Содержание

Закон Ома ? для участка цепи, формула. Закон Ома ? в дифференциальной форме для полной цепи и её участка

Автор Даниил Леонидович На чтение 5 мин. Просмотров 6.1k. Опубликовано Обновлено

Физический закон ома получен путём экспериментов. 3 формулировки ома – одни из основополагающих в физике, устанавливающие связь между электротоком, сопротивлением и энергонапряжением. Год открытия – 1826. Впервые все 3 физических закона ома сформулировал физик-экспериментатор немецкого происхождения Георг Ом, с фамилией которого связано их определение.

Мнемоническая схема

Согласно мнемосхеме, чтобы высчитать электросопротивление по закону ома для участка цепи постоянного тока, необходимо комплексное напряжение на участке цепи разделить на силу тока для полной цепи.

Однако, с физико-математической точки зрения, формулу ома для участка цепи для вычисления только по первому закону ома принято считать неполной.

Альтернативный способ вычислить токовое сопротивление по закону ома кратко подразумевает умножение электросопротивления материи, из которой выполнен проводник, на длину с последующим делением на площадь пересекающегося сечения.

Для выполнения вычислений сформулируйте по закону ома для участка цепи уравнение, исходя из имеющихся числовых данных:

Применение на линии электропередач

В процессе доставки на линию электропередач потери энергии должны быть минимизированы. Причиной энергетических потерь является нагрев провода, во время которого энергия электротока превращается в теплоэнергию.

Чтобы дать определение по закону ома потерянной мощности, необходимо показатель электрической мощности во второй степени умножить на внутреннее сопротивление источника напряжения и разделить на ЭДС в квадрате.

Из этого следует, что рост потери энергомощности осуществляется пропорционально протяжённости линии электропередач и квадрату электродвижущей силы.

Поскольку электродвижущую силу ограничивает прочность обмотки генератора, то повышение энергонапряжения возможно после того, как из генератора выйдет электроток, на участке входа линии.

Переменный ток легче всего распределяется по линии через трансформатор. Однако, поскольку следствием повышения энергонапряжения является потеря коронирования, а надёжность изоляции обеспечивается с трудом, напряжение на участке цепи протяжённой линии электропередач не превышает миллиона вольт.

Внимание!

Поведение линии электропередач в пространстве подобно антенне, ввиду чего берётся во внимание потеря на излучение.

Отображение в дифференциальной форме

На подсчёт сопротивления влияет тип материи, по которой протекает электроток, а также геометрические габариты проводника.

Дифференциальная форма формулировки Ома, записывающаяся достаточно кратко, отображает электропроводящие характеристики изотропных материалов и заключается в умножении удельной проводимости на вектор напряжённости электрополя с целью вычисления вектора плотности энерготока.

Для выполнения требуемых вычислений, уравнение сформулируйте по закону ома:

Интересно!

Если исходить из научных данных, следует сделать вывод о законе ома в дифференциальной форме об отсутствии зависимого соотношения геометрических габаритов.

При использовании анизотропеновых электроэлементов нередко встречается несовпадение вектора плотности токового энергонапряжения. Данное суждение справедливо для закона ома в интегральной и дифференциальной формах.

Переменный ток

Величины являются комплексными, если речь идёт о синусоидальных формах энерготока с циклической частотой, в цепях которых присутствуют активная ёмкость с индуктивностью.

В перечень комплексных величин входят:

  • разность между потенциалами;
  • сила тока;
  • комплексное электросопротивление;
  • модуль импеданса;
  • разность индуктивного и ёмкостного сопротивлений;
  • омическое электросопротивление;
  • фаза импеданса.

Если несинусоидальный энерготок допустимо измерить временными показателями, закон ома для неполной электрической цепи может быть представлен в виде сложенных синусоидальных Фурье-компонентов. В линейной цепи составные элементы фурье-разложения являются независимо функционирующими. В нелинейных цепях образуются гармоники и множество колебаний. Таким образом, можно сделать вывод о невозможности выполнения правила Ома для нелинейной электроцепи.

Внимание!

Гармоника – это колебание, частота которого кратна частоте напряжения.

Как трактуется правило Ома

Так как обобщённая формула ома не считается основополагающей, правило применяется для описания разновидностей проводников в условиях приближения незначительной частоты, плотности тока и напряжения электрополя. Следует отметить, что в ряде случаев как первый закон, так и второй закон, применяемый для полной цепи, не соблюдаются.

Существует теория Друде, для выражения которой используются следующие величины:

  • удельная электропроводимость;
  • концентрированное размещение электронов;
  • показатель элементарного заряда;
  • время затихания по импульсам;
  • эффективная масса электрона.

Внимание!

Все формулы Ома – первый, второй физический закон ома и третий распространяются на омические компоненты.

Перечень условий, при которых становится невозможным соблюдения правила Ома:

  1. высокие частоты с чрезмерно большой скоростью изменения электротока;
  2. пониженная температура сверхпроводимого вещества;
  3. перегрев проводника проходящим электротоком;
  4. в ситуации пробоя, возникшего в результате подсоединения к проводниковому элементу высокого напряжения;
  5. в вакуумной или газонаполненной электролампе;
  6. для гетерогенного полупроводникового прибора;
  7. при образовании пространственного диэлектрического заряда в контакте металлического диэлектрика.

Интерпретация

Определяющаяся действием приложенного напряжения мощностная сила тока является пропорциональной показателю его напряжения. К примеру, при двойном увеличении приложенного напряжения, интенсивность постоянного тока также удваивается.

Интересно!

Наиболее часто правило Ома применяется для металла и керамики.

Методы запоминания формулы

Чтобы легче запомнить формулу расчёта напряжения на участке цепи, следует выписать на бумажном листе все величины, из которых она состоит, в которую также входит сопротивление и сила тока. Искомую величину закрыть пальцем, вследствие чего соотношение оставшихся величин будет отображать действие, которое необходимо совершить для её вычисления.

Ниже будет представлено видео с подробным объяснением всех правил и формул, относящихся к рассматриваемой теме.

Закон Ома – один из самых несложных для понимания, который входит в программу школьных учебников физики начального уровня. Пользуясь графическим приёмом расчёта величин – при необходимости или для самопроверки, можно получить безошибочные результаты вычислений.

Закон Ома для участка цепи

Здравствуйте, уважаемые читатели сайта «Заметки электрика»..

Сегодня открываю новый раздел на сайте под названием электротехника.

В этом разделе я постараюсь в наглядной и простой форме объяснить Вам вопросы электротехники. Скажу сразу, что далеко  углубляться в теоретические знания мы не будем, но вот с основами познакомимся в достаточном порядке.

Первое, с чем я хочу Вас познакомить, это с законом Ома для участка цепи. Это самый основной закон, который должен знать каждый электрик.

Знание этого закона позволит нам беспрепятственно и безошибочно определять значения силы тока, напряжения (разности потенциалов) и сопротивления на участке цепи.

Кто такой Ом? Немного истории

Закон Ома открыл всем известный немецкий физик Георг Симон Ом в 1826 году. Вот так он выглядел.

Всю биографию Георга Ома я рассказывать Вам не буду. Про это Вы можете узнать на других ресурсах более подробно.

Скажу только самое главное.

Его именем назван самый основной закон электротехники, который мы активно применяем в сложных расчетах при проектировании, на производстве и в быту.

Закон Ома для однородного участка цепи выглядит следующим образом:

I – значение тока, идущего через участок цепи (измеряется в амперах)

U – значение напряжения на участке цепи (измеряется в вольтах)

R – значение сопротивления участка цепи (измеряется в Омах)

Если формулу объяснить словами, то получится, что сила тока пропорциональная напряжению и обратно пропорциональна сопротивлению участка цепи.

Проведем эксперимент

Чтобы понять формулу не на словах, а на деле, необходимо собрать следующую схему:

Цель этой статьи — это показать наглядно, как использовать закон Ома для участка цепи. Поэтому я на своем рабочем стенде собрал эту схему. Смотрите ниже как она выглядит.

Сопротивление в цепи я заменил светодиодной лампочкой, обладающей определенной величиной сопротивления. Все соединения производим с помощью соединительных проводов марки ПВ-1.  Кто не знает как это сделать, то читайте мою статью как правильно соединять провода.

С помощью ключа управления (избирания) можно выбрать, либо постоянное напряжение, либо переменное напряжение на выходе. В нашем случае используется постоянное напряжения. Уровень напряжения я меняю с помощью лабораторного автотрансформатора (ЛАТР).

В нашем эксперименте я буду использовать напряжение на участке цепи, равное 220 (В). Контроль напряжения на выходе смотрим по вольтметру.

Теперь мы полностью готовы провести самостоятельно эксперимент и проверить закон Ома в действительности.

Ниже я приведу 3 примера. В каждом примере мы будем определять искомую величину 2 методами: с помощью формулы и практическим путем.

Пример № 1

В первом примере нам нужно найти ток (I) в цепи, зная величину источника постоянного напряжения и величину сопротивления светодиодной лампочки.

Напряжение источника постоянного напряжения составляет U = 220 (В). Сопротивление светодиодной лампочки равно R = 40740 (Ом).

С помощью формулы найдем ток в цепи:

 I = U/R  = 220 / 40740 = 0,0054 (А)

А теперь проверим полученный результат практическим путем. 

Подключаем последовательно светодиодной лампочке мультиметр, включенный в режиме амперметр, и замеряем ток в цепи.

На дисплее мультиметра показан ток цепи. Его значение равно 5,4 (мА) или 0,0054 (А), что соответствует току, найденному по формуле.

Пример № 2

Во втором примере нам нужно найти напряжение (U) участка цепи, зная величину тока в цепи и величину сопротивления светодиодной лампочки.

I = 0,0054 (А)

R = 40740 (Ом)

С помощью формулы найдем напряжение участка цепи:

U = I*R  = 0,0054 *40740 = 219,9 (В) = 220 (В)

А теперь проверим полученный результат практическим путем. 

Подключаем параллельно светодиодной лампочке мультиметр, включенный в режиме вольтметр, и замеряем напряжение.

На дисплее мультиметра показана величина измеренного напряжения. Его значение равно 220 (В), что соответствует напряжению, найденному по формуле закона Ома для участка цепи.

Пример № 3

В третьем примере нам нужно найти сопротивление (R) участка цепи, зная величину тока в цепи и величину напряжения участка цепи.

I = 0,0054 (А)

U = 220 (В)

Опять таки, воспользуемся формулой и найдем сопротивление участка цепи:

R = U/I = 220/0,0054 = 40740,7 (Ом)

А теперь проверим полученный результат практическим путем.

Сопротивление светодиодной лампочки мы измеряем с помощью электроизмерительных клещей или мультиметра.

Полученное значение составило R = 40740 (Ом), что соответствует сопротивлению, найденному по формуле.

Как легко запомнить Закон Ома для участка цепи!!!

Чтобы не путаться и легко запомнить формулу, можно воспользоваться небольшой подсказкой, которую Вы можете сделать самостоятельно.

Нарисуйте треугольник и впишите в него параметры электрической цепи, согласно рисунка ниже. У Вас должно получится вот так.

Как этим пользоваться?

Пользоваться треугольником-подсказкой очень легко и просто. Закрываете своим пальцем, тот параметр цепи, который необходимо найти.

Если оставшиеся на треугольнике параметры расположены на одном уровне, то значит их необходимо перемножить.

Если же оставшиеся на треугольнике параметры расположены на разном уровне, то тогда необходимо разделить верхний параметр на нижний.

С помощью треугольника-подсказки Вы не будете путаться в формуле. Но лучше все таки ее выучить, как таблицу умножения.

Выводы

В завершении статьи сделаю вывод.

Электрический ток — это направленный поток электронов от точки В с потенциалом минус к точке А с потенциалом плюс. И чем выше разность потенциалов между этими точками, тем больше электронов переместится из точки В в точку А, т.е. ток в цепи увеличится, при условии, что сопротивление цепи останется неизменным.

Но сопротивление лампочки противодействует протеканию электрического тока. И чем больше сопротивление в цепи (последовательное соединение нескольких лампочек), тем меньше будет ток в цепи, при неизменном напряжении сети.

P.S. Тут в интернете нашел смешную, но поясняющую карикатуру на тему закона Ома для участка цепи. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Закон Ома для участка цепи

 

В. Г.ЕФИМОВА,
с. Георгиевское, Пермский кр.

Урок изучения и первичного закрепления нового материала.
8-й класс

Образовательные задачи урока: знать формулировку и формулу закона Ома для участка цепи, понимать зависимость силы тока на участке цепи от напряжения и сопротивления и представлять её в виде графиков, уметь «читать» графики I(U), I(R), развить экспериментальные умения – выдвигать гипотезу и планировать проведение эксперимента по её проверке, закрепить практические навыки работы с электрическими измерительными приборами и в сборке электрических цепей.

Урок знакомит с некоторыми историческими сведениями, служит развитию логического мышления и элементов изобретательских умений. Его надо провести после изучения понятия «электрическое сопротивление» и причин этого явления (§ 43 учебника*).(*Учебник А.В.Пёрышкина Физика-8. – М.: Дрофа, 2002.)  К этому времени учащиеся должны знать понятие «обратная пропорциональность» из курса алгебры и уметь строить указанную зависимость. Для актуализации математических знаний на дом было задано: повторить понятия «прямая пропорциональность», «обратная пропорциональность», графики прямой и обратно пропорциональной зависимостей, построить графики функций y = 2x, y = 4x, y = 2/x, y = 4/x.

Ход урока

1. Психологическая установка и актуализация знаний

Учитель (не дожидаясь полного внимания учеников, оно всё равно у некоторых будет только внешним). Наш урок начнём с решения задачи, хотя на дом подобные я и не задавала. Весь секрет в том, что это логическая задача, для её решения не обязательно хорошо знать пройденный материал, достаточно житейской наблюдательности и немного сообразительности. Итак: в комнате есть три выключателя. Известно, что только один из них включает свет в соседней комнате, где стоит торшер с одной лампой. Комнаты друг с другом сообщаются так, что нельзя определить из одной, что происходит в другой. Помощников нет, проводки не видно. Как, имея возможность только один раз перейти от выключателей к торшеру, определить, какой из выключателей включает торшер?

(Обсуждение возможных способов решения. В случае затруднения учитель, не акцентируя внимания, уточняет, что в задаче рассматриваются лампы накаливания. Если решения всё же не возникает, задачу следует задать на дом. Попутно можно повторить действия электрического тока.)

Ученики. Нужно включить любой выключатель на короткое время, затем выключить, включить следующий, пойти в соседнюю комнату и коснуться лампы в торшере. Если она холодная, значит, соединена с третьим выключателем, если тёплая, но не горит, значит, с первым.

Учитель. А теперь разгадайте анаграммы и найдите лишнее понятие в каждом столбце.

Такие задания не только развивают мышление, но и приучают к неоднозначным и множественным ответам. Рассматриваются предлагаемые решения, повторяется связанный с данными понятиями материал. Возможные ответы и вопросы для обсуждения:

1. Амперметр, работа, напряжение, вольтметр. Ответ. Амперметр – остальные понятия относятся к напряжению. Дайте определение напряжения. Как и чем измеряют эту величину?

2. Сила тока, заряд, время, сопротивление. Ответы. 1: заряд – остальные слова оканчиваются на гласную букву; 2: время – сила тока и заряд (количество электричества, прошедшее через проводник) зависят от его сопротивления; 3: сопротивление – остальные величины связаны определением силы тока. Что такое сила тока? Каков физический смысл этой величины? Чем и каким образом измеряется? Какое свойство проводника характеризует сопротивление?

3. Вольт, кулон, ньютон, ампер. Ответы. 1: ньютон – остальное единицы электрических величин; 2: Ньютон – остальные фамилии учёных, изучавших электрические явления; 3: Вольта – сконструировал один из первых источников постоянного тока, остальные учёные открыли количественные меры взаимодействия. Назовите физические величины, соответствующие данным единицам, и их буквенные обозначения.

2. Изучение нового материала

Учитель. Что общего в анаграммах? Почему именно такие слова в них включены?

Ученики. В них даны термины, относящиеся к электрическому току. Эти термины включают в себя названия основных величин, их единицы и приборы для их измерения.

Учитель. Что такое электрический ток? Как осуществляется протекание тока в металлах? В чём причина сопротивления проводника?

(Ученики дают определения, один ученик у доски рассказывает о процессе протекания электрического тока в металлах. )

Учитель. Что произойдёт, если увеличить напряжение на концах проводника? Как сила тока зависит от напряжения? Как изменится сила тока, если увеличить сопротивление? Какова зависимость силы тока от сопротивления?

Ученики. При увеличении напряжения увеличится напряжённость электрического поля, действующего на свободные заряды в проводнике, поэтому увеличится мредняя скорость регулярного движения этих зарядов, следовательно, возрастёт количество электричества, проходящего через сечение проводника в единицу времени, т.е. возрастёт сила тока. Таким образом, сила тока прямо пропорциональна напряжению. Если увеличить сопротивление, усилится степень «противодействия» проводника прохождению электронов, а значит, уменьшится сила тока, следовательно, сила тока обратно пропорциональна сопротивлению проводника.

Учитель. Мы выдвинули гипотезу, которую, конечно, следует проверить. Итак, что нам следует выяснить?

Ученики. Зависимость силы тока от напряжения и сопротивления.

Учитель. Это и есть тема и цель нашего урока (записывает на доске тему «Зависимость силы тока от напряжения и сопротивления» и гипотезу: I ~ U, I ~ 1/R). Каким образом можно проверить гипотезу? Какие приборы потребуются для этого? Каковы основные правила работы с ними? Как следует проводить опыты? Какие трудности возникли при выполнении домашнего задания (построение графиков)?

(Фронтально обсуждается порядок проведения эксперимента, учитель кратко поясняет назначение и демонстрирует работу реостата, напоминает о правилах безопасной работы с электрическими устройствами; раздаёт оборудование и, для желающих, инструкцию по выполнению работы. Два ученика строят графики с помощью компьютера, вычерчивая I(U) для двух разных сопротивлений и I(R) для двух разных напряжений.)

Инструкция по исследованию зависимости силы тока от напряжения и сопротивления

Цель работы: установить на опыте зависимость силы тока от напряжения и сопротивления.

Оборудование: амперметр лабораторный, вольтметр лабораторный, источник питания, набор из трёх резисторов сопротивлениями 1 Ом, 2 Ом, 4 Ом, реостат, ключ замыкания тока, соединительные провода.

Для выполнения работы соберите электрическую цепь из источника тока, амперметра, реостата, проволочного резистора сопротивлением 2 Ом и ключа. Параллельно проволочному резистору присоедините вольтметр (см. схему).

1. Исследование зависимости силы тока от напряжения на данном участке цепи. Включите ток. При помощи  реостата доведите напряжение на зажимах проволочного резистора до 1 В, затем до 2 В и до 3 В. Каждый раз при этом измеряйте силу тока и результаты записывайте в табл. 1.

 

Таблица 1.

Сопротивление участка 2 Ом

Напряжение, В23
Сила тока, А0,51,01,5

По данным опытов постройте график зависимости силы тока от напряжения. Сделайте вывод.

2. Исследование зависимости силы тока от сопротивления участка цепи при постоянном напряжении на его концах. Включите в цепь по той же схеме проволочный резистор сначала сопротивлением 1 Ом, затем 2 Ом и 4 Ом. При помощи реостата устанавливайте на концах участка каждый раз одно и то же напряжение, например, 2 В. Измеряйте при этом силу тока, результаты записывайте в табл 2.

Таблица 2.

Постоянное напряжение на участке 2 В

Сопротивление участка, Ом24
Сила тока, А2,0 1,00,5

По данным опытов постройте график зависимости силы тока от сопротивления. Сделайте вывод.

(По окончании работы результаты обсуждаются, проверяются графики. )

Учитель. Какие выводы вы сделали по результатам опытов? Сравните их с нашей гипотезой.

Ученики. Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Гипотеза подтвердилась.

Учитель. Впервые к такому выводу пришёл немецкий учёный, школьный учитель Георг Симон Ом, и закон носит его имя. Кроме того, Ом открыл зависимость сопротивления проводника от его размеров. Это наша следующая тема, в старших классах вы будете изучать ещё один закон Ома.

Перефразируйте закон Ома так, чтобы не повторилось ни одно слово из формулировки. (Такое задание очень полезно, оно позволяет учащимся не только осознанно запомнить формулировку, но и служит развитию красивой, грамотной речи. Подготовленный ученик рассказывает об истории открытия закона Ома.)

Чтобы понять заслуги Ома в науке, следует учесть обстановку, в которой работал учёный. Всего четверть века прошло с открытий Гальвани и Вольта. Большинство учёных того времени не были вполне убеждены, что электрический ток (от электрических машин) и гальванический ток (от вольтова столба) представляют одно и то же явление. Их тождественность выдвигалась ещё как гипотеза, которую предстояло доказать.

С 1825 г. Ом начинает заниматься исследованиями гальванизма. В 1826 г. появляется его работа «Определение закона, по которому металлы проводят контактное электричество», заключавшая в основном содержание его закона. Первые опыты Ом проводил, пользуясь собственноручно изготовленным вольтовым столбом. В последующих опытах учёный пользовался установками, в которых источником тока служил термоэлемент.

Ом подвешивал магнитную стрелку на нити, а под ней, параллельно её оси, располагал проволоку, соединявшую полюса источника тока. Когда по проволоке шёл ток, стрелка отклонялась вследствие магнитного действия тока. Закручиванием нити Ом удерживал стрелку в первоначальном положении. Величиной угла кручения измерялась сила отклоняющего тока. Помещая стрелку над различными участками цепи, Ом установил, что угол закручивания оставался постоянным, и тем самым доказал постоянство силы тока в различных участках цепи. Далее, подключая к полюсам источника тока различные провода, Ом установил, что сила тока убывает с увеличением длины провода и уменьшением площади его поперечного сечения, а также зависит от вещества провода. Он нашёл ряд веществ в порядке возрастания «сопротивления». Термины «сопротивление» и «сила тока» принадлежат Ому.

Используя в качестве источника тока термоэлемент, Ом создавал различные разности температур спаев висмута и меди, погружая спай 1 в тающий лёд, а спай 2 – в воду разной температуры. В результате получались различные напряжения на проволоке 3, присоединённой к термоэлементу, и различная сила тока в цепи. Соответственно менялось и отклонение магнитной стрелки M. Данные опытов обрабатывались математически.

В 1827 г. появляется основной, прославивший Ома, труд – «Гальваническая цепь, разработанная математически доктором Г.-С.Омом». В этой работе Ом теоретически установил знаменитый закон, носящий его имя. Работу Ома в Германии встретили очень хорошо. В 1833 г. учёный был уже профессором Политехнической школы в Нюрнберге. Однако за рубежом, особенно во Франции и Англии, работы Ома долгое время оставались неизвестными. Спустя 10 лет французский физик Пулье независимо на основе экспериментов пришёл к таким же выводам, что и Ом. Но Пулье было указано, что установленный им закон ещё в 1827 г. был открыт Омом. Любопытно, что французские школьники и поныне изучают закон Ома под именем закона Пулье.

3. Первичное закрепление и коррекция знаний

(Ученики определяются с уровнем заданий для закрепления, сомневающимся выдаются оба листа с заданиями, – они определятся позже, в процессе выполнения.)

Репродуктивный и продуктивный уровни

(Среди учеников, выбравших данный уровень заданий, могут быть очень слабые, поэтому при проверке ответы подробно комментируются. )

1. Ученик выполнял работу по проверке закона Ома для участка цепи и собрал цепь по показанной на рисунке схеме. Он обнаружил, что при уменьшении сопротивления участка ВС амперметр показывал увеличение тока, а вольтметр стал показывать уменьшение напряжения. Зная, что, по закону Ома, сила тока прямо пропорциональна напряжению, он получил противоречие «теории» с опытом. Как разрешить затруднение? Какие ошибки в рассуждении допустил ученик?

Ответ. Сила тока зависит и от напряжения, и от сопротивления. Сила тока на участке цепи прямо пропорциональна напряжению при постоянном сопротивлении, что не было выполнено.

2. Какой вид зависимости изображён на рисунке? Какой график не соответствует закону Ома для участка цепи?

3. Что изменилось на участке цепи, если включённый последовательно с реостатом амперметр показывает увеличение силы тока?

(Ответ. Повысилось напряжение или уменьшилось сопротивление.)

4. Что изменилось на участке цепи, если включённый параллельно ему вольтметр показывает уменьшение напряжения?

5. Зависимость силы тока от сопротивления участка цепи выражена графиками 1 и 2. В каком случае проводник находился под бльшим напряжением?

6. Как будут изменяться показания амперметра, если точку А поочерёдно соединять медной проволокой с точками B, C, D, E?

(Ответ. При соединении с точкой В – не изменятся, с точкой С – значительно уменьшатся, с точками D и Е – практически нуль.)

 

7. Как будут изменяться показания вольтметра, если точку А поочерёдно соединять медной проволокой с точками В, C, D, E?

(Ответ. При соединении с точками В и С – не изменятся, с точками D и Е – стрелка вольтметра будет почти у нуля.)

8. Почему при возникновении пожара в электроустановках нужно немедленно отключить рубильник? Как это сделать?

9. Почему нельзя гасить огонь, вызванный электрическим током, водой или пеной из обычного огнетушителя, а только сухим песком?

Учитель. Даны некие утверждения, они могут быть как истинными – такие предложения отмечайте единицей, так и ложными – такие отмечайте нулём. (Выполняется учащимися самостоятельно. Диктант содержит задания из прошлой темы для повторения важных сведений.)

1. Проводник оказывает сопротивление, потому что ионы кристаллической решётки отталкивают электроны.

2. Чтобы сила тока оставалась прежней, нужно к проводнику с бльшим сопротивлением прикладывать и большее напряжение.

3. Для изменения сопротивления проводника достаточно увеличить или уменьшить подаваемое напряжение.

4. При одинаковых напряжениях в проводнике с бо1льшим сопротивлением будет меньший ток.

5. Если увеличивается сила тока в цепи, значит, изменилось сопротивление.

6. Сопротивление проводника, для которого построен график на рисунке, равно 5 Ом.

7. На рисунке слева приведены графики зависимости силы тока от напряжения для двух проводников. Сопротивление второго проводника больше.

 

 

Продуктивный и творческий уровни

(Учащиеся выполняют задания самостоятельно, пока учитель с первой частью класса разбирает качественные задачи. Во время выполнения первой группой цифрового диктанта вторая группа учащихся под руководством учителя обсуждает результаты своей работы.)

Задания расположены по возрастанию сложности; можно выполнить часть из них, задачи 5 и 6 – изобретательские.

1. Почему птицы могут безопасно сидеть на проводах высоковольтных линий электропередачи?

2. Решите задачу № 1287 из задачника В.И.Лукашика, Е.В.Ивановой.

3. Постройте графики зависимости силы тока от напряжения для двух проводников сопротивлениями 2 и 3 Ом.

4. Постройте графики зависимости силы тока от сопротивления при постоянных величинах напряжения 2 и 4 В.

5. Какими способами можно определить напряжение в сети, имея в распоряжении любые приборы, кроме вольтметра? (Ответ. Например, включить резистор известного сопротивления в сеть последовательно с амперметром, а напряжение вычислить по закону Ома.)

6. Что нужно сделать, чтобы во время запуска пресса руки работника случайно не попали под пресс? Рассмотрите варианты решения без фотореле.

Подсказка. Для запуска пресса руки должны быть где? (Например, одновременно на двух кнопках запуска – обе руки будут заняты. )

7. Предложите устройство (электрический сторож) для обнаружения проникновения на вашу территорию постороннего (Возможный вариант решения. Нужно закрепить прочную нить 1 (или проволоку) одним концом на колышке, а другим – на дощечке 2 (толщиной около 0,5 см), зажатом между двумя упругими контактными пластинками К и Р (выполненными, например, из консервной банки), которые закреплены на другом колышке. Если незваный гость натянет нить, изолятор выскользнет из пластинок, они сойдутся и замкнут электрическую цепь – звонок зазвонит. Для предотвращения случайного замыкания цепи в случае дождя контакты К и Р надо прикрыть козырьком.)

4. Подведение итогов

Какая часть урока, какие задания показались наиболее интересными? скучными? Что было неудачным и почему? В чём хотелось бы разобраться подробнее? Выставление отметок (по желанию).

5. Домашнее задание

– Всем: § 42, 44; логическая задача (если не решена в классе).

– Репродуктивный и продуктивный уровни: № 1275, 1277, 1279, 1285 [2].

– Продуктивный и творческий уровни (на выбор): задания, не выполненные в классе; по желанию, изготовить модель электрического сторожа; придумать устройство, которое сигнализировало бы о подъёме воды (индикатор «наводнения»).

(Возможный способ решения. На щёчки зажима для белья приклеить металлические пластинки 1 и между ними вложить кусочек сахара 2. Зажим прикрепить к колышку, вбитому у берега. Колышек должен возвышаться над уровнем воды на 5–10 см. При повышении уровня воды зажим окажется в воде, и сахар растворится. Щёчки сомнутся, замкнётся электрическая цепь, звонок зазвонит.)

(Такое решение годится только как идея. А дождь? туман? роса? муравьи и другие любители сладкого? – Ред.)

Литература

Буров В.А., Дик Ю.И., Зворыкин Б.С. и др. Фронтальные лабораторные занятия по физике в 7–11 классах общеобразовательных учреждений: Кн. для учителя. Под ред. Бурова В.А., Никифорова Г.Г. – М.: Просвещение, 1996.

Книга для чтения по физике. 6–7 кл.: Пособие для учащихся. Сост. И.Г.Кириллова. – М.: Просвещение, 1978.

Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7–9 классов общеобразовательных учреждений. – М.: Просвещение, 2000.

Марон А.Е., Марон Е.А. Физика. 8 класс: Дидактические материалы. – М.: Дрофа, 2002.

Пёрышкин А.В. Физика-8. – М.: Дрофа, 2003.

Тульчинский М.Е. Занимательные задачи-парадоксы и софизмы по физике. – М.: Просвещение, 1971.

Тульчинский М.Е. Качественные задачи по физике в 6–7 классах: Пособие для учителей. – М.: Просвещение, 1976.

Физика – юным: Теплота. Электричество: Кн. для внеклассного чтения. 7 кл. Сост. Алексеева М.Н.– М.: Просвещение, 1980.

Закон ома для участка цепи: формула, объяснение простыми словами

Основой прикладной электротехники безусловно является закон Ома для участка цепи. Не зная его основных положений, можно допустить серьезные ошибки в практической работе. О самом физическом явлении всем известно еще со школы. Но с помощью базовых положений может формулироваться много других вариантов, так или иначе затрагивающих особенности применения закона в реальных условиях. Именно здесь возникают сложности, требующие точных знаний и навыков оперирования физическими величинами.

Как звучит закон Ома для участка цепи

Ток в проводнике возникает в электрическом поле, которое, в свою очередь, появляется при наличии разности потенциалов или напряжения. Движение тока направлено в сторону меньшего потенциала. Условно считается, что в этом направлении двигаются положительные заряды, а в обратную сторону происходит движение свободных электронов.

На участке металлического проводника данный процесс будет выглядеть следующим образом. На каждом конце присутствует потенциал – ϕ1 и ϕ2, при этом ϕ1 > ϕ2. Следовательно, напряжение в этом месте равно U = ϕ1 – ϕ2. Немецкий ученый Ом практически установил зависимость, при которой с увеличением напряжения, возрастает и сила тока, протекающего через неполный участок.

Для каждого из проводников, отличающихся материалами, был построен свой график, отражающий зависимость силы тока от напряжения. В дальнейшем, эти графики стали известны, как вольт-амперные характеристики. В результате, было установлено наличие линейной связи между обеими величинами – силой тока и напряжением. То есть, они находятся в прямой пропорциональной зависимости.

Но, как показывают графики, все проводники обладают разными коэффициентами пропорциональности. Следовательно, у них разная степень проводимости, получившая название электрического сопротивления (R). Поэтому, чем ниже будет сопротивление проводника, тем выше сила тока, проходящего через него. При том, что напряжение для всех проводников будет одинаковым.

После всех опытов ученый смог окончательно сформулировать свой закон для участка цепи:

Сила тока в однородном проводнике на отдельном участке, находится в прямой пропорции с напряжением на этом же участке и в обратной пропорциональной зависимости с сопротивлением данного проводника.

Принятые единицы измерения

При использовании закона Ома для практических расчетов все математические вычисления выполняются в установленных единицах измерений для всех 3-х величин:

  • Сила тока – в амперах (А).
  • Напряжение – в вольтах (В/V).
  • Сопротивление – в омах (Ом).

Исходные данные и другие параметры, представленные в единицах, должны переводиться в общепринятые значения.

Действие основных единиц и физическое соблюдение закона Ома невозможно в следующих ситуациях:

  • Наличие высоких частот, при которых электрическое поле изменяется с большой скоростью.
  • Низкотемпературный режим и сверхпроводимость.
  • Сильно разогретые спирали ламп накаливания, когда отсутствует линейность напряжения.
  • Пробой проводника или диэлектрика, вызванный высоким напряжением.
  • Электронные и вакуумные лампы, заполненные газами.
  • Полупроводники с р-п-переходами, в том числе, диоды и транзисторы.

Сила тока

Сила тока возникает при наличии частиц со свободными зарядами. Они перемещаются через поперечное сечение проводника из одной точки в другую. Источник питания создает электрическое поле, под действием которого электроны начинают двигаться упорядоченно.

Таким образом, сила тока является количеством электричества, проходящего через определенное сечение за единицу времени. Увеличить этот показатель можно путем увеличения мощности источника тока или изъятия из цепи резистивных элементов.

Международная единица СИ для тока – ампер. Это довольно большая величина, поскольку для человека смертельно опасными считаются всего 0,1 А. В электротехнике малые величины могут выражаться в микро- и миллиамперах.

Определение силы тока можно окончательно сформировать в виде формулы I = q/t, в которой q является зарядом, проходящим через сечение, t – отрезок времени, затраченный на перемещение этого заряда.

Кроме того, сила тока может записываться с помощью основной формулы, когда известны значения напряжения и сопротивления. В числом виде она будет гласить следующее:

Сопротивление

Рассматривая закон ома для участка цепи, нельзя забывать о таком понятии, как сопротивление. Данная величина считается основной характеристикой проводника, поскольку именно сопротивление влияет на качество проводимости. Разные материалы проводят ток лучше или хуже. Это объясняется неоднородностью их структуры, различиями в кристаллических решетках. Поэтому в одних случаях электроны движутся с большей скоростью, а в других – с меньшей.

Собственным электрическим сопротивлением обладают все проводники, находящиеся в твердом, жидком, газообразном и плазменном состоянии. У каждого из них своя характеристика, называемая удельным сопротивлением. Данная величина отражает способность каждого материала к сопротивлению. За эталон принимается проводник длиной 1 м с поперечным сечением 1 м².

Чтобы найти сопротивление проводника из данного материала нужно воспользоваться формулой: R = ρ x (l/S). В ней l является длиной проводника, S – площадью его поперечного сечения, ρ – удельным сопротивлением.

По закону Ома на участке цепи эта величина определяется: R = U/I.

Напряжение

Напряжение относится к важным характеристикам электрического тока, протекающего в проводнике. С физической точки зрения, это работа электрического поля, которое перемещает заряд на какое-то расстояние. В электротехнике напряжением считается разность потенциалов между двумя точками участка цепи. На практике эта величина служит для определения возможности подключения к сети потребителей электроэнергии, продолжительность их работы в этом состоянии.

В электрической цепи напряжение возникает следующим образом:

  • Вначале цепь подключается к источнику тока путем соединения с двумя полюсами. Это может быть генератор или батарея.
  • На одном полюсе или клемме – избыточное количество электроном, а на другом – их недостает. Первый условно считается положительным, второй – отрицательным.
  • Электрическое поле источника энергии воздействуют на электроны положительного полюса и самого проводника, заставляя их двигаться в сторону отрицательного полюса и притягиваться к нему. Такое притяжение происходит из-за положительного заряда на этом полюсе, поскольку электроны здесь отсутствуют.
  • Между обеими клеммами возникает разность потенциалов с определенным значением, что приводит к упорядоченному движению электронов в проводниках и подключенных нагрузках. Постепенно избыток электронов положительного полюса уменьшается, соответственно, снижается и потенциал. Характерным примером служит аккумуляторная батарея. При подключении нагрузки, ее потенциал будет падать, вплоть до полной разрядки. Для восстановления первоначальных свойств, потребуется подзарядка от постороннего источника тока.

При неизменной мощности источника энергии, значение напряжения может быть разным под действием следующих факторов:

  1. Материал соединительных проводников. У каждого свой вольтамперный график.
  2. Количество потребителей, подключенных к сети.
  3. Температура окружающей среды.
  4. Качество монтажа самой сети.

Закон Ома для участка цепи – расчет цепей

Простейший вариант наглядно представлен на рисунке. Это однородный участок цепи открытого типа.

Для его описания применяется известная формула, которая будет иметь следующую форму:

  • I = U/R, где I является силой тока, U – напряжением, R – сопротивлением.

Данная формула является интегральной. С ее помощью хорошо видно, как при возрастании напряжения, увеличивается и сила тока. Но, если увеличить сопротивление, то сила тока, наоборот, будет понижаться.

На схеме изображен всего один элемент, обладающий сопротивлением. На практике, их может быть любое количество. Они могут соединяться последовательно, параллельно и смешанным способом.

Неоднородный участок цепи постоянного тока

Неоднородную структуру имеет такой участок цепи, где помимо проводников и элементов, присутствует источник тока. Его ЭДС необходимо учитывать при расчетах общей силы тока на данном участке.

Существует формула, которая дает определение основным параметрам и процессам неоднородного участка: q = q0 x n x V. Ее показатели характеризуются следующим образом:

  • В процессе перемещения зарядов (q) они приобретают определенную плотность. Ее показатели зависят от силы тока и площади поперечного сечения проводника (S).
  • В условиях определенной концентрации (n) можно точно указать численность единичных зарядов (q0), которые были перемещены за единичный отрезок времени.
  • Для расчетов проводник условно считается цилиндрическим участком, имеющим какой-то объем (V).

При подключении проводника к аккумулятору, последний через некоторое время будет разряжен. То есть, движение электронов постепенно замедляется и, в конце концов, прекратится совсем. Этому способствует молекулярная решетка проводника, оказывающая противодействие, столкновения электронов между собой и другие факторы. Для преодоления такого сопротивления следует дополнительно приложить определенные сторонние силы.

Во время расчетов эти силы суммируются с кулоновскими. Кроме того, для перенесения единичного заряда q из 1-й точки во 2-ю потребуется выполнение работы А1-2 или просто А12. С этой целью создается разница потенциалов (ϕ1 – ϕ2). Под действием источника постоянного тока возникает ЭДС, перемещающая заряды по цепи. Величина общего напряжения будет состоять из всех сил, отмеченных выше.

Полярность подключения к источнику постоянного тока нужно учитывать в расчетах. При изменении клемм будет меняться и ЭДС, ускоряющая или замедляющая перемещение зарядов.

Формулировка закона Ома для полной цепи

Закон Ома для полной цепи выражается поведением основных величин, был выведен опытным экспериментальным путем. Результатом стало выявление связей, объединяющих силу тока (I), электродвижущую силу – ЭДС (Е), внешнее (R) и внутреннее (r) сопротивления в цепи.

В теоретических расчетах с точки зрения чистой физики, в цепях предполагался так называемый идеальный источник постоянного тока. После того, как были проведены реальные исследования, выяснилось, что источник тока обладает собственным сопротивлением.

Формулировка закона Ома для полной цепи приобрела следующий вид: Сила тока находится в прямой пропорции с суммой ЭДС цепи, и в обратной пропорции с суммой сопротивлений самой цепи и источника тока.

Следует сразу же выяснить, что такое электродвижущая сила. По сути, она является физической величиной, характеризующей действие внешних сил источника ЭДС. Например, в простой батарейке перемещение зарядов происходит в результате химической реакции. То есть, данная сила двигает заряд, обеспечивая общее течение электрического тока.

Формулу закона Ома можно записать по-другому. ЭДС источника тока полной цепи представляет собой суммарные падения напряжений у самого источника и во внешней цепи:

Переменный ток

В отличие от цепей, по которым течет постоянный ток, в цепи переменного тока кроме активной нагрузки в виде потребителей, входят элементы с реактивным сопротивлением. Это различные типы катушек и конденсаторов, обладающих индуктивностью и емкостью.

С увеличением напряжения будет расти и сила тока. Однако, к активному сопротивлению здесь добавляются реактивные. С связи с этим, полный расклад для такой цепи будет выглядеть так:

  • I = U/Z, где I и U – это сила тока и напряжение, а Z – является полным сопротивлением цепи.

Показатель Z следует рассмотреть более подробно. Прежде всего, это сумма, включающая активное, индуктивное и емкостное сопротивления. То есть, на электрический ток оказывает влияние не только обычная омическая нагрузка, но также емкость (С) и индуктивность (L).

В результате, краткая формула полного сопротивления примет следующий вид:

Опытным путем было установлено, что в цепях переменного тока наблюдается несовпадение по фазе колебаний тока и напряжения. Величина этих несовпадений она же разница фаз находится под непосредственным влиянием индуктивности и емкости.

Использование на практике

Закон Ома лежит в основе всех расчетов производимых в электронике и электротехнике. Будущих специалистов с первых дней учат, как использовать так называемый треугольник. Чтобы найти какую-то искомую величину, должны выполняться простые арифметические действия. Если два оставшихся параметра находятся в одной строке – они перемножаются. Если на разных уровнях, то верхний всегда делится на нижний.

Практически данная схема выглядит так:

  • U = I x R, I = U/R, R = U/I.

Самые простые вычисления производятся на основе данных измерительных приборов. На участке цепи измерение тока выполняется амперметром, а напряжения – вольтметром. После этого найти сопротивление математическим путем не составит труда.

Для замеров сопротивления тоже есть прибор – омметр. Полученное выражение, подставляется в одну из формул, после чего находятся величины силы тока или напряжения. Точность омметра зависит от стабильности напряжения, подаваемого источником тока. Стабилизация проводится путем добавления резистора, выполняющего функцию регулятора.

Иногда требуется исключить из схемы какой-нибудь элемент без демонтажа. С этой целью проводится шунтирование, когда приходится устанавливать проводник на входных клеммах ненужного резистора. Ток начинает идти через шунт с меньшим сопротивлением, а напряжение на резисторе падает до нуля.

Закон Ома используется в защитных системах. Это делается с помощью уставок, обеспечивающих нормальную работу и отключающих питание лишь в аварийных ситуациях.

Формулы для закона Ома

Представленные на рисунке формулы, начали формироваться из основных формул для полной цепи и отдельного участка. С их помощью можно выполнять все основные расчеты, при составлении проектов и в других ситуациях. Формулы полностью пригодны для работы с цепями как постоянного, так и переменного тока.

Видеоинструкция

Закон Ома для участка цепи

Пожалуй, закон Ома для участка цепи является основой электротехники и электроники. Любое Пособие по физике для поступающих в вузы описывает Закон Ома и любой инженер должен его знать. Этот закон настолько прост, что его, по идее, должен знать и понимать каждый школьник. Однако я встречал людей с высшим техническим образованием, которые не знали как рассчитать простейшую электрическую цепь из двух резисторов. И это не шутка. Именно поэтому я решил написать небольшую статью, посвящённую Закону Ома для участка цепи. Постараюсь сделать это понятными словами.

Закон Ома для участка цепи определяет зависимость между силой тока в проводнике и напряжением (разностью потенциалов) между двумя точками этого проводника. Эти точки ещё называют сечениями. Почему? Проводник, каким бы он ни был (круглым, квадратным или любой другой формы) можно мысленно рассечь (см. рис. 1). Это и будет сечение. А ещё есть понятие площадь поперечного сечения (обычно, когда говорят «сечение» по отношению к проводнику, то как раз и подразумевают площадь поперечного сечения, но это уже другая тема).

Рис. 1. Сечение проводника.

В 1826 г. немецким учёным Георгом Омом (1787-1854) было замечено, что отношение разности потенциалов (напряжения) на концах металлического проводника к силе тока является величиной постоянной, то есть:

U/I = R = const
Эта величина зависит от геометрических свойств проводника (то есть от его размеров, в частности, от площади поперечного сечения), а также от его электрических свойств и температуры. Эта величина называется омическим (активным) сопротивлением, или просто сопротивлением.

Определение закона Ома для участка цепи следующее

Сила тока прямо пропорциональна разности потенциалов (напряжению) на концах участка цепи и обратно пропорциональна сопротивлению этого участка:
I = U/R
Где
U – напряжение на данном участке цепи
R – сопротивление данного участка цепи
Сопротивление проводника – это основная электрическая характеристика проводника. Эта характеристика определяет упорядоченное перемещение носителей тока в этом проводнике (или на участке цепи).

Единица измерения омического сопротивления в СИ – ом (Ом). Проводник имеет сопротивление 1 Ом, если при силе тока в этом проводнике 1 А разность потенциалов (напряжение) на его концах равна 1 В, то есть

 
1 Ом = 1 В / 1 А
Иными словами, если взять проводник, по которому течёт ток силой 1 А, отмерить отрезок этого проводника таким образом, чтобы напряжение на концах этого отрезка было равно 1 В, то сопротивление этого отрезка будет 1 Ом (рис. 2).

Рис. 2. Сопротивление проводника.

Как говаривал один известный товарищ – теория без практики мертва. Надеюсь, что всё прочитанное выше вы поняли. Но остался один вопрос – зачем это надо? Где можно применить полученные знания на практике? Приведу два простых примера, которые, однако, используются очень часто в электронике.

Делитель напряжения

Довольно часто приходится сталкиваться с необходимостью понизить напряжение, например, с 12 до 3 вольт. Сделать это можно с помощью двух резисторов (см. рис. 3). Если вы не знаете, что такое резисторы, то советую ознакомиться со статьёй РЕЗИСТОРЫ. Ну а если знаете, то дальше можете прочитать о том, как это сделать.

Задача, в общем-то, не сложная. Требуется подобрать два резистора таким образом, чтобы падение напряжения на одном из них составляло 3 вольта, а на втором – (12 – 3) = 9 вольт (для нашего примера). Кроме того, необходимо знать ток, который должен протекать в цепи. Допустим, что в нашем случае ток должен быть равен 50 мА (0,05 А). Тогда, используя закон Ома для участка цепи, вычислим полное сопротивление цепи, то есть общее сопротивление резисторов R1 и R2:

R = U/I = 12 В / 0,05 А = 240 Ом
Напомню, что все единицы измерения должны соответствовать принятым в СИ, то есть напряжение измеряется в ВОЛЬТАХ, ток – в АМПЕРАХ, а сопротивление – в ОМАХ.

Поскольку на любом участке цепи из последовательно включенных элементов ток одинаков, то вычислить сопротивление резисторов R2 и R1 не составит труда:

R1 = U1 / I = 9 / 0,05 = 180 Ом
R2 = U2 / I = 3 / 0,05 = 60 Ом
Ну вот и всё. Задача решена. Однако использовать такой делитель нужно с умом. Ведь любая нагрузка имеет своё сопротивление, которое называется входным сопротивлением. Это значит, что, подключив нагрузку к выходу делителя, мы тем самым уменьшим сопротивление цепи, а это, в свою очередь, увеличит ток в цепи и падение напряжения на резисторе R1 увеличится, а на нагрузке, соответственно, уменьшится. Что из этого следует? А следует из этого тот печальный факт, что сколь-нибудь мощную нагрузку подключать к выходу делителя нецелесообразно. Поэтому такие делители используются в основном, в электронных схемах, где протекают относительно небольшие токи.

Если интересно, то вы можете немного поэкспериментировать с делителем напряжения при помощи представленного ниже флэш-ролика (рис. 3). Для изменения входного напряжения и сопротивления резисторов воспользуйтесь соответственными “ползунками” или непосредственно введите данные в поля жёлтого цвета. Если флэш-ролик не отображается или не работает, то вам придётся настроить (или заменить) ваш браузер и/или установить (обновить) флэш-плеер.

Рис. 3. Делитель напряжения.

Как зажечь (но не сжечь) светодиод?

Светодиоды в наше время применяются очень широко – от простых устройств индикации до автомобильных фонарей и светофоров. Возможно, у вас возникала мысль поменять лампочки в автомобиле на светодиоды. Как бывалый автомобилист я вам этого делать не советую – возни много, а смысла мало. А вот как электронщик – помогу разобраться в премудростях включения светодиодов в электрическую цепь. Дело это несложное, но многие просто понятия не имеют, что и здесь нужно всё делать «по науке». А потом говорят, что светодиоды – вещь ненадёжная, хотя, как правило, выходят из строя светодиоды при правильной эксплуатации очень и очень редко. А вот при неправильной – ещё как. При желании сжечь светодиод можно моментально.

Надо сказать, что сейчас в магазинах довольно много разных «мигающих» и прочих светодиодов, которые на самом деле являются электронными устройствами, встроенными в корпус светодиодов. Такие устройства можно подключать непосредственно к источнику питания, без гасящего резистора. Однако мы здесь будем говорить об обычных светодиодах.

Схема включения светодиода показана на рис. 4. При включении светодиода в цепь постоянного тока необходимо соблюдать полярность (см. документацию на светодиод).

Итак, главное, что нам нужно знать:

  • Максимальное напряжение
  • Максимально допустимый ток светодиода
Максимально допустимый ток светодиода – это ток, при котором гарантируется долговременная работа светодиода без выхода его из строя. Не надо путать с кратковременным максимальным током. Эти данные берутся из справочных материалов. Но обычно ток светодиода составляет 10…20 мА.

Итак, допустим, что мы зачем-то хотим установить светодиод на автомобиль. Напряжение бортовой сети автомобиля при исправном оборудовании не может превышать 15 В. На это напряжение и будем рассчитывать. Допустим, что максимальный ток нашего светодиода составляет 20 мА (0,02 А). Далее нам необходимо учесть тот факт, что на любом полупроводнике (коим является и светодиод) падает какое-то напряжение. Для светодиодов это обычно 1,5…2 В. Примем его для нашего случая равным 2 В.

Поскольку резистор и светодиод будут подключены последовательно, то максимально возможное напряжение на резисторе для нашего примера будет

U1 = U – Ud = 15 – 2 = 13
Где
U1 – напряжение на гасящем резисторе R1
U – входное напряжение
Ud – напряжение, падающее на светодиоде
Теперь остаётся рассчитать резистор таким образом, чтобы через него протекал ток 20 мА при напряжении 13 В. Делаем это с помощью известного нам закона Ома для участка цепи:
R = U1 / I = 13 / 0,02 = 650 Ом
Ну вот и всё. Задача решена – для включения светодиода с заданными характеристиками нам потребуется резистор сопротивлением 650 Ом. Однако сопротивление – это не единственный параметр резистора. Резистор ещё должен иметь подходящую мощность. Кроме того, промышленностью не выпускаются резисторы сопротивлением 650 Ом (точнее, выпускаются, но для особых случаев). Но это уже другая история. Хотите знать больше? Читайте статью РЕЗИСТОРЫ.

Ну и кроме того предоставлю вам возможность закрепить полученный материал с помощью флэш-ролика (рис. 4).

Рис. 4. Подключение светодиода.

См. также:


Закон Ома для участка цепи с ЭДС

Для однозначного определения потенциала любой точки электрической цепи необходимо задать (произвольно) потенциал какой-нибудь одной точки. Выберем для схемы, представленной на рис. 1.7, а, . По определению потенциал точки 3 больше φ2 на значение ЭДС:



Ток I во внешней части простейшей электрической цепи, а в общем случае в любом пассивном элементе цепи, а значит, и схемы, направлен, как указывалось, от точки с более высоким потенциалом (3) к точке с более низким (1). Поэтому потенциал φ3 больше потенциала φ1:

Из (1.9) и (1.10) имеем

Аналогично можно написать формулу для тока участка сложной электрической схемы, состоящего из любого числа последовательно соединенных источников, представленных схемами замещения на рис. 1.7, и приемников при заданной разности потенциалов на концах этого участка (рис. 1.9). Ток I на участке схемы, содержащем источники ЭДС, может быть направлен от точки а к точке b или наоборот. Если направление тока заранее не известно, то для составления выражений, подобных (1.11), нужно выбрать направление тока произвольно. Такое произвольно выбранное направление тока условились называть положительным направлением и обозначать (как и выше действительное направление) стрелкой с просветом или отмечать индексами у буквы I.
Если принять за положительное направление тока I направление от точки а к точке b, то потенциал φb определяется через потенциал φa выражением

Из этого равенства следует

где — суммарное сопротивление участка схемы; — разность потенциалов или напряжение между выводами рассматриваемого участка, взятые по выбранному направлению тока;
— алгебраическая сумма ЭДС, действующих на том же участке, причем каждая ЭДС, направление действия которой совпадает с положительным направлением тока, записывается с положительным знаком, а в противном случае — с отрицательным.
Формула (1.12а) представляет собой закон Ома для участка цепи (схемы) с ЭДС (обобщенный закон Ома).
Если в результате расчета по (1.12а) для тока получается отрицательное значение, то это значит, что действительное направление тока не совпадает с выбранным положительным направлением (противоположно произвольно выбранному направлению).
Для напряжения между любыми точками цепи также может быть произвольно выбрано положительное направление. Положительное направление напряжения указывается индексами у буквы U или обозначается на схемах стрелкой, которую, например, для напряжения будем в дальнейшем ставить от точки а к точке b. Таким образом, напряжение, как и ток, при расчетах надо рассматривать как алгебраическую величину.
Для ЭДС источников напряжения и токов источников тока, если их действительные направления не известны, также выбираются произвольные положительные направления, которые указывают двойными индексами или обозначают стрелками.
На участках схемы с пассивными элементами положительные направления напряжения и тока будем всегда выбирать совпадающими. В этом случае отдельную стрелку для напряжения можно и не ставить.

Закон Ома для участка цепи

Эмпирический физический закон Ома для участка цепи установил Georg Simon Ohm почти два столетия назад, и получил название в честь этого знаменитого физика из Германии.

Именно этим законом определяется связь, которая возникает между электродвижущей силой источника, силой электротока и показателями сопротивления внутри проводника.

Классическая формулировка

Рассмотрим определение закона Ома.

Весь объём прикладной электротехника базируется на физическом законе Ома и представлен двумя основными формами:

  • учacтoк электрoцепи;
  • пoлнaя электрoцепь.

В классическом виде формулировка такого закона очень хорошо известна всем ещё со школьной скамьи: сила тока в электрической цепи является прямо пропорциональной показателям напряжения, а также обладает обратной пропорциональностью показателям сопротивления.

Интегральная форма такого закона следующая: I = U / R, где

  • I – показатель силы тока, который проходит через участок электроцепи при показателях сопротивления, обозначаемых R;
  • U – показатель напряжения.

Сопротивление или «R» принято считать наиболее важной характеристикой, что обусловлено зависимостью от таких параметров проводника.

Необходимо помнить, что такая форма закона, помимо растворов и металлов, справедлива исключительно для электрических цепей, в которых отсутствует реальный источник тока или он идеален.

Закон Ома для неоднородного участка цепи

Участок любой электрической цепи является неоднородным, если в него подключен источник электродвижущей силы. Таким образом, в этой электроцепи отражается воздействие посторонних сил.

I=ϕ21+ℰ/R+r, где

  • I — обозначение силы тока;
  • ϕ1 — обозначение пoтeнциaлa точки «A»;
  • ϕ2 — обозначение пoтeнциaлa точки «B»;
  • ℰ — показатели электродвижущей силы источника электрического тока в вольтах;
  • R — обозначение сопротивления участка;
  • r — внутреннее сопротивление источника тока.

Закон Ома для участка цепи

Для стандартных неоднородных участков характерным является наличие некоторой разницы потенциалов на концевой части электроцепи, а также внутренних скачков потенциалов.

В последние годы индукционный счетчик электроэнергии выходит из обращения и заменяется более новыми моделями. Однако, такие приборы учета все же используются. В статье рассмотрим, как правильно установить индукционный счетчик.

Сколько можно эксплуатировать электросчетчик по закону и кто должен его менять, читайте далее.

В некоторых случаях выгодно использовать счетчик день-ночь. В каких случаях выгодны двойные тарифы и как снимать показания, расскажем в этой теме.

Закон Ома для участка цепи

Согласно закону, сила тока на участке электрической цепи имеет прямую пропорциональность уровню напряжения и обратную пропорциональность электрическому сопротивлению на данном участке.

Например, если проводник обладает сопротивлением в 1 Ом и током в 1 Ампер, то его концах напряжение составит 1 Вольт, что означает падение напряжения или U = IR.

Если концы проводника обладают напряжением в 1 Вольт и током в 1 Ампер, то показатели сопротивления проводника составят 1 Ом или R = U/I

Участок цепи может быть представлен простой цепью с одним потребителем, параллельным подключением с парой потребителей, а также последовательным подключением и смешанным топом соединением, отличающимся совокупностью последовательного и параллельного подсоединения.

Закон Ома для участка цепи с ЭДС

ЭДС или электродвижущая сила является физической величиной, определяющей отношение посторонних сил в процессе перемещения заряда в сторону положительного полюса источника тока к величине данного заряда:

  • ε = Acт / q
  • ε – электродвижущая сила;
  • Acт – работа сторонних сил;
  • q – заряд;

Единица измерения электродвижущей силы – В (вольт)

Закон Ома для участка цепи с ЭДС

Аналитическое выражение закона для участка цепи с источником электродвижущей силы следующее:

  • I = (φa – φc + E) / R = (Uac + E) / R;
  • I = (φa – φc – E) / R = (Uac – E) / R;
  • I = E /(R+ r), где
  • Е – показатели электродвижущей силы.

Электрический ток в этом случае представляет собой алгебраическую сумму, полученную при сложении показателей напряжения на зажимах с показателями электродвижущей силы, разделенной на показатели сопротивления.

Правило, касающееся наличия одного ЭДС гласит: наличие постоянного тока предполагает поддерживание неизменной разности потенциалов на концах электрической цепи посредством стандартного источника тока.

Внутри источника электрического тока положительный заряд переносится в сторону большего потенциала с разделением зарядов на положительные и отрицательно заряженные частицы.

Закон Ома для участка цепи без ЭДС

Нужно учитывать, что для участка цепи, не содержащего источника электродвижущей силы, устанавливается связь, возникающая между электрическим током и показателями напряжения на данном участке.

I = Е / R

Согласно данной формуле, сила тока имеет прямую пропорциональность напряжению на концах участка электрической цепи и обратную пропорциональность показателям сопротивления на этом участке.

Источник электродвижущей силы

Благодаря внешним характеристикам ЭДС определяется степень зависимости показателей напряжения на зажимах источника и величины нагрузки.

Например, U= E-R0 х I, в соответствии с двумя точками: I=0 E=U и U=0 E=R0I.

Идеальный источник электродвижущей силы: R0=0, U=E. В этом случае величина нагрузки не оказывает воздействия на показатели напряжения.

Эмпирический физический закон Ома для полной цепи определяет два следствия:

  • В условиях r < < R, показатели силы тока в электрической цепи являются обратно пропорциональными показателям сопротивления. В некоторых случаях источник может являться источником напряжения.
  • В условиях r > > R, свойства внешней электрической цепи или величина нагрузки не оказывают влияния на показатели сила тока, а источник может назваться источником тока.

Электродвижущая сила, находящаяся в условиях замкнутой цепи с электрическим током, чаще всего равна: Е = Ir + IR = U(r) + U(R)

Таким образом, ЭДС можно определить, как скалярную физическую величину, отражающую воздействие сторонних сил неэлектрического происхождения.

Принятые единицы измерения

К основным, общепринятым единицам измерения, которые используются при выполнении любых расчётов, касающихся закона Ома, относятся:

  • отражение показателей напряжения в вольтах;
  • отражение показателей тока в амперах;
  • отражение показателей сопротивления в омах.

Любые другие величины перед тем, как приступить к расчётам, необходимо в обязательном порядке перевести в общепринятые.

Важно помнить, что физический закон Ома не соблюдается в следующих случаях:

  • высокие частоты, сопровождающиеся значительной скоростью изменений электрического поля;
  • при сверхпроводимости в условиях низкотемпературных режимов;
  • в лампах накаливания, что обусловлено ощутимым нагревом проводника и отсутствием линейности напряжения;
  • при наличии пробоя, вызванного воздействием на проводник или диэлектрик напряжения с высокими показателями;
  • внутри вакуумных источников света и электронных ламп, заполненных газовыми смесями, включая люминесцентные осветительные приборы.

Такое же правило распространяется на гетерогенные полупроводники и полупроводниковые приборы, характеризующиеся наличием p/n-переходов, включая диодные и транзисторные элементы.

Чем точнее счетчик измеряет затраченную электроэнергию, тем лучше. Класс точности электросчетчика отражает возможную погрешность прибора учета.

О такой величине как коэффициент трансформации счетчика электроэнергии, поговорим в этом материале.

Видео на тему

20.2: Закон Ома – сопротивление и простые схемы

Что управляет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он создает разность потенциалов \ (V \), которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

Закон Ома

Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению \ (В \). Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению :

\ [I \ propto V. \ label {20.3.1} \]

Это важное соотношение известно как закон Ома . Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток – следствием.Это эмпирический закон, подобный закону трения – явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

Сопротивление и простые схемы

Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением \ (R \). Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или

.

\ [I \ propto \ frac {1} {R}.\ label {20.3.2} \]

Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

\ [I = \ frac {V} {R}. \ label {20.3.3} \]

Это соотношение также называется законом Ома. Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими . К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах.Омические материалы имеют сопротивление \ (R \), которое не зависит от напряжения \ (V \) и тока \ (I \). Объект с простым сопротивлением называется резистором , даже если его сопротивление невелико. Единица измерения сопротивления – Ом, и обозначается символом \ (\ Omega \) (греческая омега в верхнем регистре). Перестановка \ (I = V / R \) дает \ (R = V / I \), и поэтому единицы сопротивления равны 1 Ом = 1 вольт на ампер:

\ [1 \ Omega = 1 \ frac {V} {A}. \ label {20.3.4} \]

На рисунке \ (\ PageIndex {1} \) показана схема простой схемы.Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в \ (R \).

Рисунок \ (\ PageIndex {1} \): Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

Пример \ (\ PageIndex {1} \): Расчет сопротивления: Автомобильная фара:

Каково сопротивление автомобильной фары, через которую проходит 2,50 А при напряжении 12,0 В?

Стратегия

Мы можем изменить закон Ома, как указано в \ (I = V / R \), и использовать его для определения сопротивления.

Решение:

Преобразование уравнения \ ref {20.3.3} и замена известных значений дает

\ [\ begin {align *} R & = \ frac {V} {I} \\ [5pt] & = \ frac {12.0 V} {2,50 A} \\ [5pt] & = 4,80 \ Omega. \ end {align *} \]

Обсуждение:

Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары. Как мы увидим, сопротивление металлов обычно увеличивается на , а увеличивает температуру , поэтому лампа имеет меньшее сопротивление при первом включении и потребляет значительно больший ток во время короткого периода прогрева.

Сопротивление может быть разным.{-5} \ Omega \), а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление».

Дополнительное понимание достигается путем решения \ (I = V / R \) для \ (V \), что дает

\ [V = ИК. \ label {20.3.5} \]

Выражение для \ (V \) можно интерпретировать как падение напряжения на резисторе, вызванное минимумом тока \ (I \). Для этого напряжения часто используется фраза \ (IR \) drop .Например, у фары в примере падение \ (IR \) составляет 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток – поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления. Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию).В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку \ (PE = q \ Delta V \), и то же самое \ (q \) проходит через каждую . Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразованная резистором, равны (Рисунок \ (\ PageIndex {2} \)).

Рисунок \ (\ PageIndex {2} \): Падение напряжения на резисторе в простой схеме равно выходному напряжению батареи.

ПОДКЛЮЧЕНИЕ: СОХРАНЕНИЕ ЭНЕРГИИ

В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму.Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму только с помощью резистора. Мы обнаружим, что сохранение энергии имеет и другие важные применения в схемах и является мощным инструментом анализа схем.

закон Ома | физика | Britannica

Закон Ома , описание взаимосвязи между током, напряжением и сопротивлением. Величина постоянного тока через большое количество материалов прямо пропорциональна разности потенциалов или напряжению на материалах.Таким образом, если напряжение В (в единицах вольт) между двумя концами провода, сделанного из одного из этих материалов, утроится, ток I (амперы) также утроится; и частное V / I остается постоянным. Частное V / I для данного куска материала называется его сопротивлением, R, , измеренным в единицах, называемых омами. Сопротивление материалов, для которых действует закон Ома, не изменяется в огромных диапазонах напряжения и тока.Математически закон Ома может быть выражен как V / I = R . То, что сопротивление или отношение напряжения к току для всей или части электрической цепи при фиксированной температуре обычно является постоянным, было установлено к 1827 году в результате исследований немецкого физика Георга Симона Ома.

Альтернативные утверждения закона Ома заключаются в том, что ток I в проводнике равен разности потенциалов В на проводнике, деленной на сопротивление проводника, или просто I = В / R , и что разность потенциалов в проводнике равна произведению тока в проводнике и его сопротивления, В = IR .В цепи, в которой разность потенциалов или напряжение постоянна, ток можно уменьшить, добавив большее сопротивление, или увеличить, удалив некоторое сопротивление. Закон Ома также может быть выражен в терминах электродвижущей силы или напряжения E источника электроэнергии, такого как батарея. Например, I = E / R .

С изменениями закон Ома применяется также к цепям переменного тока, в которых соотношение между напряжением и током более сложное, чем для постоянного тока.Именно из-за того, что ток меняется, помимо сопротивления, возникают другие формы противодействия току, называемые реактивным сопротивлением. Комбинация сопротивления и реактивного сопротивления называется импедансом, Z. Когда полное сопротивление, эквивалентное отношению напряжения к току, в цепи переменного тока является постоянным, обычно применяется закон Ома. Например, V / I = Z .

С дальнейшими изменениями закон Ома был расширен до постоянного отношения магнитодвижущей силы к магнитному потоку в магнитной цепи.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

19,1 Закон Ома – Физика

Постоянный и переменный ток

Так же, как вода течет с большой высоты на низкую, электроны, которые могут свободно перемещаться, будут перемещаться из места с низким потенциалом в место с высоким потенциалом. Батарея имеет две клеммы с разным потенциалом. Если клеммы соединены проводом, электрический ток (заряды) будет течь, как показано на рисунке 19.2. Затем электроны будут перемещаться от низкопотенциальной клеммы батареи (отрицательный конец ) по проводу и попадут в высокопотенциальную клемму батареи (положительный конец ).

Рис. 19.2 У батареи есть провод, соединяющий положительную и отрицательную клеммы, который позволяет электронам перемещаться от отрицательной клеммы к положительной.

Поддержка учителя

Поддержка учителя

Подчеркните, что электроны движутся от отрицательной клеммы к положительной, потому что они несут отрицательный заряд, поэтому они отталкиваются кулоновской силой от отрицательной клеммы.

Электрический ток – это скорость движения электрического заряда. Большой ток, такой как тот, который используется для запуска двигателя грузовика, перемещает большую величину очень быстро, тогда как небольшой ток, такой как тот, который используется для работы портативного калькулятора, перемещает небольшое количество заряда медленнее. В форме уравнения электрический ток I определяется как

, где ΔQΔQ – это количество заряда, которое проходит через заданную область, а ΔtΔt – время, за которое заряд проходит мимо этой области.Единицей измерения электрического тока в системе СИ является ампер (А), названный в честь французского физика Андре-Мари Ампера (1775–1836). Один ампер – это один кулон в секунду, или

Электрический ток, движущийся по проволоке, во многом похож на ток воды, движущийся по трубе. Чтобы определить поток воды через трубу, мы можем подсчитать количество молекул воды, которые проходят мимо данного участка трубы. Как показано на рисунке 19.3, электрический ток очень похож. Считаем количество электрических зарядов, протекающих по участку проводника; в данном случае провод.

Рис. 19.3 Электрический ток, движущийся по этому проводу, – это заряд, который проходит через поперечное сечение A, деленный на время, необходимое этому заряду, чтобы пройти через участок A .

Поддержка учителя

Поддержка учителя

Обратите внимание на то, что носители заряда на этом рисунке положительны, поэтому они движутся в том же направлении, что и электрический ток.

Предположим, что каждая частица q на рисунке 19.3 несет заряд q = 1nCq = 1nC, и в этом случае общий заряд будет равен ΔQ = 5q = 5nCΔQ = 5q = 5nC.Если эти заряды пройдут мимо области A за время Δt = 1 нсΔt = 1 нс, то ток будет

I = ΔQΔt = 5nC1ns = 5A.I = ΔQΔt = 5nC1ns = 5A.

19,1

Обратите внимание, что мы присвоили зарядам на рис. 19.3 положительный заряд. Обычно отрицательные заряды – электроны – являются подвижным зарядом в проводах, как показано на рисунке 19.2. Положительные заряды обычно застревают в твердых телах и не могут свободно перемещаться. Однако, поскольку положительный ток, движущийся вправо, аналогичен отрицательному току такой же величины, движущемуся влево, как показано на рисунке 19.4 мы определяем, что обычный ток течет в том направлении, в котором протекал бы положительный заряд, если бы он мог двигаться. Таким образом, если не указано иное, предполагается, что электрический ток состоит из положительных зарядов.

Также обратите внимание, что один кулон – это значительная величина электрического заряда, поэтому 5 А – это очень большой ток. Чаще всего вы увидите ток порядка миллиампер (мА).

Рис. 19.4 (a) Электрическое поле направлено вправо, ток движется вправо, а положительные заряды движутся вправо.(б) Эквивалентная ситуация, но отрицательные заряды движутся влево. Электрическое поле и ток по-прежнему справа.

Поддержка учителя

Поддержка учителя

Укажите, что электрическое поле одинаково в обоих случаях, и что ток направлен в направлении электрического поля.

Предупреждение о заблуждении

Убедитесь, что учащиеся понимают, что ток – это , определяемый как как направление, в котором будет течь положительный заряд, даже если электроны чаще всего являются мобильными носителями заряда.Математически результат один и тот же, независимо от того, предположим ли мы, что положительный заряд течет в одну сторону или отрицательный заряд течет в противоположном направлении. Однако физически ситуация совершенно иная (хотя разница уменьшается после определения отверстий).

Snap Lab

Vegetable Current

Эта лабораторная работа помогает студентам понять, как работает ток. Учитывая, что частицы, заключенные в трубе, не могут занимать одно и то же пространство, толкание большего количества частиц в один конец трубы приведет к вытеснению того же количества частиц из противоположного конца.Это создает поток частиц.

Найдите солому и сушеный горох, которые могут свободно перемещаться в соломе. Положите соломинку на стол и засыпьте ее горошком. Когда вы вдавливаете одну горошину с одного конца, другая горошина должна выходить из другого конца. Эта демонстрация представляет собой модель электрического тока. Определите часть модели, которая представляет электроны, и часть модели, которая представляет собой подачу электроэнергии. В течение 30 секунд подсчитайте, сколько горошин вы можете протолкнуть через соломинку.Когда закончите, вычислите гороха current , разделив количество горошин на время в секундах.

Обратите внимание, что поток гороха основан на том, что горох физически сталкивается друг с другом; электроны толкают друг друга за счет взаимно отталкивающих электростатических сил.

Проверка захвата

Предположим, у вас есть резервуар с горохом, каждый заправлен до 1 нКл. Если вы пропустите горошек через соломинку со скоростью четыре горошины в секунду, как бы вы рассчитали электрический ток, переносимый заряженным горошком?

  1. Измерьте длину соломинки, затем разделите на расход гороха и умножьте на расход на горошину.
  2. Умножьте расход гороха на расход гороха.
  3. Измерьте длину соломинки, затем умножьте на скорость потока гороха и разделите на количество заряда на горошину.
  4. Разделите скорость потока гороха на расход на горох.

Направление обычного тока – это направление, в котором течет положительный заряд . В зависимости от ситуации могут перемещаться положительные заряды, отрицательные заряды или и то, и другое.В металлических проводах, как мы видели, ток переносится электронами, поэтому отрицательные заряды движутся. В ионных растворах, таких как соленая вода, движутся как положительно заряженные, так и отрицательно заряженные ионы. То же самое и с нервными клетками. Чистые положительные токи относительно редки, но встречаются. История отмечает, что американский политик и ученый Бенджамин Франклин описал ток как направление, в котором положительные заряды проходят через провод. Он назвал тип заряда, связанный с электронами, отрицательным задолго до того, как стало известно, что они переносят ток во многих ситуациях.

Когда электроны движутся по металлической проволоке, они сталкиваются с препятствиями, такими как другие электроны, атомы, примеси и т. Д. Электроны рассеиваются от этих препятствий, как показано на рисунке 19.5. Обычно электроны теряют энергию при каждом взаимодействии. Таким образом, чтобы электроны двигались, требуется сила, создаваемая электрическим полем. Электрическое поле в проводе направлено от конца провода с более высоким потенциалом к ​​концу провода с более низким потенциалом. Электроны, несущие отрицательный заряд, движутся в среднем (или дрейфа ) в направлении, противоположном электрическому полю, как показано на рисунке 19.5.

Рис. 19.5. Свободные электроны, движущиеся в проводнике, совершают множество столкновений с другими электронами и атомами. Показан путь одного электрона. Средняя скорость свободных электронов находится в направлении, противоположном электрическому полю. Столкновения обычно передают энергию проводнику, поэтому для поддержания постоянного тока требуется постоянный запас энергии.

До сих пор мы обсуждали ток, который постоянно движется в одном направлении. Это называется постоянным током, потому что электрический заряд течет только в одном направлении.Постоянный ток часто называют током DC .

Многие источники электроэнергии, такие как плотина гидроэлектростанции, показанная в начале этой главы, вырабатывают переменный ток, направление которого меняется взад и вперед. Переменный ток часто называют Переменный ток . Переменный ток перемещается вперед и назад через равные промежутки времени, как показано на рисунке 19.6. Переменный ток, который исходит из обычной розетки, не меняет направление внезапно.Скорее, он плавно увеличивается до максимального тока, а затем плавно уменьшается до нуля. Затем он снова растет, но в противоположном направлении, пока не достигнет того же максимального значения. После этого он плавно уменьшается до нуля, и цикл начинается снова.

Рисунок 19.6 При переменном токе направление тока меняется на противоположное через равные промежутки времени. График вверху показывает зависимость тока от времени. Отрицательные максимумы соответствуют движению тока влево.Положительные максимумы соответствуют току, движущемуся вправо. Ток регулярно и плавно чередуется между этими двумя максимумами.

Поддержка учителей

Поддержка учителей

Помогите ученикам интерпретировать график, подчеркнув, что ток не меняет направление мгновенно, а вместо этого плавно переходит от одного максимума к противоположному максимуму и обратно. Объясните, что четыре изображения внизу показывают ток в соответствующих максимумах. Обратите внимание, что для упрощения интерпретации операторы мобильной связи на изображении считаются положительными.

Устройства, использующие переменный ток, включают пылесосы, вентиляторы, электроинструменты, фены и многие другие. Эти устройства получают необходимую мощность, когда вы подключаете их к розетке. Настенная розетка подключена к электросети, которая обеспечивает переменный потенциал (потенциал переменного тока). Когда ваше устройство подключено к сети, потенциал переменного тока толкает заряды вперед и назад в цепи устройства, создавая переменный ток.

Однако во многих устройствах используется постоянный ток, например в компьютерах, сотовых телефонах, фонариках и автомобилях.Одним из источников постоянного тока является аккумулятор, который обеспечивает постоянный потенциал (потенциал постоянного тока) между своими выводами. Когда ваше устройство подключено к батарее, потенциал постоянного тока толкает заряд в одном направлении через цепь вашего устройства, создавая постоянный ток. Другой способ получения постоянного тока – использование трансформатора, который преобразует переменный потенциал в постоянный. Маленькие трансформаторы, которые вы можете подключить к розетке, используются для зарядки вашего ноутбука, мобильного телефона или другого электронного устройства. Люди обычно называют это зарядным устройством или батареей , но это трансформатор, который преобразует переменное напряжение в постоянное.В следующий раз, когда кто-то попросит одолжить зарядное устройство для ноутбука, скажите им, что у вас нет зарядного устройства для ноутбука, но они могут одолжить ваш преобразователь.

Рабочий пример

Ток при ударе молнии

Удар молнии может передать до 10201020 электронов из облака на землю. Если удар длится 2 мс, каков средний электрический ток в молнии?

Стратегия

Используйте определение тока, I = ΔQΔtI = ΔQΔt. Заряд ΔQΔQ из 10201020 электронов ΔQ = neΔQ = ne, где n = 1020n = 1020 – количество электронов, а e = −1.60 · 10−19Ce = −1.60 · 10−19C – заряд электрона. Это дает

ΔQ = 1020 × (-1,60 × 10-19 ° C) = -16,0 ° C. ΔQ = 1020 × (-1,60 × 10-19 ° C) = -16,0 ° C.

19,2

Время Δt = 2 × 10–3 с Δt = 2 × 10–3 с – это продолжительность удара молнии.

Решение

Ток при ударе молнии

I = ΔQΔt = −16,0C2 × 10−3s = −8kA.I = ΔQΔt = −16,0C2 × 10−3s = −8kA.

19,3

Обсуждение

Отрицательный знак отражает тот факт, что электроны несут отрицательный заряд.Таким образом, хотя электроны текут от облака к земле, положительный ток должен течь от земли к облаку.

Рабочий пример

Средний ток для заряда конденсатора

В цепи, содержащей конденсатор и резистор, зарядка конденсатора емкостью 16 мкФ с использованием батареи 9 В. занимает 1 мин. Какой средний ток в это время?

Стратегия

Мы можем определить заряд конденсатора, используя определение емкости: C = QVC = QV.Когда конденсатор заряжается 9-вольтовой батареей, напряжение на конденсаторе будет V = 9VV = 9V. Это дает заряд

Подставляя это выражение для заряда в уравнение для тока, I = ΔQΔtI = ΔQΔt, мы можем найти средний ток.

Решение

Средний ток

I = ΔQΔt = CVΔt = (16 × 10−6F) (9V) 60s = 2,4 × 10−6A = 2,4 мкА I = ΔQΔt = CVΔt = (16 × 10−6F) (9V) 60s = 2,4 × 10−6A = 2,4 мкА.

19,5

Обсуждение

Этот небольшой ток типичен для тока, встречающегося в таких цепях.

Сопротивление и закон Ома

Как упоминалось ранее, электрический ток в проводе во многом похож на воду, текущую по трубе. На поток воды, который может течь по трубе, влияют препятствия в трубе, такие как засорения и узкие участки в трубе. Эти препятствия замедляют ток через трубу. Точно так же электрический ток в проводе может замедляться многими факторами, включая примеси в металле провода или столкновения между зарядами в материале.Эти факторы создают сопротивление электрическому току. Сопротивление – это описание того, насколько провод или другой электрический компонент препятствует прохождению через него заряда. В XIX веке немецкий физик Георг Симон Ом (1787–1854) экспериментально обнаружил, что ток через проводник пропорционален падению напряжения на проводнике с током.

Константа пропорциональности – это сопротивление материала R , что приводит к

Это соотношение называется законом Ома.Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток – следствием. Закон Ома – это эмпирический закон, подобный закону трения, что означает, что это экспериментально наблюдаемое явление. Единицы сопротивления – вольт на ампер или В / А. Мы называем V / A Ом , что обозначается заглавной греческой буквой омега (ΩΩ). Таким образом,

1 Ом = 1 В / А (1,4). 1 Ом = 1 В / А (1,4). Закон

Ома справедлив для большинства материалов и при обычных температурах. При очень низких температурах сопротивление может упасть до нуля (сверхпроводимость).При очень высоких температурах тепловое движение атомов в материале препятствует потоку электронов, увеличивая сопротивление. Многие вещества, для которых действует закон Ома, называются омическими. Омические материалы включают в себя хорошие проводники, такие как медь, алюминий и серебро, а также некоторые плохие проводники при определенных обстоятельствах. Сопротивление омических материалов остается практически неизменным в широком диапазоне напряжения и тока.

Watch Physics

Знакомство с электричеством, цепями, током и сопротивлением

В этом видео представлен закон Ома и простая электрическая схема.Говорящий использует аналогию давления, чтобы описать, как электрический потенциал заставляет заряд двигаться. Он обращается к электрическому потенциалу как , электрическому давлению . Другой способ размышления об электрическом потенциале – это представить, что множество частиц одного знака скопилось в небольшом замкнутом пространстве. Поскольку эти заряды имеют одинаковый знак (все они положительные или все отрицательные), каждый заряд отталкивает другие вокруг себя. Это означает, что множество зарядов постоянно выталкивается за пределы пространства.Полная электрическая цепь подобна открытию двери в небольшом пространстве: какие бы частицы ни толкали к двери, теперь у них есть способ убежать. Чем выше электрический потенциал, тем сильнее каждая частица толкает друг друга.

Проверка захвата

Если вместо одного резистора R на схеме, показанной в видео, нарисовать два резистора с сопротивлением R каждый, что вы можете сказать о токе, протекающем в цепи?

  1. Сила тока в цепи должна уменьшиться вдвое.
  2. Количество тока в цепи должно увеличиться вдвое.
  3. Ток в цепи должен оставаться неизменным.
  4. Количество тока в цепи увеличится вдвое.

Виртуальная физика

Закон Ома

Это моделирование имитирует простую схему с батареями, обеспечивающими источник напряжения, и резистором, подключенным к батареям.Посмотрите, как на ток влияет изменение сопротивления и / или напряжения. Обратите внимание, что сопротивление моделируется как элемент, содержащий малых рассеивающих центров . Они представляют собой загрязнения или другие препятствия, препятствующие прохождению тока.

Проверка захвата

Исследования PhET: закон Ома. Посмотрите, как уравнение закона Ома соотносится с простой схемой. Отрегулируйте напряжение и сопротивление и посмотрите, как изменяется ток по закону Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

В цепи, если сопротивление оставить постоянным, а напряжение удвоить (например, с 3 \, \ text {V} до 6 \, \ text {V}), как изменится ток? Соответствует ли это закону Ома?

  1. Сила тока удвоится. Это соответствует закону Ома, поскольку ток пропорционален напряжению.
  2. Ток удвоится. Это не соответствует закону Ома, поскольку сила тока пропорциональна напряжению.
  3. Ток увеличится вдвое.Это соответствует закону Ома, поскольку ток пропорционален напряжению.
  4. Ток уменьшится вдвое. Это не соответствует закону Ома, поскольку сила тока пропорциональна напряжению.

Рабочий пример

Сопротивление фары

Каково сопротивление автомобильной фары, через которую проходит 2,50 А при напряжении 12,0 В?

Стратегия

Закон

Ома говорит нам, что Vheadlight = IRheadlightVheadlight = IRheadlight.Падение напряжения при прохождении через фару – это просто повышение напряжения, обеспечиваемое аккумулятором, Vheadlight = VbatteryVheadlight = Vbattery. Мы можем использовать это уравнение и изменить закон Ома, чтобы найти сопротивление RheadlightRheadlight фары.

Решение

Решение закона Ома для сопротивления фары дает

Vheadlight = IRheadlight Vbattery = IRheadlight Rheadlight = Vbattery I = 12V2.5A = 4.8Ω. Vheadlight = IRheadlight Vbattery = IRheadlightRheadlight = VbatteryI = 12 В2.5А = 4,8 Ом.

19,6

Обсуждение

Это относительно небольшое сопротивление. Как мы увидим ниже, сопротивление в цепях обычно измеряется в кВт или МВт.

Рабочий пример

Определите сопротивление по графику “ток-напряжение”

Предположим, вы прикладываете к цепи несколько различных напряжений и измеряете ток, протекающий по цепи. График результатов показан на рисунке 19.7. Какое сопротивление цепи?

Рисунок 19.7 Линия показывает зависимость тока от напряжения. Обратите внимание, что ток указан в миллиамперах. Например, при 3 В ток составляет 0,003 А или 3 мА.

Стратегия

График показывает, что ток пропорционален напряжению, что соответствует закону Ома. По закону Ома (V = IRV = IR) константа пропорциональности – это сопротивление R . Поскольку на графике показан ток как функция напряжения, мы должны изменить закон Ома в следующей форме: I = VR = 1R × VI = VR = 1R × V. Это показывает, что наклон линии I по сравнению с V составляет 1R1R.Таким образом, если мы найдем наклон линии на рисунке 19.7, мы можем вычислить сопротивление R .

Решение

Наклон линии равен подъему , разделенному на подъем . Глядя на нижний левый квадрат сетки, мы видим, что линия поднимается на 1 мА (0,001 А) и проходит через напряжение 1 В. Таким образом, наклон линии равен

. наклон = 0,001A1V. наклон = 0,001A1V.

19,7

Приравнивая наклон к 1R1R и решая для R , получаем

1R = 0.001A1R = 1V0.001A = 1000Ω1R = 0.001A1R = 1V0.001A = 1000Ω

19,8

или 1 кОм.

Обсуждение

Это сопротивление больше, чем то, что мы обнаружили в предыдущем примере. Подобные сопротивления часто встречаются в электрических цепях, как мы узнаем в следующем разделе. Обратите внимание, что если бы линия на рисунке 19.7 не была прямой, то материал не был бы омическим, и мы не смогли бы использовать закон Ома. Материалы, которые не подчиняются закону Ома, называются безомными.

Раздел 3. Закон Ома

Здравствуйте и добро пожаловать в этот раздел наставника по анализу цепей. В этом разделе мы собираемся осветить одну из самых важных вещей, которую вы узнаете во всех своих исследованиях электрических цепей. Это действительно служит основой для всего, что мы собираемся осветить, помимо этого. Это то, что мы называем законом Ома. По сути, это связь между током, напряжением и сопротивлением. Мы уже говорили об этом в разделе 1, мы говорили о концепции тока, то есть о электричестве, которое на самом деле протекает в цепи.Вот что движется. Мы говорили о том, что напряжение является толкающей силой, которая толкает этот ток в цепи, и мы говорили о сопротивлении, которое находится на пути, пытаясь замедлить поток этого тока, верно?

Закон Ома – это математика, лежащая в основе всего, о чем мы говорили в разделе 1, так что вы уже знаете, что должен утверждать закон Ома, но здесь мы поговорим об этом математически.Мы также рассмотрим несколько действительно простых схем, чтобы показать вам, как их использовать. Поверьте, когда я говорю «простые», это будут очень простые схемы, но есть пара вещей, на которые я действительно хочу указать вам, и которые вам очень удобно с самого начала, так что по мере того, как мы будем строить сложность и разветвление и создание этих сложных на вид схем, вы получите действительно хорошую фундаментальную основу. Я собираюсь указать на эти вещи по ходу дела.

Хорошо, итак закон Ома… это, наверное, одно из самых простых отношений, которое вы когда-либо видели. Закон Ома. Хорошо, это очень просто. Мы видим, что V равно IR. V невероятно похож на IR. Ладно, вы, наверное, догадались, что многое из этого представляет. Этот парень – напряжение. V представляет напряжение, верно? Мы говорили об этом раньше. Я, мы также говорили, что это представляет собой ток, так что это то, что течет в цепи. Тогда, как вы можете догадаться, R – это сопротивление. Вот и все, дамы и господа. Это, вероятно, самое простое алгебраическое уравнение, которое вы можете придумать.V невероятно похож на IR. Напряжение в цепи, справа, в точности равно току, протекающему через какое-то устройство в цепи, умноженному на сопротивление этого объекта.

Когда вы думаете о законе Ома, вам действительно следует думать о нем с точки зрения его применения к любому конкретному элементу в цепи. Представьте себе схему. У вас есть источник – батарея или что-то в этом роде, выталкивающее электричество, и есть еще кое-что.В остальном может быть много-много вещей, может быть вентилятор, может быть лампочка, что угодно. Изучая схемы, мы начнем с резисторов, резистивных цепей. Подумайте о некоторых резисторах, вот там. Ток будет проходить через эти сопротивления, поэтому какой бы ни был ток, протекающий через резистор, умноженный на само значение сопротивления в Ом, скажет вам, какое падение напряжения, какое напряжение на этом резисторе.

Хорошо, я думаю, давайте поговорим об этом немного подробнее, и вы также увидите это с некоторыми фотографиями.Теперь, прежде чем мы дойдем до этого момента, в большинстве книг будет представлен закон Ома, согласно которому V равно IR. Теперь это простое алгебраическое уравнение. Вы можете решить для I, если хотите рассчитать ток. Вы можете просто разделить обе стороны на R. Я был бы равен V / R. Много раз в книгах… Честно говоря, я сам люблю это вспоминать. I равно V / R. Это точно такое же отношение. Это не похоже на отдельное уравнение от этого, это одно и то же. Это отношение. Когда вы решаете для тока, это означает, что вы делите на сопротивление, вот так.Если вы хотите найти сопротивление, которое вы просто разделите на ток, это будет V / I.

Хорошо, но об этой конкретной форме приятно говорить устно, потому что вы можете очень легко увидеть несколько хороших моментов в законе Ома. Думаю об этом. Мы говорим, что если у вас есть объект в вашей цепи, во-первых, вы должны запомнить Ом-

.

Закон Ома – Университетская физика, том 2

Цели обучения

К концу этого раздела вы сможете:

  • Опишите закон Ома
  • Признать, когда закон Ома применим, а когда нет

До сих пор в этой главе мы обсуждали три электрических свойства: ток, напряжение и сопротивление.Оказывается, что многие материалы демонстрируют простую взаимосвязь между значениями этих свойств, известную как закон Ома. Многие другие материалы не демонстрируют эту взаимосвязь, поэтому, несмотря на то, что они называются законом Ома, они не считаются законом природы, как законы Ньютона или законы термодинамики. Но это очень полезно для расчетов с материалами, которые подчиняются закону Ома.

Описание закона Ома

Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В .Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению :

Это важное соотношение лежит в основе закона Ома. Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток – следствием. Это эмпирический закон, который означает, что это экспериментально наблюдаемое явление, подобное трению. Такая линейная зависимость возникает не всегда.Любой материал, компонент или устройство, подчиняющееся закону Ома, где ток, протекающий через устройство, пропорционален приложенному напряжению, известен как омический материал или омический компонент. Любой материал или компонент, который не подчиняется закону Ома, известен как неомический материал или неомный компонент.

Ом эксперимент

В статье, опубликованной в 1827 году, Георг Ом описал эксперимент, в котором он измерял напряжение и ток в различных простых электрических цепях, содержащих провода различной длины.Аналогичный эксперимент показан на (Рисунок). Этот эксперимент используется для наблюдения за током через резистор, возникающим в результате приложенного напряжения. В этой простой схеме резистор включен последовательно с батареей. Напряжение измеряется вольтметром, который необходимо разместить на резисторе (параллельно резистору). Ток измеряется амперметром, который должен быть на одной линии с резистором (последовательно с резистором).

Экспериментальная установка, используемая для определения того, является ли резистор омическим или неомическим устройством.(a) Когда батарея подключена, ток течет по часовой стрелке, а вольтметр и амперметр показывают положительные значения. (b) Когда выводы батареи переключаются, ток течет против часовой стрелки, а вольтметр и амперметр показывают отрицательные показания.

В этой обновленной версии оригинального эксперимента Ома было выполнено несколько измерений тока для нескольких различных напряжений. Когда батарея была подключена, как показано на (Рисунок) (а), ток протекал по часовой стрелке, и показания вольтметра и амперметра были положительными.Изменится ли поведение тока, если ток течет в обратном направлении? Чтобы заставить ток течь в обратном направлении, выводы батареи можно переключить. При переключении выводов батареи показания вольтметра и амперметра были отрицательными, поскольку ток протекал в обратном направлении, в данном случае против часовой стрелки. Результаты аналогичного эксперимента показаны на (Рисунок).

Резистор вставлен в цепь с батареей.Приложенное напряжение изменяется от -10,00 В до +10,00 В с шагом 1,00 В. На графике показаны значения напряжения в зависимости от тока, типичные для случайного экспериментатора.

В этом эксперименте напряжение, приложенное к резистору, изменяется от -10,00 до +10,00 В с шагом 1,00 В. Измеряются ток через резистор и напряжение на резисторе. Построен график зависимости напряжения от тока, и результат будет приблизительно линейным.Наклон линии – это сопротивление или напряжение, деленное на ток. Этот результат известен как закон Ома:

, где В – напряжение, измеренное в вольтах на рассматриваемом объекте, I – ток, измеренный через объект в амперах, а R – сопротивление в единицах Ом. Как указывалось ранее, любое устройство, которое показывает линейную зависимость между напряжением и током, известно как омическое устройство. Следовательно, резистор – это омическое устройство.

Проверьте свое понимание Напряжение, подаваемое в ваш дом, изменяется как. Если к этому напряжению подключить резистор, будет ли по-прежнему действовать закон Ома?

Да, закон Ома все еще в силе. В каждый момент времени ток равен, поэтому ток также является функцией времени.

Неомные устройства не показывают линейной зависимости между напряжением и током. Одним из таких устройств является элемент полупроводниковой схемы, известный как диод.Диод – это схемное устройство, которое позволяет току течь только в одном направлении. Схема простой схемы, состоящей из батареи, диода и резистора, показана на (рисунок). Хотя мы не рассматриваем теорию диода в этом разделе, диод можно протестировать, чтобы определить, является ли он омическим или неомическим устройством.

Диод – это полупроводниковое устройство, которое пропускает ток, только если диод смещен в прямом направлении, что означает, что анод положительный, а катод отрицательный.

График зависимости тока от напряжения показан на (Рисунок).Обратите внимание, что поведение диода показано как зависимость тока от напряжения, тогда как работа резистора показана как зависимость напряжения от тока. Диод состоит из анода и катода. Когда анод находится под отрицательным потенциалом, а катод – под положительным потенциалом, как показано в части (а), говорят, что диод имеет обратное смещение. При обратном смещении диод имеет очень большое сопротивление, и через диод и резистор протекает очень небольшой ток – практически нулевой ток. По мере увеличения напряжения, приложенного к цепи, ток остается практически нулевым, пока напряжение не достигнет напряжения пробоя и диод не будет проводить ток, как показано на (Рисунок).Когда батарея и потенциал на диоде меняются местами, что делает анод положительным, а катод отрицательным, диод проводит, и ток течет через диод, если напряжение больше 0,7 В. Сопротивление диода близко к нулю. (Это причина наличия резистора в цепи; если бы его не было, ток стал бы очень большим.) Из графика на (Рисунок) видно, что напряжение и ток не имеют линейной зависимости. Таким образом, диод является примером безомного устройства.

Когда напряжение на диоде отрицательное и небольшое, через диод протекает очень небольшой ток. Когда напряжение достигает напряжения пробоя, диод проводит. Когда напряжение на диоде положительное и превышает 0,7 В (фактическое значение напряжения зависит от диода), диод проводит. По мере увеличения приложенного напряжения ток через диод увеличивается, но напряжение на диоде остается примерно 0,7 В.

Закон Ома обычно формулируется как, но первоначально он был сформулирован как микроскопическое изображение с точки зрения плотности тока, проводимости и электрического поля.Этот микроскопический вид предполагает, что пропорциональность обусловлена ​​дрейфовой скоростью свободных электронов в металле, возникающей в результате приложенного электрического поля. Как было сказано ранее, плотность тока пропорциональна приложенному электрическому полю. Переформулировка закона Ома приписывается Густаву Кирхгофу, имя которого мы снова увидим в следующей главе.

Использование закона Ома со схемами

Как использовать закон Ома

В виде уравнения закон Ома можно записать как I = V / R .Это позволяет рассчитать три величины для конкретной цепи. Например, если вы знаете ток и сопротивление, вы можете определить напряжение.

Вы можете использовать закон Ома для отдельного компонента внутри цепи: ток через лампочку, напряжение на лампочке и сопротивление лампочки. Или вы можете использовать закон Ома для всей цепи, используя полный ток, напряжение батареи (общее напряжение) и общее сопротивление. Вы даже можете сделать это для отдельной ветви в последовательной цепи.Это все еще работает.

Закон Ома

Однако, чтобы закон Ома работал, компоненты в цепи должны быть ОГМИЧЕСКИМИ. Не все электрические компоненты подчиняются закону Ома – не все омичны – но большинство из них.

Пример

Допустим, у вас есть параллельная цепь, содержащая 12-вольтовую батарею и две лампочки в отдельных ветвях: одна с сопротивлением 4 Ом, а другая с сопротивлением 3 Ом. Как вы думаете, как мы будем рассчитывать ток, проходящий через резистор сопротивлением 3 Ом?

Чтобы решить эту проблему, нам нужно использовать закон Ома для резистора 3 Ом.Помните, что ток равен напряжению, разделенному на сопротивление, или I = V / R.

Общее напряжение цепи составляет 12 вольт, и поскольку это параллельная цепь, каждая ветвь также получит полные 12 вольт. Это означает, что на резистор сопротивлением 3 Ом также подается напряжение 12 В. Итак, мы знаем, что V = 12 вольт, а R = 3 Ом. Чтобы вычислить ток, мы разделим 12 на 3 и получим 4 ампера, что и является нашим ответом.

Пример решения

Резюме урока

Закон Ома гласит, что при увеличении сопротивления ток уменьшается.И наоборот, при повышении напряжения возрастает и ток. Ток – это поток электричества вокруг электрической цепи, который мы измеряем в амперах. Сопротивление , которое мы измеряем в омах, – это способность компонента сдерживать прохождение тока. Напряжение означает разность потенциалов между двумя частями цепи, которую мы измеряем в вольтах.

Закон Ома выражается как I = V / R , уравнение, которое позволяет определить три величины указанной цепи.Закон Ома можно использовать для одного компонента в цепи, для параллельной ветви или для всей цепи. В последнем случае вы используете напряжение батареи, общий ток и общее сопротивление. Этот подход работает только для омических резисторов, к которым относится большинство электронных устройств.

закон Ома | Соотношение напряжения, тока и сопротивления

Закон Ома – один из основных принципов электричества. Он связывает между собой основные параметры электричества, тока и напряжения.

Георг Ом , в честь которого был назван закон, провел несколько экспериментов в цепях, содержащих провода разной длины, и обнаружил, что приложенное напряжение и ток прямо пропорциональны. Он вывел сложное уравнение и опубликовал его вместе со своими результатами в книге Die galvanische Kette, Mathematisch Bearbeitet в 1827 году.

Закон Ома:

Закон Ома гласит, что ток (I), протекающий по проводнику, прямо пропорционален приложенному к нему напряжению (В), т.е.е.

В α I

Просто, V = IR

Где R – постоянная пропорциональности, называемая сопротивлением, которая определяет сопротивление материала проводника протеканию через него тока.

Общее сопротивление проводника потоку электрического тока зависит от его длины, площади поперечного сечения и удельного сопротивления проводника.

R = ρl / A

Где ρ – удельное сопротивление проводника, l – длина, а A – площадь поперечного сечения.

Закон Ома для цепей переменного тока

В случае цепей переменного тока напряжение связано с током посредством константы пропорциональности Z (импеданса) и константы пропорциональности R для чисто резистивных цепей, где (Z = R).

V = IZ и V = IR (для чисто резистивных цепей)
Где Z = √ [R
2 + X 2 ]

Импеданс Z – это полное сопротивление цепей переменному току. Он состоит из действительной части (сопротивления) и мнимой части (реактивного сопротивления).

Анализ цепей

Этот Закон служит основным принципом в анализе схем. Он применим только для линейных цепей, в которых напряжение прямо пропорционально ему. Из соотношения, данного Омом, можно вывести три уравнения:

V = ИК, I = V / R, R = V / I

Эти отношения можно проиллюстрировать в треугольной форме, как показано ниже:

Отсюда мы можем найти третий параметр, если известны любые два параметра.

Единица сопротивления

Единица измерения сопротивления – Ом (Ом).Один Ом равен сопротивлению материала, когда через него протекает ток в один ампер с приложенной к нему разностью потенциалов в один вольт.

Примеры

Разберем следующий пример.
Ток, протекающий по цепи, равен I = 2 А, а сопротивление, обеспечиваемое цепью протеканию тока, составляет R = 5 Ом.

Тогда падение напряжения в цепи должно быть 2 А X 5 Ом = 10 В

Аналогично

Если напряжение на резисторе составляет V = 20 В, а ток, протекающий через него, равен I = 10 А, тогда значение сопротивления составляет 20 В / 10 А = 2 Ом.

Следовательно, можно отметить, что ток, протекающий через цепь, зависит от ее сопротивления и приложенного к ней напряжения.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *