи;

    U – величина приложенного напряжения к участку цепи;

    R – величина сопротивления рассматриваемого участка цепи.

    При помощи закона Ома для участка цепи можно вычислить приложенное напряжение к участку цепи (рисунок 1), либо напряжение на входных зажимах цепи (рисунок 2).

    Рисунок 2. Последовательная цепь, поясняющая расчет напряжения на зажимах цепи.

    В этом случае формула (1) примет следующий вид:

    U = I *R

    Но при этом необходимо знать ток и сопротивление участка цепи.

    Третий вариант закона Ома для участка цепи, позволяющий рассчитать сопротивление участка цепи по известным значениям тока и напряжения имеет следующий вид:

    R =U/I

    Как запомнить закон Ома: маленькая хитрость!

    Для того, что бы быстро переводить соотношение, которое называется закон Ома, не путаться, когда необходимо делить, а когда умножать входящие в формулу закона Ома величины, поступайте следующим образом. Напишите на листе бумаги величины, которые входят в закон Ома, так как показано на рисунке 3.

    Рисунок 3. Как запомнить закон Ома.

    Теперь закройте пальцем, ту величину, которую необходимо найти. Тогда относительное расположение оставшихся незакрытыми величин подскажет, какое действие необходимо совершить для вычисления неизвестной величины.

    ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

    Говорят: «не знаешь закон Ома – сиди дома». Так давайте же узнаем (вспомним), что это за закон, и смело пойдем гулять.

    Основные понятия закона Ома

    Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

    Сила тока I

    Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10 -19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

    Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.

    Напряжение U, или разность потенциалов

    Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

    Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

    Сопротивление R

    Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.

    Памятник Георгу Симону Ому

    Формулировка и объяснение закона Ома

    Закон немецкого учителя Георга Ома очень прост. Он гласит:

    Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

    Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

    Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

    Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря "участок цепи" мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

    Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

    Пусть у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

    Закон запишется в следующем виде:

    Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

    Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.

    Как понять закон Ома?

    Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

    Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

    Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

    Сила тока прямо пропорциональна напряжению.

    Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

    Сила тока обратно пропорциональна сопротивлению.

    Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

    В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

    Ток в проводнике

    В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

    Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

    Закон ома - формулировка простыми словами, определение,

    Сопротивление

    Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.

    • Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.

    Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.

    Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.

    Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.

    Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.2.

    Знайте!

    СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».

    • Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.

    Таблица удельных сопротивлений различных материалов

    Удельное сопротивление

    ρ, Ом*мм2/м

    Удельное сопротивление

    ρ, Ом*мм2/м

    Алюминий

    0,028

    Бронза

    0,095 - 0,1

    Висмут

    1,2

    Вольфрам

    0,05

    Железо

    0,1

    Золото

    0,023

    Иридий

    0,0474

    Константан ( сплав Ni-Cu + Mn)

    0,5

    Латунь

    0,025 - 0,108

    Магний

    0,045

    Манганин (сплав меди марганца и никеля - приборный)

    0,43 - 0,51

    Медь

    0,0175

    Молибден

    0,059

    Нейзильбер (сплав меди цинка и никеля)

    0,2

    Натрий

    0,047

    Никелин ( сплав меди и никеля)

    0,42

    Никель

    0,087

    Нихром ( сплав никеля хрома железы и марганца)

    1,05 - 1,4

    Олово

    0,12

    Платина

    0.107

    Ртуть

    0,94

    Свинец

    0,22

    Серебро

    0,015

    Сталь

    0,103 - 0,137

    Титан

    0,6

    Хромаль

    1,3 - 1,5

    Цинк

    0,054

    Чугун

    0,5-1,0

    Резистор

    Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.

    Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.

    Вот так резистор изображается на схемах:


    В школьном курсе физики используют Европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.

    Вот так резистор выглядит в естественной среде обитания:


    Полосочки на нем показывают его сопротивление.

    На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:


    Источник: сайт компании Ekits

    О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.

    Не сопротивляйтесь зову сердца и запишите ребенка в современную школу Skysmart. Здесь школьники решают захватывающие задачки по физике и понимают, как это пригодится в жизни.

    А еще следят за прогрессом в личном кабинете, задают учителям любые — даже самые неловкие — вопросы и чувствуют себя увереннее на школьных экзаменах и контрольных.2/м]

    Закон Ома для участка цепи

    С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.

    Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

    У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».


    У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.

    Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.

    Математически его можно описать вот так:

    Закон Ома для участка цепи

    I = U/R

    I — сила тока [A]

    U — напряжение [В]

    R — сопротивление [Ом]

    Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.

    Сила тока измеряется в Амперах, а подробнее о ней вы можете прочитать в нашей статье 😇

    Давайте решим несколько задач на Закон Ома для участка цепи.

    Задача раз

    Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.2/м

    Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.

    Таблица удельных сопротивлений различных материалов

    Удельное сопротивление

    ρ, Ом*мм2/м

    Удельное сопротивление

    ρ, Ом*мм2/м

    Алюминий

    0,028

    Бронза

    0,095 - 0,1

    Висмут

    1,2

    Вольфрам

    0,05

    Железо

    0,1

    Золото

    0,023

    Иридий

    0,0474

    Константан ( сплав Ni-Cu + Mn)

    0,5

    Латунь

    0,025 - 0,108

    Магний

    0,045

    Манганин (сплав меди марганца и никеля - приборный)

    0,43 - 0,51

    Медь

    0,0175

    Молибден

    0,059

    Нейзильбер (сплав меди цинка и никеля)

    0,2

    Натрий

    0,047

    Никелин ( сплав меди и никеля)

    0,42

    Никель

    0,087

    Нихром ( сплав никеля хрома железы и марганца)

    1,05 - 1,4

    Олово

    0,12

    Платина

    0.107

    Ртуть

    0,94

    Свинец

    0,22

    Серебро

    0,015

    Сталь

    0,103 - 0,137

    Титан

    0,6

    Хромаль

    1,3 - 1,5

    Цинк

    0,054

    Чугун

    0,5-1,0

    Ответ: нить накаливания сделана из константана.

    Закон Ома для полной цепи

    Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.

    В таком случае вводится Закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

    Так, стоп. Слишком много незнакомых слов — разбираемся по-порядку.

    Что такое ЭДС и откуда она берется

    ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.

    • ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.

    Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.

    Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.

    В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:

    Закон Ома для полной цепи

    I = ε/(R + r)

    I — сила тока [A]

    ε — ЭДС [В]

    R — сопротивление [Ом]

    r — внутреннее сопротивление источника [Ом]

    Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.

    Решим задачу на полную цепь.

    Задачка

    Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом

    Решение:

    Возьмем закон Ома для полной цепи:

    I = ε/(R + r)

    Подставим значения:

    I = 4/(3+1) = 1 A

    Ответ: сила тока в цепи равна 1 А.

    Когда «сопротивление бесполезно»

    Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.

    А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.


    Ток идет по пути наименьшего сопротивления.

    Теперь давайте посмотрим на закон Ома для участка цепи еще раз.

    Закон Ома для участка цепи

    I = U/R

    I — сила тока [A]

    U — напряжение [В]

    R — сопротивление [Ом]

    Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.

    То есть:

    I = U/0 = ∞

    Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.

    Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.

    Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.

    Параллельное и последовательное соединение

    Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.


    Последовательное соединение

    Параллельное соединение

    Схема

    Резисторы следуют друг за другом

    Между резисторами есть два узла

    Узел — это соединение трех и более проводников

    Сила тока

    Сила тока одинакова на всех резисторах

    I = I1 = I2

    Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

    I = I1 + I2

    Напряжение

    Общее напряжение цепи складывается из напряжений на каждом резисторе

    U = U1 + U2

    Напряжение одинаково на всех резисторах

    U = U1 = U2

    Сопротивление

    Общее сопротивление цепи складывается из сопротивлений каждого резистора

    R = R1 + R2

    Общее сопротивление для бесконечного количества параллельно соединенных резисторов

    1/R = 1/R1 + 1/R2 + … + 1/Rn

    Общее сопротивление для двух параллельно соединенных резисторов

    R = (R1 * R2)/R1 + R2

    Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

    R = R1/n

    Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

    Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

    Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

    Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

    Решим несколько задач на последовательное и параллельное соединение.

    Задачка раз

    Найти общее сопротивление цепи.

    R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.


    Решение:

    Общее сопротивление при последовательном соединении рассчитывается по формуле:

    R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом

    Ответ: общее сопротивление цепи равно 10 Ом

    Задачка два

    Найти общее сопротивление цепи.

    R1 = 4 Ом, R2 = 2 Ом


    Решение:

    Общее сопротивление при параллельном соединении рассчитывается по формуле:

    R = (R1 * R2)/R1 + R2 = 4*2/4+2 = 4/3 = 1 ⅓ Ом

    Ответ: общее сопротивление цепи равно 1 ⅓ Ом

    Задачка три

    Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

    R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом


    Решение:

    Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

    В данном случае соединение является смешанным. Лампы соеденены параллельно, а последовательно к ним подключен резистор.

    Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

    Rламп = (R2 * R3)/R2 + R3 = 2*3/2+3 = 6/5 = 1,2 Ом

    Общее сопротивление при последовательном соединении рассчитывается по формуле:

    R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

    Ответ: общее сопротивление цепи равно 2,2 Ом.

    Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи 💪.

    Задачка четыре со звездочкой

    К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2.2)/2R = R/2 = 10/2 = 5 Ом

    И общее сопротивление цепи равно:

    R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

    Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

    I = ε/(R + r)

    R + r = ε/I

    r = ε/I — R

    Подставим значения:

    r = 12/0,5 — 10 = 14 Ом

    Ответ: внутреннее сопротивление источника равно 14 Ом.

    Чтобы ребенок научился решать самые сложные задачи и чувствовал себя уверенно на олимпиадах и экзаменах, запишите его на бесплатный вводный урок в Skysmart.

    Профессиональные учителя физики не только научат решать задачи и подготовят к экзамену, но и объяснят, как это все устроено: легко, интерактивно и с примерами из реальной жизни современных подростков.

    Что такое закон Ома и как он применим к тепловым системам?

    Применение закона Ома к тепловым системам

    Чтобы понять, как сопротивление электрической цепи влияет на вашу тепловую систему, просмотрите различные схемы и решения по обогреву. Эти знания помогут вам приобрести оптимальный электрический нагреватель и контроллер для вашего приложения.

    Определение тока

    Определение величины тока, который будет протекать в вашей системе, важно для обеспечения защиты компонентов системы с помощью соответствующих предохранителей или автоматических выключателей.Ток также можно определить по закону Ома. Ток I в амперах (A) равен напряжению E в вольтах (V), деленному на сопротивление R в омах (Ω).

    • ● Ток = напряжение / сопротивление, поэтому I = E / R

    Например, если нагреватель измеряет сопротивление 100 Ом, а напряжение, подаваемое в систему, составляет 240 вольт, каков ток в амперах? I = 240/100, поэтому I = 2,4 ампера.

    Расчет сопротивления последовательных и параллельных цепей

    Электрические цепи состоят из четырех основных компонентов.Эти четыре компонента могут быть включены в последовательную или параллельную цепь для питания ваших нагревательных приборов:

    • ● Резистивное устройство (нагревательные элементы)
    • ● Источник напряжения
    • ● Текущий путь
    • ● Переключатель

    Последовательная цепь соединяет нагреватели встык. Сопротивление каждого нагревателя необходимо сложить, чтобы получить общее сопротивление цепи. Параллельные цепи открывают большие возможности для прохождения электричества, поэтому добавление нагревательных элементов в параллельную цепь снижает общее сопротивление.Просто установите напряжение закона Ома как постоянное и рассчитайте сопротивление вашей системы.

    Последовательная цепь характеризуется общим током, протекающим через все резисторы, так как ток может идти только по одному пути. Эквивалентное сопротивление для последовательной цепи - это сумма всех отдельных сопротивлений, поэтому R всего = R₁ + R₂ +… + Rn. Между тем, параллельная цепь характеризуется общей разностью потенциалов (напряжением) на концах всех резисторов.Эквивалентное сопротивление для параллельной цепи рассчитывается по следующей формуле: 1 / R всего = 1 / R₁ + 1 / R₂ + ... + 1 / Rn.

    Рис. 1. На схеме слева показана схема, состоящая из источника напряжения и трех резисторов серии . Правая диаграмма представляет собой схему с источником напряжения и 3 резисторами, включенными параллельно . Например, у вас есть три нагревателя с R1 = 10 Ом, R2 = 16 Ом и R3 = 5 Ом. Итак, рассчитав сопротивление для последовательной цепи, R итого = 10 + 16 + 5 = 31 Ом.Расчет для параллельной цепи: 1 / R всего = 1/10 + 1/16 + 1/5, поэтому 1 / R всего = 0,3625 и всего R = 2,76 Ом.

    Обратите внимание, что при последовательном размещении резисторов общее сопротивление превышает сопротивление каждого отдельного нагревателя, а при параллельном подключении общее сопротивление уменьшается до уровня, меньшего, чем сопротивление каждого отдельного нагревателя.

    В параллельных цепях все нагревательные элементы имеют одинаковое напряжение, а в последовательных цепях - одинаковый ток.По сути, последовательное подключение предназначено только для двух нагревателей одинаковой мощности и напряжения. В дополнение к уменьшенному сопротивлению параллельная цепь не требует от каждого нагревателя постоянного тока электричества. Если один нагреватель выходит из строя последовательно, цепь разрывается, и вся линейка нагревателей перестает работать. Один поврежденный нагреватель в параллельной цепи влияет только на отдельный нагреватель, поэтому другие нагреватели могут продолжать работать.

    Как улучшить тепловую систему Закон

    Ома может помочь вам в поиске и устранении неисправностей в вашей тепловой системе.Если ваши контроллеры мощности и температуры показывают колебания электрического тока или тепловой мощности, вы можете использовать закон Ома для проверки статических значений компонентов схемы и определения измерений напряжения на компонентах.

    Измерение большого тока в вашей цепи может быть вызвано увеличением напряжения или уменьшением сопротивления. Ваш испытательный прибор может идентифицировать любое изменение напряжения, что позволяет использовать закон Ома для расчета сопротивления, чтобы определить, вызвана ли проблема поврежденными компонентами или ослабленными электрическими соединениями.В этом случае это действительно вызовет увеличение сопротивления; низкий I и высокий W, при этом высокий W означает больший нагрев на концах.

    Закон

    Ома - важный инструмент, используемый инженерами-проектировщиками для расчета взаимосвязи между напряжением, током и сопротивлением. Однако это не считается универсальным законом. Закон Ома не применяется в случаях, когда есть индуктивная нагрузка или когда сопротивление не является постоянным. В то время как большинство нагревателей имеют стабильное сопротивление при повышении температуры, некоторые нет.Примеры этого включают вольфрамовые лампы и нагреватели из карбида кремния.

    Существуют исключения схемы, особенно когда протекающий ток не прямо пропорционален разности потенциалов в проводнике. Закон Ома нельзя применять к устройствам с нелинейной зависимостью между напряжением и током, таким как термистор. Для получения дополнительной информации о законе Ома и его исключениях обратитесь к торговому представителю Watlow.

    Колесо закона

    Ома: понимание колеса электрических формул

    Последнее обновление: 20 января 2021 г., 21:03.

    Если вам, как электрику, нужно хорошо разбираться в чем-то одном, то это закон Ома. Эта простая формула позволяет исследовать взаимосвязь между тремя электрическими переменными: напряжением, током и сопротивлением.

    Хорошо то, что это не ракетостроение. Если вы знаете, как умножать и делить, это будет прогулка в парке. Легкий способ понять закон Ома - использовать колесо закона Ом .

    Как использовать колесо формул закона Ома

    Я знаю, что вы думаете: « Это треугольник. «Не беспокойтесь об этом, просто обратите внимание. Итак, вам нужно выяснить, сколько ампер потребляет цепь, а на нее нельзя поставить амперметр. Что вы делаете?

    Просто разделите НАПРЯЖЕНИЕ на СОПРОТИВЛЕНИЕ цепи. Откуда ты это знаешь? Из-за формулы закона Ома колесо .

    В колесе формул вы увидите три буквы, каждая из которых представляет собой значение.

    E или V = НАПРЯЖЕНИЕ (вольт)

    I = ТОК (амперы)

    R = СОПРОТИВЛЕНИЕ (Ом)

    Итак, если вам нужно найти напряжение, ток или сопротивление, просто поместите палец на то, что вы пытаетесь найти, а колесо формул сделает все остальное.

    Колесо формулы закона Ома математически представлено тремя простыми уравнениями.

    I (ток) x R (сопротивление) = E (напряжение)

    E (напряжение) ÷ R (сопротивление) = I (ток)

    E ( напряжение) ÷ I (ток) = R (сопротивление)

    Закон Ома Примеры проблем


    Найдите сопротивление цепи. Глядя на эту схему, мы знаем значения двух компонентов: напряжения (12 В) и сопротивления (3 Ом).Как мы находим ток?

    Мы вставляем наши известные значения в колесо формул и работаем с уравнением.

    12 В ÷ 3 Ом = 4 А

    Это действительно так просто. Вот мы попробуем другой. Найдите сопротивление в цепи со следующими значениями:

    Напряжение = 120 В

    Ток = 17 ампер

    Теперь вставьте известные значения в наше колесо формул и работайте с уравнением.

    120 вольт ÷ 17 ампер = 7,05 Ом

    Я говорил вам, что это просто. Это проще, чем установить сетевой фильтр на весь дом?

    (, ладно, может быть, не так просто. Но определенно проще, чем установить сетевой фильтр на холодильник (вы просто подключаете эту чертову штуку)! )

    Принцип закона Ома - пропорциональный и обратно пропорциональный

    закон, с которым вам необходимо ознакомиться.

    , что электрический ток (I ), протекающий в цепи, пропорционален напряжению (V ) и обратно пропорционален сопротивлению (R) .

    Это означает, что при увеличении напряжения ток будет увеличиваться на до тех пор, пока сопротивление не изменится . Если сопротивление увеличивается, а напряжение остается прежним, то ток уменьшается.

    Увеличение сопротивления

    120 вольт ÷ 5 Ом = 60 ампер

    120 вольт ÷ 10 Ом = 12 ампер

    120 вольт ÷ 20 Ом = 6 ампер

    Следовательно, если напряжение увеличится, ток будет увеличиваться при условии, что сопротивление цепи не изменится.

    Повышение напряжения

    120 вольт ÷ 25 Ом = 4,8 ампера

    240 вольт ÷ 25 Ом = 9,6 ампера

    480 вольт ÷ 25 Ом = 19,2 ампера

    Как вы можете видеть, когда мы увеличиваем напряжение и оставьте сопротивление прежним, ток увеличился (прямо пропорционален напряжению).

    Круговая диаграмма закона Ома

    Круговая диаграмма похожа на колесо формул напряжения, тока и сопротивления.Мощность измеряется в ваттах и ​​определяется как:

    скорость, с которой выполняется работа, когда один ампер (А) тока проходит через разность электрических потенциалов в один вольт (В)

    Колесо формул с законом Ома и PIE

    Вот мы уже кое-что добились. Это колесо формул представляет собой комбинацию закона Ома и формулы ПИЕ.

    Это выглядит сложнее, но на самом деле им легко пользоваться (вам может понадобиться калькулятор), и он работает так же, как и предыдущие диаграммы.

    Колесо формул разделено на четыре секции , каждая секция имеет три формулы . Если вам нужно найти вольты, вы должны использовать секцию E, ток - секцию I, сопротивление - секцию R и мощность - секцию P.

    При использовании колеса формул вам необходимо выполнить следующие действия:

    1. Знайте, что вы пытаетесь найти: ток (I), напряжение (E), сопротивление (R) или мощность (P).
    2. Какие значения вы уже знаете (вам нужно два): ток (I), напряжение (E), сопротивление (R) или мощность (P).
    3. Найдите часть колеса формул, в которую подставляются ваши значения.
    4. Решите уравнение

    При проведении расчетов вы должны использовать совместимые значения. Я имею в виду, что киломы должны быть преобразованы в омы, миллиамперы должны быть преобразованы в амперы.

    Независимо от того, являетесь ли вы электриком-подмастерьем или электриком-подмастерьем, изучение закона Ома является важной частью работы электрика.

    Полезные ссылки:

    Закон Ома отвечает на ваши вопросы

    Рис. 1: График закона Ома

    Эта популярная статья была первоначально опубликована в январе этого года.Выпуск Radio World за 16 января 2019 г. и 24 января на сайте.

    Понимание электроники и устранение неисправностей начинается с знания закона Ома. Это несложно и может значительно облегчить вашу работу.

    Закон

    Ома был постоянным спутником моей долгой карьеры инженера радиовещания. Соотношение между вольт, ампером, омом и мощностью сделало все это таким понятным.

    Немецкий физик Георг Ом опубликовал эту концепцию в 1827 году, почти 200 лет назад.Позже он был признан законом Ома и был назван наиболее важным ранним количественным описанием физики электричества.

    Рис. 1 представляет собой список простых формул для использования закона Ома. Ничего сложного, только хорошие ответы на ваши вопросы. Вам не нужно быть математиком, чтобы проводить расчеты. Калькулятор на вашем смартфоне с этим легко справится.

    P - мощность в ваттах, I - ток в амперах, R - сопротивление в омах, а E - напряжение в вольтах.Решите для любого из тех, кто знает два других параметра.

    Закон Ома о токе

    Когда я смотрю на лампочку на 100 ватт, я думаю, что 120 вольт при примерно 0,8 ампера (точнее 0,8333 ампера). То есть потребляемая мощность 100 Вт.

    Так сколько лампочек можно поставить на выключатель на 15 ампер? Давайте посмотрим - емкость цепи 15 ампер, разделенная на 0,8333 ампера для каждой параллельно включенной лампы = 18 ламп. И наоборот, это 18 ламп х 0,8333 ампера на лампу = 14.9994 ампер… прямо на пределе автоматического выключателя.

    Правило гласит, что вы не должны нагружать какой-либо автоматический выключатель для предохранителя более чем на 80%, в данном случае это 14 ламп. Всегда сохраняйте некоторый запас в цепи. Как вы знаете, автоматические выключатели и предохранители используются для защиты от возгораний или других серьезных отказов во время неполадок в цепи. На текущем лимите они становятся ненадежными. Вам не нужны неприятные отключения или перегорание предохранителей из-за слишком близкого движения к линии.

    Закон Ома

    В настоящее время не так много высокоуровневых АМ-передатчиков с пластинчатой ​​модуляцией.Серия Gates BC-1 является примером этой технологии 1950–1970-х годов. Конструкция обычно имеет 2600 вольт, управляющих лампами усилителя мощности RF.

    Рис. 2: Сглаживающие резисторы в передатчике Gates BC-1G Фото: Mark W. Persons

    Источникам питания, подобным этим, нужен «сглаживающий» резистор между высоким напряжением и землей, чтобы снизить / стравить высокое напряжение до нуля при передатчик выключен. Это должно произойти всего за секунду или около того. Блок питания может оставаться горячим при высоком напряжении в течение нескольких минут или часов, если размыкающий резистор выйдет из строя.Это серьезная проблема безопасности для инженера, работающего над этим, если он или она не может замкнуть конденсатор фильтра высокого напряжения перед тем, как коснуться какой-либо части передатчика.

    Прокачка в передатчике Gates BC-1G - это R41, резистор с проволочной обмоткой 100 000 Ом / 100 Вт. Вы видите одну ручную руку на левой стороне фотографии на рис. 2.

    Закон

    Ома гласит, что 2600 вольт на резисторе в квадрате (умноженное на само), затем деленное на сопротивление 100000 Ом, равняется 67,6 Вт рассеиваемой мощности, требуемой на постоянной основе на резисторе 100 Вт.Можно подумать, что запаса прочности 32,4% будет достаточно. Этот резистор обычно выходил из строя после 10 лет использования. Ответ заключается в вентиляции, которую резистор получает для охлаждения. Тепловые 67,6 Вт должны куда-то уходить. Эта модель передатчика имеет небольшой, но не большой воздушный поток на дне, где расположен резистор.

    Я ответил, что заменил резистор 100 Вт на резистор мощностью 225 Вт, как показано в центре фотографии. Это дало большую площадь поверхности, поэтому он работал холоднее, а значит, дольше.Резистор на 100 ватт стоит 15,14 доллара против 18,64 доллара за блок мощностью 225 ватт. Разница всего в 3,50 доллара означает значительное повышение надежности и безопасности. Если вы сделаете эту модификацию, винт, который удерживает его на месте, должен быть длиннее. Ничего страшного.

    Да, рядом с резистором и высоковольтным конденсатором есть цепочка резисторов умножителя счетчика. Он измеряет высокое напряжение для вольтметра PA. На высоковольтном конце струны скопилась грязь. Грязь притягивается к высокому напряжению и требует частой очистки для поддержания надежности передатчика.Это обслуживание.

    РЧ-фиктивная нагрузка в этом передатчике состоит из шести неиндуктивных резисторов на 312 Ом / 200 Вт. Передатчик видит 52 Ом, потому что резисторы включены параллельно. Простая математика, 312 Ом, разделенные на 6 резисторов = 52 Ом. Да, 52 Ом, 51,5 Ом, 70 Ом и другие импедансы были обычным явлением в прошлом, прежде чем твердотельные передатчики более или менее заставляли стандарт быть 50 Ом. Ламповые передатчики настраиваются практически на любую нагрузку, в то время как твердотельные передатчики рассчитаны на работу с нагрузками 50 Ом ... и не дают мне КСВН!

    Закон Ома о напряжении

    Допустим, мы знаем, что на резистор 100 Ом подается ток 2 ампера.Какое напряжение на резисторе?

    Формула: 2 ампера x 100 Ом сопротивление = 200 вольт. Исходя из этого, мы можем найти мощность в резисторе. Это 200 вольт х 2 ампера, ток = 400 ватт.

    Закон Ома о мощности

    FM-передатчик Continental 816R-2 FM 20 кВт может иметь 7000 вольт на пластине трубки PA при потребляемом токе 3,3 ампера. Закон Ома гласит, что 7000 вольт x 3,3 ампера = 23 100 ватт мощности. Это входная мощность передатчика, а не выходная.Выходная мощность зависит от КПД усилителя мощности, который обычно составляет 75%. Тогда выходная мощность передатчика составляет 17 325 Вт. Это также означает, что 25% потребляемой мощности теряется на тепло. Это 23 100 Вт входной мощности x 0,25 = 5775 Вт тепла.

    Обязательно сверьтесь с техническими данными производителя для получения точных цифр для каждой модели передатчика.

    Половина мощности?

    Половинная мощность не означает, что напряжение PA передатчика вдвое меньше. Если бы он был наполовину, то ток PA был бы наполовину, а выход RF был бы четвертью.Вы помните, когда местные станции AM класса 4 (теперь класс C) работали 1000 Вт днем ​​и 250 Вт ночью.

    Передатчик Gates BC-1 может иметь 2600 Па вольт и 0,51 А силы тока в течение дня. Мы можем определить сопротивление усилителя мощности, взяв напряжение PA, равное 2600, и разделив его на ток PA, равный 0,51 ампера. Ответ 5098 Ом.

    Такое же сопротивление PA применяется независимо от уровня мощности этого передатчика. На четверть мощности напряжение PA составляет 1300 вольт.Закон Ома, использующий те же 5098 Ом, говорит нам, что ток PA должен составлять 0,255 ампера. Да, на практике так получилось. Простая уловка заключалась в том, чтобы подключить 120 В переменного тока к первичной обмотке высоковольтного трансформатора передатчика для работы в ночное время вместо 240 В переменного тока днем.

    При четверти мощности антенный амперметр показал половину, а интенсивность поля сигнала была половиной, а не четвертью. Давайте рассмотрим это. Если у вас антенна на 50 Ом и мощность 1000 Вт, каков ток антенны? Используя закон Ома, разделите 1000 Вт на 50 Ом = 20.Квадратный корень из этого равен 4,47 ампера. Разделите 250 Вт на такое же сопротивление антенны 50 Ом, и вы получите 5. Квадратный корень из этого равен 2,236 ампера, половина дневного тока антенны. Это закон Ома.

    Думайте о законе Ома, когда находитесь на работе. Он отвечает на ваши вопросы и имеет смысл.

    Mark Persons, WØMH, является сертифицированным профессиональным инженером по радиовещанию SBE; он был назван Робертом Фландерсом инженером года в области SBE в 2018 году. Марк ушел на пенсию, проработав более 40 лет.Его веб-сайт: www.mwpersons.com.

    Подписаться

    Чтобы получать больше подобных новостей и быть в курсе всех наших ведущих новостей, функций и аналитических материалов, подпишитесь на нашу рассылку новостей здесь.

    Понимание закона Ома - Pi My Life Up

    Закон Ома является одной из основ электроники и невероятно удобен для быстрого расчета тока, напряжения или сопротивления цепи. Вам нужно будет знать как минимум два значения.

    Закон Ома определяет математическое соотношение между током, напряжением и сопротивлением сети.

    Этот закон был назван в честь немецкого физика и математика XIX века Георга Ома. Ом обнаружил эту взаимосвязь еще в то время, когда не было возможности легко измерить ток, напряжение или сопротивление.

    Несмотря на холодный прием при первой публикации, он стал обязательным для всех, кто интересуется электрическими схемами. Закон Ома стал частью нашего нынешнего понимания электрических схем.

    Если вы занимаетесь каким-либо из наших проектов электроники Raspberry Pi, которые связаны со схемами, вам может пригодиться это руководство.

    Что такое закон Ома?

    Закон Ома гласит, что ток, проходящий через проводник между двумя точками, прямо пропорционален напряжению в этих двух точках и обратно пропорционален сопротивлению между двумя точками.

    Проще говоря, если в цепи удваивается ток, то удваивается и напряжение. Точно так же, если сопротивление в цепи увеличится вдвое, ток упадет вдвое.

    Хотя это может показаться немного сложным, фактическая математика, лежащая в основе этой теории, невероятно проста для понимания и запоминания.

    Формула закона Ома

    К счастью для нас, формула закона Ома невероятно проста для понимания.

    Закон Ома можно выразить математической формулой, как показано ниже.

    Эта формула говорит, что напряжение ( В ) равно току ( I ), умноженному на сопротивление ( R ).

    Во всех формулах закона Ома мы используем следующие переменные.

    • В = напряжение, выраженное в вольтах.
    • I = ток, выраженный в амперах.
    • R = сопротивление, выраженное в омах.

    Хотя формулу можно использовать для расчета напряжения, ею также можно управлять, чтобы вместо этого вычислить ток или сопротивление в цепи.

    Для начала давайте изменим формулу так, чтобы мы могли вычислить ток ( I ) цепи.

    Мы также можем изменить базовую формулу закона Ома, чтобы мы могли вычислить сопротивление ( R ) цепи.

    Калькулятор закона Ома

    Чтобы использовать этот калькулятор закона Ома, сначала выберите, хотите ли вы рассчитать напряжение, ток или сопротивление.

    При выбранном режиме все, что вам нужно сделать, это ввести два требуемых значения. Калькулятор автоматически рассчитает правильные значения.

    Треугольник закона Ома

    Один из самых простых способов запомнить три различных формулы закона Ома - это треугольник.

    Средний горизонтальный делитель треугольника представляет деление, то есть всякий раз, когда напряжение ( В ) участвует в формуле, все остальные буквы делятся на него.

    Например, если мы хотим вычислить ток ( I ), нам нужно разделить напряжение ( В, ) на сопротивление ( R ).

    Обведя кружком « I » в треугольнике, мы видим, что формула остается в треугольнике с V по R .

    Мы также можем использовать тот же треугольник, чтобы разработать формулу для расчета сопротивления ( R ) цепи.

    Обведя сопротивление ( R ), мы можем увидеть формулу, которую мы должны использовать: напряжение ( V ), деленное на ток ( I )

    Вертикальная линия в треугольнике представляет умножение.Эта линия используется только при расчете напряжения (В).

    Снова используя треугольник закона Ома, мы можем быстро увидеть формулу, которую нам нужно использовать, обведя кружком « V », поскольку это значение, которое мы хотим вычислить.

    Отсюда легко видно, что для расчета напряжения ( В, ) все, что нам нужно сделать, это умножить ток ( I ) на сопротивление ( R ).

    Пример закона Ома в действии

    Далее мы рассмотрим три различных примера схем.

    Эти примеры будут касаться использования каждого варианта трех различных формул закона Ома.

    Пример напряжения

    В этом первом примере мы собираемся начать с формулы закона базового сопротивления для расчета напряжения цепи.

    Для расчета напряжения нам необходимо знать сопротивление ( R ) и ток ( I ) цепи.

    В этой примерной схеме вы можете видеть, что у нас есть сопротивление ( R ) 200 Ом и ток ( I ) 5 А.

    Чтобы рассчитать напряжение, нам нужно вставить два наших значения в формулу закона Ома.

    После заполнения формулы вы можете видеть, что все, что нам нужно сделать, это умножить 200 на 5 , чтобы рассчитать напряжение.

    Умножив сопротивление и ток, мы можем увидеть, что напряжение для схемы в примере равно 1000 вольт .

    Пример тока

    В этом втором примере мы будем использовать модифицированную версию формулы закона Ома для расчета тока следующей цепи.

    Из этой схемы мы знаем, что сопротивление ( R ) составляет 50 Ом и что напряжение ( В ) составляет 24 В .

    Нам нужно поместить эти значения в формулу закона Ома, которая использовалась для расчета тока ( I ).

    Используя значения сопротивления и напряжения, введенные в формулу, мы видим, что нам нужно разделить 24 на 50 , чтобы вычислить ток.

    Используя закон Ома, мы рассчитываем, что ток в цепи равен 0.48 ампер .

    Пример сопротивления

    В нашем третьем и последнем примере мы будем использовать третью версию формулы закона Ома. В этом случае мы будем использовать формулу для расчета сопротивления цепи.

    Чтобы рассчитать сопротивление цепи, нам нужно знать напряжение ( В, ) и ток ( I ) цепи.

    Из этой примерной схемы мы видим, что наша примерная схема имеет ток 10 А и напряжение 20 Вольт .

    Нам нужно вставить эти два значения в формулу сопротивления закона Ома.

    Отсюда мы можем рассчитать необходимое нам сопротивление, разделив напряжение 20 на 10 ампер .

    Рассчитав это, мы видим, что сопротивление нашей схемы в нашем примере должно быть 2 Ом .

    Надеюсь, что теперь у вас есть понимание закона Ома и то, как его использовать. Мы рассмотрели, как можно использовать треугольник закона Ома как простой способ запоминания трех различных формул.

    Вы найдете эти уравнения очень удобными в проектах, использующих схемы, таких как все наши проекты Arduino.

    Если у вас есть какие-либо советы или отзывы, не стесняйтесь оставлять комментарии ниже.

    Закон Ома | Клуб электроники

    Закон Ома | Клуб электроники

    Следующая страница: Power and Energy

    См. Также: Напряжение и ток | Сопротивление

    Закон Ома показывает взаимосвязь между напряжением, током и сопротивлением

    Чтобы ток протекал через сопротивление, на этом сопротивлении должно быть напряжение.Закон Ома показывает взаимосвязь между тремя величинами: напряжением, током и сопротивлением.

    Закон Ома можно записать в виде словесного уравнения :

    напряжение = ток × сопротивление

    Или используя символы для обозначения величин напряжения (В), тока (I) и сопротивления (R):

    На самом деле это можно записать тремя способами, и вы можете выбрать версию, которая лучше всего подходит для ваших целей:

    Треугольник ВИР - способ запомнить закон Ома

    Вы можете использовать треугольник VIR, чтобы помочь вам запомнить три версии закона Ома.

    • Для расчета напряжения, В : поместите палец на В, это оставляет I R, поэтому уравнение V = I × R
    • Чтобы рассчитать ток , I : положите палец на I, это оставляет V над R, поэтому уравнение I = V / R
    • Чтобы рассчитать сопротивление , R : поместите палец на R, это оставляет V над I, поэтому уравнение R = V / I



    Расчет по закону Ома

    Используйте этот метод для проведения расчетов:

    1. Запишите Значения , при необходимости конвертируя единицы.
    2. Выберите необходимое уравнение Equation (используйте треугольник VIR).
    3. Подставьте чисел в уравнение и вычислите ответ.

    Должно быть V ery E asy N ow! См. Примеры ниже:

    Пример 3:

    Резистор 1,2 кОм пропускает ток 0,2 А, какое напряжение на нем?

    Пример 4:

    9 В подается на резистор 15 кОм, какой ток?

    • В значения: V = 9V, I =?, R = 15k
    • E предложение: I = V / R
    • N мм: Ток, I = 9 / 15 = 0.6 мА
      (использование k для сопротивления означает, что расчет дает ток в мА)

    Следующая страница: Энергетика | Исследование


    Политика конфиденциальности и файлы cookie

    Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно никому не будет передано. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

    клуб электроники.инфо © Джон Хьюс 2021

    Закон ужасных омов

    В предыдущей статье мы рассмотрели формулу мощности и обсудили взаимосвязь между мощностью, напряжением и током. Посмотрев на формулу мощности, теперь есть только одна формула, необходимая для решения практически всех электрических расчетов, это ужасный закон Ома. Мы не будем вдаваться в вывод формулы, но уделите минуту, чтобы прочитать следующую иллюстрацию:

    Когда вы откроете кран, подключенный к садовому шлангу без насадки, вы увидите, что вода вытекает из другого конца.Поток воды через шланг подобен потоку электрического тока - электрический ток - это поток электронов через провод.

    Если теперь вы положите большой палец на конец шланга и попытаетесь перекрыть поток воды, давление воды, которое вы почувствуете, будет похоже на напряжение. Напряжение - это давление, которое толкает электроны через провод. Что интересно, если ваш большой палец полностью перекрывает поток воды, давление (напряжение) воды все равно остается. Наличие сопла на конце шланга и прекращение потока воды похоже на то, что к розетке в стене ничего не подключено - нет воды / тока, но давление / напряжение все еще есть.Следует отметить, что напряжение присутствует, даже если нет тока. Другой пример - автомобильный аккумулятор - на любой подключенный к нему провод всегда подается 12 Вольт, независимо от того, какой ток идет.

    Вернемся к садовому шлангу. Если теперь переместить большой палец на конец шланга, можно изменить количество выходящей воды. То есть, изменяя сопротивление воде, вы меняете и поток. То же самое и в электрической цепи - измените сопротивление, и ток изменится соответственно.Давайте определим электрическое сопротивление как «сопротивление, блокирующее, препятствующее или ограничивающее ток, протекающий по цепи». Примеры сопротивления в цепи - электрическая лампочка или электрический прибор.

    Если напряжение (давление воды) остается прежним, ток будет зависеть от сопротивления. Чем больше сопротивление, тем меньше ток. И наоборот, чем меньше сопротивление, тем больше ток. Это похоже на то, что чем больше вы перекрываете конец шланга, тем больше уменьшается поток воды, уменьшение сопротивления увеличивает поток воды.

    Если сопротивление остается прежним, ток можно увеличивать или уменьшать, увеличивая или уменьшая напряжение (давление воды).

    Георг Симон Ом

    В 1827 году немец по имени Георг Симон Ом опубликовал книгу, описывающую взаимосвязь между напряжением, током и сопротивлением. Эта связь теперь известна как закон Ома. Закон Ома гласит, что ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

    Математически это выглядит так:

    Ток = напряжение / сопротивление

    Символы и единицы измерения напряжения и тока такие же, как и в формуле мощности.Обратите внимание на стандартные термины сопротивления.

    Имя Символ Единицы измерения
    Текущий Я ампер или ампер (A)
    Напряжение В вольт (В)
    Сопротивление R Ом (Ом)

    Следовательно, мы можем быстро записать эту формулу как:

    I =
    В / R

    Популярный способ запомнить эту формулу и ее производные - это показанный здесь треугольник.Какую бы характеристику вы ни искали, прикройте ее пальцем, и формула, которая вам нужна, останется.

    Пример 1. Чтобы найти напряжение в цепи, зная сопротивление и ток, коснитесь пальцем буквы «V», и формула будет I x R.

    Пример 2: Чтобы найти ток в цепи, зная напряжение и сопротивление, приложите палец, чтобы закрыть «I», и формула: В / R

    Пример 3: Чтобы найти сопротивление цепи, зная напряжение и ток, приложите палец, чтобы закрыть букву «R», и формула: В / I

    Другими словами, формула в трех возможных формах:

    V = I x R I =
    V / R R = V / I

    Используя эти формулы и следующую схему, можно увидеть взаимосвязь между сопротивлением и током, при условии, что напряжение остается неизменным.

    Пример 1: Учитывая, что напряжение 220 В, а сопротивление 110 Ом (Ом), мы можем рассчитать ток по формуле:

    I = В / R = 220 / 110 = 2 А

    Пример 2: То же напряжение (220 В), но теперь сопротивление всего 2 Ом.

    I = В / R = 220 / 2 = 110 А

    То есть, чем больше сопротивление, тем меньше ток может протекать.Кроме того, чем меньше сопротивление, тем больший ток может протекать.

    Может быть полезно снова использовать аналогию с водой. Если у вас есть водопроводная труба большого диаметра, то через нее может протекать много воды (тока), потому что «сопротивление» низкое (отсутствие засоров). Если есть закупорка в трубе (сопротивление), то (текущий) поток уменьшается. Чем больше засорение (чем выше сопротивление), тем меньше (ток) протекания.

    Этот принцип проиллюстрирован в примерах выше.В примере 1 сопротивление 110 Ом позволяло проходить через цепь только 2 ампера. В примере 2 небольшое сопротивление (2 Ом) позволяло протекать по цепи большому току в 110 ампер.

    Сопротивление - это все, что сопротивляется току, протекающему по цепи. Лампочка - это сопротивление, как утюг, кухонный комбайн или плита. В электронике есть небольшие компоненты, называемые резисторами, которые имеют фиксированное известное значение. Даже простой кабель имеет некоторое сопротивление, на самом деле причина использования толстых кабелей заключается в том, чтобы уменьшить сопротивление и позволить большему току проходить через него (например, пожарный шланг больше, чем садовый шланг, поэтому через него может течь больше воды) .

    P.S .: мы только что рассмотрели основные принципы закона Ома, но шшш, никому не говори.

    Если математика сбивает вас с толку, попробуйте простой калькулятор по закону Ома.

    Серия

    или параллельная

    Часто вы не знаете, какое сопротивление в цепи, и вам не нужно это знать. Однако эти формулы по-прежнему очень полезны, но в основном для того, что на их основе выводится, а не для их непосредственного вычисления. Это длинный способ сказать: «Пожалуйста, примите, что следующие концепции получены из приведенной выше формулы, и нам не нужно тратить время и силы на ее доказательство».

    Концепция 1:

    Рассмотрим схему из шести лампочек. Поскольку они подключаются друг за другом, говорят, что они подключены последовательно.

    Интересно, что происходит с напряжением, током и сопротивлением.

    Напряжение: «Входное напряжение» - это сумма напряжений на всех отдельных лампах. В этом примере индивидуальное напряжение на каждом источнике света составляет 40 вольт, поэтому общее напряжение составляет 240 вольт.

    Ток: ток через каждый отдельный светильник такой же, как ток во всей цепи.Если ток, идущий в цепь, составляет 1 ампер, то ток через каждую отдельную лампу также составляет 1 ампер.

    Сопротивление: Общее сопротивление равно сумме всех отдельных «последовательных» сопротивлений.

    На практике этот тип цепи редко используется в доме. Это связано с тем, что если в дом поступает 240 вольт, а в доме есть шесть последовательно соединенных ламп, то каждый свет будет получать только одну шестую от этого напряжения, то есть 40 вольт. Тем не менее, этот тип схемы часто используется для гирлянды на елку. E.грамм. 20 лампочек по 12 вольт каждая равны 240 вольт. Проблема с этой схемой в том, что если горит одна лампочка, то погаснут и все остальные. Это связано с тем, что проводное соединение со следующим светом оборвано, поэтому цепь не завершена.

    Часто используется последовательная цепь с батареями. Когда батареи включены последовательно, общее напряжение равно сумме всех отдельных напряжений, а общий ток, протекающий по всей цепи, такой же, как ток, протекающий через любую одну батарею.Например: четыре батареи на 1,5 В 500 мА, соединенные последовательно друг с другом, составляют батарею на 6 В (4 x 1,5) при 500 мА.

    КОНЦЕПЦИЯ 2:

    Рассмотрим схему из шести лампочек. Поскольку они соединены друг с другом или параллельно друг другу, говорят, что они соединены параллельно.

    То, что происходит с напряжением, током и сопротивлением в цепи этого типа, отличается от того, что происходит в последовательной цепи.

    Напряжение: Напряжение на каждом индикаторе такое же, как «напряжение на входе».Если в цепь поступает 220 вольт, значит, 220 вольт на каждой отдельной лампе.

    Ток: Ток, протекающий в цепи, представляет собой сумму токов в каждом отдельном источнике света. Если ток через каждую лампу составляет 1 ампер, то общий ток, поступающий в эту схему, будет 6 ампер (6 x 1 ампер).

    Сопротивление: общее сопротивление рассчитывается по сложной формуле, которую нам не нужно изучать на данном этапе. Достаточно сказать, что общее сопротивление меньше наименьшего индивидуального сопротивления.Вот формула для тех, кому действительно нужно знать:

    На практике схемы такого типа используются в жилых домах. например Если у вас в доме 220 вольт, то все светильники и розетки (розетки) тоже 220 вольт, потому что они соединены параллельно.

    Батареи также можно подключать параллельно. Выходное напряжение двух параллельно включенных батарей такое же, как у одной из батарей, но текущая емкость удваивается. Например: две автомобильные батареи на 12 вольт 100 ампер / час, подключенные параллельно, составляют эквивалент 12-вольтовой батареи на 200 ампер / час.Те же две батареи, соединенные последовательно, будут эквивалентны батарее на 24 вольта и 100 ампер / час.

    Собираем все вместе

    Некоторые люди в восторге от того, как формулу закона Ома можно подставить в нашу формулу Силы для создания новых формул. Те из вас, кто любит играть с формулами, могут понять, как это делается; в остальном просто согласитесь, что эта таблица показывает различные комбинации этих формул.

    В этой таблице показаны все возможные комбинации с использованием двух изученных нами основных формул.Попробуйте использовать калькулятор и следующие значения, чтобы проверить это:

    В = 12 В I = 2 А R = 6 Ом P = 24 Вт

    Вы можете распечатать таблицу и прикрепить ее к футляру мультиметра или стене мастерской для использования в будущем.

    Простой калькулятор для вычисления всех этих комбинаций доступен здесь.

    Поздравляю, вы закончили читать эти первые две статьи об основах электротехники. Было очень много теории и всевозможных формул, но теперь у вас есть основы для понимания большинства электрических и электронных принципов.

    ПЛОЩАДЬ

    ОМ

    Закон Ома Закон Ома

    Самый важный закон, применимый к изучению электричества, - это закон Ома. закон. Этот закон, определяющий соотношение между напряжением, током, и сопротивление в электрической цепи, было впервые заявлено немецким физик Джордж Саймон Ом (1787 - 1854). Этот закон распространяется на все прямые токовые цепи. В модифицированном виде может применяться к чередующемуся схемы, которые будут изучены позже в этом тексте.Эксперименты Ома показали, что ток в электрической цепи прямо пропорционален величине напряжения, приложенного к цепи. Другими словами, этот закон говорит, что по мере увеличения напряжения увеличивается ток; и когда напряжение уменьшается, ток уменьшается. Следует добавить, что это соотношение верно только в том случае, если сопротивление в цепи остается постоянный. Легко видеть, что при изменении сопротивления ток тоже меняется.

    Закон Ома можно выразить уравнением:
    Где I - ток в амперах, E - потенциал разность измеряется в вольтах, а R - сопротивление, измеренное в Ом (обозначается греческой буквой омега, символом которой является). Если известны какие-либо две из этих величин цепи, можно найти третью. простым алгебраическим транспонированием.Схема, показанная на рисунке 8-47, содержит источник напряжения 24 вольта и сопротивлением 3 Ом.
    Если в цепь вставлен амперметр, как показано на рис. 8-47, сила тока, протекающего в цепи, может быть считана непосредственно. Предполагая что нет амперметра, можно определить силу протекающего тока используя закон Ома следующим образом:

    Некоторые особенности рисунка 8-47, типичные для всех электрических цепей. нарисованные в схематическом виде следует пересмотреть.Электрическое давление или разность потенциалов, приложенная к цепи, представлена ​​на схеме образуют символ батареи. Знак минус находится рядом с одним сторона для обозначения отрицательной клеммы источника или батареи. Противоположный сторона отмечена положительным знаком +. Иногда стрелки используются для обозначения направление тока от отрицательной клеммы через проводящую провода и другие схемные устройства к плюсовой клемме источника.

    Рисунок 8-48 показывает, что значения напряжения и тока известны. Чтобы найти величину сопротивления в цепи, закон Ома можно транспонировать, чтобы найти R.

    Преобразование основной формулы I = E / R в R = E / I и замена известные значения цепи в уравнении, R = 24 В / 8 А = 3 Ом, или 3.

    Закон Ома также можно транспонировать для определения напряжения, приложенного к схема, когда известны ток и сопротивление, как показано на рисунке 8-49.

    В этой цепи представлена ​​неизвестная величина цепи, напряжение. символом E. Величина сопротивления составляет 3 Ом, а текущий ток составляет 8 ампер. (Слово амперы часто сокращается до «ампер».)

    Перенося закон Ома из его основной формулы, уравнение для решения для E становится E = I x R.

    Подставляя известные значения в уравнение,

    E = 8 x 3
    E = 24 В или 24 В

    Взаимосвязь между различными величинами цепи может быть дополнительно продемонстрировано, если сопротивление в цепи поддерживается постоянным.В таком В этом случае ток будет увеличиваться или уменьшаться прямо пропорционально увеличение или уменьшение приложенного к цепи напряжения. Например, если напряжение, приложенное к цепи, составляет 120 вольт, а сопротивление схема 20 Ом, ток будет 120/20, или 6 ампер. Если это сопротивление остается постоянным на уровне 20 Ом, график зависимости напряжения от тока, как показано на рисунке 8-50, можно построить график.

    Соотношение между напряжением и током в этом примере показывает напряжение, нанесенное горизонтально по оси X в значениях от 0 до 120 вольт, а соответствующие значения тока нанесены вертикально. в значениях от 0 до 6.0 ампер по оси Y. Нарисованная прямая линия через все точки, где встречаются линии напряжения и тока, представляет уравнение I = E / 20 и называется линейной зависимостью.

    Константа 20 представляет сопротивление, которое, как предполагается, не изменить в этом примере. Этот график представляет собой важную характеристику основного закона, что ток изменяется прямо с приложенным напряжением если сопротивление остается постоянным.

    Основные уравнения, выведенные из закона Ома, суммируются вместе. с единицами измерения величин цепи, показанными на рисунке 8-51.

    Различные уравнения, которые могут быть получены путем транспонирования основных Закон можно легко получить, используя треугольники на рис. 8-52.

    Треугольники, содержащие E, I и R, разделены на две части: E над линией и I x R под ней. Чтобы определить неизвестное количество в цепи когда известны два других, закройте неизвестное количество большим пальцем. Расположение оставшихся незакрытых букв в треугольнике укажет математическая операция, которую нужно выполнить.Например, чтобы найти I, обратитесь к к (a) рисунка 8-52, и накройте I большим пальцем. Открытые буквы указывают, что E должно быть разделено на R, или I = E / R. Чтобы найти R, обратитесь к (b) рисунка 8-52, и накройте R большим пальцем. Результат показывает, что E делится на I, или R = E / I. Чтобы найти E, обратитесь к (c) рисунка. 8-52 и накройте E большим пальцем. Результат показывает, что I нужно умножить на R или E = I x R.

    Эта диаграмма полезна при изучении закона Ома.Его следует использовать пополнить знания новичка по алгебраическому методу.

    Мощность

    Помимо вольт, ампер и ом, часто используется еще одна единица измерения. используется в расчетах электрических схем. Это единица мощности. В единицей измерения мощности в электрических цепях постоянного тока является ватт. Мощность определяется как скорость выполнения работы и равна произведению напряжение и ток в цепи постоянного тока. Когда ток в амперах (I) равен умноженное на е.m.f в вольтах (E), результат - мощность, измеренная в ваттах. (П). Это указывает на то, что электрическая мощность, подаваемая в цепь, варьируется. непосредственно с приложенным напряжением и током, протекающим в цепи. Выражено как уравнение, это становится

    P = IE

    Это уравнение можно транспонировать для определения любой из трех схем количества, пока известны два других. Таким образом, если мощность читается прямо с ваттметра и измеряется напряжение с помощью вольтметра, сила тока (I), протекающего в цепи, может быть определена путем транспонирования основного уравнения в I = P / E.Аналогично напряжение (E) можно найти, перенеся базовую формулу мощности на E = P / I.

    Поскольку некоторые значения, используемые для определения мощности, подаваемой на схемы такие же, как и в законе Ома, можно заменить Значения по закону Ома для эквивалентов в формуле мощности.

    По закону Ома I = E / R. Если это значение E / R заменить на I в формула мощности, она становится

    Это уравнение P = E2 / R показывает, что передаваемая мощность в ваттах к цепи напрямую зависит от квадрата приложенного напряжения и обратно пропорционально сопротивлению цепи.

    Ватт назван в честь Джеймса Ватта, изобретателя паровой машины. Ватт разработал эксперимент по измерению силы лошади, чтобы найти способ измерения механической мощности его паровой машины. Один требуется мощность в лошадиных силах, чтобы переместить 33 000 фунтов на 1 фут за 1 минуту. С мощность - это скорость выполнения работы, она эквивалентна работе, деленной на время. Выражаясь формулой, это

    Электрическая мощность может быть рассчитана аналогичным образом.Например, электрический Двигатель мощностью 1 л.с. требует 746 Вт электроэнергии. Но ватт - это относительно небольшая единица мощности. Намного более распространенным является киловатт или 1000 ватт. (Префикс килограмм означает 1000). При измерении количества потребляемой электроэнергии используется киловатт-час. Например, если 100-ваттная лампа потребляет электроэнергию в течение 20 часов, она использовала 2000 ватт-часов или 2 киловатт-часа электроэнергии.

    Электрическая мощность, теряемая в виде тепла при протекании тока через электрическое устройство часто называют потерей мощности.Эта жара обычно рассеивается в окружающем воздухе и не служит никакой полезной цели, кроме случаев, когда используется для отопления. Поскольку все проводники обладают некоторым сопротивлением, схемы предназначены для уменьшения этих потерь. Снова обращаясь к основному формула мощности, P = I x E, можно подставить значения закона Ома для E в формуле мощности, чтобы получить формулу мощности, которая непосредственно отражает потери мощности в сопротивлении.

    P = I x E; E = I x R.

    Подставляя значение закона Ома для E (I x R) в формулу мощности,

    P = I x I x R.

    Собирая термины, это дает,


    Из этого уравнения видно, что мощность в ваттах в цепи изменяется пропорционально квадрату тока цепи в амперах и напрямую изменяется с сопротивлением цепи в Ом.

    Наконец, мощность, подаваемая в цепь, может быть выражена как функция тока и сопротивления путем транспонирования уравнения мощности

    Транспонирование для решения для тока дает

    и извлекая квадратный корень из обеих частей уравнения,

    I = квадратный корень из P / R

    Таким образом, ток через нагрузку (сопротивление) 500 Вт и 100 Ом равен следует:

    I = квадратный корень из P / R = 500/100 = 2.24 ампера.

    Электрические уравнения, выведенные из закона Ома и основной мощности формула не раскрывает все о поведении цепей.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *