Содержание

Проходной выключатель. Принцип работы разных схем

В отличие от простого выключателя, где происходит обычное прерывание цепи, проходной выключатель имеет три контакта и механизм переключения между ними. Двухклавишный проходной выключатель имеет шесть контактов и, по сути, является двумя независимыми друг от друга одноклавишными проходными выключателями. Главным преимуществом проходных выключателей является возможность включения и выключения светильника (группы светильников) из двух и более точек. Часто эти выключатели ещё называют дублирующими или перекидными.

Комфорт в доме определяют многие, на первый взгляд незаметные элементы. Одним из таких элементов является освещение. Современная индустрия светотехнических изделий позволяет создать индивидуальный стиль оформления систем освещения. Применение проходных (перекидных) выключателей создает дополнительный комфорт при использовании электрического освещения. Реализовав освещение лестниц с использованием проходных выключателей не придётся возвращаться, чтобы выключить свет.  Установленные на каждом этаже проходные переключатели позволяют сделать это там, где вам удобно.

Так же можно использовать систему проходных выключателей в длинных коридорах, проходных комнатах, подвальных помещениях, тамбурах. Эффективно использование подобных систем и при электромонтаже уличного освещения, дорожек в саду, ротонд и беседок. Можно придумать ещё массу вариантов применения проходных выключателей.

Проходной выключатель, принцип его работы

В отличие от обыкновенного выключателя освещения, где выполняется прерывание цепи (разрыв фазного провода) в проходном выключателе происходит коммутация с одного контакта на другой. Вместо прерывания цепи происходит перекидывание контакта, из-за чего данные выключатели называют ещё перекидными. Проходным выключателем правильнее называть систему из нескольких перекидных выключателей. Ниже на рисунке показано, как реализовывается схема проходного выключателя с применением двух перекидных выключателей.

На схеме видно, что положение контактов переключателей установлено таким образом, что на лампу подается напряжение. При нажатии любого из переключателей происходит разрыв цепи и выключение лампы. Если в дальнейшем нажать второй выключатель, то подача напряжения на лампу будет осуществлена через вторую линию. Так же существуют двухклавишные проходные выключатели. По сути это два одноклавишных выключателя, объединённые в одном корпусе. Применяются они для подключения разных осветительных групп одного помещения или в тех случаях, когда из одного места необходимо управлять освещением в разных помещениях. Установленный в тамбуре двухклавишный проходной выключатель позволят включать освещение на лестнице и проходном тамбуре или на улице.

Существуют и более сложные схемы проходных выключателей. В них, совместно с перекидными выключателями, применяются так называемые перекрестные переключатели. В качестве перекрестного переключателя можно применять двухклавишный проходной выключатель, но для этого нужно установить две перемычки. В настоящее время можно приобрести готовые перекрестные выключатели, не требующие установки дополнительных перемычек.

Перекрестной переключатель имеет две пары контактов. В зависимости от их положения происходит коммутация на один из проводов. Теперь управлять освещением можно из трех точек. В качестве примера можно взять освещение лестничных пролетов в трехэтажном строении.

Для реализации проектов освещения, в которых требуется большее количество проходных выключателей, в данную схему добавляют необходимое число перекидных переключателей. В зависимости от выбранной схемы и количества проходных выключателей, выполняют прокладку кабеля с требуемым числом проводников.

Как управлять освещением из трех мест

Схема подключения проходного выключателя с управлением из трех мест мало чем отличается от предыдущей (общий принцип работы одинаков). В ней добавлен ещё один проходной выключатель, который немного отличается от предыдущих.

Как видно из схемы, это спаренный выключатель. То есть, при нажатии одной клавиши, происходит одновременное перекидывание двух контактов электрически независимых друг от друга. Вдобавок, как вы должны были заметить, с него выходит четырехжильный кабель.

Схемы подключения проходных выключателей подобного типа хороши тем, что относительно просты в своём конструктивном исполнении (не требуется дополнительных компонентов). Но они ограничены количеством таких мест управления.

Видео

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Выключатели проходные


Безусловно всем знакома ситуация, когда в ночное время суток приходится идти через всю комнату, чтобы включить свет. Конечно, это очень неудобно, а для кого-то и безумно страшно. В подобных случаях спасением является проходной выключатель, который предназначен для управления освещением из любого места. Но немногие знают, что представляет собой проходной выключатель, в чем заключается его принцип работы, как его подключать и как им пользоваться. В данном материале подробно и простым языком изложено назначение данного устройства, его монтаж и конструкция.

Какую роль выполняют проходные выключатели?

Главная цель установки подобного устройства – включение и выключение светильников разного вида из любого места. Схема работы таких выключателей построена таким образом, чтобы исключить необходимость возвращения к главному выключателю. Проходные выключатели бывают трех видов исполнения:

одноклавишные, двухклавишные, трехклавишные. Число возможных приборов для подключения к проходному выключателю зависит напрямую от его конструкции. Также, данные устройства бывают сенсорными.  

ВАЖНО: все выключатели разрывают фазные провода и обесточивают электрические приборы, но именно проходные обладают специфической особенностью. Она заключается в размыкании одной цепи при замыкании контактов парного переключателя.

Главное отличие проходного выключателя от классического с двумя проводами – необходимость трехжильной коммутации, поскольку происходит направление напряжения от одного контакта к другому. Освещение включено в том случае, если клавиши двух устройств имеют одно положение, а выключено – при измененном положении. Но управление может происходить не только из двух, но также из большего количества мест. Чтобы этого добиться в схему встраивается переключатель перекрестного типа. При сильной необходимости их может быть несколько. Нужно знать, что в

одноклавишном выключателе присутствует 3 клеммы, в двухклавишном – 5, трехклавишный отличается наиболее сложной схемой.

 

Как правильно установить проходной выключатель?

На самом деле, процесс подключения практически такой же, как и у обычных выключателей. Единственное, что вводит в смятение при монтаже – три провода, а не два. Для того, чтобы понять эту особенность, нужно узнать роль каждого. Пара проводов – перемычки среди рассредоточенных по пространству выключателей, третий – подающий фазу. Предварительно необходимо приобрести

коммутационную коробку, внутри которой и будут соединятся провода.

На концах провода должны быть освобождены от изоляционного материала (2-3 см) для последующей скрутки. В случае, если соединение происходит при помощи колодок, конец можно зачистить на один сантиметр. Провод, который подает питание от распределительного щита, в коммутационной коробке соединяется с входным контактом первого устройства. Последние выходные контакты скручиваются с аналогичными проводами второго выключателя, входной контакт которого соединяется с проводом лампы.  Нулевые провода осветительного устройства и щитка соединяются между собой. Все зоны скруток должны быть герметично закрыты изоляцией (изолентой).  

Где применяется двухклавишных проходной выключатель?

Установка проходного выключателя с двумя клавишами более целесообразна в комнатах большой площади, где используется несколько осветительных приборов. Конструктивно это -два одноклавишных устройства, объединенных одним корпусом. Использование одного проходного выключателя – экономия на монтаже кабеля, идущего к нескольким одинарным выключателям. В основном, двухклавишный проходной выключатель применяется в управлении светом в ванных комнатах и туалетах либо в коридорах и на лестничных клетках. Также, с помощью этого устройства можно включать лампочки в люстре группами.

Чтобы произвести правильную установку проходного выключателя на две лампы, необходимо иметь много проводов. К каждому из них подводится 6 жил, поскольку отсутствует общая клемма. Грубо говоря, два автономных выключателя находятся под одним корпусом.


Существует определенный алгоритм коммутации двухклавишного выключателя:
  • предварительно в стену нужно вмонтировать подрозетники, проемы для которых вырезаются при помощи перфоратора с коронкой.
    После чего к сделанным проемам ведется пара трехжильных проводов. Возможна ситуация, когда отведение идет от распределительной коробки одного шестижильного провода;
  • ко всем осветительным устройствам отведен трехжильный кабель, то есть, нулевой провод, заземление и фаза;
  • фаза внутри коммутационной коробки подсоединяется к паре контактов первого выключателя. Два остальных выключателя объединяются при помощи четырех перемычек. Второй выключатель предназначен для присоединения контактов светильников. Нуль, идущий от распределительного щитка, соединяется со вторым проводом осветительных устройств. Когда в момент переключения контактов общие цепи попарно смыкаются или размыкаются, происходит включение или выключение конкретного светильника.

Проходной выключатель с двумя клавишами может применяться, если возникает необходимость регулировать освещение даже из трех-четырех мест. Но должен быть установлен перекрестный выключатель, подключение которого обеспечивается 8 проводами (4 для каждого концевого выключателя).

Специалисты рекомендуют при установке сложных соединений с большим количеством проводов применять коммутационные коробки и производить маркировку проводов и кабелей.

ВАЖНО: не забывайте, что все процедуры с электрической проводкой и монтажом электрооборудования должны происходить при выключенном напряжении.   

Торговая сеть “Планета Электрика” обладает широким ассортиментом выключателей, а также иных электроустановочных изделий, с которым можно ознакомиться в каталоге.

Выключатель проходной – что это такое, схемы подключения, принцип работы

Что такое проходной выключатель и как он работает

Правильнее всего это устройство будет назвать переключатель – выключатель он для пользователей скорее по привычке, так как используется он для включения-выключения освещения. Если называть его правильно, то намного проще понять, в чем он отличается от стандартных выключателей – это название наиболее полно отражает суть его воздействия на работающую электрическую цепь.

Дополнительные названия – перекидной, дублирующий или перекрестный переключатель.

Как и у стандартного выключателя, у проходного есть только два положения, но принципиальная разница в том, что в обычном устройстве строго определено, к примеру, вверх – это включено, а вниз – выключено, а у проходного эти стороны постоянно меняются.

Понятнее всего принцип работы проходного выключателя становится при сравнении электрических схем – между ним и стандартным устройством, которое показано на рисунке:

Если обычный в разомкнутом состоянии просто разрывает цепь, то в случае с проходным все зависит от положения сразу двух переключателей:

Из схемы понятно, что у каждого из выключателей должно быть три клеммы – одна для фазы, которая идет от источника питания и две на «управляющие» провода. Когда у любого из двух переключателей меняется положение, то цепь либо замыкается, либо размыкается – в зависимости от того, в каком состоянии она находилась до этого.

Дополнительно можно сформулировать еще одно отличие между выключателем и переключателем – последний всегда можно подключить как простой выключатель, а сделать наоборот не получится. При ремонте такой цепи надо учитывать, что один из проводов между выключателями всегда находится под напряжением.

Выбор, конструкция и отличия проходных выключателей

Прежде чем собирать такую схему управления вот на что следует обратить особое внимание:

  1. Для подключения проходного выключателя света необходим трехжильный кабель — ВВГнг-Ls 3*1,5 или NYM 3*1.5мм²
  2. Не пытайтесь собрать подобную схему на обычных выключателях.

Основное отличие обычных от проходных заключается в количестве контактов. Простые одноклавишные имеют две клеммы для подключения проводов (вход и выход), а проходные — три!

На простом, цепь освещения может быть либо замкнута, либо разомкнута, третьего не дано.

Проходной же правильнее называть не выключателем, а переключателем.

Так как он, именно переключает цепь с одного рабочего контакта на другой.

По внешнему виду, спереди они могут быть абсолютно одинаковыми. Только на клавише проходного может присутствовать значок из вертикальных треугольников. Однако не перепутайте их с перекидными или перекрестными (подробнее о них ниже). У этих треугольнички смотрят в горизонтальном направлении.

А вот с обратной стороны сразу видна вся разница:

  • у проходного 1 клемма сверху и 2 снизу
  • у обычного 1 сверху и 1 снизу

Многие по этому параметру путают их с двухклавишными. Однако двухклавишные здесь также не подойдут, хотя и имеют тоже три клеммы. Существенна разница именно в работе контактов. При замыкании одного контакта у проходных переключателей автоматически происходит замыкание другого, а в двухклавишных такой функции нет. Причем промежуточное положение, когда обе цепи разомкнуты у проходного вообще отсутствует.

Преимущества установки проходного выключателя

Проходные выключатели позволяют управлять освещением помещения из двух или более мест, что является бесспорным удобством. Это особенно ценно для домов в несколько этажей с лестничными пролетами. Здесь можно установить первый переключатель на первом этаже, а следующий на втором, что позволит включить свет внизу и выключить наверху.

Особенно актуально применение проходных выключателей для управления освещением лестничных пролетов. Хорошим решением является установка одного переключателя у входа в спальню, а второго возле изголовья кровати, что позволит зайти, включить свет, приготовиться ко сну, лечь и выключить освещение. Также целесообразно монтировать выключатели при входе в дом или квартиру и в конце коридора.

Полезный совет! При помощи специальных датчиков движения или таймера, встроенного в выключатель, можно организовать автоматическое выключение освещения при выходе из определенного места.

Проходные выключатели обладают существенными преимуществами по сравнению с обычными устройствами:

  • высокая надежность и безопасность эксплуатации;
  • мгновенное отключение электроснабжения помещения при необходимости из любой точки;
  • оптимальное расходование электроэнергии;
  • низкая себестоимость;
  • простая установка, не требующая привлечения специалистов;
  • отсутствие сложных настроек.

Наличие проходных выключателей позволяет включить светильники внизу одним выключателем, а поднявшись по лестнице выключить другим

Подключение проходного переключателя

В первую очередь необходимо правильно подключить сам выключатель в подрозетнике. Снимаете клавишу и накладные рамки.

В разобранном состоянии можно легко увидеть три контактных клеммы.

Самое главное – это найти общую из них. На качественных изделиях с обратной стороны должна быть нарисована схема. Если вы в них разбираетесь, то можно легко сориентироваться по ней.

Если же у вас бюджетная модель, или для вас любые электрические схемы темный лес, то на помощь придет обыкновенный китайский тестер в режиме прозвонки цепи, или индикаторная отвертка с батарейкой.

При помощи щупов тестера попеременно касаетесь всех контактов и ищете тот, на котором тестер будет “пищать” или показывать “0” при любом положении клавиши ВКЛ или ВЫКЛ. Еще проще это сделать индикаторной отверткой.

После того как вы нашли общую клемму, на нее нужно подключить фазу с кабеля питания. На остальные клеммы присоединяете два оставшихся провода.

Причем какой из них куда, не имеет существенной разницы. Выключатель собирается и закрепляется в подрозетнике.

Со вторым выключателем проделываете ту же самую операцию:

  • ищите общую клемму
  • подключаете на нее фазный проводник, который будет идти на лампочку
  • на оставшиеся подсоединяете две другие жилы

Схема подключение проводов проходного выключателя в распредкоробке


Схема без заземляющего проводника.

Теперь самое главное это правильно собрать схему в распределительной коробке. В нее должны заходить четыре 3-х жильных кабеля:

  • кабель питания с автомата освещения распредщитка
  • кабель на переключатель №1
  • кабель на переключатель №2
  • кабель на светильник или люстру

При подключении проводов удобнее всего ориентировать по цвету. Если будете использовать трехжильный кабель ВВГ, то у него наиболее распространены две цветовые маркировки:

  • белый(серый) – фаза
  • желто зеленый – земля

или второй вариант:

Чтобы подобрать более правильную фазировку во втором случае, ориентируйтесь на советы из статьи “Цветовая маркировка проводов. ГОСТы и правила.”

  1. Сборка начинается с нулевых проводников. Соединяете нулевую жилу с кабеля вводного автомата и ноль отходящий на светильник в одну точку посредством клемм ваго.
  2. Далее нужно соединить все жилы заземления, если у вас есть заземляющий проводник. Аналогично нулевым проводам “землю” с вводного кабеля объединяете с “землей” отходящего кабеля на освещение. Этот провод подключается к корпусу светильника.
  3. Осталось правильно и без ошибок подключить фазные проводники. Фазу с вводного кабеля нужно соединить с фазой уходящего провода на общую клемму проходного выключателя №1.

А общий провод с проходного выключателя №2 отдельным зажимом wago соединить с фазной жилой кабеля на освещение.

Выполнив все эти подключения остается лишь соединить между собой второстепенные (отходящие) жилы с выключателя №1 и №2 между собой. Причем абсолютно не важно как вы их соедините.

Можно даже перепутать цвета. Но лучше все же придерживаться расцветки, чтобы не запутаться в будущем. На этом можно считать схему полностью собранной, подавать напряжение и проверять освещение.

Основные правила подключения в этой схеме которые вам нужно запомнить:

  • фаза с автомата должна приходить на общий проводник первого выключателя
  • и эта же фаза должна выйти с общего проводника второго выключателя на лампочку

  • два остальных вспомогательных проводника, соединяются между собой в распредкоробке
  • ноль и земля подаются напрямую без выключателей сразу на лампочки

Что покупать для реализации схемы

Понимая, как работает проходной выключатель, можно самостоятельно смонтировать схему удобного управления освещением.   На рынке электротоваров популярны изделия нескольких фирм, например  проходные выключатели legrand . Они функциональны, имеют привлекательный дизайн,  некоторые со светодиодной подсветкой.

Проходной выключатель legrand valena, если он без пары, может работать как простой.  Но обычно их покупают парами.

Покупатели часто спрашивают, чем внешне отличается проходной выключатель от обычного. Отличий немного: предприятия используют единую конструкцию корпуса для разных устройств. На проходных нет маркировки, указывающей включение (иногда она все же есть, из-за использования стандартных комплектующих, но на нее не  обращают внимания). Отличия в соединении электрических контактов без труда определит человек, знакомый с электротехникой.

На рисунке показано подключение пары проходных выключателей legrand, работающих на одну группу светильников.

Проходные выключатели, как и обычные, выпускаются с одной или с двумя клавишами. Двухклавишные управляют двумя группами светильников. Можно, например, регулировать яркость освещения, включая и отключая в люстре группы лампочек. Ничем не хуже изделия других фирм: lezard, lexman, abb, шнайдер электрик. Проходные выключатели lezard соединяются по такой же схеме, как и сделанные фирмой legrand, и другими фирмами.

Собрать схему из устройств от любых производителей очень просто, но иногда возникают сложности, поскольку на коммерческих сайтах в интернете встречаются схемы с ошибками. Иногда дешевые китайские устройства сопровождаются бумажными инструкциями с ошибками в схемах. Пользуйтесь простейшей схемой, на которой все ясно, которую вы понимаете.

Известные производители проходных переключателей

Компания Легранд занимает лидирующую позицию на рынке электротоваров. Востребованность проходных выключателей Legrand обусловлена высоким качеством исполнения изделий, простотой монтажа, удобствами в дальнейшей эксплуатации, стильным дизайном и гибкой ценовой политикой. Единственным недостатком является необходимость в подгонке установочного места. Если оно не будет совпадать с изделием, могут возникнуть трудности при его монтаже, который выполняется согласно схеме подключения проходного выключателя Легранд.

Дочерним предприятием Легранд является китайская компания Lezard. Однако от родного бренда у изделий остался лишь стильный дизайн. Качество сборки намного ниже, что обусловлено низкой стоимостью продукции.

Одним из ведущих отечественных производителей электротоваров считается компания Wessen, которая является частью фирмы Schneider Electric. Все изделия изготавливаются по новейшим технологиям на современном зарубежном оборудовании и соответствуют европейским стандартам качества. Модели обладают универсальным стильным дизайном, позволяющим вписать каждый элемент в любой интерьер помещения. Отличительной чертой выключателей Wessen является возможность замены декоративной рамки без демонтажа устройства.

Еще одним не менее известным производителем является турецкая компания Viko. Изделия характеризуются высоким качеством исполнения, надежностью и долговечностью, соответствуют требованиям электробезопасности и европейским стандартам качества. При изготовлении корпуса устройства применяется пожаробезопасный прочный пластик, который рассчитан на большое количество циклов работы.

У проходного выключателя, в отличие от обычного, три проводимых провода. Турецкий бренд Makel предлагает качественную, надежную, безопасную и стильную продукцию. Благодаря возможности подключения шлейфа без надобности задействования распределительной коробки, монтаж выключателей становится более простым, а дальнейшая эксплуатация – комфортной и безопасной.

Как сделать проходной выключатель своими руками

Несмотря на то, что на первый взгляд обычный и проходной переключатели имеют незначительные отличия, их стоимость существенно отличается. Купить проходной выключатель можно в 1,5-2 раза дороже простого. Поэтому многие мастера стремятся изготовить коммутирующее устройство самостоятельно.

Чтобы получить проходной одноклавишный выключатель, необходимо воспользоваться обычными одноклавишным и двухклавишным устройствами одного размера и производителя.

Полезный совет! Приобретая двухклавишный проходной выключатель, схема которого нанесена на корпус устройства, следует убедиться в том, что у него есть возможность перемещать клеммы местами в таком порядке, чтобы обеспечить разрыв и замыкание цепи независимо друг от друга.

Процесс переделки простого выключателя в проходной состоит из следующих этапов:

  • у накладного одноклавишного выключателя снимается клавиша, оснащенная клипсами;
  • аккуратно выдавливается сердцевина выключателя;
  • отжимаются зажимы корпуса на внутреннем механизме выключателя;
  • одна из клемм вынимается из гнезда;
  • переустанавливается один контакт напротив другого;
  • на контакты устанавливается коромысло;
  • корпус собирается обратно.

Использование проходных выключателей будет удобным, если в доме есть длинные коридоры

Также можно осуществить сборку одного выключателя из двух простых. Их следует расположить рядом друг с другом таким образом, чтобы при воздействии на верхнюю часть клавиши включался один, а на нижнюю – другой. Клавиши следует соединить пластиной, которая клеится сверху. Обязательно необходимо установить перемычку между двумя соседними контактами.

Что ограничивает число проходных выключателей

Цепочка переключателей, позволяющая коммутировать электрический ток из нескольких точек, не должна быть слишком громоздкой.  Контакты оказывают сопротивление электрическому току. Оно невелико, но на длинной цепочке контактов ток может уменьшиться заметно.

При большом числе переключателей, включенных друг за другом, уменьшается надежность схемы, возможны сбои. Поэтому мы редко встретим вереницу проходных и перекрестных выключателей в десять или более штук. Чаще всего это пара переключателей, несколько реже — цепочка из трех, четырех, пяти.

Новые технологии: сенсорные проходные выключатели

Стильные сенсорные выключатели стоят дороже обычных, но пользуются спросом — они стали естественной частью современной «цифровой культуры». Сенсорные устройства — достаточно сложные электронные устройства. Для коммутации тока применяют тиристор или транзистор большой мощности, а сигнал, благодаря которому открывается (или запирается) прибор, поступает с сенсора — датчика, реагирующего на какое-либо внешнее воздействие.

Сенсором может быть датчик движения, или акустический, или емкостной — реагирующий на прикосновение. Чувствительные сенсоры реагируют даже до прикосновения, достаточно поднести руку на расстояние 1-3 сантиметра. В домах обычно устанавливаются емкостные сенсорные выключатели, или совмещенные с датчиком движения. Все сенсорные устройства могут управляться дистанционно. Если пульт управления не входит в комплект, его покупают отдельно.

Полупроводниковый прибор, ответственный за включение-выключение тока, может использоваться и для управления силой тока, яркостью света, если оснащен с диммером. Важно знать, что диммеры подходят не для всех осветительных приборов.

На фото — сенсорный выключатель.

Проходные и перекрестные сенсорные выключатели, как и механические, используются для управления осветительными приборами с разных точек. По сравнению с механическими, они более функциональны: могут управляться дистанционно, управлять силой света.

Внешне сенсорные устройства  представляют собой гладкую панель из стекла, в подключенном состоянии на ней заметна индикация: голубой светлячок — состояние ОТКЛ, красный — ВКЛ. Для управления осветительным прибором нужно просто прикоснуться к панели устройства.

Парадокс заключаются в том, что технологически продвинутые сенсорные устройства прекрасно справляются с управлением лампами накаливания или газоразрядными, но при включении продвинутых светодиодных светильников возникают проблемы. В цепи «сенсорный выключатель — светодиодный светильник» в отключенном состоянии могут наводиться слабые электрические  импульсы, из-за которых светодиоды «подмигивают». Иногда возникают проблемы с диммером, если он регулирует ток через светодиоды.

В таком случае рекомендуется устанавливать дополнительный адаптер… или простые механические выключатели, через которые никакие импульсы не проскакивают.

На рисунке показана схема подключения адаптера параллельно светодиодной лампе.

На этом рисунке адаптер подключен к распределительной коробке и влияет на все светодиоды, включенные в данную цепь.

Рассмотрим схемы подключения проходных сенсорных переключателей.

Здесь показано соединение двух сенсорных проходных выключателей.

Здесь показано соединение трех проходных сенсорных выключателей.

Отметим, что посредине стоит такой же сенсорный переключатель, как и по краям. То есть сенсорные устройства не делятся на «простые» и «перекрестные».

В цепочке сенсорных выключателей есть «главный» — который изображен слева, к нему подходят три провода (один провод — от нагрузки). Перед началом работы систему нужно синхронизировать. Прикоснувшись к панели главного устройства, 5 секунд ждут звукового сигнала. После этого нужно прикоснуться ко второму выключателю. Синхронизация произведена. Далее синхронизируют с главным выключателем третий, четвертый и так далее.

Управление освещением с трех мест и более

Нередки ситуации, когда в жилых помещениях большой площади возникает потребность управлять освещением сразу из нескольких точек. Для создания системы многоточечного управления, позволяющей подключать и выключать свет из 3-х мест одновременно, установки одних проходных переключателей обычно недостаточно.

Для этих целей потребуется интегрировать в схему еще один элемент – перекрестный выключатель, который подключается в разрыве двухжильного провода (то есть между проходными приборами).

Если в прежние времена допустимость монтажа таких схем обуславливалась в основном планировкой помещений, то сегодня они встречаются практически повсеместно. Монтаж проходных выключателей этого типа – совсем непростое занятие. Прежде всего, потребуется ознакомиться с принципом его работы.

Принцип работы перекрестного переключателя (выключателя)

Конструкция переключателя предусматривает наличие четырех контактов, из которых два подсоединяются к клеммам одного переключателя и еще два – ко второму прибору.

Обратите внимание: Главное отличие перекрестных переключателей от проходных состоит в том, что они могут использоваться только совместно с проходными.

Эти устройства при таком включении выполняют особые (транзитные) функции, поскольку являются в определенной степени переходными.

Наглядно посмотреть принцип работы перекрестного переключателя Вы можете на Gif-картинке, расположенной ниже.

Схема подключения трех выключателей

Схемное изображение подключения 2-х проходных и одного перекрестного переключателя представлено на рисунке.

Из него хорошо видно, что между двумя проходными переключателями устанавливается перекрестный выключатель, действующий в качестве своеобразного транзитного узла.

Ниже мы приводим схему соединения всех элементов электрической цепочки управления освещением в распределительной коробке.

Видео, которое мы разместили ниже, несомненно поможет Вам собрать схему подключения трех выключателей в распределительной коробке.

Схема подключения четырех выключателей

Для четырех точек управления потребуется применить комплексную схему распайки, изображенную на рисунке ниже. В таком комплекте используются не только два проходных, но и пара переключателей перекрестного типа.

При рассмотрении варианта управления светильником сразу из 4-х мест потребуются два перекрестных коммутирующих прибора.

При наличии в данном помещении нескольких осветительных групп предпочтение следует отдать двухклавишным выключателям перекрестного типа. Установленные таким образом проходные системы заметно упрощают процедуру управления освещением.

Дополнительная информация: Для управления своими осветительными приборами из многих точек владелец квартиры может воспользоваться как клавишными выключателями, так и датчиками движения или звука.

Указанные системы из множества коммутируемых устройств (при всем кажущемся удобстве) в еще большей степени вызывают сомнение в их надежности. Даже в случае правильного включения и бережного обращения для них характерны следующие недостатки:

  1. относительно высокая стоимость;
  2. сравнительно низкая надежность;
  3. возможность ложных срабатываний;
  4. сложность обслуживания и ремонта.

Именно поэтому подключение проходных выключателей и перекрестных для управления освещением из нескольких мест  – это оптимальный вариант использования принципа многоточечного управления.

Заключение

Из приведенных схем понятно как работает проходной выключатель и какие есть варианты его подключения – при наличии минимальных навыков работы с электрооборудованием справиться с его установкой сможет и домашний мастер. Если опыта работ с проводкой нет, то подключать такие выключатели лучше доверить профессионалам – все же это не самая простая схема, даже несмотря на ее кажущуюся простоту.

Видео по теме

Источники

  • https://YaElectrik.ru/elektroprovodka/chto-takoe-prohodnoj-vyklyuchatel
  • https://domikelectrica.ru/kak-pravilno-podklyuchit-2-proxodnyx-vyklyuchatelya/
  • https://psk-remont.ru/2018/03/09/%D0%BF%D1%80%D0%BE%D1%85%D0%BE%D0%B4%D0%BD%D0%BE%D0%B9-%D0%B2%D1%8B%D0%BA%D0%BB%D1%8E%D1%87%D0%B0%D1%82%D0%B5%D0%BB%D1%8C-%D1%81%D1%85%D0%B5%D0%BC%D0%B0-%D0%BF%D0%BE%D0%B4%D0%BA%D0%BB%D1%8E%D1%87/
  • https://ProFazu.ru/provodka/ustanovochnye/prohodnoj-vyklyuchatel.html
  • https://FishkiElektrika.ru/podklyuchit-prohodnoy-vyklyuchatel

Зачем нужен проходной выключатель | ЭЛСИС24

Проходной выключатель – специальное электроустановочное изделие, которое предназначено для включения и выключения света в различных комнатах из одной точки.

Принцип действия

Основой функционирования проходных моделей является коммутация реверсных электрических проводников. 

Принцип работы следующий:

Когда изменяется положение клавиш, происходит размыкание одной цепи, и, в то же время, замыкание другой. Внимательно изучив схемы, вы сможете понять, как работает проходной выключатель света.

Из-за такого устройства контактов проходной выключатель было бы правильнее именовать переключателем. Однако, поскольку термин используется с давних времен, внесение официальных изменений может привести лишь к дополнительной путанице. Также его еще могут называть перекидным, перекрестным и дублирующим.

Область применения

Применение проходного переключателя позволяет потребителю управлять как единственным источником освещения, так и целой группой светильников из ряда разных мест. Это означает, что применение целесообразно на территориях со значительной площадью: на стадионе, в большом концертном зале, тоннеле, подземном переходе, подвальном помещении, либо в частных многоэтажных домах с лестницами и длинными коридорами. Обозначим на примере из жизни, для чего нужен этот вариант исполнения.

Потребителю, который поднимаясь на второй этаж дома, включает светильник на первом этаже, при использовании проходного переключателя не нужно возвращаться вниз для того, чтобы его выключить. Это позволяет жильцу дома произвести отключение света со второго этажа. О таком варианте управления светом мы рассказывали в статье — схемы освещения лестницы в доме.

Очень часто выключатель размещают именно в коридоре, либо в длинном пролете, отсюда он имеет такое название «проходной». Также дублирующие устройства могут применяться для управления уличным освещением на любых территориях.

Разновидности моделей

Далее рассмотрим, какие виды бывают среди перекрестных переключателей:

  • По типу проводки различают модели для внешней и скрытой проводки.
  • Контактные клеммы внутри корпуса, в зависимости от конструктивного исполнения, могут выполняться с винтовыми зажимами, а также могут быть зажимными пружинными.
  • В зависимости от количества клавиш различают переключатели с одной клавишей, с двумя клавишами, а также с тремя и более.

Конструкция

Из чего состоит одноклавишный проходной переключатель и устройство с несколькими клавишами? Приспособление с одной клавишей состоит из трех контактов; в его состав входит одна вводная клемма и две выходные.

Устройство дублирующего переключателя уже с двумя клавишами следующее: шесть контактов, то есть две входные клеммы и шесть выходных; с тремя – девять: три входные и шесть выходных клемм, и так далее.

Условное обозначение на схеме обычного выключателя представляет собой окружность, из которой выходит ответвление Г-образной или Т-образной формы. Г-образное ответвление означает, что выключать в открытом исполнении, Т-образное – в скрытом исполнении. Число ответвлений означает число клавиш.

Дублирующие переключатели изображаются с помощью тех же фигур, однако, для отличия их от стандартных устройств, ответвления Г-образной и Т-образной формы наносят с двух противоположных сторон окружности.

Возможно применение проходного выключателя в электрических схемах в качестве обычного. Как известно, по своей задумке эти переключатели должны использоваться в паре. Если же начать эксплуатировать его без пары, то он может служить как обычный выключатель, просто прерывая цепь и отключая свет. Однако, в таком случае, теряется целесообразность и сама суть применения именно данного типа исполнения, ведь главной особенностью проходных выключателей является сам их принцип работы, основанный на переключении.

Существует и такой способ управления источниками освещения, как беспроводное переключение света. Чтобы управлять светом используют специальный пульт. Пульт позволяет осуществлять выключение/включение при помощи радиосигнала, направляя его на реле управления, соединенное с осветительным устройством. Это мероприятие требует установки силового блока, на который и поступает команда управления. Блок размещают рядом с источником света, либо в местах, где к нему подходят провода.

Все действия описанные в данной статье, можно выполнить и самому, но, как мы уже говорили, будет лучше, если их произведут квалифицированные электрики, которые знают все правила проведения монтажных работ, а также технику безопасности  

Подключение проходного выключателя – схемы подключения, принцип работы

Если в вашем доме, офисе или другом помещении есть длинный коридор либо обширная лестничная клетка с источником света, который нужно постоянно включать и выключать, но ходить в потемках по помещению для этой цели не удобно, вам поможет проходной выключатель.

Для чего нужен проходной выключатель и как он работает

Такой выключатель применяется для управления лампочкой из разных мест, то есть включить свет можно при входе в помещение, чтобы осветить себе путь, а выключить – в другой части комнаты или в другой комнате (в коридоре, на лестничной клетке, возле кровати в спальне). Получается, включить/выключить свет можно любым из проходных выключателей из всей цепи (их может быть несколько – два и более). Это позволяет экономить электроэнергию.

Принцип работы такого устройства следующий. К переходному выключателю подводятся фаза и ноль. При этом во время изменения положения клавиши устройства цепь замыкается, и лампочка горит. Соответственно, при выключении с первого, второго или третьего такого переключателя происходит размыкание проводка фазы, но тут же замыкается другой проводок фазы (нейтрального положения нет).

Внешне он немного отличается от непереходного: у него изображены две стрелочки на лицевой двигающейся панели (на клавише), одна из которых показывает вверх, вторая – вниз.

У проходного выключателя имеется один вход и два выхода, что является ключевым отличием от простого выключателя у которого только один вход и один выход. Это значит, что проходной выключатель не разрывает ток, а дает его либо на один выход, либо на другой.

Внутренние отличия могут быть сразу определены опытным взглядом электрика, но на всякий случай под корпусом проходного выключателя нарисована схема, взглянув на которую можно сразу определить, что перед вами находится именно проходная модель устройства. К сожалению, на изделиях китайских фирм-производителей такая отметка может часто отсутствовать. А вот такие фирмы, как Лезард, Вико и Легранд, наносят разметку.

Чтобы визуально определить, какой именно перед вами выключатель (переключатель), можно просто внимательно осмотреть клеммы, то есть посчитать отверстия с медными контактами (клеммы). Если их три, значит, переключатель вам подходит. Чтобы убедиться, что клеммы не перепутаны между собой, нужно воспользоваться специальным прибором – мультиметром.

Возьмите мультиметр и поставьте его для большего удобства на режим звонка (подачи звукового сигнала). Теперь проверьте каждое из отверстий (выхода-входа), вводя рабочую часть прибора внутрь. Если тестер (мультиметр) пищит при касании к какому-то из контактов, значит, ток в этом месте есть.

Если у вас есть только стрелочный мультиметр, нужно прозванивать с помощью способа определения короткого замыкания. Для этого нужно вставить щуп в один контакт, а второй – втыкать поочередно в другие, чтобы услышать, с каким из них он замкнет. При замыкании сам прибор должен пищать, а стрелка – отклоняться до конца вправо и показывает КЗ. Когда такая комбинация будет найдена, нужно сделать следующее: не меняя ничего в щупах, меняйте положение клавиши переключателя.

В случае, если показатель КЗ пропал – значит, один из контактов является общим. Осталось определить, какой именно. Теперь, не трогая ничего в положении клавиши, переставьте один из щупов (наугад) на другой контакт. Если опять появилось КЗ (короткое замыкание), значит, тот контакт, из которого щуп не вытаскивали, и есть искомый вход, то есть общий контакт.

Как работает проходной выключатель? Просто есть два взаимозаменяющих положения выключателя:

  • вход соединяется с первым выходом;
  • вход соединен со вторым выходом.

Исходя из вышесказанного, правильнее называть это нехитрое устройство переключателем, а не выключателем либо включателем, так как положений включено и выключено, как таковых, у него нет.

Еще одно отличие от обычной клавиши – коммутация используется с тремя жилами (трехжильная), а не с двумя (двухжильная).

Подключение проходного выключателя

При построении электрической схемы описываемого устройства нужно использовать трехжильные конструкции:

  1. Провод ноль выводится непосредственно на источник света.
  2. Заземление – туда же.
  3. Фаза (коричневый провод, который поставляет ток) подается на вход первого переключателя, фазы из двух его выходов через коробку соединяют с двумя выходами второго переключателя и из входа второго переключателя фазу выводим на лампочку.

Если переключатель двухклавишный, то есть нужно управлять не одним, а двумя источниками света из нескольких мест, между ними стоит установить двойной перекрестный выключатель. В конструкции последнего используются восемь проводов, подразделяющихся на две группы, по четыре проводка – в каждой. Первая группа этих проводов подключается к одному из двух концевых переключателей, а вторая – соответственно, ко второму.

Если требуется найти общие провода переключателя – нужно будет прозванивать их, как это обычно делает любой электрик, но в данном случае – при прокладывании более сложной сети с переходными перекрестными переключателями, обеспечивающими работу двухклавишных устройств, нужно будет потратить на прозванивание чуть больше времени, так как количество проводов увеличится.

Происходит увеличение количества проводов из-за необходимости сделать такие подключения: фазовый провод (под условным номером один) должен идти как к одной, так и ко второй клавише переключателя, а с обоих входов условного второго переключателя он идет на одну и вторую лампу (или на первую вторую группу лампочек, если каждая клавиша будет управлять не единичным источником света, а, например, частью ламп в многорожковой люстре).

Коммутационная коробка для такой электрической схемы собирается так. Второй двухклавишный переключатель включается в сеть следующим образом:

  • его провода бело-синего и бело-черного цвета присоединяются к синему и желто-зеленому проводку третьего переключателя;
  • а желто-зеленый и синий провод идут к проводам такого же цвета первого из переключателей.

При этом каждый двухклавишный переключатель (каждый имеет по шесть контактов) нуждается в небольшой доработке. Из кусков проводов (один – сине-белый, второй – серо-белый) нужно согнуть две вилочки. Далее вилки необходимо присоединить так: к сине-белой – такой же по цвету (сине-белый) проводок и, соответственно, к черно-белой вилке – черно-белый провод.

Управление светом из 3-х и более мест

В схеме, рассчитанной на три (а не на две, как в предыдущем случае) точки, используются 2 переключателя (они в данном случае называются перекидным) и один новый элемент: перекрестный переключатель, который за один раз делает сразу два переключения, то есть двигает сразу две перемычки (два контакта изменяют свое положение).

Схема сборки, начиная с третьего пункта, немного усложняется:

  1. Нулевой провод – на лампочку.
  2. Заземляющий провод – на лампочку.
  3. Вход второго переключателя – к свободному проводу источника света (к лампе).
  4. Фазный провод – ко входу проходного переключателя (с тремя входами).
  5. Оба выхода первого трехконтактного переключателя – на вход перекрестного переключателя (с четырьмя входами).
  6. Оба выхода второго трехконтактного переключателя разветвляются (каждый – еще на два) и идут на вторую пару контактов переключателя с четырьмя входами (четыре жилы).

Если нужно управлять включением и выключением лампочки из четырех, пяти и более мест, схема, описанная для трех точек, меняется незначительно – добавляется больше перекрестных переключателей. Когда точек для управления светом n штук, тогда приобретать такие переключатели нужно в количестве (n-2) штук. И они всегда будут расположены посередине в схеме, где с одного конца находится источник тока, а с другого источник света (лампа).

Когда для удобства и экономии электрической энергии есть необходимость управления светом двух лампочек (двух групп ламп) из трех мест и более, используется схема, описанная в предыдущем пункте, но более усложненная. Каждый из клавишных выключателей (каждая точка), кроме первого и последнего, снабжается двумя перекрестными переключателями тока. В начале цепи один раздвоенный контакт (пара контактов) по схеме уходит на первый, так называемый перекрёстник, а вторая – соответственно, на второй перекрёстник.

Далее в цепи идет ряд перекрестных переключателей. Их количество зависит от количества мест управления светом. В завершающем участке электрической цепи стоит такой же, как и первый, одинарный переключатель. Так как к нему можно подсоединить не четыре, а два провода, нужно попарно соединить эти четыре провода, сделав из них два. Все присоединения делаются с помощью клемм при отключенном напряжении.

Коммутационные коробки, собирающие соединенные провода в одном месте и закрывающие их от внешних воздействий, в данном случае нужно брать побольше (диаметров от ста миллиметров) или в большем количестве (несколько стандартных коробочек, имеющих диаметр 60 мм).

Установить проводку и переключатели не сложно, если выполнять все по приведенным выше правилам. После укладки проводки сверху можно наложить гипсокартон (потолочный или стеновой – зависит от расположения проводов) и только после этого можно клеить провода. При прокладывании проводки на стене обычно ее располагают в пятнадцати сантиметрах от потолка.

Схема подключения проходного выключателя с 2 и 3 мест.

Проходной выключатель представляет собой выключатель, который делает возможным включение и выключение освещения в управляемых данным механизмом светильниках из нескольких мест.

Несмотря на сравнительно высокую стоимость, бывают случаи, когда он является необходимым. Вот примеры этих случаев.

  • Освещение расположено в длинном коридоре или большом актовом зале. В таком случае гораздо удобнее иметь возможность включить или выключить свет в разных местах, а не бегать по огромному пространству в поисках возможности выключить свет;
  • спальня является местом для отдыха нескольких человек. Лучше всего, если каждый из них будет иметь возможность управлять освещением, не вставая с кровати;
  • в квартире находится человек, стесненный в движениях в силу своих физических особенностей;
  • в доме расположена межэтажная лестница;
  • освещение проведено в подвальное или складское помещение большого размера.

Общий принцип работы проходного выключателя

Работа проходного выключателя осуществляется за счет коммутации реверсных проводников, контакт между которыми устанавливается посредством соединения клеммами. Соединение всех их между собой происходит в распределительной коробке. С одним из выключателей соединяется питающий проводник. Посредством другого такого же устройства, этот проводник входит в контакт с проводником освещения. Оба имеют фазный принцип работы и поэтому их монтаж осуществляется только с использованием трехжильного провода.

Внимание! Все вышеизложенное относительно количества используемых проводников и необходимых контактов, а также количественной характеристики используемого провода является верным только в случае установки проводного выключателя с двумя местами управления освещением.

В случае установки проводного выключателя с тремя местами управления освещением, все значения вышеуказанных количественных характеристик автоматически увеличиваются на 1. В случае установки проводного выключателя с четырьмя местами управления—на 2 и т. д.

Проходной выключатель: деление на типы

Существует три основных критерия, по которым можно подвергнуть классификации проходные выключатели: количество точек управления освещением, количество клавиш управления освещением в одной точке управления и способ управления освещением.

По количеству точек управления выключатели делятся на установленные в одном месте, двух местах, трех местах и т. д.

По способу управления эти устройства бывают:

  • клавишными;
  • сенсорными;
  • управляемыми с помощью дистанционного пульта.

Обращаем внимание, что устанавливать проходные выключатели, оснащенные пультом дистанционного управления, все же является некоторым излишеством: дистанционное управление переключателем, по сути, сводит на нет необходимость установки проходного приспособления.

Если есть желание пустить пыль в глаза, то такая сенсорная штучка, да еще и не в одном экземпляре будет как нельзя кстати, тут ничего не скажешь.

Если управление выключателем осуществляется с помощью клавиш, то по их количеству, отвечающие этому условию устройства, подразделяют на:

  • одноклавишные;
  • двухклавишные;
  • трехклавишные и т. д.

Нужно заметить, что способ управления выключателями не имеет особого влияния на способ его установки. Более важными являются другие факторы.

Установка выключателя с управлением из двух точек

  1. Для начала, как уже говорилось, нужно отыскать переключатели. На каждый из них должно приходиться по три контакта.  У любого контакта обязательно имеется два состояния, в каждом из которых он может находиться попеременно. При этом один контакт каждого переключателя должен быть общим для двух оставшихся контактов этого переключателя. В зависимости от положения «общий контакт» замыкается то с одним, то с другим контактом переключателя.
  2. Теперь нужно, чтобы нулевой провод соединял источник электроснабжения с распределительной коробкой, а после соединил распределительную коробку с лампой. Фазный провод должен соединяться с распределительной коробкой, а далее выходить на лампу. Все это должно быть выполнено для обоих переключателей.
  3. Далее необходимо внутри распределительной коробки осуществить соединение двух переключаемых контактов одного переключателя с двумя переключаемыми контактами другого.
  4. После этого следует произвести непосредственно монтаж схемы. Проходные переключатели устанавливаются на заранее приготовленные для них места. От каждого из переключателей делается вывод трехжильного кабеля. Производится монтаж светильников. Осуществляется параллельное соединение друг с другом. Делается вывод двухжильного кабеля от светильников.
  5. Теперь главное правильно произвести монтаж распределительной коробки.  Именно в эту коробку делается ввод кабеля от светильников, провода от источника электроснабжения и проводов от самих переходных переключателей. При этом нужно уделить особое внимание правильному расположению этой коробки. Для ее расположения лучше всего найти такое место, чтобы для осуществления работы проходного переключателя существовала необходимость только в относительно коротких кабелях (этого требуют соображения экономии), а также чтобы данная коробка никому не мешала в быту.
  6. Работа почти закончилась, но нужно убедиться, что в один прекрасный момент выключатели не преподнесут сюрприз в виде пожара. Для этого нужно несколько раз ими пощелкать и проверить, не искрят ли они.

Установка проходного выключателя в трех точках

В принципе, между способом установки проходного переключателя в двух точках и способом, с помощью которого проходной выключатель устанавливается в трех местах, существует мало отличий. Главное из них состоит в том, что устройство третьего переключателя существенно отличается от маршевого, который используют в большинстве случаев установки таких приспособлений. Подобный переключатель с особым устройством называется перекрестным. Такое приспособление может выполнять две функции:

  • быть транзитным аппаратом, не взаимодействуя при этом с двумя остальными устройствами для включения освещения, которые существуют в схеме, во время их работы;
  • осуществлять самостоятельное замыкание и размыкание электрической схемы, обеспечивающей работу светильников, без участия двух оставшихся (маршевых) устройств.

Если проходной переключатель с двумя точками управления имеет три контакта, то аналогичное устройство с тремя точками управления обладает пятью контактами: с помощью двух контактов осуществляют соединение с одним из маршевых переключателей, посредством еще двух производится соединение с еще одним из маршевых переключателей, а оставшийся один контакт выполняет транзитную функцию (чаще всего, этот контакт посредством перемычки соединяется с третьей клеммой проходного переключателя.) Особенно важную роль играет так называемый транзитный контакт: именно в результате его функционирования становится возможным воплотить в реальность управление освещением из трех точек.

Аналогично осуществляется установка проходного аппарата для включения освещения с тремя и более точками управления.

Обращаем внимание, что описанные здесь схемы хороши своей простотой, но имеют один недостаток: они годятся только для ограниченного количества точек управления.

Монтаж двухклавишного проходного выключателя

Когда же нужно приобретать двухклавишный выключатель? Например, если в большой комнате имеется несколько ламп и иногда его хозяевам хочется, чтобы их комната напоминала сияющий зал или расположиться небольшой компанией. Чтобы обеспечить это разнообразие обстановок, нужно иногда включать все лампы в комнате, а иногда – только некоторые. С этим поможет справиться двухклавишный механизм управления освещением.

Как правило, проходной двухклавишный механизм представляет собой объединение двух одноклавишных переключателей в одном внешнем корпусе.

Внутренняя конструкция двухклавишного переключателя совокупность двух групп контактов, не связанных друг с другом. Всего используется шесть контактов, из которых два являются входными, а четыре – выходными. Когда кто-то нажимает выключатель, то два входных контакта прерывают взаимодействие с двумя выходными первого выключателя и переключаются на два выходных контакта второго.

При этом на первый из них, электроснабжение подается через один провод, причем две части этого провода связаны с помощью перемычки, а второй является разделенным на выходные фазы: каждая фаза соответствует одному из приборов и осуществляет подачу электроэнергии.

Итак, чтобы осуществить монтаж двухклавишного устройства, следует выполнить такую последовательность действий:

  • нужно взять распределительную коробку и правильно осуществить ее монтаж;
  • после этого нужно установить подрозетник. Его установка может проводиться по-разному: все зависит от того, как он осуществляется по бетону, по гипсокартону или по какому-либо материалу;
  • теперь следует осуществить монтаж трехжильного провода, через который будет осуществляться электропитание;

Важно! Перед установкой этого провода следует убедиться, что на нем отсутствует напряжение!

  • следует проложить провод до распределительной коробки, а оттуда – до подрозетника;

Внимание! Концы проводов, подсоединенных к распределительной коробке должны оставаться с запасом 10-15 сантиметров.

  • далее следует провести провод к первому источнику освещения;
  • после этого нужно провести провод ко второму источнику освещения;
  • далее перед непосредственным подключением двухклавишного переключателя следует осуществить зачистку проводов;
  • потом нужно взять устройство выключателя и перевернуть его. Там должна быть изображена конкретная схема подсоединения проводов к этому переключателю. Делаем все, как указано в схеме.
  • после этого сооруженный механизм необходимо вставить в подрозетник.

Итак, дело можно считать завершенным. Для осуществления монтажа проходного выключателя, имеющего три клавиши или даже большее количество, действия будут аналогичными.

Подводя итоги, стоит сделать следующие замечания:

  • при решении установить проходной выключатель и выборе конкретного типа такого устройства, лучше всего руководствоваться целесообразностью установки такого механизма в конкретном помещении;
  • при осуществлении монтажных работ необходимо строжайше соблюдать технику безопасности;
  • при малейших сомнениях в правильности тех или иных действий при проведении монтажных работ, следует обращаться к мастеру-электрику.

Те, кто предпочитает конкретные примеры общим описаниям или просто больше любит схемы, чем слова, могут взглянуть на видеоролики:

Принцип работы проходного выключателя – Всё о электрике

Как сделать проходной выключатель своими руками?

Если вы установили прибор освещения в длинном коридоре и хотите, чтобы он выключался в обоих концов, вам понадобится специальный коммутатор, переключающий подачу напряжения с одного полюса на другой. Тот же принцип можно использовать если вы собрались запитать осветительный прибор при входе в комнату и у кровати или возле рабочего стола.

Тогда вы сможете отключить общее освещение уже лежа в постели или включив настольную лампу на рабочем столе. Камнем преткновения для реализации этой схемы является относительно высокая стоимость такого электрического прибора, а вам их понадобится два, поэтому куда выгоднее изготовить проходной выключатель своими руками.

Принцип работы проходного выключателя

В отличии от привычных для нас моделей двух- и одноклавишных выключателей для включения освещения, проходные коммутаторы выдают два включенных положения. Для работы схемы используются два проходных выключателя, которыми вы и оперируете работу ламп освещения.

Принципиальная схема работы такой электрической цепи приведена на рисунке ниже:

Рисунок 1: принцип действия проходного выключателя

Как видите, на схеме от электрической проводки к выключателям подключается фазный провод, а нулевой ведется напрямую к лампе или другому осветительному оборудованию. Если проследить подсоединение от распределительной коробки, то фаза подводится к вводу первого проходного выключателя. Далее двумя независимыми проводами выводы А и Б первого устройства соединяются с одноименными выводами второго коммутатора. От выходной клеммы второго выключателя фаза подается к выводу лампы. Второй вывод лампы соединяется нулевым проводом.

Разумеется, что приведенная схема подключения требует дополнительных затрат кабеля для соединения выключателей между собой, но ее функционал оправдывает их с лихвой. Из-за конструктивных особенностей такой коммутатор не разрывает цепь ни в одном из положений, поэтому правильнее его называть переключателем.

В быту, по причине использования таких коммутаторов на лестничных площадках для отключения пролетов с разных точек их еще называют маршевыми выключателями.

Если вы решили реализовать такую схему у себя дома или в офисе, но не хотите переплачивать за проходной выключатель, его можно изготовить и из более дешевого двухклавишного устройства. Далее мы рассмотрим две методики, которые позволят вам изготовить проходной выключатель своими руками.

Способ №1. Двухклавишный переключатель

Данный метод позволяет получить проходные выключатели из обычных двухклавишных моделей. Это особенно удобно, если вы не хотите тратить время на сложные изменения их конструкции или у вас нет соответствующего инструмента.

Рис. 2. Двухклавишная модель проходного выключателя

Для реализации этой модели проходного выключателя вам потребуется два двухклавишных устройства, соединительные провода и источник освещения.

Собрав все необходимое, выполните такую последовательность действий:

  1. Отключите напряжение на щитке при помощи автоматического выключателя – это предотвратит поражение электротоком при монтажных работах. Будет надежнее, если одновременно вы отключите и нулевой и фазный проводник для соответствующего светильника.
  2. Подключите первый из двухклавишных переключателей к фазному проводу трехжильного кабеля. Для этого отпустите клемму на выключателе и заведите туда жилу. Зажимается жила до получения надежного контакта с минимальным сопротивлением электрическому току.
  3. К каждому из выходных контактов также подключите по проводу. Далее проведите их к выходным контактам второго двухклавишного выключателя.
  4. От вводной клеммы второго коммутатора отведите провод к прибору освещения.

Если система освещения проводится в рамках капитального ремонта и замены всех светильников и приборов в доме, то для разводки электропитания штробятся стены. В противном случае можно обойтись наружной прокладкой в кабельном канале. В случае большой протяженности между точками переключения, проводку лучше выполнять трехжильным кабелем. Так как для промежуточного соединения проводов оптимально расходуется три провода.

Следует отметить, что вышеизложенный метод работает при одновременном переключении сразу двух клавиш, поэтому каждый раз вам нужно оперировать сразу двумя кнопками, переводя их в противоположные положения.

В противном случае логика схемы нарушиться и в следующий раз вам попросту не удастся отключить лампочку. Поэтому если другие домочадцы могут халатно относиться к подобным переключениям, лучше переделать конструкцию устройства на одноклавишный вариант.

Способ №2. Одноклавишный переключатель

Если вы беретесь переделывать двухклавишный выключатель в одноклавишный переключатель с конструктивным изменением положения клемм, желательно использовать два коммутатора одного типа или хотя бы схожие по конструкции и размеру. Обязательно обратите внимание, позволяет ли конструкция развернуть подвижную контактную группу выключателя таким образом, чтобы в первом положении они замыкали один контакт, а во втором противоположный.

Порядок изготовления проходного выключателя с одной клавишей заключается в следующем:

  1. Перед выполнением монтажных работ обязательно отключите электропитание на соответствующем участке цепи. Если вы отключаете только один автомат, обязательно проверьте отсутствие напряжение индикатором.
  2. Если вы собираетесь снять действующий выключатель из коробки, сначала снимите фальшпанель и удалите фиксаторы. Затем ослабьте узлы крепления в коробке, достаньте сердцевину. Открутите провода подключения и удалите коммутатор из цепи освещения.
  3. Если вы используете новый выключатель, можете пропустить предыдущий пункт. Тогда сразу переходите к демонтажу электрических контактов с полимерного или керамического основания.
  4. При помощи отвертки разберите устройство, отделите металлические пластины – перекидные контакты.

Рис. 3. Разберите выключатель

В зависимости от конструкции выключателя вам понадобится открутить болты, вытянуть пружины из станины или расцепить замок.

  • На керамическом или полимерном основании расположены неподвижные контакты. Одни из них потребуется развернуть на 180°, чтобы при переключении клавиши замыкался второй контакт.

Рис. 4: разверните один из контактов

Но такая манипуляция возможна не на всех коммутаторах, в некоторых вариациях придется доработать контакты – припаять дополнительную шину, чтобы удлинить ламели. Поэтому в каждой модели нужно детально разобраться.

  • На вводе фазного провода установите перемычку, чтобы приравнять потенциал на обеих клеммах.

Рис. 5: установите перемычку

  • Ту же процедуру повторите со вторым выключателем, чтобы получились два проходных. Соберите все элементы в обратной последовательности, но вместо двух клавиш установите одну, которая по габаритам сможет свободно двигаться на имеющемся креплении.
  • Установите оба переключателя в коробки под них. От выходных клемм одного подключите провода к аналогичным контактам другого. Пары контактов должны соединяться отдельными проводами.

Перед вводом в работу, желательно проверить качество замыкания при переключении. Для этого прозвоните цепь на обе пары контактов — у вас должно получиться практически нулевое сопротивление в обоих вариантах.

В противном случае клавиша одного из проходных выключателей неплотно прилегает в определенном положении, соответственно, выключатель нужно будет перебрать и устранить неполадку. Если вы планируете прокладывать проводку, актуально использовать трехжильный провод таким будет гораздо удобнее работать.

Изучаем принцип работы проходного выключателя: что это такое и где его установить

Проходными выключателями называют устройства, предназначенные для обеспечения управления одним источником света из двух или более различных мест. Схемы с их использованием несколько сложнее, чем традиционные, поскольку подразумевают установку нескольких коммутационных аппаратов.

Освещение с использованием проходных выключателей обычно обустраивают в длинных коридорах, на лестницах, садовых дорожках, в спальнях. Такая схема позволяет, включив свет в одном конце помещения, выключить его в другом, не возвращаясь к первому выключателю.

Виды проходных выключателей

Проходные выключатели классифицируются так же, как и обычные.

По количеству клавиш:

  • одноклавишные;
  • двухклавишные;
  • трёхклавишные
  • одно- или двухклавишные перекрёстные (используются в тех случаях, когда управление освещением должно осуществляться из трёх или более мест).


По типу управления:

  • клавишные;
  • сенсорные;
  • с ПДУ и т.д.

Основным критерием при выборе проходного выключателя является количество клавиш: оно должно соответствовать числу групп одновременно включаемых элементов освещения.
Тип устройства (клавиши, сенсор или что-то другое) имеет второстепенное значение и целиком зависит от личных предпочтений и бюджета.

Принцип действия — особенности переключения электрической цепи

Исходя из принципа работы, проходные выключатели света правильнее было бы называть переключателями. Внешне они выглядят практически так же, как обычные выключатели. Основные различия между ними заключаются в их системе контактов.

Предназначение традиционных выключателей заключаются в замыкании и размыкании электрической цепи. Сходные функции выполняют и переключатели, однако их специфика определяет некоторые конструктивные особенности.

Какую схему установки диммера выбрать для конкретной системы освещения, можно узнать тут.

Подобно двухклавишным выключателям, схема проходного переключателя оснащена тремя контактами. Однако этот дополнительный контакт имеет совершенно иную функцию. При срабатывании обычного выключателя происходит простой разрыв цепи. Проходной двухклавишный переключатель, размыкая одну цепь, одновременно замыкает другую, которая, в свою очередь, является контактами парного переключателя (поодиночке данные устройства не используются).

Подключение проходных переключателей основано на перекидных контактах, действующих по принципу коромысла. Некоторые из таких устройств имеют нулевое положение, при включении которого обе цепи оказываются разомкнутыми, однако на практике такие устройства используются крайне редко.

При смене положений переключателя ток перенаправляется на соответствующую клемму. В результате замкнутой остаётся одна из возможных цепей питания источника света. Осветительный прибор включается, когда оба переключателя находятся в одинаковых положениях.

Если при подключении обычных выключателей задействуется два провода (разрываемая фаза), то к проходным подходит три, из которых два являются перемычками между маршевыми переключателями, а через третий на один переключатель подаётся фаза, которая со второго устройства выходит на источник света.

Чтобы правильно выбрать LED лампы для дома, достаточно внимательно ознакомиться с этой статьей. Оптимальный вид светорегуляторов для таких ламп поможет подобрать простая инструкция.

Особенностью схемы освещения с использованием проходных выключателей является обязательное наличие в ней коммутационной коробки.

Перекрёстные выключатели: схема управления освещением из трех и более мест

Проходные перекрёстные выключатели применяются в тех случаях, когда необходимо организовать управление освещением из трёх или более мест. Эти устройства могут выполнять транзитные функции, не оказывая влияния на работу проходных переключателей, и одновременно сами являются выключателем.

Их конструктивная особенность заключается в наличии пяти клемм подключения, из которых две соединяются с первым переключателем, две – со вторым, а пятая, обеспечивающая управление из трёх мест, является транзитной. Для управления освещением из четырёх мест потребуется установка двух перекрёстных выключателей.

При наличии в помещении нескольких групп освещения используются двухклавишные перекрёстные выключатели.

Проходные выключатели существенно упрощают управление освещением и делают его более удобным. Если ранее использование подобных схем было обусловлено, в основном, особенностями планировки помещения, то в настоящее время их можно встретить практически повсеместно.

Видео инструкция, демонстрирующая принцип работы проходного выключателя

Как подключить проходной выключатель

В статье рассматривается принцип работы проходного и перекидного выключателя, приводятся схемы подключения выключателей, предназначенных для управления освещением с двух, трех и более мест. Приведены советы по правильному выполнению монтажных работ, связанных с подключением проходных выключателей.

Идея, по которой создан проходной выключатель, не нова, первые схемы появились в домах радиолюбителей еще в 60-х годах, а особую популярность она набрала в 90-е, когда на рынке появились первые импортные выключатели, «заточенные» под управление светильником из разных мест.

Устройство и принцип работы проходного выключателя

Самым простым представителем семейства проходных выключателей является его одноклавишный вариант.

Внешне он ничем не отличается от обычного выключателя, кроме внутренней схемы, которая обычно указывается на обратной стороне корпуса.

Принцип работы проходного выключателя прост: при перемещении клавиши выключателя внутренний подвижный контакт размыкает одну цепь и автоматически замыкает вторую (так называемый перекидной контакт). На рисунке клемма «2» — общий контакт, клеммы «3» и «6» — выход перекидного.

Принципиальная схема проходного выключателя выглядит так:

Используя данный эффект, можно создать самую простую схему проходного выключателя, при которой один светильник будет управляться сразу из двух разных мест:

1,2 — проходные выключатели; 3 — к корпусу светильника

Подключение проходного выключателя

Монтаж выполняется трехжильным кабелем. Для упрощения монтажных работ его жилы должны иметь заводскую цветовую маркировку. Сечение выбранного провода должно выдержать подключаемую через него нагрузку. Поскольку мощность контактов выключателя ограничена величиной 10–16 А, для монтажа чаще всего используют медный гибкий кабель с сечением проводов от 1 до 1,5 мм 2 .

Как подключить проходной выключатель:

  1. На проходном выключателе необходимо найти общую клему (на схеме она обозначена цифрой «1»).
  2. На первый выключатель, расположенный ближе всего к распределительной коробке, подводим «фазу» и подключаем ее на общую клему «1». Для монтажа используем самый яркий провод (обычно красный или оранжевый, на поясняющем рисунке использован белый ).
  3. Высаживаем на выходные клеммы проходного переключателя (по схеме это клеммы «2» и «3») два оставшихся провода, запоминаем соответствие цвета использованной жилы и маркировки на клеммнике проходного переключателя.
  4. На втором выключателе выполняем подключение кабеля аналогично первому (строго соблюдаем цветовую маркировку проводов и соответсвующие им клеммы переключателя).
  5. В распределительной коробке соединяем самый яркий провод (на поясняющем рисунке это белый), пришедший со второго проходного выключателя с фазой светильника.
  6. Два других провода, в соответствии с цветовой маркировкой, соединяем с аналогичным по цвету проводом, пришедшим с первого выключателя (например,зеленый с зеленым, синий с синим и т. д.), на поясняющем рисунке соединены зеленые и красные провода.
  7. Нулевой и заземляющий провод в распределительной коробке сразу соединяем с аналогичным по назначению кабелем, уходящим на светильник.
  8. Подтягиваем скрутки, при необходимости лудим, качественно изолируем оголенные участки проводов.

Также можно использовать следующее соединение:

1 — ответвительная коробка; 2 — к корпусу светильника; 3, 4 — подрозетники

Сборка проходного переключателя выполняется в следующей последовательности:

1. Разбираем выключатель.

2. Подключаем к проходному выключателю провода, согласно схеме.

3. Вставляем выключатель в монтажную коробку и фиксируем его в ней.

4. Закрываем выключатель защитно-декоративными накладками.

Важно! С помощью контрольки удостоверьтесь в том, какой провод в распределительной коробке «фаза». Перед выполнением монтажных работ отключите питающее напряжение. Не соединяйте в одну скрутку медные и алюминиевые провода.

Проверка работы схемы

Необходимо убедиться, что каждый выключатель может как включить, так и отключить лампу, вне зависимости от положения другого выключателя.

Каждое переключение проходного выключателя должно вызывать отключение или включение электрических ламп, если этого не происходит, необходимо найти и устранить ошибку в выполненном монтаже.

Двухклавишные проходные переключатели

Данные проходные выключатели физически состоят из двух одинарных проходных выключателей, собранных в одном корпусе.

1 — проходной двухклавишный выключатель; 2 — проходные выключатели

Двойной проходной переключатель позволяет управлять несколькими лампами сразу. Для этого необходимо собрать следующую схему:

1, 2 — проходной двухклавишный выключатель; 3 — к корпусу светильника

Для коммутации можно использовать как трехжильные провода, проложенные в параллель, так и шестижильные, главное, не ошибиться при подключении.

Собранная схема позволяет независимо включать и выключать две лампы или два светильника с двух разных мест.

Например, включим лампу № 1, изменив положение первого перекидного переключателя.

Аналогично можно включить вторую лампу.

Отключение можно выполнять как с помощью первого, так и второго переключателя.

Управление освещением с трех и более мест

В некоторых случаях недостаточно иметь возможность управлять освещением с двух мест. Для эффективного управления освещением трехэтажного лестничного марша понадобится минимум три точки контроля. В этом случае совместно с классическими проходными выключателями используется дополнительный тип выключателя — перекрестный.

Перекрестный выключатель устанавливается в разрыв связи между двумя проходными переключателями, это позволяет создать еще одну точку управления освещением.

1, 3 — проходные выключатели; 2 — перекрестный выключатель; 4 — к корпусу светильника

С помощью дополнительной последовательной установки перекрестных выключателей можно увеличивать количество мест, с которых производится управление освещением.

Как видно из схемы, переключение любого из выключателей вызовет включение или отключение освещения.

Сборку схемы управления лампой с трех различных мест можно выполнить следующим образом:

1 — проходной выключатель; 2 — перекрестный выключатель; 3, 5 — подрозетники для проходных выключателей; 4 — подрозетник для перекрестного выключателя; 6 — ответвительная коробка; 7 — к корпусу светильника

Монтаж выполняется аналогично рассмотренному выше варианту с одинарным проходным выключателем, для монтажа потребуется двух и трехпроводный кабель.

Как видно из рассмотренного материала, с помощью проходных выключателей можно организовать управление одной лампой с двух разных мест. Использование перекрестного выключателя позволяет увеличить количество мест управления до трех и более.

{SOURCE}

Автоматический выключатель

: принцип работы, типы и конструкция

Автоматический выключатель

– это переключающее устройство, способное замыкать, проводить и отключать ток в нормальных и ненормальных условиях цепи в течение определенного времени. Итак, какова его структура и сколько существует типов? Как это работает? Прочитай это.

Каталог

I Принцип работы

Автоматический выключатель обычно состоит из контактной системы , дугового пожаротушения , рабочего механизма , расцепителя и корпус .

При коротком замыкании магнитное поле, создаваемое сильным током (обычно от 10 до 12 раз), преодолевает противодействующую пружину, расцепитель тянет рабочий механизм, и переключатель мгновенно срабатывает. Когда цепь перегружена, ток становится больше, тепловыделение увеличивается, а биметаллический лист до определенной степени деформируется, заставляя механизм двигаться (чем больше ток, тем короче время работы).

Высоковольтный выключатель должен отключать дугу 1500 В и 1500-2000 А.Эти дуги можно растянуть до 2 м и продолжать гореть без тушения. Поэтому гашение дуги – актуальная проблема для высоковольтных выключателей.

Рисунок 1. Гашение дуги

Принцип поддува дуги и гашения дуги заключается в основном в уменьшении тепловыделения охлаждающей дуги. С другой стороны, удлинение дуги используется для усиления рекомбинации и диффузии заряженных частиц. При этом заряженные частицы в дуговом промежутке сдуваются, и диэлектрическая прочность среды быстро восстанавливается.

Низковольтные выключатели , также называемые автоматическими воздушными выключателями, могут использоваться для подключения и отключения цепей нагрузки, а также для управления двигателями, которые запускаются нечасто. Его функция эквивалентна сумме некоторых или всех электрических систем, таких как рубильник, реле максимального тока, реле нулевого напряжения, тепловое реле и устройство защиты от утечки, которое является важным устройством защиты в распределительной сети низкого напряжения.

Низковольтные выключатели имеют множество функций защиты (защита от перегрузки, короткого замыкания, пониженного напряжения и т. Д.).). Кроме того, они имеют регулируемое рабочее значение, высокую отключающую способность и простую и безопасную работу, поэтому они широко используются.

Низковольтный автоматический выключатель состоит из привода, контактов, устройств защиты (различных расцепителей) и систем дугогашения. Его главный контакт управляется вручную или электрически замкнут. После замыкания главного контакта устройство свободного отключения блокирует главный контакт в закрытом положении.

Катушка расцепителя максимального тока и тепловой элемент теплового расцепителя подключены последовательно с главной цепью, а катушка расцепителя минимального напряжения подключена параллельно источнику питания.

Когда цепь короткозамкнута или сильно перегружена, якорь устройства отключения по току втягивается, вызывая срабатывание устройства свободного отключения, затем главный контакт отключает главную цепь. При перегрузке цепи тепловой элемент теплового расцепителя нагревается и изгибает биметаллический лист, заставляя двигаться свободный отключающий механизм. Когда в цепи пониженное напряжение, срабатывает якорь расцепителя пониженного напряжения, активируя механизм свободного отключения.

Рисунок 2. Устройство отключения от сверхтока

Независимый расцепитель используется для дистанционного управления. Во время нормальной работы катушка выключена. Когда требуется дистанционное управление, нам нужно нажать кнопку пуска, чтобы подать питание на катушку.

II Условия работы

1. Температура окружающей среды

Верхний предел: 40 ℃;

Нижний предел: -5 ℃;

Среднее значение в течение 24 часов: <35 ℃.

2. Высота

Высота места установки не превышает 2000м.

3. Атмосферные условия

Относительная влажность атмосферы не превышает 50% при температуре окружающего воздуха 40 ℃. Он может иметь более высокую относительную влажность при более низкой температуре. Среднемесячная максимальная относительная влажность самого влажного месяца составляет 90%, а среднемесячная минимальная температура месяца – 25 ℃. Кроме того, следует учитывать конденсацию, которая возникает на поверхности продукта из-за перепадов температуры.

4. Уровень загрязнения: уровень 3

5. Цепь управления

(1) Целостность защитного устройства и цепей отключения и включения в цепи управления должна контролироваться для обеспечения нормальной работы автоматический выключатель.

(2) Должен быть указан статус положения нормального включения и отключения автоматического выключателя, и должен быть очевидный индикаторный сигнал во время автоматического включения и автоматического отключения.

(3) После завершения замыкания и отключения должен сработать командный импульс, чтобы отключить подачу питания на замыкание или отключение.

(4) При отсутствии механического устройства защиты от срабатывания следует установить устройство защиты от срабатывания ;

Рисунок 3. Электрическое устройство защиты от срабатывания

(5) Цепь сигнала аварийного отключения автоматического выключателя должна быть подключена в соответствии с «принципом несоответствия».

(6) Для оборудования, которое может иметь ненормальные рабочие условия или неисправности, должен быть установлен предупреждающий сигнал.

(7) Источник питания механизма пружинного привода и механизма ручного управления может быть постоянным или переменным током, а источник питания электромагнитного рабочего механизма должен быть постоянным током.

III Автоматический выключатель Свойства

Автоматический выключатель имеет следующие характеристики:

1. Номинальное рабочее напряжение (Ue)

Напряжение, при котором автоматический выключатель работает в нормальных (непрерывных) условиях.

2. Номинальный ток (In)

Максимальное значение тока, которое автоматический выключатель, оснащенный специальным реле максимального тока, может выдержать при температуре окружающей среды, указанной производителем, и не будет превышать температурный предел, определенный током. несущий компонент.

3. Ток срабатывания реле короткого замыкания (Im)

Реле отключения короткого замыкания (мгновенная или с кратковременной задержкой) используется для быстрого отключения автоматического выключателя при появлении высокого тока короткого замыкания, а его предел срабатывания составляет значение настройки lm.

4. Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Номинальный ток отключения при коротком замыкании автоматического выключателя – это максимальное значение (ожидаемого) тока, которое автоматический выключатель может отключить без повреждения. Стандартное значение тока – это среднеквадратическое значение переменной составляющей тока повреждения, а переходная составляющая постоянного тока (которая всегда возникает при коротком замыкании) предполагается равной нулю. Номинальное значение промышленного автоматического выключателя (Icu) и бытового автоматического выключателя (Icn) обычно выражается в среднеквадратичном выражении в кА.

5. Отключающая способность при коротком замыкании (Ics)

Номинальная отключающая способность автоматического выключателя делится на два типа: номинальная предельная отключающая способность при коротком замыкании и номинальная рабочая отключающая способность при коротком замыкании .

Независимо от того, какой это автоматический выключатель, он будет иметь два важных технических индикатора: Icu и Ics. Однако, поскольку автоматический выключатель используется на ответвлении, этого будет достаточно для соответствия Icu.

Некоторые люди предпочитают выбирать большее значение. Однако, если он слишком большой, это приведет к ненужным отходам. Например, для автоматического выключателя того же типа цена типа H высокого отключающего типа 一 в 1,3–1,8 раза дороже, чем тип S 一 обычного типа). Следовательно, нет необходимости слепо гнаться за лучшим Ику.

Напротив, для автоматических выключателей, используемых в основной линии, должны выполняться требования Icu и Ics. Если для измерения отключающей способности использовать только Icu, возникнут некоторые скрытые опасности.

IV Автоматический выключатель Типы

Существует много типов автоматических выключателей, которые можно классифицировать в зависимости от использования, формы конструкции, метода работы, количества полюсов, способа установки, средства гашения дуги и области применения.

9018 6

дугогасящий и токоограничивающий тип

Согласно …

Типы

с использованием категории

неселективный тип (тип A) и селективный тип (тип B)

структура

универсальный тип и пластиковый корпус

режим работы

ручной режим и немручный режим (электрический, накопитель энергии) тип

количество полюсов

однополюсный, двухполюсный, трехполюсный и четырехполюсный тип

способ установки

фиксированный тип, вставной тип и выдвижной тип

дугогасящая среда

воздушный и вакуумный

дугогасящая техника

использование

типы, используемые для распределения электроэнергии, защиты электродвигателей, бытовых устройств, защиты от остаточного тока (утечки), специального использования и т. Д.

Автоматический выключатель

В Структура

1. Внутренние аксессуары

(1) Вспомогательный контакт

Вспомогательный контакт – это контакт между механизмом размыкания и замыкания главной цепи, в основном используется для отображения отключения и включения состояния выключателя. Он подключен к цепи управления для управления или блокировки связанных с ней электрических приборов посредством размыкания и замыкания автоматического выключателя, например, для вывода сигналов на сигнальные лампы, реле и т. Д.

Для автоматического выключателя в литом корпусе (MCCB) с номинальным током корпуса корпуса (lnm) 100A, он имеет схему преобразования с одной точкой прерывания, а схема с lnm 225A и выше имеет мостовую структуру контактов, а обычный тепловой ток равен 3А. Кроме того, один с внутренним диаметром 400 А и выше может быть установлен с двумя обычно открытыми и двумя обычно закрытыми контактами, а обычный тепловой ток составляет 6 А. Число рабочих характеристик такое же, как общее число рабочих характеристик выключателя.

Рисунок 4. Группа вспомогательных контактов в масляном автоматическом выключателе

(2) Контакт аварийной сигнализации

Контакт аварийной сигнализации в основном используется при аварии выключателя, и он будет только действовать когда автоматический выключатель срабатывает и ломается. Когда происходит перегрузка, короткое замыкание или сбой пониженного напряжения на нагрузке автоматического выключателя, автоматический выключатель срабатывает свободно, и контакт аварийной сигнализации перемещается из исходного разомкнутого положения в замкнутое положение, включая индикатор, электрический звонок, зуммер и т. д.во вспомогательной строке для отображения статуса аварийного отключения.

Так как автоматический выключатель редко срабатывает из-за сбоя нагрузки, срок службы контакта аварийной сигнализации составляет 1/10 срока службы автоматического выключателя. Рабочий ток контакта сигнализации обычно не превышает 1 А.

(3) Независимый расцепитель

Независимый расцепитель – это расцепитель, который возбуждается источником напряжения , напряжение которого не зависит от напряжения главной цепи. Это аксессуар для дистанционного управления открыванием.Когда напряжение источника питания равно любому напряжению между 70% -110% номинального управляющего напряжения источника питания, автоматический выключатель может быть надежно отключен.

Независимый расцепитель имеет кратковременную рабочую систему, и время проводимости катушки, как правило, не должно превышать 1 с, в противном случае провод сгорит. Чтобы предотвратить возгорание катушки, микровыключатель соединен последовательно с катушкой независимого расцепителя. Когда независимый расцепитель втягивается якорем, микровыключатель переключается с нормально замкнутого на нормально разомкнутый.

Из-за отключения цепи питания и управления независимым расцепителем, даже если кнопка нажата вручную, катушка шунта никогда не включится. Это позволяет избежать перегорания катушки. Когда автоматический выключатель снова включается, микровыключатель снова находится в нормально замкнутом положении.

Рисунок 5. Автоматический выключатель с независимым расцепителем

(4) Отключение при пониженном напряжении

Отключение при пониженном напряжении – это тип отключения, который позволяет отключать автоматический выключатель с задержкой или без задержка при падении напряжения на его клеммах до указанного диапазона.Он срабатывает, когда напряжение источника питания падает (даже медленно) до диапазона от 70% до 35% от номинального рабочего напряжения.

Когда напряжение источника питания равно 35% от номинального рабочего напряжения отключения, отключение по пониженному напряжению должно предотвращать включение автоматического выключателя; когда напряжение источника питания равно или превышает 85% от номинального рабочего напряжения, он должен обеспечивать надежное включение автоматического выключателя в жарких условиях. Таким образом, при возникновении определенного падения напряжения в напряжении источника питания в защищаемой цепи автоматический выключатель может быть автоматически отключен, так что электрические устройства нагрузки или оборудование под автоматическим выключателем будут защищены от повреждения из-за пониженного напряжения.

При использовании катушка отключения при пониженном напряжении подключается к стороне источника питания автоматического выключателя, и автоматический выключатель может быть включен только после срабатывания отключения при пониженном напряжении.

2. Внешние аксессуары

(1) Электрический приводной механизм

Это аксессуар для автоматических выключателей дальнего действия , который включает моторный привод и электромагнитный привод.

Приводной механизм двигателя представляет собой автоматический выключатель в литом корпусе с внутренним диаметром 400 А и выше, электромагнитный привод подходит для автоматического выключателя в литом корпусе с внутренним диаметром 225 А и ниже.Будь то электромагнит или двигатель, их направления втягивания и вращения одинаковы, только благодаря положению кулачка внутри электрического рабочего механизма, обеспечивающего закрытие и открытие. Когда автоматический выключатель приводится в действие электрическим механизмом, автоматический выключатель должен иметь возможность замыкания при любом напряжении от 85% до 110% от номинального управляющего напряжения.

Рисунок 6. Автоматический выключатель в литом корпусе

(2) Поворотная ручка

Подходит для автоматических выключателей в литом корпусе.Механизм ручки поворота установлен на крышке выключателя. Поворотный вал ручки установлен в отверстие для согласования ее механизма. Другой конец вращающегося вала проходит через дверное отверстие шкафа с выдвижным ящиком, и ручка устанавливается на головке вала, выступающей на дверце всего устройства, круглое или квадратное основание которого закреплено на дверце винтами.

Эта установка позволяет оператору вращать ручку по часовой стрелке или против часовой стрелки за пределами двери, чтобы обеспечить включение или выключение автоматического выключателя.В то же время поворот ручки может гарантировать закрытие дверцы шкафа при включении автоматического выключателя до тех пор, пока поворотная ручка не откроется или не сработает снова. В аварийной ситуации, когда автоматический выключатель «замкнут» и электрическая панель должна быть открыта, мы можем нажать красную кнопку разблокировки сбоку от основания ручки.

(3) Удлинительная рукоятка

Это внешняя удлинительная рукоятка, которая устанавливается непосредственно на рукоятке автоматического выключателя. Обычно он используется для автоматических выключателей большой мощности на 600 А и выше для ручного отключения и включения.

(4) Устройство блокировки рукоятки

Зажим устанавливается на раму рукоятки, ручка пробивается, а затем фиксируется висячим замком. Когда автоматический выключатель замкнут, устройство блокировки ручки может остановить других, чтобы отключить питание и вызвать сбой. Кроме того, когда сторону нагрузки автоматического выключателя необходимо отремонтировать или питание отключено, это может предотвратить ошибочное включение автоматического выключателя.

Рисунок 7.Устройство блокировки автоматического выключателя

VI Метод подключения

Метод подключения автоматического выключателя – это проводка перед платой, за платой, вставного типа, выдвижного типа, в том числе проводка перед платой. самый распространенный способ разводки.

1. Электропроводка за платой

Самая большая особенность проводки за платой заключается в том, что автоматический выключатель можно заменить или отремонтировать без повторного подключения , только отключив предварительный источник питания.

Из-за особой конструкции изделие оснащено специальными монтажными пластинами, крепежными винтами и винтами для проводки в соответствии с требованиями проекта. Следует отметить, что надежность контакта выключателя большой мощности напрямую влияет на нормальное использование выключателя, поэтому мы должны устанавливать его строго в соответствии с требованиями производителя.

2. Вставная проводка

На монтажной плате всего устройства сначала установите монтажное основание выключателя с 6 розетками на нем.На поверхности монтажного основания имеется соединительная пластина или болты позади монтажного основания, а шнур питания и линия нагрузки подключаются к монтажному основанию заранее.

При использовании вставляйте автоматический выключатель прямо в крепление. Если автоматический выключатель сломан, просто вытащите сломанный и замените на исправный. Время замены подключаемой проводки короче, чем проводки до и за платой, что более удобно.

Рисунок 8.Электропроводка в автоматическом выключателе

3. Электропроводка с выдвижным ящиком

Входные и выходные ящики автоматического выключателя вращаются по часовой стрелке или против часовой стрелки с помощью рычага. И основная цепь, и вторичная цепь используют съемную структуру, за исключением изолятора , необходимого для фиксированного типа. Одна машина с двумя видами использования более экономична и в то же время обеспечивает большое удобство эксплуатации и технического обслуживания, повышая безопасность и надежность.В частности, держатель контактов главной цепи основания ящика может использоваться взаимозаменяемо с держателем контактов предохранителя типа NT.

Последние Электронные Блог:

Структура и принцип работы полевых транзисторов

Что такое электрический разъем?

Автоматические выключатели низкого напряжения – Основы проектирования и изготовления

В этой статье мы собираемся изучить основы проектирования и изготовления выключателей низкого напряжения.Работа и гашение дуги автоматических выключателей различных типов уже обсуждались. Здесь объясняются основные принципы проектирования автоматических выключателей с низким номиналом (MCB, MCCB, GFCI и т. Д.). Варианты этих принципов проектирования будут обсуждаться позже. Автоматические выключатели

– это электрические распределительные устройства, которые состоят из следующих пяти основных компонентов.
  1. Рама
  2. Контакты
  3. Сборка дугогасительной камеры
  4. Рабочий механизм
  5. Расцепитель

Функции и характеристики каждого компонента поясняются изображениями.

1. Рама

Рама представляет собой изолированный корпус для установки компонентов автоматического выключателя. Конструкционный материал обычно представляет собой термоустойчивый пластик, например, стеклополимер. Материал конструкции может быть фактором при определении отключаемой способности автоматического выключателя.

Типичные характеристики корпуса включают максимальное напряжение, максимальный номинальный ток и номинальное значение отключения.

2. Контакты

Ток, протекающий в цепи, управляемой автоматическим выключателем, протекает через контакты автоматического выключателя.Когда автоматический выключатель выключен или срабатывает током короткого замыкания, автоматический выключатель прерывает прохождение тока, разъединяя свои контакты.

Контакты бывают двух типов в зависимости от отключающей способности.

  • Прямые контакты
  • Раздвижные контакты

Прямые контакты

В некоторых автоматических выключателях используется прямолинейное контактное устройство, так называемое, потому что ток, протекающий в одном контактном плече, продолжается по прямой линии через другой контактный рычаг.

Прямые контакты и раздвижные контакты

Раздвижные контакты

Конструкция раздвижных контактов обычно используется автоматическими выключателями с более высокими отключающими характеристиками. В этой конструкции два контактных рычага расположены параллельно друг другу.

По мере прохождения тока через контактные рычаги вокруг каждого плеча возникают магнитные поля. Поскольку ток в одном плече противоположен направлению тока в другом плече, два магнитных поля противостоят друг другу.

В нормальных условиях магнитные поля недостаточно сильны, чтобы разъединить контакты.

Когда возникает неисправность, ток быстро увеличивается, вызывая увеличение напряженности магнитных полей, окружающих контакты. Повышенная сила противоположных магнитных полей помогает быстрее размыкать контакты, заставляя их разъединяться.

За счет сокращения времени, необходимого для размыкания контактов выключателя при возникновении неисправности, конструкция контактов с продувкой снижает вредное тепло, которое ощущается цепью, защищенной автоматическим выключателем.

3. Сборка дугогасительной камеры

В этом узле дуга гаснет. Ток, протекающий в цепи, управляемой автоматическим выключателем, протекает через контакты автоматического выключателя.

Когда автоматический выключатель выключен или срабатывает током короткого замыкания, автоматический выключатель прерывает прохождение тока, разъединяя свои контакты.

Этот узел состоит из нескольких U-образных стальных пластин, окружающих контакты. По мере развития дуги она втягивается в дугогасительную камеру, где разделяется на более мелкие дуги, которые гаснут быстрее.

Сборка дугогасительной камеры

Сведение к минимуму дуги важно по двум причинам.

  • Во-первых, искрение может повредить контакты.
  • Во-вторых, дуга ионизирует газы внутри литого корпуса.

Если дуга не погаснет быстро, давление ионизированных газов может вызвать разрыв литого корпуса.

Явление дуги и методы гашения дуги обсуждались в предыдущих статьях.

Рукоятка управления

Автоматический выключатель должен обеспечивать ручные средства для включения и выключения цепи и должен иметь возможность сброса после устранения неисправности.

Эти возможности обычно предоставляются за счет использования ручки управления.

Рукоятка управления

Автоматические выключатели в литом корпусе (MCCB) не срабатывают, что означает, что невозможно предотвратить их отключение, удерживая или блокируя ручку управления в положении «ВКЛ.».

Имеется три положения ручки управления: «ВКЛ» (контакты замкнуты), «ВЫКЛ» (контакты разомкнуты) и «ОТКЛЮЧЕН» (механизм в сработавшем положении, контакты разомкнуты). Автоматический выключатель сбрасывается после срабатывания, переводя ручку в положение «ВЫКЛ.», А затем в положение «ВКЛ.».

4. Приводной механизм

Рукоятка управления соединена с подвижным контактным рычагом через приводной механизм.

На следующем рисунке ручка управления переведена из положения «ВЫКЛ» в положение «ВКЛ» (Рисунок 1). В этом процессе пружина начинает прикладывать напряжение к механизму.

Когда ручка находится прямо над центром, натяжение пружины достаточно велико, чтобы контакты замкнулись. Это означает, что скорость замыкания контакта не зависит от того, насколько быстро работает ручка.

Механизм управления автоматических выключателей низкой мощности

Контакты размыкаются путем перевода ручки управления из положения «ВКЛ» в положение «ВЫКЛ» (Рисунок 2). При этом пружина начинает прикладывать напряжение к механизму.

Когда ручка находится прямо над центром, натяжение пружины достаточно велико, чтобы размыкать контакты. Следовательно, скорость размыкания контактов также не зависит от того, насколько быстро работает ручка.

5. Расцепитель

В дополнение к средствам для размыкания и замыкания контактов вручную, автоматический выключатель должен автоматически размыкать свои контакты при обнаружении перегрузки по току.Расцепитель – это часть автоматического выключателя, которая определяет, когда контакты размыкаются автоматически.

Термомагнитный расцепитель

В термомагнитном автоматическом выключателе расцепитель включает элементы, предназначенные для определения тепла, возникающего в результате состояния перегрузки, и высокого тока, возникающего в результате короткого замыкания. Кроме того, в некоторых автоматических выключателях с термомагнитным приводом имеется кнопка «Push-to-Trip».

Типы автоматических выключателей и описание автоматического выключателя

Введение

Согласно IBIS World, рыночная стоимость производства силовых выключателей составляет 3 доллара.4 миллиарда. Понимание различных типов автоматических выключателей может быть непростым, особенно если у вас нет электрического образования. Есть много типов, от домашнего до коммерческого, о которых вы должны знать.

Автоматический выключатель – это электрический компонент, который переключается вручную или автоматически для управления энергосистемой. Во всех зданиях с электричеством должны быть автоматические выключатели. В плохой день автоматический выключатель может спасти ваши помещения и сотрудников от поражения электрическим током, электрического пожара или даже поражения электрическим током.

Автоматические выключатели обеспечивают электрическую защиту людей и оборудования от внезапных скачков напряжения, перегрузок и коротких замыканий. В этой статье представлены различные типы автоматических выключателей.

Классификация автоматических выключателей

Автоматические выключатели можно классифицировать по различным механизмам. Приведенные ниже критерии используются для классификации автоматических выключателей.

  • Напряжение
  • Механизм прерывания
  • Место установки
  • Особенности или конструкция

Это самые популярные классы автоматических выключателей, с которыми вы когда-либо столкнетесь.Чтобы лучше понять каждую классификацию, ниже приводится разбивка по типам автоматических выключателей.

Напряжение: Автоматические выключатели классифицируются в соответствии с их номинальным напряжением. Количество мощности, которое может пройти через выключатель, может определить, какой это тип автоматического выключателя. Под напряжением автоматический выключатель можно разделить на три категории;

  • Высоковольтные выключатели
  • Средневольтные выключатели
  • Низковольтные выключатели

Различные типы автоматических выключателей подходят для различных применений.

Высоковольтные автоматические выключатели
Согласно Международной электротехнической комиссии, когда напряжение превышает 72000 вольт, оно считается высоким напряжением. Выключатели высокого напряжения не являются обычным явлением, которое вы видите в своем здании. В этих автоматических выключателях используются соленоиды, которые обычно приводятся в действие трансформаторами тока и реле защиты.

Высоковольтные выключатели используются в системах с очень высоким напряжением, таких как линии электропередачи.Они очень сложны, но способны минимизировать перегрузки по току.

Для разрыва дуги в этих автоматических выключателях используются различные методы, такие как масло, воздушный поток, двуокись углерода или вакуум. Однако гексафторид серы стал более популярным из-за его безвредности для окружающей среды.

Автоматические выключатели среднего напряжения
Эти автоматические выключатели работают с меньшим напряжением, чем их высоковольтные аналоги. Обычно они используются для напряжения от 1000 до 72000 вольт.Также их можно устанавливать как для внутреннего, так и для наружного применения.

Эти автоматические выключатели помогают контролировать среднее напряжение и используют защитные реле для проверки любых опасных отклонений.

Низковольтные автоматические выключатели
То, что вы видите на рабочем месте, вероятно, является низковольтным автоматическим выключателем. Это тот же самый базовый тип автоматических выключателей, который вы можете купить в хозяйственном магазине в вашем городе.

Некоторые выключатели низкого напряжения подлежат ремонту и могут быть разобраны.В случае повреждения вы можете отремонтировать автоматический выключатель без замены.

Существуют разные типы выключателей низкого напряжения; Миниатюрные автоматические выключатели (MCB) используются для работы с током ниже 100 ампер. Они являются фаворитом для приложений, в которых нет больших токов. Если ваше приложение имеет ток, превышающий 100 ампер, автоматический выключатель в литом корпусе (MCCB) может быть идеальным.

Существует два типа автоматических выключателей, обычно называемых автоматическими выключателями: UL 489 и UL 1077.

Автоматические выключатели UL 489
Автоматические выключатели UL 489 «предназначены для установки в шкафу автоматического выключателя или в составе других устройств, таких как служебное входное оборудование и щитовые панели». Они регулярно требуются при проектировании панелей в соответствии с Национальным электротехническим кодексом.

Дополнительные устройства защиты UL 1077
UL 1077 определяет дополнительные устройства защиты как устройства, предназначенные для использования в качестве защиты от перегрузки по току, перенапряжения или пониженного напряжения в приборе или другом электрическом оборудовании, где защита от перенапряжения в параллельной цепи уже предусмотрена или не требуется .

Важное примечание: хотя термин «автоматический выключатель» используется для обозначения устройств UL 489 и UL 1077, устройства UL 1077 не считаются автоматическими выключателями UL. Они определены как дополнительные средства защиты.

Автоматические выключатели в литом корпусе (MCCB) могут выдерживать ток до 2500 ампер. Они идеальны для мощных коммерческих и жилых целей.

Механизм прерывания: Механизм прерывания – это то, как автоматические выключатели прерывают ток.Различные автоматические выключатели работают иначе, чем другие. Существует четыре типа механизмов прерывания:

  • Воздушные автоматические выключатели
  • Масляные выключатели
  • Автоматические выключатели с гексафторидом серы
  • Вакуумные выключатели

Каждый метод имеет разные преимущества при отключении дуги.

Воздушные автоматические выключатели
В этом автоматическом выключателе воздух является основным изолирующим и отключающим механизмом. Это воздушные или воздушные магнитные выключатели.При прерывании тока воздух инициируется статическим воздухом, в котором движется дуга.

Магнитные прерыватели прерывают дугу, используя магнитное поле в качестве среды прерывания.

Воздушные автоматические выключатели используют поток воздуха. Эта струя продувает дугу сжатым воздухом, хранящимся в соплах. Этот воздух выпускается через вентиляционные отверстия, создавая высокоскоростную струю, гасящую дугу.

Масляные автоматические выключатели
Минеральное масло чаще всего используется для прерывания дуги в автоматических выключателях этого типа.Масло предпочтительнее воздуха из-за его изоляционных свойств. И неподвижные, и подвижные контакты погружены в масло.

Во время размыкания цепи дуга зажигается в точке разъединения. Дуга в масле разлагается и испаряется в виде газообразного водорода, который в конечном итоге создает водородный пузырь. Сжатый газообразный водород предотвращает повторное зажигание дуги, когда ток достигает нуля.

Масляные выключатели – самые старые известные выключатели. Существует два типа масляных выключателей, а именно масляные выключатели с минимальным содержанием масла
и масляные выключатели для резервуаров.

В автоматических выключателях с минимальным уровнем масла во время прерывания используется масло. В этом автоматическом выключателе используется минимум
масла, поскольку между токоведущими контактами и заземленными частями имеется изолирующая среда. Изоляционный материал доступен в камере прерывания и требует минимального количества масла.

В масляном автоматическом выключателе масло используется как в качестве изолирующей, так и в качестве гасящей среды. Когда токоведущие контакты разделены, между контактами возникает дуга.Эта дуга образует вокруг себя быстрый газовый пузырь, тем самым отодвигая контакты.

Масляные автоматические выключатели

можно классифицировать в соответствии с их конструктивным исполнением. В этой категории есть два типа автоматических выключателей:

  • Автоматические выключатели с баком под напряжением
  • Автоматические выключатели с мертвым баком

Эти два типа выключателей имеют разную конструкцию.

Автоматические выключатели с мертвым баком являются наиболее предпочтительными в США. Этот автоматический выключатель имеет закрытый резервуар на земле.Резервуар содержит изолирующую и разрушающую среду.

У действующего дробилки танка танк находится над землей. В этом резервуаре находится изоляционная среда между ними.
Модель мертвого резервуара обеспечивает более высокую сейсмическую стойкость, поскольку находится у земли.

В автоматических выключателях под напряжением корпус, в котором находятся контакты, находится под напряжением, т. Е. Находится под напряжением. Контактные корпуса выключателя с мертвым баком не находятся под напряжением и подключены к сети заземления. Живые танковые отбойные молотки дешевле, чем мертвые танковые отбойные молотки, и требуют меньше места.

Автоматические выключатели на основе гексафторида серы
В этом автоматическом выключателе для гашения дуги используется газообразный гексафторид серы (SF6). Этот газ обладает прекрасными огнегасящими свойствами. Многие производители предпочитают газообразный гексафторид серы маслу и воздуху.

Гексафторид серы имеет высокую электроотрицательность, идеально подходит для изоляции. Его изоляционные свойства примерно в два раза выше, чем у воздуха. Он используется как в электрических системах среднего, так и высокого напряжения.

Газ SF6 имеет отличные изоляционные, дугогасящие и многие другие свойства, которые являются величайшими преимуществами автоматических выключателей SF6.

Вакуумные выключатели
Для гашения дуги в этом выключателе используется вакуумная среда. Вакуум имеет характер восстановления диэлектрика, что обеспечивает отличное прерывание, особенно при высокочастотном токе. В этом механизме прерывания используются электроды, которые остаются закрытыми во время нормальной работы.

Когда в системе обнаруживается неисправность, срабатывает расцепитель, тем самым размыкая контакт. Когда электроды открываются, из-за ионизации контактов возникает дуга.Затем дуга быстро гаснет, потому что электроны и ионы конденсируются на поверхности электронов. Это приводит к восстановлению диэлектрической прочности.

Место установки: Автоматические выключатели используются в различных установках. В зависимости от требований их можно устанавливать в помещении или на улице.

Автоматические выключатели для внутренних помещений предназначены для установки в защищенных корпусах. Эти выключатели следует устанавливать в зданиях для защиты от погодных условий.Металлические корпуса распределительных устройств управляют внутренними автоматическими выключателями при среднем напряжении.

С другой стороны, выключатели наружной установки не требуют защиты или кровли. У них более прочная конструкция корпуса по сравнению с их внутренними аналогами. Они не подвержены износу и используются в более сложных энергосистемах.

Единственное различие между этими двумя моделями заключается в том, что наружные они закрыты. Механизм прерывания цепи одинаков для обоих типов.

Определение правильного автоматического выключателя

В какой-то момент на вашем рабочем месте вам может потребоваться купить или заменить автоматический выключатель. Это руководство по выбору лучшего автоматического выключателя для вашего приложения.

  1. Номинальное напряжение: При выборе типа автоматического выключателя учитывайте общее номинальное напряжение электрической системы. Этот рейтинг рассчитывается по максимальному напряжению, которое может быть приложено ко всем конечным портам. Кроме того, при расчете напряжения применяется интеграция распределения напряжения и автоматического выключателя.Автоматический выключатель должен иметь достаточную допустимую нагрузку для удовлетворения требований конечного применения.
  2. Номинальный ток: Рабочий ток или сила тока являются фактором, который следует учитывать при выборе автоматического выключателя. Автоматический выключатель должен срабатывать при 100% необходимой нагрузки. Однако рекомендуется выбирать автоматический выключатель примерно на 120% от требуемой нагрузки. Более высокая сила тока помогает нейтрализовать эффект тепловыделения в энергосистеме. Номинальная сила тока – это постоянный ток, протекающий при температуре окружающей среды.Автоматические выключатели должны быть откалиброваны на стандартную температуру 104 ° F. (Вся информация о нагрузочном цикле получена из Национального электротехнического кодекса.)
  3. Кривая отключения: Чтобы выбрать автоматический выключатель, вам необходимо определить, какая кривая отключения является правильной для вашего приложения.

Что такое кривая отключения?
Проще говоря, кривая срабатывания, также известная как кривая времени и тока, представляет собой графическое представление ожидаемого поведения устройства защиты цепи.

Кривые отключения отображают время отключения устройств максимального тока в зависимости от заданного уровня тока. Они предоставляются производителями устройств защиты цепей, чтобы помочь пользователям выбрать устройства, которые обеспечивают надлежащую защиту и производительность оборудования, избегая при этом ложных срабатываний.

  1. Максимальная отключающая способность: Максимальное количество прерываний, которое текущий выключатель может отключить, – это номинальное значение прерывания. Крайне важно определить максимальную отключающую способность энергосистемы.При покупке автоматического выключателя отключающая способность
    должна быть равна или больше или равна току повреждения.

Отключающая способность меньше величины тока короткого замыкания может повредить автоматический выключатель. Это правило должно всегда применяться при покупке любого автоматического выключателя.

  1. Условия эксплуатации автоматического выключателя: При выборе автоматического выключателя важно помнить о месте его использования. Некоторые условия работы очень жестоки для автоматических выключателей.При выборе автоматического выключателя учитывайте следующие условия.

Температура окружающей среды
Температура окружающей среды выше 104 ° F требует калибровки. Высокая температура окружающей среды может повлиять на работу автоматического выключателя. Поскольку температура большинства шкафов составляет около 104 ° F, это стандартная калибровка почти для всех внутренних автоматических выключателей.

Если температура ниже или выше 104 ° F, может потребоваться калибровка в сторону увеличения или уменьшения.

Высота
Различные автоматические выключатели подходят для разной высоты.Например, на больших высотах выше 6000 футов воздух тоньше и не отводит тепло от токоведущих компонентов. Это означает, что автоматический выключатель должен быть откалиброван по напряжению, допустимой нагрузке и отключающей способности.

Разбавитель воздуха предотвращает накопление диэлектрического заряда, способного выдерживать уровни напряжения. Кроме того, высота может снизить стоимость оборудования для выработки электроэнергии. Перед покупкой автоматических выключателей для высоких положений проконсультируйтесь со специалистом по производству электроэнергии.

Влага и коррозия
Для влажных условий рекомендуется специальная обработка влаги для автоматических выключателей.Обработка автоматических выключателей помогает противостоять грибку и плесени, которые, как известно, разрушают системы. В помещениях с повышенной влажностью в вольерах часто используются обогреватели.

Коррозия поражает компоненты автоматических выключателей и приводит к неисправным системам. Если они должны использоваться в коррозионных зонах, следует использовать специально изготовленные, устойчивые к коррозии.

Высокая вероятность поражения электрическим током
На некоторых рабочих местах высока вероятность поражения электрическим током.В этом случае следует установить противоударные устройства, чтобы предотвратить возможные сбои.

Противоударные устройства состоят из инерционных противовесов над полюсами, удерживающими тяговую штангу. Однако вес
не должен нарушать работу тепловых или магнитных расцепителей.

  1. Техническое обслуживание: При выборе подходящего автоматического выключателя следует также учитывать требования к техническому обслуживанию автоматического выключателя. Вы должны рассмотреть автоматические выключатели, которые требуют минимального обслуживания.Если вам необходимо выполнить какое-либо техническое обслуживание автоматических выключателей, это должно быть легко с минимальными затратами. Литые автоматические выключатели надежны, поскольку закрытый блок имеет минимальное воздействие пыли, плесени, влаги и грязи. Закрытые модели требуют минимального обслуживания, чем открытые модели. Некоторые автоматические выключатели требуют постоянной очистки, чтобы уменьшить перегрев и повреждение, поэтому выключатели должны свободно размыкаться для обслуживания.

Итог

Автоматические выключатели работают не только сложно, но и деликатно.Небольшой несчастный случай может иметь далеко идущие последствия. Автоматический выключатель, который вы используете в своих приложениях, должен быть высоконадежным (ограниченное количество ложных срабатываний) и точным.

Каждый раз при установке автоматических выключателей необходимо привлекать сертифицированных электриков. Никогда не пытайтесь управлять автоматическим выключателем самостоятельно. Всегда обеспечивайте безопасную работу всех энергосистем вашего бизнеса.

Изучите различные типы автоматических выключателей перед покупкой. Отличный автоматический выключатель убережет вас от потери имущества или даже жизни.

Обязательно ознакомьтесь со всеми вашими потребностями в электрическом управлении.

Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг. Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может принять во внимание все соответствующие факторы и желаемые результаты.Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к определенным обстоятельствам или условиям. Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

Выбор правильного автоматического выключателя и его типа

Автоматический выключатель – это устройство защиты энергосистемы, которое может замыкать или размыкать цепь

Автоматический выключатель срабатывает в условиях неисправности и изолирует неисправную часть цепи от остальной, размыкая цепь.Эта операция выполняется автоматически с помощью реле вместе с автоматическим выключателем.

Следует отметить, что автоматические выключатели также могут управляться вручную, а также могут работать в нормальных условиях. Следовательно, автоматические выключатели также являются полезными коммутационными устройствами, которые используются для включения или отключения цепи в нормальных условиях.

Рабочий механизм:

В общем смысле автоматический выключатель состоит из двух электродов или контактов, которые при нормальных условиях остаются в контакте друг с другом, позволяя течь току.Но в случае неисправности контакты размыкаются или размыкаются, что приводит к разрыву цепи и предотвращению прохождения тока повреждения.

Размыкание контактов достигается включением катушки отключения автоматического выключателя, которая заставляет контакты перемещаться, как показано на рисунке. Также важно знать, что катушка отключения находится под напряжением от реле, поэтому в основном реле сигнализирует выключателю о срабатывании.

Эти контакты также можно размыкать вручную, например, во время обслуживания или переключения.

Мы только что запустили нашу серию Power Systems Engineering Vlog , и прямо сейчас у нас есть для вас отличное предложение. Первые 50 участников, которые присоединятся к нашему сообществу видеоблогов, получат 75% скидку . Предложение действительно до 15 мая -го . Чего же ты ждешь? Зарегистрируйтесь сейчас.

Явления дуги:

При возникновении короткого замыкания через контакты автоматических выключателей проходит очень высокий ток.Когда эти контакты начинают размыкаться, площадь контакта уменьшается, а сила тока быстро увеличивается. Это вызывает быстрый нагрев и ионизацию окружающего материала. Таким образом, эта ионизированная среда действует как путь прохождения тока, задерживая разрыв цепи.

Это может привести к повреждению системы, а выделяемое тепло может повредить сам выключатель. Разность потенциалов между контактами довольно мала, но достаточна для поддержания дуги.

Методы гашения дуги:

Эту дугу необходимо устранить для успешного отключения и отключения цепи.Следовательно, это важный фактор при определении типа и размера автоматического выключателя, который будет использоваться в различных приложениях. Для этого у нас есть два метода гашения дуги.

1. Метод высокого сопротивления:

В этом методе сопротивление дуги увеличивается со временем и увеличивается до тех пор, пока значение тока не упадет до уровня, недостаточного для поддержания дуги. Недостатком являются огромные потери энергии и тепла, рассеиваемого в дуге.

2.Метод низкого сопротивления или нулевого тока:

Этот метод используется для систем переменного тока и наиболее широко используется. Весь синусоидальный ток и напряжения проходят через нулевые точки в каждом полупериоде. Сопротивление поддерживается на низком уровне до тех пор, пока не произойдет переход через нуль, где дуга гаснет естественным образом, после перехода через ноль гасящая среда предотвращает повторное возникновение дуги.

Самый быстрый на сегодняшний день автоматический выключатель может погасить дугу за 2 цикла, в то время как наиболее распространенными средами, используемыми для гашения дуги, являются воздух, масло, гексафторид серы SF6 и вакуум.

Категории автоматических выключателей:

Автоматические выключатели

можно разделить на категории согласно соответствующему уровню напряжения системы. Поэтому их можно разделить на выключатели низкого, среднего и высокого напряжения.

Автоматические выключатели низкого напряжения:

Эти выключатели используются для напряжений до 600 В и делятся на 3 типа.

1. Литой корпус (MCCBS):

Они используются для токов от 20 до 2500 ампер и часто используются для включения или выключения цепи.Они помещены в герметичный корпус, поэтому не подлежат ремонту и обычно применяются в распределительных щитах и ​​щитах.

Следует отметить, что MCCBS следует тестировать в соответствии со стандартами UL489 и NEMA AB-1.

2. Силовой выключатель: Силовые выключатели

имеют номинальные токи от 800 до 6000 ампер. Они используются для защиты генератора и двигателя. Силовые выключатели монтируются в металлических корпусах для распределительных устройств низкого напряжения и должны быть испытаны в соответствии с ANSI C37.13 и UL1066.

3. Изолированный корпус (ICCBS):

ICCBS по существу аналогичны автоматическим выключателям в литом корпусе. Однако они включают в себя двухступенчатый механизм закрытия с накоплением энергии. Зарядная рукоятка или двигатель заряжает пружину, которая затем отпускается кнопкой или соленоидом, чтобы окончательно закрыть прерыватель. Обычно они имеют размер корпуса от 800 до 4000 ампер. Обычно они имеют типоразмер от 800 до 4000 ампер и используются в MCC или в качестве главного выключателя в распределительном щите.ICCB также проходят испытания в соответствии со стандартами UL489 и NEMA AB-1

.

Автоматические выключатели среднего и высокого напряжения:

Выключатели

MV используются для систем от 600 В до 69 кВ, а высоковольтные выключатели применяются в системах с напряжением более 69 кВ. Тип среды, находящейся внутри этих автоматических выключателей, используется для их классификации. Это следующие:

1. Масляные автоматические выключатели:

Главные контакты погружены в масло, которое действует как ионизирующая среда.Масло обладает высокой диэлектрической прочностью, чтобы выдерживать напряжение на контактах. Дуга разлагает масло на газы, которые обладают отличными охлаждающими свойствами для гашения дуги. Однако масло, как и газообразный водород, легко воспламеняется, поэтому существует риск возгорания. Эти гидромолоты также требуют своевременного осмотра и замены масла. OCB используются напряжением до 11кВ.

2. Воздушные автоматические выключатели:

В этих автоматических выключателях в качестве средства гашения дуги используется струя воздуха под высоким давлением.

Воздушный поток охлаждает дугу и отталкивает продукты дуги в атмосферу, что приводит к гашению дуги.

Воздушные выключатели в настоящее время в основном заменяют масляные выключатели, поскольку они не связаны с пожарной опасностью. Они также компактны и имеют меньшее время дуги. В большинстве систем высокого напряжения выше 110 кВ используются воздушные выключатели.

3. SF6 Автоматические выключатели:

Гексафторид серы (SF6) представляет собой инертный изолирующий газ, который используется в качестве среды для гашения дуги.Он обладает превосходными характеристиками гашения дуги, поскольку SF6 имеет тенденцию поглощать свободные электроны, поэтому дуга быстро изолируется из-за потери проводящих электронов. Также существуют автоматические выключатели F6 на напряжение до 115 кВ и 230 кВ с временем отключения менее 3 циклов. . Однако эти автоматические выключатели очень дороги.

4. Вакуумные силовые выключатели:

В этих выключателях вакуум используется в качестве среды для гашения дуги.Он предлагает самые сильные изоляционные свойства, чем любой другой материал. Следовательно, как только в этом автоматическом выключателе возникает дуга, она немедленно гаснет. Они используются в системах от 22 кВ до 66 кВ.

Сводка типов автоматических выключателей:

Важные параметры при выборе автоматических выключателей:

Отключающая способность / кА: – это максимальный ток, при котором автоматический выключатель рассчитан на безопасное прерывание при определенном напряжении.

Мгновенное срабатывание: Настройки, при которых автоматический выключатель срабатывает немедленно, без какой-либо преднамеренной задержки. Все MCCBS и ICB имеют настройки мгновенного отключения, а для PCBS это необязательно.

Настройки короткого замыкания: Автоматический выключатель остается замкнутым в течение некоторого времени в диапазоне высоких токов короткого замыкания. Это важный фактор в достижении избирательной координации автоматических выключателей.

Настройки длительного времени: Это настройка автоматического выключателя для определения продолжительности времени, в течение которого может протекать определенный ток перегрузки перед отключением. (для значений тока меньше кратковременного или мгновенного срабатывания).

Непрерывный ток: Это ток, который устройство выдерживает без отключения или перегрева.

Размер кадра: Размер кадра указывает физический размер выключателя, а также максимальный продолжительный ток, который он может выдерживать.

Номинальное напряжение, кВ: Указывает максимальное напряжение системы, которое может выдержать автоматический выключатель.

Номинальная кВА или МВА: Важной характеристикой автоматического выключателя является его отключающая или отключающая способность. Это максимальный ток, который автоматический выключатель способен отключать при заданном напряжении и в определенных условиях, например. фактор силы.

Дается следующей формулой:

Рейтинг МВА (отключающая способность) =

√3 x Напряжение системы x ток SC 10 6

знак равно

√3 x V L x I F 10 6

МВА

Где I F = номинальный ток отключения в амперах.

Выбор автоматического выключателя в соответствии с его применением / отключающее устройство:

Это тип MCCB, предназначенный для защиты двигателей. Они содержат регулируемый магнитный расцепитель, который можно настроить для отключения двигателя в случае неисправности. Эта конфигурация может быть выполнена в соответствии с типом двигателя. Следует отметить, что пусковой ток не рассматривается как неисправность и может пройти.

Твердотельное отключение:

Эти отключающие устройства оснащены силовой электроникой и программируемым программным обеспечением.Они намного быстрее и надежнее традиционных автоматических выключателей и требуют относительно меньшего обслуживания.

Они также имеют дополнительные функции отключения, такие как длительное, кратковременное, мгновенное отключение и отключение при падении на землю.

Термомагнитный:

Эти расцепители состоят из биметаллической термопласты, которая контролирует работу автоматического выключателя. Перегрев, вызванный высоким током короткого замыкания, приведет к срабатыванию биметаллической ленты для отключения автоматического выключателя, задержка будет зависеть от величины тока короткого замыкания.В основном они используются для защиты нашей системы от перегрузок.

Эти расцепители доступны как в автоматических выключателях, так и на печатных платах и ​​обеспечивают мгновенное отключение, в то время как установка короткого времени 30 циклов также может быть достигнута для печатных плат с использованием только тепловых устройств.

MCCB, ICCB или печатные платы? Какой выбрать?

В целом все автоматические выключатели обеспечивают защиту от перегрузки по току. Выбор автоматических выключателей в литом корпусе, автоматических выключателей с изолированным корпусом и силовых выключателей в системе обычно зависит от предполагаемого применения, требуемых стандартов проектирования и технических характеристик.

Инженер должен учитывать параметры, обсужденные выше, такие как кратковременный рейтинг, отключающая способность, размер кадра и т. Д., Чтобы определить, подходит ли устройство для обеспечения защиты, а также координации и селективности.

MCCB и ICCB имеют наивысшую отключающую способность наряду с мгновенным отключением, поэтому нашей системе не требуется выдерживать высокие токи при любой временной задержке. В то время как печатные платы имеют высокую отключающую способность, дополнительные настройки мгновенного срабатывания, но модели с наивысшим кратковременным рейтингом.

Требования к эксплуатации, такие как выдвижной монтаж, потребуют наличия печатных плат, в то время как для фиксированного монтажа потребуется MCCBS или ICCBS. Экономические преимущества всегда важны, поэтому выбирается лучший компромисс между номинальными характеристиками, размером корпуса и стоимостью. MCCBS и ICCBS относительно дешевле, чем печатные платы.

Окончательно , мы можем согласиться с тем, что автоматические выключатели являются неотъемлемой частью системы электроснабжения, и их правильное применение очень важно. Наряду с основами и принципами работы автоматических выключателей инженер должен также знать, как правильно выбирать автоматические выключатели в соответствии с их применением.

Автоматические выключатели среднего напряжения Эксплуатация

В этой статье подробно описывается конструкция автоматического выключателя среднего напряжения, четыре основных компонента и рабочий / рабочий механизм / принцип, а также помеченные схемы цепей.

Вакуумные выключатели низкого и среднего напряжения схожи по конструкции и принципу действия. Одно из основных различий между ними заключается в том, что OCPD на LVPCB устанавливаются на автоматических выключателях, в то время как автоматические выключатели среднего напряжения используют защитные реле, которые обычно устанавливаются на дверце корпуса.

Автоматические выключатели среднего напряжения состоят из следующих четырех основных компонентов:

  • Разъединяет (закалывает) основные стержни второстепенные стержни заземляющие стержни
  • Контактные узлы дугогасительные контакты главные контакты контакты вспомогательного механизма (MOC) контакты с приводом от тележки (TOC)
  • Дугогасители (дугогасители)
  • Приводы (рамы)

В вакуумных выключателях не используются дугогасительные контакты. Кроме того, вместо больших, тяжелых контактных узлов и дугогасительных камер они используют вакуумные баллоны с меньшими контактами для гашения дуги.

Устройства защиты от перегрузки по току на автоматическом выключателе среднего напряжения

Большинство автоматических выключателей среднего напряжения имеют разъединители типа «тюльпан» (круглые) с пружинами вокруг них для обеспечения хорошего контакта с шиной. Тем не менее, некоторые производители оригинального оборудования иногда размещают прямые пальцевые соединения шинного типа на автоматических выключателях небольшого размера.

Главные разъединители монтируются на проходных изоляторах или полюсных блоках. Втулки изготовлены из медного сплава, соединяют первичные разъединители со стационарным контактным узлом и покрыты изоляцией.Бумага с эпоксидным покрытием, которая со временем может впитывать влагу, используется в качестве изоляции для многих воздушных выключателей среднего напряжения. Некоторые производители используют фарфор. См. Рисунок 1.

Рисунок 1. Первичные разъединители автоматического выключателя среднего напряжения

Вторичные разъединители часто устанавливаются на контактной колодке, расположенной в правом нижнем углу автоматических выключателей среднего напряжения в металлической оболочке (если смотреть заднюю часть выключателя). Выключатели с вертикальным подъемом, такие как GE MagneBlast, являются исключением из этой типичной конструкции.Вторичный контактный блок автоматических выключателей с вертикальным подъемом устанавливается в верхней части автоматического выключателя в правом переднем углу (если смотреть на переднюю часть автоматического выключателя).

Многие автоматические выключатели с горизонтальной стойкой имеют удлинитель с Т-образной рукояткой, который необходимо задействовать для отключения вторичных цепей и перевода автоматического выключателя в тестовое положение.

В отличие от LVPCB, автоматические выключатели среднего напряжения в металлической оболочке обычно не имеют отдельного испытательного положения. Они перемещаются в отсоединенное положение, а вторичный разъединитель выдвигается до тех пор, пока он не войдет в контакт со стационарными вторичными разъединителями, расположенными в задней части шкафа.См. Рисунок 2.

Рисунок 2 . Вторичные разъединители автоматического выключателя среднего напряжения

  • Контактные блоки автоматического выключателя среднего напряжения

Функции главных и дугогасительных контактов в воздушных и вакуумных автоматических выключателях среднего напряжения такие же, как и в LVPCB. Вместо цинка, используемого для упрочнения дугогасительных контактов, в воздушных выключателях среднего напряжения часто используется вольфрам. Дуговые направляющие в дугогасительной камере подключены к линейной стороне и стороне нагрузки автоматического выключателя соответственно.Это означает, что при установке дугогасительной камеры на автоматический выключатель среднего напряжения, как на него, так и на направляющие дуги подается напряжение. См. Рис. 3.

Рис. 3. Узлы контактов выключателя среднего напряжения

  • Узлы вспомогательных контактов

Вспомогательные контакты КРУ среднего напряжения обычно устанавливаются на распределительном устройстве, а не на распределительном устройстве. рама выключателя. Они известны как переключатели с механическим контактом (MOC) и контактным переключателем с приводом от грузовика (TOC).MOC механически приводятся в действие от рабочего механизма и используются для цепей управления и индикации. См. Рисунок 4. Переключатель TOC используется для отключения автоматического выключателя во время операций по установке в стойку. Он срабатывает, когда автоматический выключатель вставлен в ячейку или выведен из нее.

Рис. 4. Узлы вспомогательных контактов автоматического выключателя среднего напряжения

Другой областью, в которой воздушные выключатели низкого и среднего напряжения схожи, является процесс прерывания дуги.Базовая конструкция дугогасительных камер низкого и среднего напряжения аналогична. Однако дуга в автоматическом выключателе среднего напряжения более стойкая, а значит, ее труднее погасить. В автоматических выключателях среднего напряжения есть несколько вспомогательных средств, таких как расширители, предохранительные катушки и полюсные наконечники, чтобы обеспечить быстрое и эффективное гашение дуги.

Привод выключателей среднего напряжения

Современные приводы быстро срабатывают, быстро отключаются.Это означает, что скорость работы не зависит от скорости ручки управления. Говорят, что современные механизмы управления выключателем представляют собой механизмы с накоплением энергии, поскольку в них есть как размыкающие, так и замыкающие пружины. Один комплект пружин обычно имеет натяжение. По этой причине следует проявлять особую осторожность при работе с контактами выключателя или рядом с ними. У них тяжелые подвижные контактные узлы и мощные пружины.

Если техник поместит свою руку между подвижным и неподвижным контактами, когда они замкнуты, он может быть искалечен.Даже при открытии эти устройства обладают такой силой, что могут сломать кости. Между любой частью тела и движущимися частями автоматического выключателя должно быть достаточно свободного пространства. Замыкающие пружины ускоряют контакты до замкнутого положения, но не удерживают контакты в замкнутом состоянии. Если бы только замыкающие пружины удерживали контакты в замкнутом состоянии, со временем пружины ослабли бы, заставляя контакты подпрыгивать, вибрировать и гореть.

Работа автоматического выключателя среднего напряжения GE Power / Vac® ML-18

Контакты удерживаются в замкнутом положении с помощью опорно-роликового привода.Стойка и ролик механически связывают контактную тягу, заставляя контакты оставаться плотно замкнутыми. Низковольтные печатные платы и вакуумные выключатели среднего напряжения (такие как GE Power / Vac® ML-18) имеют усовершенствованные приводные механизмы с опорными роликами. См. Рисунок 5. На рисунке A замыкающие пружины разряжены, а автоматический выключатель разомкнут.

Рисунок 5. Автоматический выключатель среднего напряжения GE Power / Vac® ML-18 Рабочий / рабочий механизм / принцип

Включающие тумблеры (7A и 7B) и переключающая перемычка (6) свернуты, что позволяет коленчатый рычаг (1) для вращения против часовой стрелки.Это вращение заставляет толкатель, соединенный с коленчатым рычагом, опускаться, размыкая контакты в вакуумном баллоне. Коленчатый рычаг (коленчатый рычаг) используется для переключения с одного направления на другое, обычно под углом 90 °. Он почти всегда имеет треугольную форму и на одном конце соединен с осью шарнира. Закрывающие пружины заставляют контакты замыкаться, поэтому коленчатый рычаг вынужден вращаться. Когда на выключатель подается электрическое управляющее напряжение, как в 5 (Рисунок B), замыкающие пружины заряжаются, и расцепляющая защелка (3) падает на отключающий ролик (4).Это заставит другой замыкающий рычаг (7a) также опуститься и попасть в изгиб стойки (8). Перемычка (6) также опускается в почти горизонтальное положение.

Эта последовательность подготавливает автоматический выключатель к замыканию своих контактов при нажатии кнопки включения. Нажатие кнопки закрытия сбрасывает замыкающие пружины, что заставляет закрывающий кулачок вращаться против часовой стрелки, как в 5 (Рисунок C). Когда это происходит, оба замыкающих переключателя и переключающее звено подталкиваются вверх, а коленчатый рычаг (1) вращается по часовой стрелке.Толкатель, соединенный с контактами вакуумного баллона, поднимается вверх, замыкая контакты. Контакты теперь удерживаются в замкнутом положении за счет взаимодействия стойки с замыкающим роликом (5). Пока стойка находится в этом положении, автоматический выключатель остается замкнутым. Линия, проходящая через центр диаграммы ролика и поворота, показывает всю механическую силу механизма, сосредоточенную в этих точках в 5 (Рисунок D).

Для отключения выключателя защелка отключения (3) поворачивается против часовой стрелки, освобождая переключатели включения и перемычку отключения.Коленчатый рычаг вращается против часовой стрелки, и контакты размыкаются.

Обычно замыкающие пружины перезаряжаются при включении выключателя. Некоторые производители устанавливают последовательность так, что они должны перезаряжать пружины при срабатывании автоматического выключателя. Просмотр внутренней схемы и последовательности различных концевых выключателей и блокировок покажет, как будет работать автоматический выключатель.

Westinghouse / Cutler-Hammer DS 480 В с автоматическим выключателем среднего напряжения

Другим примером опорно-роликового механизма является рабочий механизм выключателя Westinghouse / Cutler-Hammer DS 480 В.Это та же базовая конструкция, которая используется в их вакуумных выключателях среднего напряжения. Показан механизм с разомкнутыми контактами и разряженными пружинами. Обратите внимание на положение главной тяги (стойки), а также замыкающего кулачка. См. Рисунок 6 (рисунок A).

Когда автоматический выключатель вставляется в шкаф, пружины заряжаются, в результате чего замыкающий кулачок поворачивается примерно на 90 ° (как показано на рисунке B). Ограничивающее звено ролика вращается замыкающим кулачком, что позволяет спусковой защелке опускаться под расцепляющий вал.Край триггерной защелки захватывается концом планки отключения и удерживается на месте. Механизм удерживается в положении готовности к закрытию закрывающими пружинами, прикладывающими силу к закрывающему кулачку, который не может вращаться с помощью защелки пружины.

Когда кнопка закрытия активирована, на катушку включения подается питание, и защелка пружины позволяет кулачку включения вращаться. (Как показано на рисунке C). Когда контакты замыкаются, пружины срабатывают, и главное звено подталкивается вверх за счет вращения замыкающего кулачка, что приводит к замыканию контактов.Теперь вся сила открывающих пружин прилагается к центральной линии шарниров коленчатого рычага, главного рычага и замыкающего кулачка, заставляя контакты механически удерживаться замкнутыми.

Для отключения автоматического выключателя в разомкнутом положении нажимается кнопка отключения, которая вращает вал отключения, позволяя разблокировать защелку отключения. Поскольку ограничивающее звено ролика больше не удерживается приводным валом, размыкающие пружины заставляют замыкающий кулачок вращаться, позволяя контактам размыкаться.

Рисунок 6. Westinghouse / Cutler- Hammer DS Автоматический выключатель среднего напряжения Рабочий / рабочий механизм / принцип

ABB / ITE K-Line 600 В автоматический выключатель среднего напряжения

Распространенным типом LVPCB является автоматический выключатель ABB / ITE K-Line 600 В. В автоматических выключателях этого типа небольшой подшипник главного ролика (стрелка) часто заедает из-за грязи или коррозии. Это вызывает состояние без отключения или предотвращает отключение автоматического выключателя при нажатии кнопки отключения.См. Рисунок 7.

Рисунок 7. Автоматический выключатель среднего напряжения K-600 ABB / ITE Рабочий / рабочий механизм / принцип

Рама воздушного или вакуумного выключателя среднего напряжения выполняет ту же функцию, что и рама. на LVPCB. Он поддерживает контактные узлы или вакуумные баллоны и первичные разъединители. Рама воздушных и вакуумных выключателей среднего напряжения тяжелее из-за увеличенного веса и расположения компонентов. См. Рисунок 8.

Рисунок 8. Рама выключателя среднего напряжения

Вакуумные выключатели имеют тот же основной привод и другие компоненты, что и воздушные выключатели, за исключением того, что вместо дугогасительной камеры и контактных узлов используются вакуумные баллоны.

Основным преимуществом вакуумных выключателей является их размер. Вакуумный выключатель составляет примерно половину размера воздушного магнитного выключателя среднего напряжения. Это означает, что на каждую секцию распределительного устройства может приходиться два, а не один.Вакуумные баллоны также требуют небольшого обслуживания по сравнению с узлами с воздушным магнитным контактом и дугогасительной камерой. Контакт перемещается только на 1/2 дюйма в вакуумном баллоне, а размыкающие пружины значительно легче размыкающих пружин в воздушно-магнитном выключателе. Это снижает износ узлов, а также их размер и вес, поскольку можно уменьшить использование тяжелых металлических опор и тяжелой рамы. См. Рисунок 9.

Рисунок 9. Вакуумные выключатели имеют те же основные рабочие механизмы, что и воздушные выключатели.

Поскольку вакуум не может быть проверен после того, как баллон находится в эксплуатации, его необходимо проверить с помощью испытательного комплекта переменного тока (AC) с высоким потенциалом, или тестера hipot, или тестера MAC.

Тестер hipot – это испытательный прибор, который измеряет сопротивление изоляции путем измерения тока утечки. Магнетронный тестер атмосферных условий (MAC) измеряет внутреннее давление вакуумного баллона и помогает определить оставшийся срок службы вакуумного баллона. Скорее всего, вакуумный баллон выйдет из строя, когда выключатель будет включен после размыкания.

Вакуумный баллон обычно не выходит из строя при открытии, поскольку нагрузка снимается со всех трех фаз одновременно. Однако, когда она закрыта, особенно при сильном скачке тока или неисправности, бутылка может сильно разрушиться. Чаще всего это не принесет большого ущерба, но есть шанс получить травму.

Схема отказов вакуумного автоматического выключателя

Основные сведения об основном автоматическом выключателе в вашем доме

Выполнение электрического ремонта в вашем доме требует, чтобы вы знали, как использовать главный автоматический выключатель.Главный автоматический выключатель в вашем доме контролирует распределение электричества в каждой комнате. Автоматический выключатель управляет соединением между вашим домом и коммунальной компанией.

Коммунальная компания подает электроэнергию в ваш дом через линию электропередачи. Электропитание от вашего сервисного центра никогда не отключается, но ваш автоматический выключатель может остановить подачу электричества в ваш дом. Итак, все необходимое для выполнения электромонтажных работ или восстановления питания после перегрузки находится в коробке выключателя.

Эта статья представляет собой полное руководство для понимания главного автоматического выключателя в вашем доме. Пошаговое справочное руководство, которое научит вас всему, что вы видите, когда смотрите на блок выключателя. И узнайте разницу между главным выключателем и выключателем ответвления.

Это руководство предназначено только для образовательных целей. Перед тем, как самостоятельно производить ремонт электрооборудования, всегда следует проконсультироваться с ближайшим к вам профессиональным электриком.

Полное руководство по главному автоматическому выключателю для начинающих

Главный автоматический выключатель находится на распределительной коробке электрооборудования.Если вам интересно, где он находится в вашем доме, поищите коробку электрического щита в подвале или гараже. Иногда они находятся возле вашего водонагревателя или возле прачечной.

В квартирах и некоторых старых зданиях сервисная панель встроена в стену. Это похоже на металлическую дверцу шкафа, и сначала ее сложно открыть. Когда вы открываете дверцу панели, вы видите ряд или два выключателя.

Выключатели могут быть пронумерованы, а если у вашего дома был предыдущий владелец, они могут быть даже помечены.Это ваши автоматические выключатели. Каждый выключатель ответвляется в какую-то область, например, коридор наверху, гостиную или подвал.

Посмотрите над выключателем ответвления и вы увидите другой выключатель, который больше, чем выключатели ответвления. Это ваш главный автоматический выключатель, который контролирует поток мощности к вашему выключателю ответвления.

Главный выключатель выключателя обычно обращен перпендикулярно выключателям выключателя ответвления. Иногда это выглядит как три или четыре выключателя вместе с одним выключателем включения / выключения.Вытяните главный выключатель, и на панель выключателя не поступает питание.

Что такое автоматический выключатель?

Автоматические выключатели – это средство защиты от повреждения цепи в случае перегрузки по току. Другими словами, он гарантирует, что ничего не сломается, если у вас одновременно будет слишком много приборов, что приведет к короткому замыканию.

Автоматический выключатель сам по себе является электрическим выключателем. Он подключается к вашей печатной плате и прерывает прохождение электрического тока, если обнаруживает неисправность в потоке.В случае неисправности автоматический выключатель автоматически срабатывает и останавливает прохождение электричества по цепи.

Автоматические выключатели

созданы в соответствии со спецификациями безопасности, чтобы гарантировать, что короткое замыкание не приведет к повреждению дома или здания. Перед автоматическими выключателями в случае скачка напряжения приходилось заменять перегоревший предохранитель.

Предохранители также защищают от возгорания электрического тока, но только один раз, после чего нужно было заменить перегоревший предохранитель. С автоматическим выключателем все, что вам нужно сделать, это отключить некоторые приборы, которые вызвали скачок напряжения, и вернуть выключатель в положение «включено».

Автоматические выключатели

работают настолько хорошо, что бывают самых разных размеров и типов. Практически все автоматические выключатели для жилых помещений – низковольтные. В многоквартирном доме используется выключатель среднего напряжения, а выключатель высокого напряжения предназначен для коммунальных предприятий, которые обеспечивают электроэнергией весь город.

Как работает автоматический выключатель?

Различные типы автоматических выключателей работают по-разному, но каждый автоматический выключатель выполняет одинаковую функцию. К другим факторам, влияющим на способы работы выключателей, относятся класс напряжения и характеристики номинального тока.

По своей сути автоматический выключатель обнаруживает неисправности в протекании тока в цепи и прерывает подачу энергии в цепи. Когда электрический ток проходит через два контакта, требуется значительная сила, чтобы разъединить соединение. По этой причине цепь должна быть разорвана силой, чтобы остановить передачу электричества.

Низковольтные автоматические выключатели на электрическом щите вашего дома – это простейшие типы автоматических выключателей. Они используют накопленную в пружине энергию для включения переключателя и разъединения контакта с цепью.Это позволяет вручную отключать и сбрасывать подачу питания щелчком переключателя.

Внутри контактов выключателя для подачи электричества. Они должны передавать нагрузку без перегрева из-за скачков напряжения или дуги. Слишком большой ток или высокая температура приводят к срабатыванию аварийных параметров и срабатыванию выключателя.

Дуга возникает, когда подача тока прерывается при срабатывании выключателя. Дуга очень горячая и разъедает контактный материал в цепи. Когда контакты выходят из строя, соединение должно быть разорвано – отсюда и название.

Контакты схемы изготовлены из металлов с высокой проводимостью, таких как сплав меди и серебра. Чем выше напряжение, тем дольше возникает дуга при разрыве соединения. Чем сильнее ток, тем горячее дуга при срабатывании выключателя.

Итак, выключатели и цепи согласованы, чтобы не превышать допустимые параметры тока и напряжения. В случае перегрузки цепи автоматический выключатель срабатывает с достаточной силой, чтобы разорвать текущее соединение и последующую дугу.

Автоматический выключатель прерывает электрическое соединение, если контакты сохраняют избыточное тепло или ток. Как только обнаруживается неисправность, выключатель срабатывает. Для восстановления протекания тока прерванный контакт должен быть замкнут путем сброса выключателя.

Все автоматические выключатели предназначены для прерывания соединения между контактами цепи. Однако есть разница между автоматическим выключателем ответвления и главным выключателем.

Прерыватель ответвления
и главный прерыватель

Прерыватели ответвления и главный прерыватель – это, по сути, одно и то же, но не совсем.Они работают так же, но прерыватели ответвлений меньше. Главный выключатель предназначен для отключения нагрузки с большей силой тока.

Две линии электропередач, которые подводят электричество к вашему дому, проходят через сервисную панель. Каждый из основных проводов передает 120 вольт электричества, что в сумме составляет 240 вольт. Главный выключатель подключается непосредственно к этим двум проводам.

Под главным выключателем два провода подключаются к двум токопроводящим шинам, называемым шинами горячего подключения. На горячих шинах вы прикрепляете отдельные автоматические выключатели ответвления, поэтому они часто отображаются в виде двух параллельных рядов.

Главный автоматический выключатель контролирует поток электричества от двух основных проводов к шинам под напряжением. Срабатывание главного выключателя прерывает подачу электричества на 240 вольт до того, как оно достигнет ваших выключателей ответвления. Когда срабатывает главный выключатель, все в вашем доме выключено.

Как выполнить отключение системы главного автоматического выключателя

Если вам нужно провести в вашей системе серьезные электромонтажные работы, используйте главный выключатель в качестве отключения системы. Не отключайте сразу главный автоматический выключатель.Во-первых, начните с верхней части прерывателя ответвления и отключите каждый прерыватель по отдельности.

Если вы уверены, что успешно отключили каждый автоматический выключатель ответвления, по одному, выполните отключение системы, переведя главный выключатель цепи в положение «выключено». Электроэнергия должна быть отключена на всей вашей собственности.

После того, как вы закончите свою работу и будете готовы снова включить питание, повторите процесс в обратном порядке. Перед включением автоматических выключателей ответвления переведите главный автоматический выключатель в положение «включено».Затем не торопитесь, по очереди вставляя каждый прерыватель ветвей.

Вы не хотите создавать скачок напряжения, предъявляя слишком высокие требования к вашей электрической системе одновременно. Так что делайте несколько секунд между прерываниями ветвей.

Как всегда, мы настоятельно рекомендуем обратиться к лицензированному электрику перед выполнением собственных электромонтажных работ.

Как сбросить сработавший главный автоматический выключатель

Главный автоматический выключатель может отключиться по нескольким причинам.Если энергокомпания вызовет скачок напряжения, она может отключить главный выключатель в каждом доме на улице. Неисправный прерыватель ответвления может вызвать срабатывание главного прерывателя в качестве дополнительной меры предосторожности.

Если сработал главный автоматический выключатель, вы должны правильно его сбросить, чтобы избежать скачка напряжения в вашей системе. При восстановлении питания любой включенный выключатель ответвления включит приводной двигатель цепи. Если все двигатели включаются одновременно, это создает нагрузку на вашу систему и увеличивает вероятность короткого замыкания.

Прежде чем пытаться сбросить главный выключатель, наденьте защитные очки и защитные перчатки. Иногда при повторном включении главного выключателя могут разлетаться искры. И стойте в стороне всякий раз, когда переворачиваете выключатели, чтобы избежать искр на вашем лице.

Когда срабатывает ваш главный прерыватель, начните с перевода каждого отдельного прерывателя ответвления в положение «выключено». Когда все выключатели выключены, снова включите главный выключатель. Электропитание должно оставаться выключенным, поскольку выключатели ответвления отключены.

Теперь медленно включайте выключатели ответвлений по одному, чтобы избежать перегрузки.Каждый раз, когда вы переводите выключатель ответвления обратно в положение «включено», питание должно возвращаться в те области вашего дома, которые контролируются этой цепью.

Главный автоматический выключатель не должен срабатывать легко, и каждый раз, когда он срабатывает, соединения ослабевают. Если вы испытываете частые срабатывания главного выключателя, обратитесь за помощью к профессиональному электрику. Это может указывать на серьезную проблему с электрической системой или неисправную проводку по всему дому.

Зачем вам главный автоматический выключатель?

Главный автоматический выключатель обеспечивает надежную меру безопасности.Без главного автоматического выключателя вы полагаетесь на то, что каждый из ваших выключателей ответвления выдержит гораздо большую нагрузку, чем они предназначены. А отключение электричества во всем доме пригодится, когда вы выполняете какие-либо электромонтажные работы.

В случае, если какая-либо отдельная ответвленная цепь потребляет слишком много энергии, она должна просто отключить прерыватель ответвления. Но, если слишком много ваших автоматических выключателей потребляют слишком много энергии, главный автоматический выключатель защитит вас от опасной перегрузки.

Очень важно отключать электроэнергию в вашем электрическом шкафу, когда вы выполняете электромонтажные работы дома. Разрезать провод под напряжением – это ошибка, которую нельзя повторить дважды, потому что у вас не будет возможности. Независимо от того, устанавливаете ли вы дорожное освещение или устанавливаете дополнительные розетки, главный автоматический выключатель защитит вас от поражения электрическим током.

Ни один из ваших автоматических выключателей не должен регулярно отключаться. Если вы обнаружите, что регулярно переустанавливаете выключатель, возможно, пришло время обновить электрическую панель.

Последние мысли

Распределительную систему вашего дома легко понять, если вы понимаете, как взаимодействуют ваши автоматические выключатели. Главный выключатель обеспечивает аварийное отключение, чтобы гарантировать, что отказ выключателя ответвления не приведет к перегрузке системы. Взгляните на свой автоматический выключатель дома, и вы увидите, насколько физически электричество течет внутри ваших стен.

Коробки выключателей, хотя и редко, излучают искры и искры, поэтому всегда соблюдайте правильные меры безопасности при работе с электрикой.И всегда используйте инструменты и обувь с резиновым покрытием. Резина не является электропроводной и снижает ток электричества через ваше тело в случае аварии.

Если вам нравится эта статья о главном автоматическом выключателе, поделитесь ею в социальных сетях. И загляните в блог, чтобы узнать больше о проблемах с электричеством в доме. И напоследок, это руководство предназначено только для образовательных целей. Мы настоятельно рекомендуем, чтобы перед тем, как вы попытаетесь самостоятельно выполнить какой-либо ремонт электрооборудования, проконсультируйтесь с ближайшим к вам электриком.Спасибо за прочтение!

Электрические контакты в автоматических выключателях среднего и высокого напряжения

Предисловие
Сети передачи электроэнергии защищены и управляются автоматическими выключателями среднего и высокого напряжения.
Выключатели предназначены для включения и отключения электрического тока в линиях электропередачи. Таким образом, функция электрического контакта играет основную и решающую роль в правильной работе выключателя.
В данной статье вы найдете краткое описание различных типов электрических контактов, используемых в силовых выключателях, основных рисков для их правильной работы и основных тестов, используемых для проверки их состояния.

ВВЕДЕНИЕ
Автоматический выключатель – это автоматический выключатель, предназначенный для защиты электрической цепи от повреждений, вызванных перегрузкой или коротким замыканием. В отличие от предохранителя, который срабатывает один раз, а затем его необходимо заменить, автоматический выключатель можно сбросить (вручную или автоматически) для возобновления нормальной работы.

Автоматические выключатели изготавливаются разных размеров, от небольших устройств, которые защищают отдельный бытовой прибор, до больших распределительных устройств, предназначенных для защиты цепей высокого напряжения, питающих весь город.

Высоковольтный выключатель состоит из трех основных компонентов:

Камера прерывания: , где происходит прохождение тока и прерывание в силовой цепи. Обычно это замкнутый объем, содержащий замыкающие контакты и прерывающую среду (сжатый воздух, масло, SF6, вакуум и т. Д.), Используемую для изоляции и гашения дуги.

Рабочий механизм: , где инициируется энергия, необходимая для замыкания или размыкания контактов и гашения дуги.

Управление: , где генерируются команды на включение выключателя и отслеживается его состояние.

Электрические контакты в автоматических выключателях
Как упоминалось ранее, силовой ток проходит через проводящий материал в камере прерывания (рис. 2). Различные части, соединенные вместе, образуют проводящий материал. Различные соединения образуют электрические контакты.

Электрический контакт достигается путем физического контакта двух проводящих предметов.Это можно сделать несколькими способами. Несмотря на то, что существует широкий диапазон конструкций контактов в камерах прерывания, их можно сгруппировать в четыре основные категории:

  1. Переключающие контакты – которые могут замыкаться или размыкаться под нагрузкой;

  2. Скользящие контакты – которые поддерживают контакт во время относительного движения.

  3. Фиксированные контакты – которые могут быть зажаты вместе в течение многих лет и никогда не размыкаются.

  4. Разъемные контакты – замыкающие или отключающие нагрузку.Обычно встречается в распределительных устройствах среднего напряжения в металлической оболочке.

На рисунке 3 представлена ​​символическая схема типичной архитектуры контактов, на которой четко показан ток, протекающий через три основных типа контактов во время последовательности событий операции размыкания. Во всех трех типах контакт осуществляется касающимися поверхностями каждого компонента.

Переключающие контакты
Типы размыкающих контактов можно подразделить по номинальной мощности, начиная с наивысшей:
Сильноточные контакты высоковольтного выключателя, которые отключают большие электрические нагрузки и образуют дуги, содержатся в специальных дугогасительные камеры.Они могут находиться в воздухе при нормальном давлении или в потоке воздуха, в гексафториде серы (SF6), в масле или другой среде для гашения дуги, включая вакуум.

Включает подвижный и стационарный контакт. Обычно один из них представляет собой кольцо из подпружиненных медных контактных пальцев (вставного типа, рис. 4 или встык), либо другой – сплошной медный стержень. Контакты могут быть покрыты дугостойким материалом, чтобы противостоять эрозии от мощной дуги, а поверхности могут быть покрыты гальваническим покрытием (например,грамм. с серебром) для улучшения проводимости.

Механические свойства меди в сочетании с ее превосходной электропроводностью и хорошей стойкостью к искрению в масле сделали ее предпочтительным металлом в этом применении.

В вакуумных выключателях контакты также обычно изготавливаются из меди, смешанной с вольфрамом и имеют особую форму, обеспечивающую надлежащее распределение электрического поля и движение корня дуги.

Меньшие автоматические выключатели с воздушным разрывом (среднего напряжения) используют медь во всех внутренних проводящих частях, но контакты часто облицованы сплавом на основе серебра, чтобы противостоять сварке.Такие автоматические выключатели, являясь защитными устройствами, редко размыкаются или замыкаются.

Раздвижные контакты (Рис.5)
Они могут быть самого разного характера.
Высокоскоростные, сильноточные типы, они обычно используются в камерах силовых прерывателей. Эти контакты должны обладать очень высокой устойчивостью к механическому износу, поскольку их относительная скорость может достигать 10 метров в секунду и более.

Фиксированные контакты
Сюда входит широкий спектр болтовых и гофрированных контактов.
Зажимное соединение позволяет избежать уменьшения поперечного сечения, вызванного сверлением для вставки болтов, и обеспечивает более равномерное распределение контактного усилия, делая контакт более эффективным и, следовательно, более холодным.Болтовые соединения используются потому, что это дешево и удобно.
Гофрированные соединения используют предельную чрезвычайную силу установления контакта, заставляя металл течь и создавая постоянное соединение. Бесперебойный характер этих соединений, а также простота и быстрота операции опрессовки делают этот тип соединения очень привлекательным для постоянных соединений.
Болтовые или гофрированные контакты используются в камерах прерывания для защиты и поддержания целостности электрического компонента.

Разъемные контакты


Применяются в выключателях среднего напряжения в металлической оболочке.Это помогает отключать прерыватель от сети, легко снимая его с шин для технического обслуживания. Это нужно делать без нагрузки.

Эти контакты, как и замыкающие контакты, могут пропускать большие токи при высоком напряжении (например, высоковольтные изоляторы или контакты предохранителей высокого или среднего напряжения). Они должны надежно проводить ток в течение длительных периодов времени без перегрева или потери контакта, но не должны включать и отключать ток. Они не подвергаются напряжению дуги; следовательно, они не получают присущего им очищающего действия.Они часто проектируются так, чтобы иметь некоторое фрикционное действие при замыкании для удаления поверхностных оксидных или коррозионных пленок, которые могут препятствовать контакту, а медь и ее сплавы являются наиболее часто используемыми материалами для основной части съемных контактов.

Эти контакты отличаются тем, что они имеют высокое контактное усилие, намного большее, чем у автоматических выключателей с аналогичным номинальным током, но не такое высокое, как контактное усилие в болтовом контакте, из-за чрезмерного механического износа, который может быть вызван при разъединении контактов

Сопротивление контакта
Как мы уже говорили, контакт происходит при соприкосновении двух поверхностей.Для электрического тока, если это проводящий материал, это означает путь, по которому он течет.

Наблюдение в микроскопическом масштабе показывает, что контактная поверхность на самом деле шероховатая, хотя невооруженному глазу кажется гладкой.

На самом деле, как показывает микроскоп, реальный контакт между двумя поверхностями происходит через множество небольших поверхностей, называемых микроконтактами (рис. 7), которые случайным образом распространяются в пределах видимой области контакта.

Это сумма площадей всех микроконтактов, составляющая эффективную площадь контакта.

Поскольку сопротивление электрического контакта обратно пропорционально площади контакта, чем меньше эффективная площадь, тем больше сопротивление. (рис. 8)

Влияние контактного сопротивления
Когда ток I проходит через область A , имеющую сопротивление R , энергия E , поглощаемая A , составляет:

E = RI 2 t
Где t – длительность I .

Мы знаем, что температура A T напрямую связана с E следующим уравнением:
E = T
является функцией скорости рассеивания тепла.

Для постоянного тока I o , если R увеличивается, тогда увеличивается E , что приводит к увеличению температуры контакта. Если T продолжает увеличиваться, материал контакта может достичь точки плавления, что приведет к его разрушению.(рис. 9)

Элементы, влияющие на сопротивление контакта

Окисление

Тонкий слой изолирующего оксида, покрывающий область одиночного микроконтакта, мало повлияет на проводимость контакта в целом. Как только оксидный слой достигнет значительного числа микроконтактов, токопроводящая площадь уменьшится, увеличивая тем самым ее сопротивление. Повышенное сопротивление увеличит температуру контакта, что приведет к его разрушению.

Любая окружающая среда, содержащая газы, способные вступать в реакцию с материалом контакта, такие как O2, SO2, h3O, h3S и т. Д., было бы полезно для получения оксидных слоев, даже если контакт замкнут. Со временем газ сможет проникнуть в контактную поверхность и вступить с ней в реакцию, что ухудшит ее характеристики и повысит сопротивление.

УИЛЬЯМСОН изучал это явление. На рис. 10 показано, как значение сопротивления увеличивается со временем. Как мы видим, изменение сопротивления незначительно до определенного момента времени, когда деградация быстро увеличивается. Аналогичные результаты получены LEMELSON для медных контактов в масле.

Эти результаты показывают интересное поведение и указывают на срочность технического обслуживания, когда сопротивление контакта начинает увеличиваться.

Износ контактов
С механической точки зрения это может быть вызвано движением и трением контактов, а электрически – действием дуги (в основном размыкающим контактом). Износ контактов напрямую влияет на сопротивление контакта и резко увеличивает его, если износ находится в высоком состоянии (рис. 11).

Fretting
Возможна форма ускоренного окисления, если контактные поверхности испытывают циклическое движение относительно друг друга.Например, контакты не замыкаются каждый раз в одной и той же области.

Это явление было замечено давно, но его масштабы стали известны только недавно. Когда контакт перемещается из своего предыдущего положения, деталь подвергается воздействию окружающей атмосферы. Затем образуется окислительный слой. Когда контакт возвращается в это положение, он разрывает тонкий слой и отодвигает его в сторону. Это явление повторяется много раз, пока слой окисления не станет достаточно толстым, чтобы увеличить его сопротивление.

BRAUNOVIC экспериментировал с явлением истирания при малых токах в алюминии, а компания JOHNSON & MOBERLY изучила его на больших токах и достигла аналогичных результатов.

Сопротивление быстро увеличивается сразу после того, как начинает изменяться. На рис. 13 показан случай, аналогичный показанному на рис. 10, но в ускоренном виде.

Контактное усилие
Как известно, сопротивление R является функцией удельного сопротивления контактного материала p и площади S , (R = p / S).

S – это сумма площадей всех точек контакта.
Площади контактных точек зависят от приложенной силы F и твердости материала H ,
( k – постоянная величина)

Если F уменьшается, S также уменьшается и R , тогда увеличивается.

F может уменьшаться из-за разных факторов, например:

  1. Чрезмерный износ контактной поверхности;

  2. Усталость контактных пружин со временем;

  3. Химическая реакция материала пружины с окружающей атмосферой;

  4. Слабый или смещенный контакт и т. Д.

Пружинные материалы, таким образом, являются важным элементом, который необходимо учитывать. По той же логике, важная мера предосторожности состоит в том, чтобы не допустить, чтобы пружина была токопроводящей дорожкой, так как повышение ее температуры вызовет ослабление результирующей силы F .

Температура
При повышении температуры T контактов материал контактов может размягчиться до такой степени, что это уменьшит контактное усилие, что приведет к быстрому увеличению контактного сопротивления.

Испытания
Выше мы видели, что окисление, износ, истирание, сила и температура напрямую влияют на значение сопротивления R (в микроомах) контактов.

Итак, чтобы легко оценить состояние контактов выключателя, два типа испытаний, как для статического, так и для динамического измерения R , зарекомендовали себя и широко используются.

Измерение контактного сопротивления
Измерение контактного сопротивления обычно выполняется с использованием принципов закона Ома V = RI ;
В – напряжение на контакте;
I – ток;
R – сопротивление.

Если подать ток I и измерить напряжение В , сопротивление R можно получить напрямую, разделив В на I .
R = V / I

Как видно на рис. 14

Поскольку камера прерывания представляет собой закрытый контейнер, у нас есть доступ только к входным и выходным проводникам; измеренное R между этими двумя точками будет суммой всех контактных сопротивлений, обнаруженных последовательно (фиксированные, размыкающие и скользящие контакты).

Согласно IEC 694, статья 6.4.1, используемое значение тока должно быть максимально приближенным к номинальному току, на который рассчитана камера прерывания. Если это невозможно сделать, можно использовать более низкие токи, но не менее 50 А для устранения гальванического эффекта, который может повлиять на показания.

При измерении следует соблюдать особые меры предосторожности:

  1. Точки измерения должны быть чистыми и не иметь следов окисления;

  2. Точки измерения всегда должны быть одинаковыми;

  3. Выполните несколько последовательных тестов и вычислите среднее значение.

Используемая единица измерения – микроом ().
1 = 10-6 Ом ()

Мы можем иметь в виду, что диапазон значений сопротивления микроом, обнаруженных в выключателях, примерно разделен в зависимости от напряжения и допустимой нагрузки по току
:

  • 25 кВ – от 100 до 350;

  • 120 кВ – от 80 до 200;

  • от 120 до 330 кВ – 100 максимум.

  • 735 кВ – от 20 до 80.

Динамическое измерение контактного сопротивления
Микроомметр, описанный выше, используется для измерения контактного сопротивления с камерой прерывания в закрытом положении, но он не дает никакой индикации состояния дугогасительных контактов.

Один из вариантов – провести внутреннюю проверку, но на это уходит много времени. В случае элегазовых выключателей необходимо строго соблюдать процедуры технического обслуживания для безопасного обращения с элегазом и побочными продуктами дуги. Вот почему было разработано измерение динамического контактного сопротивления.

По определению, как следует из названия, начиная с закрытого положения, когда контакт перемещается в свое открытое положение, подается ток и измеряется напряжение. Это даст нам значение сопротивления на всем пути от закрытой до открытой позиции.

Для этого теста требуется специальное оборудование (рис. 15) и более сложная процедура по сравнению со статической. Собранная информация имеет другой характер и дает нам более полное представление о состоянии контакта, недоступное при статическом тесте.

Детальное обсуждение динамического теста в этой статье не актуально. Но мы можем иметь в виду, что этот тест может дать нам хорошую информацию о величине сопротивления дугового контакта и его эродированной части.

Эта информация имеет решающее значение для некоторых выключателей, у которых качество гашения дуги сильно зависит от этого факта. Эффект был бы настолько велик, что мог бы привести к взрыву камеры прерывания.

Мы также должны знать, что выполнение динамического измерения контактного сопротивления стыковых контактов не имеет смысла. Простого статического теста с помощью микроомметра достаточно из-за конструкции контактов.

Итак, перед использованием испытания динамического сопротивления контакта вам необходимо проверить типы и механическую архитектуру вашего выключателя.Подробнее об этом мы поговорим в следующей статье.

Резюме
Электрический контакт является важным компонентом силовых выключателей. Увеличение контактного сопротивления может привести к выходу выключателя из строя. Мы видели, что все элементы, влияющие на контактное сопротивление, дадут одинаковый результат. Если сопротивление контакта начинает значительно увеличиваться, увеличение значения будет расти экспоненциально.

Международный стандарт IEC 56 устанавливает допустимое показание, увеличивающее до 20% исходное значение теста.При превышении этого значения необходимо проводить открытую проверку.

При проверке важно соблюдать особые меры предосторожности, поскольку ложные показания могут привести к частому и ненужному обслуживанию.

Библиография
Настоящая статья основана на нашем личном опыте.

  • Теория и конструкция силового выключателя, под редакцией К.Х. Flurscheim, переработанное издание 1982 г .;

  • Теория и методы прерывания цепи, под редакцией Томаса Э. Брауна-младшего., выпуск 1984 г .;

  • J.B.P. Уильямсон, Процессы износа электрических соединителей, Proc. 4-й Int. Конф. Электр. Контактное явление, Суонси, Уэльс, 1968.

  • М. Браунович, Влияние фреттинга на контактное сопротивление алюминия с различными контактными материалами, Proc. 9-е межд. Конф. Электр. Связаться с феноменом / 24-я Holm Conf. Электр. Контакты, ИИТ, Чикаго, сентябрь 1978 г., стр. 81-86.

  • Дж. Л. Джонсон и Л. Э. Moberly, Разделительные электрические контакты с алюминиевыми шинами, Proc.21-я Holm Conf. Электр. Контакты, ИИТ, Чикаго, октябрь 1975 г., стр. 53–59;

  • К. Лемельсон, Разрушение замкнутых силовых контактных элементов в изоляционном масле при высокой температуре, Proc. 6-й Int. Конф. Феномен электрического контакта, IIT, Чикаго, июнь 1972 г., стр. 252–258;

  • Р. Холм и Э. Холм, Электрические контакты: теория и применение, Springer-Verlag, Нью-Йорк, 1967, стр. 89, 136, 161, 438;

  • Руководство 6WE – CBA-32P – Руководство модуля Z-DRM-2, Zensol Automation Inc, апрель 2006 г .;

  • М.Ландри, IREQ и Ф. Брикчи – презентация Z-DRM-2 Powerpoint, май 2005 г.

Об авторах
Эмиль Насралла – инженер-электрик, специализирующийся на обслуживании силовых выключателей. После окончания института в 1984 году работал инженером-сапером. В 1990 году он присоединился к всемирному производителю автоматических выключателей GEC ALSTHOM в качестве специализированного полевого инженера. В 1997 году он стал менеджером подразделения элегазовых выключателей среднего и высокого напряжения компании ALSTOM, отвечая за техническую поддержку, обслуживание и обучение элегазовых выключателей.В 2001 году он стал менеджером подразделения воздушных автоматических выключателей компании AREVA. В партнерстве с Hydro-Quebec он отвечал за программу восстановления с воздушным ударом (PK и PKV) и ввел уникальную административную систему для этой программы (в среднем 35 735 кВ автоматических выключателей PK в год). В 2005 году он присоединился к компании General Electric в Канаде в качестве старшего специалиста по автоматическим выключателям и отвечает за подразделение автоматических выключателей в сервисном центре в Монреале, отвечая за программу восстановления масляных выключателей

Stéphan Perron , Hydro-Québec преподаватель, техническое обслуживание высоковольтных выключателей Стефан Перрон более 7 лет преподавал техническое обслуживание и устранение неисправностей высоковольтных выключателей и термографию в Центре компетенции Hydro-Quebec, расположенном в Сен-Антуан-де-Лаурентид, Квебек, Канада.Он накопил свой опыт, работая на стороне обслуживания высоковольтных автоматических выключателей Hydro-Quebec в течение 18 лет. Его специальность – автоматические выключатели ABB (модели SFE, HPL, ELF и DLF), выключатели GE (модели KSO, AT) и все соответствующие испытательные инструменты, а также секционные выключатели Joslyn VBM, обращение с газом SF6 и его поведение. интерпретация термографических показаний (Уровень 1) на выключателях. Стефан Перрон имеет степень DEC в области электроники в CEGEP St Jérome, QC, Canada

Dr.Фуад Брикчи – президент Zensol Automation Inc. Он был первым, кто представил концепцию полностью компьютеризированного испытательного оборудования в области анализаторов выключателей. В качестве бывшего преподавателя в Политехнической школе в Алжире и научного сотрудника CNRS-LAAS во Франции доктор Брикчи приобрел опыт в области электроники, автоматизации и информатики. Большая часть деятельности была сосредоточена на промышленном применении компьютеров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *