Содержание

Формула силы Ампера в физике

Содержание:

Определение и формула силы Ампера

Определение

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Ее обозначения: $\bar{F}, \bar{F}_A$ . Сила Ампера векторная величина. Ее направление определяет правило левой руки: следует расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее. Вытянутые четыре пальца указывали направление силы тока. В таком случае отогнутый на большой палец укажет направление силы Ампера (рис.1).

Закон Ампера

Элементарная сила Ампера ($d\bar{F}_A$) определена законом (или формулой) Ампера:

$$d \bar{F}_{A}=I d \bar{l} \times \bar{B}(1)$$

где I – сила тока, $d \bar{l}$ – малый элемент длины проводника – это вектор, равный по модулю длине проводника, направленный в таком же направлении как вектор плотности тока, $\bar{B}$ – индукция магнитного поля, в которое помещен проводник с током.

Иначе эту формулу для силы Ампера записывают как:

$$d \bar{F}_{A}=\bar{j} \times \bar{B} d V(2)$$

где $\bar{j}$ – вектор плотности тока, dV – элемент объема проводника.

Модуль силы Ампера находят в соответствии с выражением:

$$d F=I \cdot B \cdot d l \cdot \sin \alpha(3)$$

где $\alpha$ – угол между векторами магнитной индукции и направление течения тока. Из выражения (3) очевидно, что сила Ампера максимальна в случае перпендикулярности линий магнитной индукции поля по отношению к проводнику с током.

Силы, действующие на проводники с током в магнитном поле

Из закона Ампера следует, что на проводник с током, равным I, действует сила равная:

$$\bar{F}_{A}=I \int_{l} d \bar{l} \times \bar{B}(4)$$

где $\bar{B}$ магнитная индукция, рассматриваемая в пределах малого кусочка проводника dl. Интегрирование в формуле (4) проводят по всей длине проводника (l). Из выражения (4) следует, что на замкнутый контур с током I, в однородном магнитном поле действует сила Ампера равная $\bar{F}_{A}=0(H)$

Сила Ампера, которая действует на элемент (dl) прямого проводника с током I1, помещённый в магнитное поле, которое создает другой прямой проводник, параллельный первому с током I

2, равна по модулю:

$$d F=\frac{\mu_{0}}{2 \pi} \frac{I_{1} I_{2}}{d} d l(5)$$

где d – расстояние между проводниками, $\mu_{0}=4 \pi \cdot 10^{7}$ Гн/м(или Н/А2 ) – магнитная постоянная. Проводники с токами одного направления притягиваются. Если направления токов в проводниках различны, то они отталкиваются. Для рассмотренных выше параллельных проводников бесконечной длины сила Амперана единицу длины может быть вычислена по формуле:

$$\frac{F}{l}=\frac{\mu_{0}}{2 \pi} \frac{I_{1} I_{2}}{d}$$

Формулу (6) в системе СИ применяют для получения количественного значения магнитной постоянной.

Единицы измерения силы Ампера

Основной единицей измерения силы Ампер (как и любой другой силы) в системе СИ является: [FA]=H

В СГС: [FA]=дин

Примеры решения задач

Пример

Задание. Прямой проводник длины l с током I находится в однородном магнитном поле B. На проводник действует сила F. Каков угол между направлением течения тока и вектором магнитной индукции?

Решение. На проводник с током, находящийся в магнитном поле действует сила Ампера, модуль которой для прямолинейного проводника с током расположенном в однородном поле можно представить как:

$$F=F_{A}=I B \operatorname{lsin} \alpha$$

где $\alpha$ – искомый угол. Следовательно:

$$\alpha=\arcsin \left(\frac{F}{I B l}\right)$$

Ответ. $\alpha=\arcsin \left(\frac{F}{I B l}\right)$

Слишком сложно?

Формула силы Ампера не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Два тонких, длинных проводника с токами лежат в одной плоскости на расстоянии d друг от друга. Ширина правого проводника равна a. По проводникам текут токи I1 и I2 (рис.1). Какова, сила Ампера, действующая на проводники в расчете на единицу длины?

Решение. За основу решения задачи примем формулу элементарной силы Ампера:

$$d \bar{F}_{A}=I d \bar{l} \times \bar{B}(2.1)$$

Будем считать, что проводник с током I1 создает магнитное поле, а другой проводник в нем находится.Станем искать силу Ампера, действующую на проводник с током I2. Выделим в проводнике (2) маленький элемент dx (рис.1), который находится на расстоянии x от первого проводника. Магнитное поле, которое создает проводник 1 (магнитное поле бесконечного прямолинейного проводника с током) в точке нахождения элементаdxпо теореме о циркуляции можно найти как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

Вектор магнитной индукции в точке нахождения элемента dx направлен перпендикулярно плоскости рисунка, следовательно, модуль элементарной силы Ампера, действующий на него можно представить как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

где ток, который течет в элементе проводника dx, выразим как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

Тогда выражение для dFA, учитывая (2.2) и (2.4) запишем как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

где из рис.1 видно, что $a \leq x \leq a+b$, по условию задачи силу следует найти на единицу длины, значит $0 \leq l \leq 1$ . Для нахождения суммарной силы Ампера, действующей на проводник (2) возьмем двойной интеграл от выражения (2.

{a+b} \frac{\mu_{0} I_{1}}{2 \pi x} \cdot \frac{I_{2}}{b} d x=\frac{\mu_{0} I_{1}}{2 \pi} \cdot \frac{I_{2}}{b} \ln \left|\frac{a+b}{a}\right|$$

Проводники действуют друг на друга с силами равными по модулю и так как токи направлены одинаково, то они притягиваются.

Ответ. $F_{A}=\frac{\mu_{0} I_{1}}{2 \pi} \cdot \frac{I_{2}}{b} \ln \left|\frac{a+b}{a}\right|$

Читать дальше: Формула силы выталкивания.

Формула силы Ампера в физике

Содержание:

Определение и формула силы Ампера

Определение

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Ее обозначения: $\bar{F}, \bar{F}_A$ . Сила Ампера векторная величина. Ее направление определяет правило левой руки: следует расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее. Вытянутые четыре пальца указывали направление силы тока. В таком случае отогнутый на большой палец укажет направление силы Ампера (рис.

1).

Закон Ампера

Элементарная сила Ампера ($d\bar{F}_A$) определена законом (или формулой) Ампера:

$$d \bar{F}_{A}=I d \bar{l} \times \bar{B}(1)$$

где I – сила тока, $d \bar{l}$ – малый элемент длины проводника – это вектор, равный по модулю длине проводника, направленный в таком же направлении как вектор плотности тока, $\bar{B}$ – индукция магнитного поля, в которое помещен проводник с током.

Иначе эту формулу для силы Ампера записывают как:

$$d \bar{F}_{A}=\bar{j} \times \bar{B} d V(2)$$

где $\bar{j}$ – вектор плотности тока, dV – элемент объема проводника.

Модуль силы Ампера находят в соответствии с выражением:

$$d F=I \cdot B \cdot d l \cdot \sin \alpha(3)$$

где $\alpha$ – угол между векторами магнитной индукции и направление течения тока. Из выражения (3) очевидно, что сила Ампера максимальна в случае перпендикулярности линий магнитной индукции поля по отношению к проводнику с током.

Силы, действующие на проводники с током в магнитном поле

Из закона Ампера следует, что на проводник с током, равным I, действует сила равная:

$$\bar{F}_{A}=I \int_{l} d \bar{l} \times \bar{B}(4)$$

где $\bar{B}$ магнитная индукция, рассматриваемая в пределах малого кусочка проводника dl. {7}$ Гн/м(или Н/А2 ) – магнитная постоянная. Проводники с токами одного направления притягиваются. Если направления токов в проводниках различны, то они отталкиваются. Для рассмотренных выше параллельных проводников бесконечной длины сила Амперана единицу длины может быть вычислена по формуле:

$$\frac{F}{l}=\frac{\mu_{0}}{2 \pi} \frac{I_{1} I_{2}}{d}$$

Формулу (6) в системе СИ применяют для получения количественного значения магнитной постоянной.

Единицы измерения силы Ампера

Основной единицей измерения силы Ампер (как и любой другой силы) в системе СИ является: [FA]=H

В СГС: [FA]=дин

Примеры решения задач

Пример

Задание. Прямой проводник длины l с током I находится в однородном магнитном поле B. На проводник действует сила F. Каков угол между направлением течения тока и вектором магнитной индукции?

Решение. На проводник с током, находящийся в магнитном поле действует сила Ампера, модуль которой для прямолинейного проводника с током расположенном в однородном поле можно представить как:

$$F=F_{A}=I B \operatorname{lsin} \alpha$$

где $\alpha$ – искомый угол. Следовательно:

$$\alpha=\arcsin \left(\frac{F}{I B l}\right)$$

Ответ. $\alpha=\arcsin \left(\frac{F}{I B l}\right)$

Слишком сложно?

Формула силы Ампера не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Два тонких, длинных проводника с токами лежат в одной плоскости на расстоянии d друг от друга. Ширина правого проводника равна a. По проводникам текут токи I1 и I2 (рис.1). Какова, сила Ампера, действующая на проводники в расчете на единицу длины?

Решение. За основу решения задачи примем формулу элементарной силы Ампера:

$$d \bar{F}_{A}=I d \bar{l} \times \bar{B}(2.1)$$

Будем считать, что проводник с током I1 создает магнитное поле, а другой проводник в нем находится.Станем искать силу Ампера, действующую на проводник с током I2. Выделим в проводнике (2) маленький элемент dx (рис.1), который находится на расстоянии x от первого проводника. Магнитное поле, которое создает проводник 1 (магнитное поле бесконечного прямолинейного проводника с током) в точке нахождения элементаdxпо теореме о циркуляции можно найти как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

Вектор магнитной индукции в точке нахождения элемента dx направлен перпендикулярно плоскости рисунка, следовательно, модуль элементарной силы Ампера, действующий на него можно представить как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

где ток, который течет в элементе проводника dx, выразим как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

Тогда выражение для dFA, учитывая (2.2) и (2.4) запишем как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

где из рис.1 видно, что $a \leq x \leq a+b$, по условию задачи силу следует найти на единицу длины, значит $0 \leq l \leq 1$ . Для нахождения суммарной силы Ампера, действующей на проводник (2) возьмем двойной интеграл от выражения (2. {a+b} \frac{\mu_{0} I_{1}}{2 \pi x} \cdot \frac{I_{2}}{b} d x=\frac{\mu_{0} I_{1}}{2 \pi} \cdot \frac{I_{2}}{b} \ln \left|\frac{a+b}{a}\right|$$

Проводники действуют друг на друга с силами равными по модулю и так как токи направлены одинаково, то они притягиваются.

Ответ. $F_{A}=\frac{\mu_{0} I_{1}}{2 \pi} \cdot \frac{I_{2}}{b} \ln \left|\frac{a+b}{a}\right|$

Читать дальше: Формула силы выталкивания.

Формула силы Ампера в физике

Содержание:

Определение и формула силы Ампера

Определение

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Ее обозначения: $\bar{F}, \bar{F}_A$ . Сила Ампера векторная величина. Ее направление определяет правило левой руки: следует расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее. Вытянутые четыре пальца указывали направление силы тока. В таком случае отогнутый на большой палец укажет направление силы Ампера (рис.

1).

Закон Ампера

Элементарная сила Ампера ($d\bar{F}_A$) определена законом (или формулой) Ампера:

$$d \bar{F}_{A}=I d \bar{l} \times \bar{B}(1)$$

где I – сила тока, $d \bar{l}$ – малый элемент длины проводника – это вектор, равный по модулю длине проводника, направленный в таком же направлении как вектор плотности тока, $\bar{B}$ – индукция магнитного поля, в которое помещен проводник с током.

Иначе эту формулу для силы Ампера записывают как:

$$d \bar{F}_{A}=\bar{j} \times \bar{B} d V(2)$$

где $\bar{j}$ – вектор плотности тока, dV – элемент объема проводника.

Модуль силы Ампера находят в соответствии с выражением:

$$d F=I \cdot B \cdot d l \cdot \sin \alpha(3)$$

где $\alpha$ – угол между векторами магнитной индукции и направление течения тока. Из выражения (3) очевидно, что сила Ампера максимальна в случае перпендикулярности линий магнитной индукции поля по отношению к проводнику с током.

Силы, действующие на проводники с током в магнитном поле

Из закона Ампера следует, что на проводник с током, равным I, действует сила равная:

$$\bar{F}_{A}=I \int_{l} d \bar{l} \times \bar{B}(4)$$

где $\bar{B}$ магнитная индукция, рассматриваемая в пределах малого кусочка проводника dl. {7}$ Гн/м(или Н/А2 ) – магнитная постоянная. Проводники с токами одного направления притягиваются. Если направления токов в проводниках различны, то они отталкиваются. Для рассмотренных выше параллельных проводников бесконечной длины сила Амперана единицу длины может быть вычислена по формуле:

$$\frac{F}{l}=\frac{\mu_{0}}{2 \pi} \frac{I_{1} I_{2}}{d}$$

Формулу (6) в системе СИ применяют для получения количественного значения магнитной постоянной.

Единицы измерения силы Ампера

Основной единицей измерения силы Ампер (как и любой другой силы) в системе СИ является: [FA]=H

В СГС: [F

A]=дин

Примеры решения задач

Пример

Задание. Прямой проводник длины l с током I находится в однородном магнитном поле B. На проводник действует сила F. Каков угол между направлением течения тока и вектором магнитной индукции?

Решение. На проводник с током, находящийся в магнитном поле действует сила Ампера, модуль которой для прямолинейного проводника с током расположенном в однородном поле можно представить как:

$$F=F_{A}=I B \operatorname{lsin} \alpha$$

где $\alpha$ – искомый угол. Следовательно:

$$\alpha=\arcsin \left(\frac{F}{I B l}\right)$$

Ответ. $\alpha=\arcsin \left(\frac{F}{I B l}\right)$

Слишком сложно?

Формула силы Ампера не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Два тонких, длинных проводника с токами лежат в одной плоскости на расстоянии d друг от друга. Ширина правого проводника равна a. По проводникам текут токи I1 и I2 (рис.1). Какова, сила Ампера, действующая на проводники в расчете на единицу длины?

Решение. За основу решения задачи примем формулу элементарной силы Ампера:

$$d \bar{F}_{A}=I d \bar{l} \times \bar{B}(2.1)$$

Будем считать, что проводник с током I1 создает магнитное поле, а другой проводник в нем находится.Станем искать силу Ампера, действующую на проводник с током I2. Выделим в проводнике (2) маленький элемент dx (рис.1), который находится на расстоянии x от первого проводника. Магнитное поле, которое создает проводник 1 (магнитное поле бесконечного прямолинейного проводника с током) в точке нахождения элементаdxпо теореме о циркуляции можно найти как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

Вектор магнитной индукции в точке нахождения элемента dx направлен перпендикулярно плоскости рисунка, следовательно, модуль элементарной силы Ампера, действующий на него можно представить как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

где ток, который течет в элементе проводника dx, выразим как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

Тогда выражение для dFA, учитывая (2.2) и (2.4) запишем как:

$$B \cdot 2 \pi x=\mu_{0} I_{1} \rightarrow B=\frac{\mu_{0} I_{1}}{2 \pi x}$$

где из рис.1 видно, что $a \leq x \leq a+b$, по условию задачи силу следует найти на единицу длины, значит $0 \leq l \leq 1$ . Для нахождения суммарной силы Ампера, действующей на проводник (2) возьмем двойной интеграл от выражения (2. {a+b} \frac{\mu_{0} I_{1}}{2 \pi x} \cdot \frac{I_{2}}{b} d x=\frac{\mu_{0} I_{1}}{2 \pi} \cdot \frac{I_{2}}{b} \ln \left|\frac{a+b}{a}\right|$$

Проводники действуют друг на друга с силами равными по модулю и так как токи направлены одинаково, то они притягиваются.

Ответ. $F_{A}=\frac{\mu_{0} I_{1}}{2 \pi} \cdot \frac{I_{2}}{b} \ln \left|\frac{a+b}{a}\right|$

Читать дальше: Формула силы выталкивания.

Тест с ответами Сила Ампера (Укажите формулу силы, действующей на проводник ...)

Рубрика: Физика

(правильные ответы отмечены плюсом)

1. Укажите формулу силы, действующей на проводник с током со стороны магнитного поля:
а) F = B * I * L * sin a +
б) F = B / I * L * sin a
в) B = F * I * L * sin a

2. На проводник с током 5 А со стороны однородного магнитного поля действует сила 0,15 Н. Определите длину проводника, если он расположен под углом 300к силовым линиям поля с индукцией 0,02 Тл:
а) 5 м
б) 3 м +
в) 1 м

3. На линейный проводник с током 2 А, расположенный в однородном магнитном поле с индукцией 0,1 Тл перпендикулярно силовым линиям поля, действует сила 0,1 Н. Определить длину проводника:
а) 1,5
б) 2,5
в) 0,5 +

4. Горизонтальный проводник длиной 0,5 м и массой 0,02 кг, по которому течет ток силой 10 А, неподвижно висит в магнитном поле. Чему равна минимальная величина индукции магнитного поля:
а) 0,04 Н +
б) 0,4 Н
в) 4 Н

5. На изолированный проводник с током действует со стороны однородного магнитного поля сила Ампера, равная 6 Н. Какая по модулю сила будет действовать на проводник со стороны поля, если его сложить пополам, не отключая от источника тока? Подводящие ток провода находятся вне поля:
а) 1
б) 3
в) 0 +

6. Два связанных вместе изолированных проводника длиной по 10 см расположены перпендикулярно силовым линиям магнитного поля с индукцией 0,2 Тл. Найти модуль равнодействующей сил Ампера, если в проводниках токи 7 А и 9 А текут навстречу друг другу:
а) 0,4
б) 0,04 +
в) 4

7. С какой силой взаимодействуют два параллельных провода с токами силой 300 А, если длина проводов 50 м и каждый из них создает в месте расположения другого провода магнитное поле с индукцией 1,2 мТл:
а) 8
б) 16
в) 18 +

8. Определите работу (в мДж), совершаемую силой Ампера при перемещении проводника длиной 0,2 м с током силой 5 А в однородном магнитном поле на расстояние 0,5 м. Проводник расположен перпендикулярно линиям поля и движется в направлении силы Ампера. Индукция магнитного поля 0,1 Тл:
а) 50 +
б) 5
в) 500

9. Прямой проводник длиной 20 см и массой 50 г подвешен горизонтально на двух легких нитях в однородном магнитном поле, вектор индукции которого направлен горизонтально и перпендикулярно к проводнику. Ка-кой ток надо пропустить через проводник, чтобы одна из нитей разорвалась? Индукция поля 50 мТл. Каждая нить разрывается при нагрузке 0,4 Н. g=10 м/с2:
а) 0,3
б) 3
в) 30 +

10. Проводник массой 10 г и длиной 20 см подвешен в горизонтальном положении в вертикальном магнитном поле с индукцией 0,25 Тл. На какой угол (в градусах) от вертикали отклонятся нити, на которых подвешен проводник, если по нему пропустить ток силой 2 А? Массой нитей пренебречь. g=10 м/с2:
а) 15
б) 45 +
в) 30

11. На прямолинейный проводник с площадью сечения 0,2 см2 в однородном магнитном поле с индукцией 0,1 Тл действует максимально возможная для поля сила Ампера, численно равная силе тяжести. Найти плотность материала проводника, если сила тока равна 5 А:
а) 2500 +
б) 250
в) 25000

12. Найти модуль равнодействующей сил,действующей на проводник в форме квадрата площадью 100 см2 со стороны однородного магнитного поля с индукцией 1 Тл, если все стороны квадрата перпендикулярны силовым линиям, а сила тока в проводнике равна 10 А
а) 2
б) 0 +
в) 5

13. Две магнитные стрелки подвешены на нитях на небольшом расстоянии одна от другой. Выберите правильное утверждение:
а) магнитная стрелка представляет собой маленький магнит +
б) силовые линии магнитного поля незамкнуты
в) северный полюс одной стрелки притягивается к северному полюсу другой

14. Почему магнитная стрелка поворачивается вблизи проводника с током:
а) на нее действуют магнитные и электрические поля
б) на нее действует сила притяжения
в) на нее действует магнитное поле +

15. На какой частоте должен работать радиопередатчик, чтобы длина излучения им электромагнитных волн была равна 49 м:
а) 6 МГц +
б) 16 МГц
в) 66 МГц

16. Определите магнитную индукцию поля, в котором на рамку с током 5 А действует момент сил 0,02 Нм. Длина рамки 20 см, ширина 10 см:
а) 3 Тл
б) 0,25 Тл +
в) 25 Тл

17. Небольшой полосовой магнит подвесили за привязанную к его середине нить. Выберите правильное утверждение:
а) силовые линии магнитного поля Земли замкнуты
б) железные предметы притягиваются к полюсам магнита слабее, чем к его середине
в) южный полюс магнита указывает направление на Северный географический полюс Земли +

18. Как определяется направление силы Ампера:
а) по правилу буравчика
б) по правилу левой руки +
в) по правилу правой руки

19. На столе находится электроскоп, шару которого сообщен положительный заряд. Какое поле существует вокруг него? Как его можно обнаружить:
а) в этом случае поле отсутствует
б) магнитное; по действию на железные опилки
в) электрическое; по изменению положения листочков электроскопа при поднесении к его шару наэлектризованного тела +

20. Какой опыт свидетельствует о существовании магнитного поля вокруг проводника с током:
а) опыт Кулона
б) опыт Эрстеда +
в) опыт Иоффе и Милликена

21. Какую линию называют магнитной линией магнитного поля:
а) ту, вдоль которых располагаются в магнитном поле оси магнитных стрелочек +
б) любую линию в магнитном поле, по которой движется к магниту притягиваемое им тело
в) ту, которая видна благодаря железным опилкам

22. Как изменить магнитное поле катушки с током, имея в своем распоряжении железный стержень, диаметр которого чуть меньше диаметра ее отверстия? Как оно изменится при этом:
а) подвесить стержень над катушкой; усилится
б) вставить стержень в катушку; усилится +
в) положить стержень рядом с катушкой; усилится

23. Как взаимодействуют одноименные полюсы магнитов:
а) притягиваются друг к другу
б) они не взаимодействуют
в) отталкиваются друг от друга +

24. Где находится южный магнитный полюс Земли:
а) там, где расположен ее южный географический полюс
б) вблизи северного географического полюса нашей планеты +
в) там, где находится северный географический полюс Земли

25. Закон взаимодействия электрических токов:
а) закон Ома
б) закон Ньютона
в) закон Ампера +

26. Модуль силы Ампера можно найти по формуле:
а) bF = IBdlsinα
б) dF = IBdlsinα +
в) Fd = IBdlsinα

27. Под действием силы Ампера происходит вращение:
а) ротора +
б) статора
в) частиц

28. Для описания закона Ампера в рамках СТО металлический проводник описывают прямой с некоторой линейной плотностью положительных зарядов и прямой с такими зарядами:
а) дополнительными
б) прямыми
в) подвижными +

29. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с:
а) током +
б) магнитом
в) оба варианта верны

30. Сила оказывается линейно зависимой как от тока, так и от:
а) трения
б) магнитной индукции +
в) движения частиц

 

 

 

 

основные формулы, законы и правила

Магнитное поле — это форма материи, окружающей движущиеся электрические заряды. Магнитное поле окружает проводники с током.

Силовой характеристикой магнитного поля является магнитная индукция.

Магнитная индукция

— это величина, равная отношению максимального момента силы, вращающей контур с током в магнитном поле, к силе тока в этом контуре и его площади:

Другое определение магнитной индукции: магнитная индукция — это величина, равная отношению максимальной силы, действующей на проводник с током в магнитном поле, к силе тока в нем и длине этого проводника в магнитном поле:

Магнитная индукция — векторная величина. Вектор магнитной индукции совпадает по направлению с положительной нормалью

к плоскости контура. За

направление положительной нормали п принято направление поступательного движения правого винта (буравчика), когда его головка вращается по току в контуре (рис. 208).

Правым винтом может служить ваша правая рука. Если свернуть четыре пальца правой руки в направлении тока в контуре, то большой палец, отставленный на 90°, покажет направление положительной нормали и вектора магнитной индукции.

Единица магнитной индукции в СИ — тесла (Тл).

Магнитное поле изображают графически с помощью магнитных силовых линий или линий вектора магнитной индукции.

В природе не существует магнитных зарядов, поэтому линии вектора магнитной индукции всегда замкнуты.

Магнитное поле является вихревым, в отличие от потенциального электростатического поля, линии которого всегда разомкнуты, т. к. начинаются и оканчиваются на электрических зарядах. Линии вектора магнитной индукции охватывают проводники с током. Линии вектора магнитной индукции поля прямого тока представляют собой концентрические окружности с центром на проводнике с током (рис. 209). Их направление можно определить с помощью правого винта (или с помощью вашей правой руки: если большой палец правой руки направить по направлению тока в проводнике, то четыре загнутых пальца покажут направление линии магнитной индукции). По мере удаления от проводника с током индукция магнитного поля этого тока уменьшается.

Магнитное поле, в каждой точке которого вектор магнитной индукции одинаков, называется однородным. Линии магнитной индукции однородного поля представляют собой прямые, расположенные на одинаковом расстоянии друг от друга. Чем гуще они располагаются, тем больше магнитная индукция.

Примером однородного магнитного поля является магнитное поле внутри длинного соленоида — катушки с током (рис. 210).

Линии магнитной индукции выходят из северного полюса N и входят в его южный полюс S.

Магнитное поле полосового магнита (рис. 211) наибольшее на его полюсах, а в центре его магнитная индукция равна нулю.

Если в однородное поле внести контур с током, расположив его плоскость параллельно линиям магнитной индукции, то на стороны контура, перпендикулярным линиям магнитной индукции, будет действовать пара сил Ампера, которая создаст максимальный вращающий момент сил

, равный произведению индукции магнитного поля, силы тока в ней и ее площади:

Если плоскость контура расположена под углом к линиям вектора индукции однородного магнитного поля, то момент сил определяет формула

Здесь

— угол между вектором индукции магнитного поля и нормалью к плоскости рамки.

Момент сил, вращающих контур с током в однородном магнитном поле, равен произведению индукции этого поля, силы тока в контуре, площади контура и синуса угла между векторами магнитной индукции и нормали к плоскости контура.

Если плоскость контура перпендикулярна линиям вектора магнитной индукции, то вращающий момент сил равен 0, а силы Ампера действуют в плоскости контура, деформируя его.

Направление силы Ампера можно определить по правилу левой руки: если ладонь левой руки расположить так, чтобы магнитные линии входили в ладонь, а четыре вытянутых пальца направить по току в проводнике, то большой палец, отставленный на 90 , покажет направление силы Ампера, действующей на этот проводник в данном магнитном поле (рис. 212).

Если проводник с током расположить параллельно магнитным линиям, то сила Ампера на него действовать не будет.

Сила Ампера

Величину силы Ампера определяет закон Ампера: сила F, действующая на проводник с током в однородном магнитном поле, равна произведению магнитной индукции этого поля В, силы тока в проводнике I, длины проводника в магнитном поле I и синуса угла а между направлением магнитного поля и направлением тока в проводнике:

Сила, с которой магнитное поле действует на движущийся в нем заряд, называется силой Лоренца.

Сила Лоренца

Сила Лоренца

действующая на заряд q, движущийся в однородном магнитном поле, равна произведению индукции этого поля В на заряд, на скорость его движения v и на синус угла между направлением магнитного поля и направлением движения заряда

Определить направление силы Лоренца можно тоже по правилу левой руки: если ладонь левой руки расположить так, чтобы магнитные линии входили в нее, а четыре вытянутых пальца направить по направлению движения положительного заряда (или против направления движения отрицательного заряда), то большой палец, отставленный на 90″, покажет направление силы Лоренца.

Заряженная частица, влетевшая в однородное магнитное поле перпендикулярно его магнитным линиям, движется равномерно по окружности, охватывающей магнитные линии.

При этом сила Лоренца направлена по радиусу к центру окружности.

На рис. 213 положительно заряженная частица с зарядом q, влетевшая в направлении, показанном вектором v в однородное магнитное поле индукцией В, направленном за чертеж, движется вокруг магнитных линий против часовой стрелки.

Если заряженная частица влетает в магнитное поле под углом к магнитным линиям, то она станет двигаться по винтовой линии (рис. 214), вращаясь по окружности с линейной скоростью, равной нормальной составляющей

вектора скорости usin а, и одновременно перемещаясь

равномерно вдоль линий вектора индукции магнитного поля с тангенциальной составляющей vcos а вектора скорости

.

Расстояние х, которое она пролетит вдоль магнитной линии за один оборот, называется шагом винта. Поскольку вдоль магнитной линии частица движется с постоянной скоростью и, то шаг винта равен

Здесь Т — период, т.е. время одного оборота частицы вокруг магнитных линий.

Сила Лоренца всегда перпендикулярна вектору скорости и, следовательно, вектору перемещения заряда, поэтому она работы перемещения заряда в магнитном поле не совершает, вследствие чего кинетическая энергия заряда, движущегося в магнитном поле под действием силы Лоренца, не изменяется.

Если заряженная частица движется одновременно в электрическом и магнитном полях (т. е. в электромагнитном поле), то на нее действует обобщенная сила Лоренца, равная векторной сумме силы Лоренца, действующей на нее со стороны магнитного поля, и силы Кулона, действующей со стороны электрического поля.

Пусть в однородном магнитном поле индукцией находится некоторая площадка S (рис. 215).

Магнитный поток Ф, создаваемый однородным магнитным полем сквозь некоторую площадку, равен произведению индукции этого магнитного поля В на величину площадки S и на косинус угла а между вектором магнитной индукции и нормалью

к площадке.

Если площадка S расположена перпендикулярно магнитным линиям однородного поля, то магнитный поток, пересекающий ее, максимален:

Если площадка S расположена параллельно магнитным линиям, то они ее не пересекают, поэтому магнитный поток через площадку в этом случае равен нулю.

Магнитный поток

Магнитный поток — скалярная алгебраическая величина, т. е. он может быть положителен и отрицателен, поскольку косинус угла может быть больше и меньше нуля.

Если магнитный поток пересекает замкнутую поверхность (представьте ее в виде надутого воздушного шарика), то, поскольку все магнитные линии непрерывны и замыкаются сами на себя, число входящих в эту поверхность магнитных линий, создающих отрицательный поток, будет равно числу выходящих магнитных линий, создающих численно такой же по модулю, но положительный поток. Поэтому полный поток вектора магнитной индукции сквозь замкнутую поверхность равен нулю. Это важное свойство магнитного поля свидетельствует об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.

Единица магнитного потока в СИ — вебер (Вб).

Когда магнитный поток сквозь площадь, ограниченную проводящим контуром, изменяется, в этом контуре возникает индукционный ток.

Правило Ленца: индукционный ток всегда направлен так, что своим магнитным полем он противодействует изменению магнитного потока, вызвавшего этот ток.

Обратимся к рис. 216, а). Когда магнитный поток сквозь контур, создаваемый внешним по отношению к контуру магнитным полем индукцией

, нарастает , индукционный ток в контуре направлен так, что его магнитное поле индукцией (на рис. 216, а) оно изображено штриховыми стрелками), антинаправлено внешнему магнитному полю, противодействуя увеличению магнитного потока. Отметим, что направление тока связано с направлением своего магнитного поля правилом правого винта — буравчика. Когда же магнитный поток, создаваемый внешним магнитным полем индукцией убывает (рис. 216, б), индукционный ток в контуре изменяет свое направление на противоположное и при этом его магнитное поле оказывается сонаправленным с внешним полем . Теперь магнитное поле индукционного тока противодействует убыли магнитного потока, создаваемого внешним магнитным полем сквозь контур, поддерживая его.

Явление возникновения индукционного тока в контуре при изменении магнитного потока, пересекающего этот контур, называется электромагнитной индукцией. По закону Ома сила индукционного тока

прямо пропорциональна ЭДС индукции и обратно пропорциональна сопротивлению контура В:

Закон Фарадея

Закон Фарадея для электромагнитной индукции: ЭДС электромагнитной индукции, возникающая в контуре при всяком изменении магнитного потока, пересекающего этот контур, равна скорости изменения магнитного потока, взятой со знаком минус,

Здесь

— ЭДС индукции в контуре, — скорость изменения магнитного потока, пересекающего контур, N — число витков в контуре (безразмерное).

Эта формула справедлива, когда магнитный поток изменяется монотонно, т.е. когда за равные промежутки времени

он изменяется на одинаковую величину и ЭДС индукции постоянна. Если же магнитный поток изменяется произвольно, то увеличиваясь, то уменьшаясь, что бывает при вращении контура в магнитном поле, то пользоваться этой формулой для определения мгновенного значения ЭДС индукции нельзя, по ней можно определить только среднее значение ЭДС индукции.

При произвольном изменении магнитного потока сквозь контур ЭДС индукции равна первой производной магнитного потока по времени, взятой со знаком минус:

Здесь

— первая производная магнитного потока по времени.

Знак минус в этих формулах объясняется правилом Ленца.

Если контур, пересекаемый переменным магнитным потоком, содержит не один, а N витков, то ЭДС индукции в нем будет в N раз больше, чем в одном витке. При этом предыдущие формулы примут вид:

ЭДС индукции, возникающая в проводнике, движущемся поступательно в однородном магнитном поле под углом к магнитным линиям, равна произведению индукции этого поля на скорость проводника, на его длину в этом поле и на синус угла между вектором индукции магнитного и вектором скорости проводника:

ЭДС индукции

, возникающая в контуре, вращающемся равномерно в однородном магнитном поле, равна произведению угловой скорости контура на индукцию В магнитного поля, на площадь контура S и на синус угла а между вектором магнитной индукции и нормалью к плоскости контура:

В случае, когда плоскость контура параллельна магнитным линиям, угол

. Тогда ЭДС индукции в контуре будет максимальна.

Если контур содержит N витков, то ЭДС индукции в нем в N раз больше, чем в одном витке:

Явление возникновения ЭДС индукции и индукционного тока в контуре вследствие изменения тока, текущего в этом контуре, называется явлением самоиндукции.

Магнитный поток Ф сквозь катушку (или контур любой иной формы) прямо пропорционален силе тока в ней, т.е. между этими величинами существует прямо пропорциональная зависимость:

Здесь L — коэффициент пропорциональности между током и связанным с ним магнитным потоком. Он называется коэффициентом самоиндукции контура или его индуктивностью. Величина индуктивности зависит от формы и размеров самого контура, а также от магнитных свойств среды, и постоянна для данного контура. Индуктивность контура — скалярная положительная величина. Она не зависит от наличия или отсутствия тока в нем. Индуктивность катушек заводского изготовления указывается в их паспорте.

Единица индуктивности в СИ — генри (Гн).

ЭДС самоиндукции

, возникающая в контуре при изменении тока в нем, прямо пропорциональна скорости изменения силы тока в контуре, взятой со знаком «минус»:

Здесь

—скорость изменения силы тока, т.е. изменение силы тока за единицу времени.

Если ток в контуре изменяется произвольно, то пользоваться этой формулой для определения мгновенной ЭДС самоиндукции нельзя, по ней можно определить лишь среднее значение ЭДС самоиндукции за время

. Для определения мгновенного значения ЭДС самоиндукции в этом случае надо пользоваться формулой

Мгновенная ЭДС самоиндукции прямо пропорциональна первой производной силы тока по времени, взятой со знаком «минус».

Магнитное поле, как и всякое силовое поле, обладает энергией.

Энергия магнитного поля катушки с током соленоида равна половине произведения индуктивности этого соленоида на квадрат силы тока в нем:

Поскольку магнитное поле размыто по пространству, то, чтобы охарактеризовать его энергетические свойства, вводят величину, равную энергии магнитного поля в единице объема пространства, занятого этим полем. Эта величина называется объемной плотностью энергии магнитного поля

.

Объемная плотность энергии магнитного поля

равна отношению энергии магнитного поля к объему V пространства, занятого им:

Объемная плотность энергии магнитного поля прямо пропорциональна квадрату магнитной индукции этого поля и обратно пропорциональна относительной магнитной проницаемости окружающей среды:

Эта теория со страницы подробного решения задач по физике, там расположена теория и подробное решения задач по всем темам физики:

Задачи по физике с решением

Возможно вам будут полезны эти страницы:

определение, основные формулы, правило левой и правой руки

Часто бывает, что задачу не удается решить из-за того, что под рукой нет нужной формулы. Выводить формулу с  самого начала – дело не самое быстрое, а у нас на счету каждая минута.

Ниже мы собрали вместе основные формулы по теме «Электричество и Магнетизм». Теперь, решая задачи, вы сможете пользоваться этим материалом как справочником, чтобы не терять время на поиски нужной информации.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Магнетизм: определение

Магнетизм – это взаимодействие движущихся электрических зарядов, происходящее посредством магнитного поля.

Поле – особая форма материи. В рамках стандартной модели существует электрическое, магнитное, электромагнитные поля, поле ядерных сил, гравитационное поле и поле Хиггса. Возможно, есть и другие гипотетические поля, о которых мы пока что можем только догадываться или не догадываться вовсе. Сегодня нас интересует магнитное поле.

Магнитная индукция

Так же, как заряженные тела создают вокруг себя электрическое поле, движущиеся заряженные тела порождают магнитное поле. Магнитное поле не только создается движущимися зарядами (электрическим током), но еще и действует на них. По сути магнитное поле можно обнаружить только по действию на движущиеся заряды. А действует оно на них с силой, называемой силой Ампера, о которой речь пойдет позже.

Изображение магнитного поля при помощи силовых линий

Прежде чем мы начнем приводить конкретные формулы, нужно рассказать про магнитную индукцию.

Магнитная индукция – это силовая векторная характеристика магнитного поля.

Она обозначается буквой B и измеряется в Тесла (Тл). По аналогии с напряженностью для электрического поля Е магнитная индукция показывает, с какой силой магнитное поле действует на заряд.

Кстати, вы найдете много интересных фактов на эту тему в нашей статье про теорию магнитного поля и интересные факты о магнитном поле Земли.

Как определять направление вектора магнитной индукции? Здесь нас интересует практическая сторона вопроса. Самый частый случай в задачах – это магнитное поле, создаваемое проводником с током, который может быть либо прямым, либо в форме окружности или витка.

Для определения направления вектора магнитной индукции существует правило правой руки. Приготовьтесь задействовать абстрактное и пространственное мышление!

Если взять проводник в правую руку так, что большой палец будет указывать на направление тока, то загнутые вокруг проводника пальцы покажут направление силовых линий магнитного поля вокруг проводника. Вектор магнитной индукции в каждой точке будет направлен по касательной к силовым линиям.

Сила Ампера

Представим, что есть магнитное поле с индукцией B. Если мы поместим в него проводник длиной l, по которому течет ток силой I, то поле будет действовать на проводник с силой:

Это и есть сила Ампера. Угол альфа – угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяется по правилу левой руки: если расположить левую руку так, чтобы в ладонь входили линии магнитной индукции, а вытянутые пальцы указывали бы направление тока, отставленный большой палец укажет направление силы Ампера.

Сила Лоренца

Мы выяснили, что поле действует на проводник с током. Но если это так, то изначально оно действует отдельно на каждый движущийся заряд. Сила, с которой магнитное поле действует на движущийся в нем электрический заряд, называется силой Лоренца. Здесь важно отметить слово «движущийся», так на неподвижные заряды магнитное поле не действует.

Итак, частица с зарядом q движется в магнитном поле с индукцией В со скоростью v, а альфа – это угол между вектором скорости частицы и вектором магнитной индукции. Тогда сила, которая действует на частицу:

Как определить направление силы Лоренца? По правилу левой руки. Если вектор индукции входит в ладонь, а пальцы указывают на направление скорости, то отогнутый большой палец покажет направление силы Лоренца. Отметим, что так направление определяется для положительно заряженных частиц. Для отрицательных зарядов полученное направление нужно поменять на противоположное.

Если частица массы m влетает в поле перпендикулярно линиям индукции, то она будет двигаться по окружности, а сила Лоренца будет играть роль центростремительной силы. Радиус окружности и период обращения частицы в однородном магнитном поле можно найти по формулам:

Взаимодействие токов

Рассмотрим два случая. Первый – ток течет по прямому проводу. Второй – по круговому витку. Как мы знаем, ток создает магнитное поле.

В первом случае магнитная индукция провода с током I на расстоянии R от него считается по формуле:

Мю – магнитная проницаемость вещества, мю с индексом ноль – магнитная постоянная.

Во втором случае магнитная индукция в центре кругового витка с током равна:

Также при решении задач может пригодиться формула для магнитного поля внутри соленоида. Соленоид – это катушка, то есть множество круговых витков с током.

Пусть их количество – N, а длина самого соленоилда – l. Тогда поле внутри соленоида вычисляется по формуле:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Магнитный поток и ЭДС

Если магнитная индукция – векторная характеристика магнитного поля, то магнитный поток – скалярная величина, которая также является одной из самых важных характеристик поля. Представим, что у нас есть какая-то рамка или контур, имеющий определенную площадь. Магнитный поток показывает, какое количество силовых линий проходит через единицу площади, то есть характеризует интенсивность поля. Измеряется в Веберах (Вб) и обозначается Ф.

S – площадь контура, альфа – угол между нормалью (перпендикуляром) к плоскости контура и вектором В.

При изменении магнитного потока через контур в контуре индуцируется ЭДС, равная скорости изменения магнитного потока через контур. Кстати, подробнее о том, что такое электродвижущая сила, вы можете почитать в еще одной нашей статье.

По сути формула выше – это формула для закона электромагнитной индукции Фарадея. Напоминаем, что скорость изменения какой-либо величины есть не что иное, как ее производная по времени.

Для магнитного потока и ЭДС индукции также справедливо обратное. Изменение тока в контуре приводит к изменению магнитного поля и, соответственно, к изменению магнитного потока. При этом возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре. Магнитный поток, который пронизывает контур с током, называется собственным магнитным потоком, пропорционален силе тока в контуре и вычисляется по формуле:

L – коэффициент пропорциональности, называемый индуктивностью, который измеряется в Генри (Гн). На индуктивность влияют форма контура и свойства среды. Для катушки с длиной l и с числом витков N индуктивность рассчитывается по формуле:

Формула для ЭДС самоиндукции:

Энергия магнитного поля

Электроэнергия, ядерная энергия, кинетическая энергия. Магнитная энергия – одна из форм энергии. В физических задачах чаще всего нужно рассчитывать энергию магнитного поля катушки. Магнитная энергия катушки с током I и индуктивностью L равна:

Объемная плотность энергии поля:

Конечно, это не все основные формулы раздела физики «электричество и магнетизм», однако они часто могут помочь при решении стандартных задач и расчетах. Если же вам попалась задача со звездочкой, и вы никак не можете подобрать к ней ключ, упростите себе жизнь и обратитесь за решением в сервис студенческой помощи.

Сила Ампера

Самые простые задачи на определение силы, индукции поля, длины проводника или угла, под которым этот проводник расположен. Направление силы определяем по правилу ЛЕВОЙ руки: если расположить руку так, чтобы магнитные линии втыкались в ладонь, а четыре пальца направить по току, то отведенный большой палец укажет направление действия силы.

Задача 1. Прямолинейный проводник длиной м находится в однородном магнитном поле с индукцией Тл. Сила тока в проводнике А. Проводник перпендикулярен магнитной индукции (рис.). Найти модуль и направление силы, действующей на проводник.

К задаче 1

Со стороны поля на проводник с током действует сила Ампера:

   

У нас проводник перпендикулярен линиям индукции, поэтому

   

Определяем направление. Левую руку расположим так, чтобы линии индукции втыкались в ладонь, то есть ладошкой вниз. Четыре вытянутых пальца направим вдоль тока – то есть влево. Тогда большой палец укажет направление действия силы – за плоскость рисунка, от нас.

Ответ: Н, от нас за плоскость рисунка.

Задача 2. Прямолинейный проводник длиной м находится в однородном магнитном поле (рис. ). На проводник со стороны поля действует сила Н. Сила тока в проводнике А. Найти модуль и направление индукции магнитного поля, если она перпендикулярна проводнику.

К задаче 2

Со стороны поля на проводник с током действует сила Ампера:

   

У нас проводник перпендикулярен линиям индукции, поэтому

   

Для определения направления левую руку расположим пальцами вниз – они указывают направление тока, большим пальцем вправо – он указывает направление действия силы. Тогда ладонь окажется развернутой к нам – в раскрытую ладонь должны втыкаться линии магнитной индукции, следовательно, они направлены от нас за плоскость чертежа.

Ответ: Тл, от нас за плоскость чертежа.
Задача 3. На прямой проводник длиной м, расположенный под углом к силовым линиям поля с индукцией Тл, действует сила Н. Найти силу тока в проводнике.

Со стороны поля на проводник с током действует сила Ампера:

   

   

Ответ: 30 А.


Задача 4. Прямой провод длиной см находится в однородном магнитном поле с индукцией Тл. Сила тока в проводнике А. Найти угол  между направлением магнитной индукции и направлением тока, если на провод действует сила Н.

Со стороны поля на проводник с током действует сила Ампера:

   

   

Синус, равный , имеет угол в .
Ответ: .

 

Задача 5. Проводник находится в равновесии в горизонтальном магнитном поле с индукцией мТл. Сила тока в проводнике А. Угол между направлением тока и вектором магнитной индукции  . Определить длину проводника, если его масса  кг.

Так как поле горизонтально, а проводник в нем «висит», то очевидно, что сила Ампера уравновесила силу тяжести:

   

   

Откуда

   

Ответ: 25,8 см.

Задача 6. Проводник длиной м расположен перпендикулярно силовым линиям горизонтального магнитного поля с индукцией мТл. Какой должна быть сила тока в проводнике, чтобы он находился в равновесии в магнитном поле? Масса проводника кг.

Аналогично предыдущей задаче,

   

   

Откуда

   

Ответ: 10 А.

Понимание основ закона силы Ампера

Закон силы Ампера был открыт Андре-Мари Ампера (которая легла в основу определения единицы электричества, Ампера). Не вдаваясь в утомительные математические уравнения, мы собираемся понять, что такое закон, как был определен Ампер и как этот закон изменения пути изменил физику в то время.

Закон Ампера о силе гласит, что сила притяжения или отталкивания между двумя проводами, по которым проходит ток, пропорциональна их длине и силе тока, проходящего через них.Если токи текут в одном направлении, происходит отталкивание. Если токи текут в противоположных направлениях, происходит притяжение. Закон основан на этих двух основных понятиях электростатики:

  • Закон Био-Савара гласит, что каждый токоведущий провод создает вокруг себя магнитное поле, как показано на Рис. 1 .
  • Сила Лоренца относится к силе, которую каждое магнитное поле оказывает на любой электрический заряд, движущийся в его поле.

Рисунок 1: Правило большого пальца для поиска магнитного поля вокруг токоведущего провода

На основании закона Био-Савара и силы Лоренца существует связь между магнитным полем и электрическим зарядом / током.Именно эту связь Ампер пытался установить с помощью экспериментов. Самый простой из этих экспериментов заключался в изучении силы между двумя токоведущими проводами, как показано на Рисунок 2 . Этот эксперимент и последующие теории, объясняющие его результаты, заложили основу электромагнетизма как области физики.

Рисунок 2: Магнитное поле между токоведущими проводами

Ампер, единица измерения электрического тока в системе СИ, определяется как сила электромагнитного поля на единицу длины между двумя проводами бесконечной длины, имеющими незначительный диаметр и расположенными на расстоянии 1 м друг от друга в вакууме. Основное предположение здесь заключается в том, что провода находятся в свободном пространстве, то есть в нем нет вещества, которое можно было бы намагнитить. Если какая-либо материя, присутствующая в окружающей среде, намагничивается, она проявляет свою собственную магнитную силу, которую необходимо принимать во внимание, поэтому следует сделать это предположение.

Используя закон силы Ампера, можно рассчитать магнитное поле вокруг бесконечного провода, бесконечного листа, тороида, соленоида или любой другой правильной формы, как показано на рисунках и рисунках 3 и 4 ниже.

Рисунок 3: Магнитное поле вокруг соленоида Рисунок 4: Магнитное поле вокруг тороида

Закон силы Ампера оказался настолько фундаментальным законом, что после него многие физики, такие как Джеймс Клерк Максвелл, Вильгельм Вебер, Бернард Риман и т. Д.расширил его, чтобы найти базовое определение самой силы. Возвращаясь к работе Ампера, Закон силы утверждает, что сила между токоведущими проводами пропорциональна их длине и силе протекающего тока. 3} $$ и формула для силы Лоренца $$ d \ vec {F} _2 = I_2 \ cdot d \ vec {r} _2 \ times \ vec {B} (\ vec {r} _2) $$ где $ \ vec {r} _2 $ - точка на втором проводе, а $ d \ vec {r} _2 $ - соответствующий элемент пути.Интеграл по путям по второму проводу дает вашу формулу.

Закон Био-Савара

Из $ \ def \ div {\ operatorname {div}} \ def \ rot {\ operatorname {rot}} \ def \ grad {\ operatorname {grad}} \ div (\ vec {B}) = 0 $ следует существование некоторого векторного потенциала $ \ vec {A} $ с $ \ vec {B} = \ rot \ vec {A} $. Подставляя это в закон Ампера (для устойчивого состояния)

$ \ rot (\ vec {H}) = \ vec {S} $

$ \ rot (\ vec {B}) = \ mu_0 \ vec {S} $

дает

$ \ rot (\ rot \ vec {A}) = \ mu_0 \ vec {S} $

По формуле $ \ rot \ rot \ vec {A} = \ vec {\ nabla} \ times (\ vec {\ nabla} \ times \ vec {A}) = \ vec {\ nabla} (\ vec {\ набла} \ cdot \ vec {A}) - (\ vec {\ nabla} \ cdot \ vec {\ nabla}) \ vec {A} = \ grad \ div \ vec {A} - \ Delta \ vec {A} $ и калибровочного условия Кулона $ \ div \ vec {A} = 0 $ получаем

$ \ Delta \ vec {A} = - \ mu_0 \ vec {S} $

Для задачи о свободном пространстве это уравнение может быть решено с помощью функции Грина лапласиана

$$ \ vec {A} (\ vec {r}) = - \ frac {\ mu_0} {4 \ pi} \ int _ {\ vec {r} _1 \ mathbb {R} ^ 3} \ frac {\ vec {S} (\ vec {r_1})} {| \ vec {r} _1- \ vec {r} |} d V_1 $$ Используя $ \ vec {B} = \ rot \ vec {A} $, получаем плотность потока

$ \ Displaystyle \ vec {B} (\ vec {r}) = - \ frac {\ mu_0} {4 \ pi} \ int _ {\ vec {r} _1 \ mathbb {R} ^ 3} \ rot _ {\ vec {r} } \ left (\ frac {\ vec {S} (\ vec {r_1})} {| \ vec {r} _1- \ vec {r} |} \ right) d V_1 $

$ \ Displaystyle \ phantom {\ vec {B} (\ vec {r})} = - \ frac {\ mu_0} {4 \ pi} \ int _ {\ vec {r} _1 \ mathbb {R} ^ 3} \ grad _ {\ vec {r}} \ left (\ frac {1} {| \ vec {r} _1- \ vec {r} |} \ right) \ times \ vec {S} (\ vec {r_1}) d V_1 $

$ \ Displaystyle \ phantom {\ vec {B} (\ vec {r})} = \ frac {\ mu_0} {4 \ pi} \ int _ {\ vec {r} _1 \ mathbb {R} ^ 3} \ frac {(\ vec {r} - \ vec {r} _1) \ times \ vec {S} (\ vec {r_1})} {| \ vec {r} - \ vec {r} _1 | ^ 3} d V_1 $

Для интеграла по площади поперечного сечения провода изменениями $ r_1 $ пренебрегают и $ \ int_ {A _ {\ rm cross}} \ vec {S} d V $ устанавливается равным $ I_1 d \ vec { r} _1 $. 3}. $

Электромагнетизм

- Какая польза от этой формулы 1 тесла = 1 ньютон / ампер / метр?

электромагнетизм - Какая польза от этой формулы: 1 тесла = 1 ньютон / ампер / метр? - Обмен физическими стеками
Сеть обмена стеков

Сеть Stack Exchange состоит из 177 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Physics Stack Exchange - это сайт вопросов и ответов для активных исследователей, ученых и студентов-физиков. Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 74k раз

$ \ begingroup $

Хотите улучшить этот вопрос? Добавьте подробности и проясните проблему, отредактировав этот пост.

Закрыт 5 лет назад.

Что означает ньютон / ампер / метр? Из этой формулы: 1 тесла = 1 ньютон / ампер / метр для чего это можно использовать? Сделать что? Ампер / метр Это та же единица, что и напряженность поля H? Или что это?

Редактировать публично: Как можно использовать это уравнение для определения размеров различных переменных?

Создан 18 ноя.

AxtIIAxtII

56733 золотых знака1010 серебряных знаков2020 бронзовых знаков

$ \ endgroup $ 1 $ \ begingroup $

Из Википедии:

Частица, несущая заряд в 1 кулон и проходящая через магнитное поле в 1 тесла со скоростью 1 метр в секунду, перпендикулярно указанному полю, испытывает силу величиной 1 ньютон в соответствии с законом силы Лоренца.

Таким образом, 1 Тесла = 1 Н / (1C. 1 м / с), а один кулон в секунду равен одному амперу, что дает нам 1 Тесла = 1 Н / (1 А. 1 м).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *