Содержание

Назначение и виды заземлений. Сопротивление заземлителя при стационарном токе и токе молнии



из “Заземления в установках высокого напряжения ”

Заземлением какой-либо части электрической установки называется преднамеренное соединение ее с заземляющим устройством с целью сохранения на ней.достаточно низкого потенциала и обеспечения нормальной работы системы или ее элементов в выбранном для них режиме. [c.5]
Различают три вида заземлений рабочее заземление, защитное заземление для безопасности людей и заземление грозозащиты оборудования установки. [c.5]
К рабочему заземлению относится заземление нейтралей силовых трансформаторов и генераторов, глухое или через дугогасящий реактор для гашения дуги замыкания на землю, трансформаторов напряжения, реакторов поперечной компенсации в дальних линиях электропередачи и заземление фазы при использовании земли в качестве рабочего провода.
[c.5]
Защитное заземление выполняется для обеспечения безопасности в первую очередь людей, обслуживающих электрическую установку, путем заземления металлических частей установки, которые нормально не находятся под напряжением, но могут оказаться под напряжением при перекрытии или пробое изоляции. [c.5]
Заземление грозозащиты служит для отвода тока молнии в землю от защитных разрядников и молниеотводов (стержневых или тросовых). [c.5]
Рабочее и защитное заземления должны выполнять свое назначение в течение всего года, тогда как заземление грозозащиты— лишь в грозовой сезон. [c.5]
Для осуществления любого вида заземления требуется заземляющее устройство, состоящее из заземлителя, располагаемого в земле, и заземляющего проводника, соединяющего заземляемый элемент установки с зазем-лителем. [c.5]
Заземлитель может состоять из одного или многих вертикальных и горизонтальных электродов и характеризуется значением сопротивления от поверхности за-землителя до уровня нулевого потенциала, которое окружающая земля оказывает стекающему с него току.
Сопротивление заземлителя определяется отношением потенциала на заземлителе к стекающему с него току. [c.6]
В качестве электродов заземлителя обычно используются как вертикальные стержни, так и горизонтальные полосы, которые могут иметь большую длину. Наиболее просто рассчитывается сопротивление заземлителя полушаро вой формы. Предположим, что такой заземлитель присоединен к баку трансформатора и отводит в землю ток частоты 50 Гц в случае перекрытия или пробоя изоляции (рис. 1-1). [c.6]
При этом пренебрегаем незначительным искажением поля заземлителя из-за ответвления тока в сопротивление тела человека и сопротивление растекания его ступней. [c.7]
В общем случае схема замещения заземлителя некоторой длины I при импульсном токе состоит из распределенных параметров проводимости g, индуктивности L, активного продольного сопротивления г и емкости С относительно земли, т. е. емкости электрода относительно уровня нулевого потенциала [2]. Активное продольное сопротивление электродов обычно много меньше сопротивления заземлителя и потому практически не играет роли. Для наиболее часто встречающихся грунтов с удельным сопротивлением р 2500 Ом-м емкостные токи малы по сравнению с токами проводимости. В этом случае схема замещения заземлителя длиной I при импульсном токе может состоять только из индуктивностей L и проводимостей g на единицу длины рис. 1-2). [c.8]
Для расчета грозозащиты основное значение имеет сопротивление заземлителя в момент времени максимума импульса тока молнии, приближенно принимаемого за длительность фронта импульса Тф. [c.9]
Если гф2 7 , то к интересующему нас моменту времени переходный процесс в заземлителе закончится и заземлитель будет обладать сопротивлением заземления стационарного режима R. Если же, напротив, Тф соизмеримо с Г, то в момент максимума тока импульсное сопротивление заземлителя z R. [c.9]
Заземлитель длиной 1, индуктивность которого не играет существенной роли при данном грунте и длительности фронта импульса, принято называть сосредоточенным, если же индуктивность приводит к увеличению его сопротивления, то протяженным. [c.9]
В грунтах с большим р (2500 Ом-м и более) оказывает влияние и емкость заземлителя С, уменьшающая импульсное сопротивление заземлителя, в особенности при малых Тф. Ошибка в расчете сопротивления заземлителя при импульсном токе из-за того, что не учитывается емкость, составляет около 10% в грунте с удельным сопротивлением р=2500 Ом-м при тф 2 мкс и в грунте с р=5000 Ом-м — при Тф ь 3,5 мкс. [c.9]
Для определения расчетного времени, при котором можно не учитывать емкость заземлителя, выведена формула (8-26). [c.9]
Принято различать стационарное сопротивление R, характерное для рабочих и защитных заземлений, отводящих ток 50 Гц, когда индуктивность, емкость, а также искровые процессы в земле не имеют существенного значения, и импульсное сопротивление заземлителя Zn, характерное для заземли-телей грозозащиты, которое определяется как импульсным характером тока, так и физико-химическими процессами и иекрообразованием в грунте. [c.10]
Таким образом, удельное сопротивление грунта сильно зависит от его химического состава и влажности [4—6]. [c.11]
Влажность грунта зависит не только от количества осадков и близости грунтовых вод, но и от структуры грунта. На рис. 1-3 приводится разрез грунта, из которого видны его структура и размещение в нем воды. [c.11]

Вернуться к основной статье

TN-C, TN-S, TNC-S, TT, IT

Для работы электроприборов достаточно присоединить к ним ноль и фазу. Однако такое подключение может привести к аварии и опасно для людей, проживающих в доме. Для предотвращения подобных ситуаций необходимо выбрать, устанавливать и подключить системы заземления и зануления.

Питание бытовых потребителей осуществляется от понижающего трёхфазного трансформатора, имеющего напряжение на выводах вторичной обмотки 0,4кВ или 380В. Катушки этого аппарата соединены звездой, средняя точка которой подключается к контуру заземления, находящемуся в земле возле трансформаторной будки.

Такой аппарат называется “трансформатор с глухозаземлённой нейтралью”.

В квартиру или частный дом от трансформатора приходят как минимум два провода – ноль и фаза, соединённых с фазным выводом и средней точкой звезды соответственно. Такое подключение обеспечивает напряжение в розетках 220В.

Кроме нулевого и фазного проводов в квартирах прокладывается заземляющий проводник, защищающий людей от поражения электрическим током при нарушении изоляции между корпусом электроприбора и частями электросхемы, находящимися под напряжением. Этот провод соединяется с системой заземления.

Такая система состоит из двух основных элементов – трансформатор и электроустановка. В простейшем случае это однофазная нагрузка, однополюсный автомат и одна фаза трёхфазного трансформатора.

Справка! Само понятие “система” происходит от др. греч. σύστημα “целое, состоящее из отдельных частей” – несколько элементов, работающих вместе и объединённых в одну конструкцию.

В этой статье рассказывается о классификации систем заземления, различии между чаще всего применяющимися видами – ТТ, TN-C и TN-C-S и про опасность применения зануления вместо заземления, а также о системах заземления TN-S и IT.

Классификация систем заземления по ПУЭ

Электроустановки (в частности трансформаторы) напряжением до 1000В по наличию систем заземления делятся на две категории, каждая из которых имеет свои сферы применения:

  1. С глухозаземлённой нейтралью. Самый распространённый тип электротрансформаторов. Вторичные обмотки соединены в “звезду”, средняя точка которых имеет постоянное подключение к контуру заземления. Жилые дома питаются только от трансформаторов с таким способом заземления нейтрали.
  2. С изолированной нейтралью. Вторичные обмотки трансформаторов не заземляются. Являются разделительными и используются только в промышленности в специальных установках, таких, как нагревательные печи и некоторые другие, в которых важно отсутствие электрического соединения токоведущих частей и контура заземления.

Глухозаземлённая нейтраль в электротрансформаторах обозначается “TN”. Самое распространённое защитное применение такой нейтрали – соединение с ней токопроводящих корпусов электроприборов отдельными проводами, однако они могут соединяться и другими способами.

При проектировании систем электроснабжения проектная организация выбирает тип заземления согласно полученному техническому заданию и описанию систем заземления. Этот выбор определяется ПУЭ и другими нормативными документами и от него зависит безопасность людей и приёмка здания в эксплуатацию.

Важно! Неправильный выбор вида системы заземления или некачественный монтаж приведут к требованию контролирующей организации исправить допущенные ошибки.

Виды систем заземления

Основным способом защиты от поражения электрическим током является применение одной из систем заземления. В главе 1.7 ПУЭ перечисляются пять типов таких устройств:

  • TN-C;
  • TN-C-S;
  • TN-S;
  • TT;
  • IT.

Любая из этих систем надёжно защищает людей в условиях городской квартиры или частного дома, но имеет свои конструктивные и защитные отличия.

Применение конкретного вида защиты в особых условиях регламентируется ПУЭ и связано с особенностями помещений и электроустановок.

Информация! Установка заземления обязательна во всех новых зданиях и желательна при ремонте старых сооружений.

Выбор системы заземления производится на стадии проектирования здания и электропроводки до начала монтажных работ.

Система TN-C

Самый старый вид системы заземления – это система TN-C. В ней отсутствует отдельный провод для заземления и оно (заземление) осуществляется общим проводом PEN. Начиная от подстанции (трансформатора) PEN провод совмещает в себе нулевой защитный и нулевой рабочий проводники (PEN = PE + N). В старых жилых домах применяется именно такое заземление.

По системе TN-C заземляются только вводные щитки в подъездах и столбы уличного освещения. В квартирах таких домов заземление в розетках отсутствует, а электропроводка выполнена двухпроводной – фаза и ноль.

Такое защитное заземление морально устарело и не обеспечивает надёжной защиты от поражения электрическим током. При необходимости заземлить электроприборы, а также во время реконструкции электропроводки заземление тип TN-C заменяется на TN-C-S.

Система TN-C-S

Защитное заземление этого типа устроено аналогично системе TN-C. Питающий трансформатор имеет глухозаземлённую нейтраль, а заземляющие провода соединяются с ней нулевым проводом PEN, который на входе в дом разделяется на нулевой проводник – N и заземляющий – PE.

Такое разделение производится только на вводе кабеля в многоквартирный дом, как правило в ВРУ (вводном распределительном устройстве). В вводном щитке эти кабеля присоединяются к общей шине или клемме. Допускается применение такой системы в частных домах, питание которых осуществляется воздушными линиями при подключении к трёхфазной сети.

Согласно ПУЭ пункт 1.7.132 разделение нулевого и заземляющего проводов в однофазной сети 220В не выполняется. При необходимости выполнить такое разделение оно производится там, где это разрешено правилами, а к дому прокладывается дополнительный провод.

То есть, если у Вас в квартире нет заземления, и вы хотите из системы TN-C сделать TN-C-S, такой способ разделения PEN проводника на просто ноли и заземление не прокатит в квартирном щитке.

Важно! Согласно ПУЭ 1.7.135 после разделения в вводном щитке провода PE и N НЕ ДОЛЖНЫ соединяться между собой.

Система TN-S

Самые дорогостоящие в реализации, но самые удобные и надёжные системы заземления – это системы TN-S, которые монтируются вместе с трансформаторами с глухозаземлённой нейтралью.

Для системы TN-S заземляющий и нулевой провода соединяются в трансформаторной подстанции. На всем протяжении больше эти проводники не связаны между собой.

К потребителю, будь то квартира или дом, приходит два независимых друг от друга проводника нулевой рабочий N и нулевой защитный PE.

Для бОльшей надёжности заземляющий провод РЕ может соединяться с контуром заземления на вводе в здание.

Это самый простой в эксплуатации тип защиты. При его монтаже отсутствуют высокие требования к контуру заземления здания.

Недостаток этой системы в необходимости вместо четырёх проводов (L1,L2,L3,РЕN) использовать пять, где пятым проводом является заземляющий PE, однако это перекрывается повышенной безопасностью эксплуатации. Поэтому новые воздушные и кабельные линии электропередач прокладываются пятижильными кабелями и проектируются по системе TN-S.

Система TT

Это такая система защитного заземления, которая выполняется при невозможности смонтировать заземление другого типа. В этом случае нейтраль трансформатора не имеет связи с заземляющими проводами электропроводки, и они подключаются к собственному контуру заземления дома.

То есть в системе TT нулевой провод сети никак не связан с заземляющим контуром потребителя.

Случаи применения системы ТТ указаны в ПУЭ п1.7.59.

Важно! Ток, возникающий при замыкании токоведущих частей с заземлённым корпусом может быть недостаточным для срабатывания автоматического выключателя. Поэтому, согласно ПУЭ п1.7.59, применять систему ТТ без УЗО или дифференциального автомата запрещается.

Система IT

Применяется с трансформаторами с изолированной нейтралью. Обычно она соединяется с заземлением через разрядник, обладающий высоким сопротивлением при низком напряжении и низким при повышении напряжения выше допустимого предела. Это защищает потребителей от попадания первичного напряжения во вторичную обмотку.

В этой питающей сети отсутствует нулевой провод N, заземляющий РЕ и однофазное напряжение как таковое. Потребители подключаются на линейное напряжение 380 Вольт.

Данная система используется только с двух- и трёхфазными установками. Металлический корпус электрооборудования и другие токопроводящие элементы соединяются с контуром заземления здания.

Токи короткого замыкания на землю в такой системе незначительные, поэтому использование УЗО или дифференциальных автоматов является обязательным.

Система уравнивания потенциалов

В особоопасных сырых помещениях, таких, как бассейны или сауны, кроме непосредственного заземления корпусов электроприборов, используется система уравнивания потенциалов.

Она заключается в соединении между собой всех металлических частей в помещении – стальных дверей, нержавеющих раковин, водопроводных и канализационных труб и других элементов. Все эти соединённые между собой части подключаются к применяемой системе заземления.

В чём опасность применения зануления вместо заземления

Некоторые электромонтёры предлагают использовать зануление вместо заземления. Это нельзя делать по нескольким причинам:

  • Жилые дома подключаются к трёхфазной сети и по нулевому проводу течёт уравнительный ток. Так как этот провод имеет сопротивление, то между занулённым корпусом электроприбора и заземлёнными конструкциями, например водопроводным краном, имеется разность потенциалов. В обычных условиях это неопасно, но при прикосновении к воде или мокрой земле можно получить электрическим током.
  • При обрыве нулевого провода и неравномерной нагрузке между нулём и фазой может быть не 220В, а больше, вплоть до 380В. В этом случае между занулённым корпусом электрооборудования и заземлёнными конструкциями появится опасное для жизни напряжение 220В.
  • Нулевой и фазный провода подключаются к квартире через двухполюсный автоматический выключатель. При его срабатывании нулевой провод N, используемый в качестве заземляющего проводника, отключается от контура заземления. Это недопустимо по требованиям ПУЭ п1.7.145

К отдельно стоящему зданию может быть подведено не однофазное напряжение 220В, а трёхфазное с тремя фазными и одним нулевым проводами. В этом случае есть возможность переделки защитного зануления в систему заземления TN-C-S.

Вывод

Системы TT и IT также являются системами с заземлением. В них заземляющий провод РЕ не имеет электрической связи с нейтралью трансформатора.

Системы заземления TN всех видов считаются системами с занулением. В них заземляющий провод РЕ связан каким-либо способом с нейтралью питающего трансформатора и проводником N:

  1. В системе TN-C-S заземляющие жёлтые или жёлто-зелёные провода подключены к проводнику PEN. Он проложен от нейтрали трансформатора к вводному щитку в здании.
  2. В системе TN-C заземляющий проводник РЕ совмещён с нейтральным проводом N, поэтому к нему корпуса электроприборов не подключаются. Для их заземления защитное заземление типа TN-C необходимо переделать в TN-C-S.
  3. Система TN-S является самой надёжной. В ней провода РЕ и N разделены на всём протяжении от электроприбора до нейтрали питающего трансформатора.

Нет системы заземления, идеально подходящей для всех ситуаций. Каждая из них обладает своими достоинствами и недостатками, но у всех одна задача – обеспечение максимальной безопасности людей. Для выбора типа защиты необходимо знать, какие бывают системы заземления и зануления.

Похожие материалы на сайте:

Понравилась статья – поделись с друзьями!

 

Устройство заземления. Статьи компании ««Фриз-Холод»»

Любой электрифицируемый объект должен иметь правильно организованную защиту электробезопасности. Такую систему позволяет создать защитное заземление. Оно отличается соединением элементов электрооборудования с устройством заземления.

Предназначение заземления состоит в недопущении влияния тока на пользователей и отводе напряжения с корпуса электрооборудования на землю. Заземление снижает потенциал между землей и электроточкой. Таким образом, минимизируется сила тока и поражение при взаимодействии с электроприборами, в которых случился пробой.

Особенности эксплуатации

Создание правильной заземляющей системы призвано решить следующие принципы:

  • Организация защиты от индукционных токов. Они могут проявляться из-за удара молнии. Причем создается электростатическая и электромагнитная индукция.
  • Создание электроцепи с низким сопротивлением при замыкании. Ток легко проходит по такой магистрали. Обеспечивается безопасность для пользователей. Если человек случайно дотронется до прибора во время пробития корпуса, не будет потенциально опасного напряжения.

Защитное заземление используется в электрической сети с напряжением:

  1. Более 1 кВт. Допустимы все режимы точек обмоток источника питания переменного/постоянного тока.
  2. Меньше 1 кВт:
  • с постоянным током 2 проводников, когда есть изоляция обмотки источника тока;
  • с переменным током двух 1-фазных проводников с изоляцией от земли, и
  • с переменным током трех 3-фазных проводников с изолированием нейтрали.

Функциональность системы заземления будет на высоком уровне только при сети с изолированной нейтралью.

Виды заземлителей

В организации рабочего или защитного заземления применяют такие элементы как заземлители. Есть два вида:

  • Искусственные – это конструкции из неокрашенного металла. Иногда с целью защиты от коррозии применяют защитные составы, которые не ухудшают способность проводить ток. Как пример искусственного заземления можно назвать особый токопроводящий бетон.

  • Естественные – различные токопроводящие конструктивные элементы объекта и коммуникаций. Они обязательно соприкасаются с землей. Запрещено использовать как естественный заземлитель конструкции магистрали, которые могут взорваться или загореться. К примеру, газовую трубу.

При эксплуатации искусственных заземлителей важно помнить, что нужны будут прутья/пластины из металла для создания металлосвязи. Это когда верхние концы заземлителей соединяют сваркой в один элемент. Его заводят прямо в дом с помощью шины заземления, которая обеспечивает жесткость и цельность контура.

Нейтраль – что это?

Это защитный нулевой проводник. Он соединяет друг с другом нейтрали электрических установок в 3-фазных сетях.

Снижающая подстанция с трансформаторной установкой имеет собственный корпус заземления. Он включает в себя шину из стали и пруты, которые особым образом размещены в земле. От подстанции к источникам потребления в электрический щиток прокладывают 4-жильный кабель.

Когда надо получить питание от 3-фазной цепи, то должны быть подсоединение все 4 жилы. Если к ним подключена разная нагрузка, то нейтраль смещается. Для того, чтобы этого не допустить, применяется нулевой проводник. Благодаря нему нагрузка распределяется одинаково на все фазы. 

Проводники PE и PEN – что это?

PEN проводник совмещает функции нулевого рабочего и нулевого защитного проводника. он проходит от подстанции и у потребителя делится на N и PE проводники.

PE представляет собой защитное заземление. Он применяется, к примеру, в розетках с заземлением. Такой проводник используется для техники с напряжением меньше 1 кВт.

Такое заземлением отвечает за постоянное соединение наружных и открытых деталей. В результате ток стекает на землю.

PEN проводник нашел свое применение при эксплуатации системы типа TN-C.

Виды систем искусственного заземления

Разновидности заземления

S

Раздельное применение проводов

C

Объединение функций нулевого и функционального защитного провода

I

Изоляция

N

Подключение проводника к нейтрали

N

Заземление

Существуют следующие искусственные виды заземления:

  • IT;
  • TT;
  • TNC-S;
  • TN-C;
  • TN-S.

Системы с глухозаземленной нейтралью системы заземления TN

Они предполагают наличие глухо заземленной нейтрали и подключение к ней всех элементов сети, которые проводят энергию. Подсоединение осуществляют с применением нулевых проводников.

Корпуса и щиты оборудования, электрические шкафы подключают к PEN проводнику. Это обеспечивает короткое замыкание при пробитии корпуса. В итоге защитные автоматы обесточивают электросеть, которая идет на проблемный участок. Тем самым предупреждается поражение током людей.

TT

Система обеспечивает высокий уровень безопасности и подходит для электрических станций с минимальным техническим состоянием. К примеру, там, где есть оголенные провода, в электрических установках на закрепленных опорах либо открытом воздухе.

Монтируется система по схеме 4 проводников:

  • ноль совмещает функции защитного и рабочего проводников;
  • 3 фазы, которые подают напряжение и смещаются между собой под углом 120 градусов.

Система выделяется защитой от короткого замыкания, высокой стойкостью к деформации провода и возможностью эксплуатации на электрических установках высокого напряжения.

К минусам относится невозможность отслеживать фазы короткого замыкания и сложная организация защиты от молний.

TN-S

Она оснащена двумя нулевыми проводами – один выступает как защита, другой как нейтральный проводник, который подключен к глухо заземленной нейтрали. Это самая эффективная и безопасная система. Принцип работы заключается в применении только ноля и одну фазу для подачи рабочего напряжения. Разводку выполняют 3-жильным проводом, одну жилу используют как ноль и подсоединяют к вводному проводу.

TN-C

В PEN проводник объединены нулевой и защитный проводники на протяжении всей системы. Плюсом такой системы считается легкий монтаж. Не нужно особых денежных затрат и усилий, установленных воздушных и кабельных линий. Но есть и минусы. Может появиться линейное напряжение на корпусе электроустановки при обрыве цепи. Есть большой риск получения удара током и потери заземления при повреждении токопроводящего устройства. Система может защитить лишь от короткого замыкания.

TN-C-S

Это комбинированная система, в которой проводники PE и N на выходе от источника питания соединение в едином проводнике. На входе в объект присоединяют защитный PE проводник. В своде ПУЭ прописано, что для частного дома рекомендуется в качестве основной именно эта система. Она надежнее и проще в организации.

Системы с изолированной нейтралью

3-фазная система используется в процессе передачи и распределения тока на потребителей. Это позволяет организовать равномерное симметричное распределение нагрузки. Система формирует режим, который предполагает применение генераторов и трансформаторной будки. У их нейтрали нет заземляющей защиты.

Изолированная нейтраль используется при соединении вторичных обмоток трансформаторов при отсутствии питания при авариях и по схеме треугольника. Это замещающая сеть. Изолированная нейтраль помогает пробивать изоляционное покрытие при замыкании и образованию замыкания на других фазах.

IT

Система отвечает за заземление через высокий уровень сопротивления. Она имеет нейтраль. Наружные элементы из материалов, которые проводят ток, заземляются. Преимуществами считаются маленькие показатели утечки тока при однофазном коротком замыкании. Установка с такой системой способна работать долго даже при авариях. Между потенциалами нет разности.

Однако защита не сработает при замыкании на землю. Повышается риск поражения током при контакте со второй фазой установки.

Расчет значений главных элементов заземления

Подробные расчеты помогают спроектировать чертеж заземления объекта. Устройство, которое смонтировано согласно расчетным данным заземления, помогает обеспечить максимально эффективную эксплуатацию всей защиты.

В основе вычислений лежат допустимые значения прикосновения и напряжении шага. На этом основании высчитывается количество и размер заземлителей и принцип их организации.

Расчеты делают, основываясь на следующих данных:

  • Описание оборудования – главные элементы конструкции, вид монтажа, рабочее напряжение, варианты заземления нейтрали.
  • Форма заземлителей. Это нужно для того, чтобы определить нужную глубину закладки электродов.
  • Данные об исследованиях по замерам удельного грунтового сопротивления на территории. Также принимают во внимание сведения климата в области, где организуется система.
  • Данные о подходящем естественном заземлении. Нужная информация о реальных показателях растекания тока. Их получают, проводя специальные измерения.
  • Итоги типовых подсчетов расчетного замыкания на земле.
  • Показатели нормативных стандартов допустимых параметров напряжения согласно ПУЭ.
  • Значения сопротивления промерзания грунтового слоя посезонно, во время промерзания, высыхания. Показатели нужны для расчета заземлителей, находящихся в однородных условиях.
  • Сведения потенциалов, наведенных на электроды. Они нужны при установке сложных многокомпонентных заземлителей. Используется информация о сопротивлении всех грунтовых слоев.

 

Устройство заземляющего контура

Заземляющая система включает в себя:

  • Заземляющие штыри.
  • Полосовой металл.
  • Заземляющие проводники.

 

Заземляющие штыри

Он представляет собой группу электродов из обычной или нержавеющей стали, или проводников, которые соединены друг с другом. Их размещают в земле по вертикали рядом с объектом.

В зависимости от защищаемого объекта для заземляющего контура используют:

  • круглую сталь диаметром 16-18 мм;
  • уголки 5*5*0.5 см.

Их вбивают в землю на 3 метра. Затем элементы между собой сваривают полосой 0.4*4 см и выводят ее к области подсоединения общей заземляющей системы.

Разновидности

От удобства установки во многом зависит геометрия заземляющего контура. Это может быть любая геометрическая фигура, но есть две основные:

  • Треугольник. Самые часто используемый контур. В землю вбивают 3 стержня на расстоянии не меньше 3 метров. Но если места на участке нет, дистанция может быть меньше. В итоге должен быть треугольник с разными сторонами.

  • Линия. Ее используют в тех местах, где нет пространства для первого варианта. Этот вариант удобен тем, что можно закопать стержни вдоль стены здания или ограждения. Можно использовать любое количество электродов. Чем их будет больше, тем выше показатели сопротивления.

Заземление представляет собой комплексную систему, в которой все взаимосвязано и все этапы оказывают влияние на надежность эксплуатации объекта. Главная задача при ее организации состоит в выборе конфигурации заземлителей.

Глава 7. Заземление электроустановок / КонсультантПлюс

Глава 7. ЗАЗЕМЛЕНИЕ ЭЛЕКТРОУСТАНОВОК

7.1. На радиопредприятиях должны быть три вида заземлений: защитное, рабочее и молниезащитное (в соответствии с ВНТП-212-93 “Предприятия радиосвязи, радиовещания и телевидения. Передающие и приемные радиостанции, радиотелевизионные передающие станции и радиотелевизионные ретрансляторы”).

7.2. Для заземления электроустановок и защитного заземления радиоустановок следует применять одно общее заземляющее устройство.

Заземление электроустановок следует проектировать в соответствии с Правилами устройства электроустановок.

7.3. Между заземлителями всех видов заземлений следует предусматривать электрическое соединение в земле и техническом здании. Исключением в данном случае является заземление оборудования, не допускающего объединения заземлений, например аппаратуры уплотнения и т.п.

7.4. Не допускается использовать в качестве заземлителей защитного заземляющего устройства только заземлители рабочего (высокочастотного) заземляющего устройства или заземляющего устройства антенно-фидерной системы.

7.5. Заземление или зануление электроустановок необходимо выполнять:

а) при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех случаях;

б) при номинальном напряжении от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока в помещениях с повышенной опасностью и особо опасных (см. п. 5.12 “а”, 5.12 “б” настоящих Правил) и в наружных электроустановках;

в) при всех напряжениях переменного и постоянного токов во взрывоопасных зонах.

7.6. К частям, подлежащим защитному заземлению, относятся:

а) корпуса электрических машин, трансформаторов, аппаратов, светильников и т.д.;

б) корпуса радиоустановок;

в) приводы электрических аппаратов;

г) вторичные обмотки измерительных трансформаторов;

д) металлические конструкции распределительных устройств, металлические корпуса кабельных муфт, металлические оболочки, броня и экраны кабелей, металлические оболочки и экраны проводов, стальные трубы для проводки и другие металлические конструкции;

е) металлические корпуса передвижных и переносных электроприемников и приборов;

ж) корпус и вторичные обмотки напряжением 42 В и ниже понижающих трансформаторов, включенных в сеть с глухозаземленной нейтралью, если эти трансформаторы не являются разделительными.

7.7. Заземлению не подлежат:

а) оборудование, установленное на заземленных (зануленных) металлических конструкциях, если на опорных поверхностях предусмотрены зачищенные и незакрашенные места для обеспечения надежного электрического контакта;

б) корпуса электроизмерительных приборов, реле и т. п., установленных на металлических щитах, шкафах, а также на стенах камер распределительных устройств, имеющих заземление;

в) корпуса электроприемников с двойной изоляцией;

г) съемные или открывающиеся части металлических каркасов камер распределительных устройств, если на съемных (открывающихся) частях не установлено электрическое оборудование или если напряжение установленного электрического оборудования не превышает 42 В переменного тока или 110 В постоянного тока.

В невзрывоопасном помещении вместо заземления отдельных электродвигателей, аппаратов и т.п., установленных на станках, можно заземлять станины станков, если обеспечен надежный контакт между корпусом оборудования и станиной.

7.8. Сопротивление заземляющего устройства электроустановок определяется в соответствии с ПУЭ.

Сопротивление защитного заземляющего устройства для радиоустановок должно быть не более 4 Ом (при удельном сопротивлении грунта до 100 Ом.м).

При удельном сопротивлении земли ро более 100 Ом. м допускается повысить значение сопротивления заземляющего устройства в ро/100 раз, но не более чем в 10 раз.

7.9. Для определения технического состояния заземляющего устройства должны периодически производиться:

измерение сопротивления заземляющего устройства и не реже 1 раза в 12 лет выборочная проверка осмотром со вскрытием грунта элементов заземлителя, находящихся в земле;

проверка состояния цепей между заземлителями и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;

измерение напряжения прикосновения в электроустановках, заземляющие устройства которых выполнены по нормам на напряжение прикосновения.

7.10. Измерение сопротивления заземляющих устройств должно производиться не реже 1 раз в год, а также после монтажа, переустройства и капитального ремонта этих устройств. Измерения должны пополняться в периоды наибольшего высыхания грунта.

7.11. Измерения напряжения прикосновения должны проводиться после монтажа, переустройства и капитального ремонта заземляющего устройства, но не реже 1 раза в 6 лет. Кроме того, на предприятии ежегодно должны производиться: уточнение тока однофазного КЗ, стекающего в землю с заземлителя электроустановки; корректировка значений напряжения прикосновения, сравнение их с требованиями ПУЭ. В случае необходимости должны выполняться мероприятия по снижению напряжения прикосновения.

7.12. При невозможности выполнения заземления или устройств защитного отключения, удовлетворяющих требованиям ПУЭ, или если это представляет значительные трудности по технологическим причинам, допускается обслуживание электроустановок или радиооборудования с изолирующих площадок. При этом должна быть исключена возможность одновременного прикосновения к электрооборудованию и частям другого оборудования и здания.

7.13. Каждая часть электроустановки, подлежащая заземлению или занулению, должна быть присоединена к сети заземления или зануления с помощью отдельного проводника. Последовательное включение в заземляющий или нулевой защитный проводник заземляемых или зануляемых частей электроустановки запрещается.

7.14. Присоединение заземляющих и нулевых защитных проводников к заземлителям, заземляющему контуру и к заземляющим конструкциям должно быть выполнено сваркой, а к корпусам аппаратов, машин и опор воздушных линий электропередачи – сваркой или надежным болтовым соединением.

Использование земли в качестве фазного или нулевого провода в электроустановках напряжением до 1000 В запрещается.

7.15. Если электроустановки радиопредприятий питаются от сети с глухозаземленной нейтралью, то при замыкании на заземленные части должно быть обеспечено автоматическое отключение поврежденных участков сети.

С этой целью в электроустановках напряжением до 1000 В с глухозаземленной нейтралью обязательно выполнение зануления, т.е. металлической связи корпусов оборудования с заземленной нейтралью питающего трансформатора или генератора.

7.16. Металлические корпуса переносных электроприемников выше 42 В переменного тока и выше 110 В постоянного тока в помещениях с повышенной опасностью, особо опасных и в наружных установках должны быть заземлены или занулены, за исключением электроприемников с двойной изоляцией или питающихся от разделительных трансформаторов.

Заземление или зануление переносных электроприемников должно осуществляться специальной жилой (третья – для электроприемников однофазного и постоянного тока, четвертая – для электроприемников трехфазного тока), расположенной в одной оболочке с фазными жилами переносного провода и присоединяемой к корпусу электроприемника и к специальному контакту вилки штепсельного разъема. Сечение этой жилы должно быть равным сечению фазных проводников. Использование для этой цели нулевого рабочего проводника, в том числе расположенного в общей оболочке, не допускается.

Жилы проводов и кабелей должны быть медными, гибкими, сечением не менее 1,5 кв. мм.

7.17. Переносные электроприемники испытательных и экспериментальных установок, перемещение которых в период их работы не предусматривается, допускается заземлять с использованием стационарных или отдельных переносных заземляющих проводников. При этом стационарные заземляющие проводники должны удовлетворять требованиям ПУЭ, а переносные – должны быть гибкими, медными, сечением не менее сечения фазных проводников.

В штепсельных разъемах переносных электроприемников, а также удлинительных проводов и кабелей к розетке должны быть подведены проводники со стороны источника питания, а к вилке – со стороны электроприемников. Штепсельные разъемы должны иметь специальные контакты, к которым присоединяются заземляющие и нулевые защитные проводники. Соединение между этими контактами при включении должно устанавливаться до того, как войдут в соприкосновение контакты фазных проводов. Порядок разъединения контактов при отключении должен быть обратным.

Конструкция штепсельных разъемов должна быть такой, чтобы была исключена возможность соединения контактов фазных проводников с контактами заземления (зануления). Если корпус штепсельного разъема выполнен из металла, он должен быть электрически соединен с контактом заземления (зануления).

7.18. Заземляющие проводники должны быть защищены от коррозии.

7.19. Открыто проложенные стальные заземляющие проводники должны иметь черную окраску.

7.20. Магистрали заземления или зануления и ответвления от них в закрытых помещениях и в наружных установках должны быть доступны для осмотра. Требование о доступности для осмотра не распространяется на нулевые жилы и оболочки кабелей, на арматуру железобетонных конструкций, а также на заземляющие и нулевые защитные проводники, проложенные в трубах и коробах, а также непосредственно в теле строительных конструкций (замоноличенные).

Ответвления от магистралей к электроприемникам напряжением до 1000 В допускается прокладывать скрыто, непосредственно в стене, под чистым полом и т.п. с защитой их от воздействия агрессивных сред. Такие ответвления не должны иметь соединений.

В наружных установках заземляющие и нулевые защитные проводники допускается прокладывать в земле, в полу или по краю площадок, фундаментов технологических установок и т.п.

Использование неизолированных алюминиевых проводников для прокладки в земле в качестве заземляющих или нулевых защитных проводников не допускается.

7.21. Все места присоединения временных заземлений должны быть зачищены и смазаны вазелином.

7.22. У мест ввода заземляющих проводников в здание должны быть предусмотрены опознавательные знаки.

7.23. Использование специально проложенных заземляющих проводников для иных целей не допускается.

7.24. Соединения заземляющих и нулевых защитных проводников между собой должны обеспечивать надежный электрический контакт и выполняться сваркой.

7.25. Каждое заземляющее устройство должно иметь паспорт со схемой заземления, где указываются его основные технические данные, результаты проверки состояния устройства, записи об изменениях, внесенных во время ремонта и реконструкции.

Виды заземления TN-C и TN-S, TN-C-S, TT и IT заземление

Виды заземления: TN-C и TN-S, TN-C-S

Содержание статьи:

Заземлением принято называть намеренное соединение металлических частей электроприборов с устройством заземляющего контура. Такой подход позволяет не только обезопасить работу электрооборудования, но и защититься от утечки тока, а также от скопления статистического электричества.

Для устройства заземления в землю забивают металлические проводники, которые кабелем или металлической шиной соединяют с корпусом электропотребителей. Основной характеристикой заземления, является его сопротивление и сечение проводников, которое определяет качество заземления.

На сегодняшний день бывают разные виды заземления: TN-S и TN-C, TT и IT, а также TN-C-S. Какое различие между всеми вышеперечисленными видами заземления, и какое заземление, самое надежное из всех? Ниже, в данной статье строительного журнала samastroyka.ru, как раз и будут рассмотрены все эти вопросы.

Виды заземления: TN-C и TN-S, TN-C-S, TT и IT

TN-C заземление было разработано и сконструировано в начале прошлого века в Германии. В данном виде заземления PE-проводник соединён с рабочим нулём в один провод. Основным недостатком TN-C заземления является возникновение большого линейного напряжения в случае обрыва нуля на корпусе электроприбора. Тем не менее, такой вид заземления можно до сих пор встретить в старых советских постройках.

TN-S заземление пришло на смену опасной системе TN-C в далеких 30-х годах прошлого столетия. В этой системе заземления защитный и рабочий ноль уже разделялись на подстанции, а заземлитель был вынесен в отдельную металлическую конструкцию из толстой арматуры. Вследствие этого, даже при разрыве рабочего нуля, не возникало сильного линейного напряжения, которое и стало основным недостатком TN-C заземления.

TN-C-S заземление представляет собой систему, в которой разделение рабочих и защитных нулей происходит непосредственно в самой линии. Однако такой вид заземления, точно так же, как и TN-C заземление имеет один и тот же существенный недостаток, связанный с линейным напряжением в случае обрыва нулевого провода.

TT заземление представляет собой систему, где непосредственно сама КТП имеет соединение с устройством заземления. В ней абсолютно все токопроводящие элементы имеют надежное соединение с заземлителями, которые отделены от заземлителей нейтрали трансформаторной подстанции.

IT заземление представляет собой систему заземления повышенной электробезопасности. В данном виде заземления нейтраль источника электроснабжения имеет собственную защиту, а токопроводящие элементы заземлены. Такая система заземления устанавливается там, где требуются высокие требования касательно электробезопасности установок.

Характеристики и параметры заземления

К каждому из вышеперечисленных видов заземления выдвигаются свои определенные требования, которые регламентируются соответствующими разделами ГОСТа.

Основными для всех систем заземления условиями работы, являются:

  1. Наличие установленного УЗО;
  2. Запрет подсоединения к коммуникациям;
  3. Использование только заземляющего контура для установки стационарных систем.

Как было сказано выше, основным параметром заземления, является его сопротивление. Чем больше напряжение, тем меньше должно быть сопротивление заземления. Так, например, для напряжения в сети 220 Вольт, нормальным сопротивлением заземления считается показатель в 8 Ом. В электрических сетях 380 Вольт, сопротивление заземления должно быть не более 4 Ом, а в сетях 660 Вольт, не более 2 Ом.

Не менее важным параметром заземления, считается и сечение проводников. Сечение алюминиевых и медных неизолированных заземляющих проводников в электроустановках до 1 кВт, должно составлять не менее 6 и 4 кв. мм. Для изолированных защитных проводников, сечение может быть уменьшено, до 1 и 2,5 кв. мм., соответственно.

Оценить статью и поделиться ссылкой:

Заземление. Что это такое и как его сделать (часть 1) / Хабр

Мой рассказ будет состоять из трёх частей.

1 часть. Заземление

(общая информация, термины и определения)
2 часть. Традиционные способы строительства заземляющих устройств

(описание, расчёт, монтаж)
3 часть. Современные способы строительства заземляющих устройств

(описание, расчёт, монтаж)

В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.

Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.

Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.



1 часть. Заземление

В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

А. Термины и определения

Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление

Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты

Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом

В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления

В3. Расчёт сопротивления заземления
А. Термины и определения

Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта.

Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).


И попытаюсь “перевести” эти определения на “простой” язык.

Заземление

— преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).


Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

Заземляющее устройство

— совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).


Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:


Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).

Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

На рисунке он показан толстыми красными линиями:


Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).

Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)

Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:


Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.

Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:


Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).
Б. Назначение (виды) заземления

Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.

Б1. Рабочее (функциональное) заземление

Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1. 7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление

Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

Подробнее защитное назначение заземления можно рассмотреть на двух примерах:

  • в составе внешней молниезащитной системы в виде заземленного молниеприёмника
  • в составе системы защиты от импульсного перенапряжения
  • в составе электросети объекта
Б2.
1. Заземление в составе молниезащиты
Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.

Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.

Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.

Классический УЗИП представляет собой газовый разрядник (

wiki

), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд 🙂 между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

Как и в молниезащите — заземление в такой системе является обязательным элементом, т. к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети

Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.

Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

В. Качество заземления. Сопротивление заземления.

Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.

Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).

В1. Факторы, влияющие на качество заземления

Сопротивление в основном зависит от двух условий:


  • площадь ( S ) электрического контакта заземлителя с грунтом
  • электрическое сопротивление ( R ) самого грунта, в котором находятся электроды

В1.1. Площадь контакта заземлителя с грунтом.

Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт).

Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.

(Пример оказался неграмотным. Спасибо

SVlad

— комментарий:

habrahabr.ru/post/144464/#comment_4854521

)

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)

Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.

(Если интересно, можно посмотреть таблицу величин удельного сопротивления грунтов, используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.

В2. Существующие нормы сопротивления заземления

Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

Для ориентирования приведу следующие значения:

  • для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
  • у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
    • при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
    • при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
В3. Расчёт сопротивления заземления

Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:

Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

Строительство заземлителей

При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

Подробнее о строительстве — в следующих частях.

Продолжение:


Алексей Рожанков, специалист технического центра “

ZANDZ.ru

При подготовке данной части использовались следующие материалы:

  • Публикации на сайте “Заземление на ZANDZ.ru”
  • Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания (гуглить)
  • ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
    Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить)
  • Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87 (гуглить)
  • Собственный опыт и знания

как работает контур, зачем заземлять объекты, защитное и рабочее

Как бытовые приборы, так и мощные заводские агрегаты являются электропотребителями. Их использование должно быть не только удобным, но и безопасным. Именно поэтому любые электрические сети, или потребители, должны иметь заземление — оно помогает не только защитить электроустановку от поломки, но иногда и спасти человеческую жизнь.

Устройства заземления и их виды

Одним из главных элементов электрических сетей является заземление.

Профессиональное определение заземления гласит, что это преднамеренное электросоединение сети, оборудования или электроустановки с заземляющим устройством, которое позволяет обеспечить защиту человека и животных от опасных токов прикосновения, снижающихся заземлением.

В простых словах, это проводник, соединённый с одной стороны с частями оборудования, которые не должны находиться под напряжением, а с другой — с элементом, выполняющим функцию заземлителя. В случае когда корпус непредвиденно попадает под напряжение, такая система отводит токи в землю, а прикоснувшийся к прибору человек не получит повреждений.

В зависимости от назначения, существуют два вида контуров заземления: защитный и рабочий. Каждый из них несёт определённую функцию. Защитное заземление предназначено для защиты людей от поражения электрическим током. Рабочее же обеспечивает безопасное функционирование оборудования, хотя в некоторых случаях способно выполнять роль защитного.

Заземлитель чаще выполняется из трёх железных прутов, полностью вбитых в почву и соединенных между собой металлическими полосами, в виде треугольника с равными сторонами. А чтобы от заземлителя не приходилось тянуть заземляющий проводник к каждой установке, используют аналогичные полосы, выполняющие роль шины, которая проходит по всему зданию или сооружению — уже от неё можно подключать заземления к оборудованию.

От шины до потребителя проходит проводник, значительно меньший по сечению, нежели рабочие кабели, и маркированный жёлтым или жёлто-зелёным цветом. Он подключается к корпусам электроустановок или к клеммам, которые впоследствии будут соединены через вилку с заземляющим проводом электроприбора.

Защитный заземляющий контур

В случае пробоя защитное заземление вполне способно выполнить роль рабочего, а также может спасти оборудование при попадании молнии — естественно, если существует громоотвод. Однако основная задача защитного контура заключается всё же в защите людей от повреждения электрическим током.

Рабочее, или функциональное заземление

Рабочее заземление часто называют функциональным, и предназначено оно в первую очередь для защиты и сохранения работоспособности оборудования. Преимущественно оно используется для трёхфазных сетей и рассчитано на понижение напряжения до безопасных величин в случае пробоя на корпус. Это позволяет сохранить оборудование и приборы, не нарушив их функциональность.

Если таким образом заземлено оборудование с напряжением до 1 кВ, то необходимо использовать изолированную нейтраль. Если значение напряжения выше 1 кВ, то нейтраль допускается любая.

При необходимости функциональное заземление способно выполнять роль защитного. Таким образом, при правильно работающем заземлении ток или напряжение становятся безопасными для человеческой жизни.

Требования безопасности

Так как заземление выполняет важную роль в обеспечении безопасности, она должна соответствовать определённым требованиям, которые оговорены в ПУЭ:

  • Заземлению подвергаются все без исключения электроустановки, включая дверцы электрощитов и шкафов.
  • Заземляющее устройство не должно превышать 4 Ом с заземляющей нейтралью.
  • Обязательно применение систем уравнивания потенциалов.

Относиться к требованиям ПУЭ нужно со всей серьёзностью, так как это может спасти жизнь, в случае опасности. Ведь удар электрическим током, за счёт слишком низкого сопротивления подошвы обуви и пола, является смертельно опасным.

Причины удара током

Человека может ударить электрическим током в самых обычных повседневных ситуациях:

  1. Во время работы стиральной машинки иногда можно почувствовать лёгкое пощипывание. Иногда удары могут быть значительно сильнее. Это и есть воздействие электричества на человека.
  2. Находясь в ванной и дотронувшись до металлических частей крана, можно ощутить слабое пощипывание и даже сильные мурашки внутри пальцев.

В обоих случаях незаземлённые предметы могут пропускать через себя ток, то есть заряженные частицы, которые, в зависимости от силы и напряжения, могут проявляться в виде покалывания или сильных ударов, сопровождающихся мышечными судорогами.

Понятно, что это крайне опасно — в крайних случаях от удара током возможны паралич и остановка сердца. Однако избежать подобных инцидентов можно достаточно просто — заземлив ванную или машинку. В таком случае ток, попавший на корпус, будет уходить по заземляющему проводнику в землю.

Как действуют заземлители

Почему же ток уходит в землю по заземляющему контуру?

В качестве «подопытного» можно взять всё ту же стиральную машинку. Со временем любой провод может надломиться, потерять изоляцию или получить пробой на корпус из-за микротрещины. Рано или поздно ток начнёт попадать на металлическое основание прибора.

Если не трогать машинку, то человеку ничего не угрожает. Но стоит прикоснуться к корпусу, и, в случае отсутствия заземления, можно почувствовать всю мощь электричества на себе.

А всё дело в том, что несмотря на обувь и пол, человеческое тело имеет (хоть и малый) контакт с землёй. Следовательно, не имея заземляющего провода, ток будет проходить через человека и уходить в землю. А так как фазный провод имеет потенциал выше земельного, то тело становится отличным проводником с собственным сопротивлением. В итоге проходящий через нас ток вызывает те же физические свойства, что и в любом другом проводнике.

Наличие заземления, а для надёжности — еще и установка УЗО, заставляет опасный потенциал притягиваться к безопасному потенциалу земли. В результате напряжение перетекает прямо в заземлитель.

Применение УЗО и дифавтоматов

Заземляющие системы вполне способны справиться со своей задачей — защитить человека или оборудование. Но, являясь простыми проводниками, они могут повреждаться и переставать выполнять свою функцию.

В качестве дополнительной защиты и подстраховки принято использовать УЗО, или дифавтоматы. УЗО расшифровывается как устройство защитного отключения, а дифавтомат — как дифференциальный автоматический выключатель. По сути, это УЗО и простой автомат в одном корпусе, что заметно снижает занимаемое защитным оборудованием место в распределительном шкафу или щитке.

УЗО реагирует на ток утечки. То есть если оно заметит, что часть электричества уходит на землю, то сразу же сработает, отключив поступление питания, обезопасив всю линию. В зависимости от чувствительности, установленной производителем, срабатывать УЗО может по-разному:

  • Слишком чувствительное и срабатывать будет часто, даже при минимальной утечке, что не всегда удобно.
  • Чересчур грубое УЗО нужно устанавливать лишь когда это целесообразно, так как оно может не сработать в нужный момент.

Исходя из условий использования, составляется проект, согласно которому и нужно подбирать защитные устройства.

УЗО спасёт жизнь человеку, даже если отсутствует заземление — оно мгновенно сработает, если человек дотронется до части прибора, находящейся под напряжением.

Все о системах электрического заземления

Дата публикации: 26 сен 2020 г. Последнее обновление: 26 сен 2020 г. Абдур Рехман

В этом блоге мы расскажем о необходимости системы электрического заземления, ее важности, типах заземленной системы, общих методах и факторах, влияющих на установку заземленной системы, советах по безопасности и т. Д. Проще говоря, этот блог посвящен системе электрического заземления.

Земля – ​​это обычная точка возврата электрического потока.Система заземления – это резервный путь, который имеет альтернативный путь для электрического тока, протекающего на землю из-за любого риска в электрической системе до того, как произойдет возгорание или поражение электрическим током.

W Что это за электрическое заземление?

Проще говоря, «заземление» означает, что был проложен путь с низким сопротивлением для прохождения электричества в землю. «Заземленное» соединение включает соединение между электрооборудованием и землей через провод. После правильного подключения это обеспечивает вашим устройствам и приборам безопасное место для разряда избыточного электрического тока.Это потенциально предотвратит ряд рисков для электрического оборудования. Провод заземления в розетке – это, по сути, предохранительный клапан.

Мы только что запустили нашу серию Power Systems Engineering Vlog , и в этой серии мы собираемся поговорить о всевозможных различных исследованиях и комментариях по проектированию энергосистем. Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, , и получите от этого пользу.

Национальный электротехнический кодекс определяет заземление как «проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли». NEC также заявляет, что «земля не должна использоваться в качестве единственного заземляющего проводника оборудования». (NEC) ограничивает напряжение от молнии, скачков напряжения в сети и контакта с линией более высокого напряжения с помощью заземляющих проводов оборудования.

Целью заземления электрической системы является повышение безопасности всей системы и обеспечение защиты от колебаний в электросети.Система должна быть идеально заземлена, если вы хотите иметь безопасную и надежную сеть и избегать рисков для жизни людей.

Зачем нужно заземлять электрическую систему?

Некоторые люди, особенно в крупных жилых или коммерческих проектах, думают, что установка системы заземления и любых дополнительных конструкций из электрических материалов будет сложной и трудоемкой, если будет выполнено своевременное техническое обслуживание. Это чрезвычайно опасная практика, которая может привести к поражению электрическим током в случае короткого замыкания внутренней проводки в приборе.

По словам Джона Гриззи Грживача, почетного профессора Национального учебного института OSHA, «большинство несчастных случаев и смертельных случаев в связи с контактом с линией являются результатом отсутствия соответствующих средств индивидуальной защиты, изолированного прикрытия линии или надлежащего заземления. ”

Общие риски незаземленной электрической системы – это поражение электрическим током и возгорание, поскольку электрический ток всегда проходит через путь с низким сопротивлением. Рабочие на рабочем месте подвергаются более высокому риску, когда незаземленное устройство разряжает избыточное электричество.В результате электричество передается человеку, причинившему травму или ведущему к смерти. Вероятность неисправности в незаземленной системе очень высока. Чтобы обеспечить максимальную защиту человека и электрического оборудования, убедитесь, что ваша система заземлена.

Как правило, системы питания подключаются к земле через емкость между линиями и землей, и нет прямого физического соединения между какими-либо линиями питания и землей.

Типы заземленных систем:

Ниже перечислены три важных типа систем заземления.

  • Незаземленные системы
  • Системы с заземлением через сопротивление
  • Системы с глухим заземлением

Когда система электроснабжения работает и нет преднамеренного подключения к земле, это называется незаземленной системой. Хотя эти системы были нормальными в 40-х и 50-х годах, они все еще используются сегодня.

В незаземленной системе ток замыкания на землю незначителен, поэтому его можно использовать для снижения риска поражения людей электрическим током.При возникновении неисправности два провода должны пропускать ток, который был назначен для трех проводов: повышение тока и напряжения вызовет нагрев и приведет к ненужному повреждению электрической системы.

Поскольку ток замыкания на землю незначителен, поиск любой неисправности становится очень трудным и трудоемким процессом. Альтернативные издержки отказа в незаземленной системе чрезвычайно высоки.

Системы с заземлением через сопротивление:

Заземление через сопротивление – это когда в системе электроснабжения имеется соединение между нейтралью и землей через резистор.Здесь резистор используется для ограничения тока короткого замыкания через нейтраль.

Существует два типа резистивного заземления: заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением:

Ограничьте ток замыкания на землю до <10 ампер.

Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где текущая работа процессов вмешивается в случае неисправности.

Заземление с низким сопротивлением:

Ограничивает ток замыкания на землю от 100 до 1000 ампер.

С другой стороны, системы заземления с низким сопротивлением (LRG) используются в системах среднего напряжения 15 кВ или менее и срабатывают защитные устройства при возникновении неисправности.

Системы с глухим заземлением:

Твердое заземление означает, что система электропитания напрямую подключена к земле, и в цепи нет преднамеренного добавления импеданса. Эти системы могут иметь большой ток замыкания на землю, поэтому повреждения легко обнаруживаются.

Обычно используется в промышленных и коммерческих энергосистемах.Есть резервные генераторы на случай, если в результате неисправности производственный процесс остановится.

Общие методы для систем электрического заземления:

Наиболее распространенными методами электрического заземления являются:

  • Пластины заземления
  • Трубки и стержни заземления

Пластины заземления:

Заземляющие пластины изготовлены из меди или оцинкованного железа (GI) и помещаются вертикально в землю в яме (заполненной слоями древесного угля и соли) глубиной более 10 футов.Для более высокой системы электрического заземления необходимо поддерживать влажность земли вокруг системы заземляющих пластин.

Национальный электротехнический кодекс требует, чтобы заземляющие пластины имели площадь поверхности не менее 2 футов, контактирующую с окружающей почвой. Черные металлы должны иметь толщину не менее 0,20 дюйма, а цветные материалы (медь) должны быть толщиной не менее 0,060 дюйма.

Сопротивление заземлению (RTG) Плохо
Коррозионная стойкость Плохо
Повышение РИТЭГа в холодной воде Сильно затронутые
Увеличение количества РИТЭГов с течением времени РИТЭГ усиленный
Максимальное усилие электрода Среднее значение
Стоимость установки Ниже среднего
Ожидаемая продолжительность жизни Бедные 5-10 лет

Трубки и стержни заземления:

Труба из оцинкованной стали (смесь соли и древесного угля) укладывается вертикально в почву путем просверливания для подключения заземляющих проводов.Длина и диаметр трубы в основном зависит от типа почвы и электроустановки (силы тока). Влажность почвы будет определять длину трубы для укладки в землю.

Медный стержень с оцинкованной стальной трубой вставляется вертикально в землю. Это очень похоже на заземление трубы. Здесь стержни имеют форму электродов, поэтому сопротивление земли снижается до определенного значения. Национальный электротехнический кодекс (NEC) требует, чтобы длина приводных штанг была не менее 8 футов, а длина 8 футов должна находиться в непосредственном контакте с почвой.

Сопротивление заземлению (RTG) Плохо
Коррозионная стойкость Плохо
Повышение РИТЭГа в холодной воде Сильно затронутые
Увеличение количества РИТЭГов с течением времени РИТЭГ хуже
Максимальное усилие электрода Плохо
Стоимость установки Среднее значение
Ожидаемая продолжительность жизни Бедные 5-10 лет

Фактор, влияющий на установку системы заземления:

Ниже перечислены факторы, которые влияют на работу любого заземляющего электрода:

  • Материал, используемый в системе заземления
  • Заземляющий электрод (длина или глубина, диаметр, количество заземляющих электродов)
  • Почва (тип, влажность, температура, удельное сопротивление, количество соли)
  • Проектирование наземной системы
  • Расположение котлована

Важность заземления электрических токов:

Защита от перегрузки:

На электрическом рабочем месте, когда по какой-либо причине происходит чрезмерный скачок напряжения, в системе вырабатывается электричество высокого напряжения, вызывающее поражение электрическим током и пожар.В этом сценарии значительно помогает заземленная система, вся эта избыточная электроэнергия уходит в землю. Эта простая форма защиты от перенапряжения потенциально может спасти рабочих, электрические приборы, данные и устройства, а не повредить все, что подключено к электрической системе.

Стабилизация напряжения:

Заземленная система гарантирует, что цепи не будут перегружены и не будут работать, за счет распределения нужного количества мощности между источниками напряжения. Земля обеспечивает общую точку отсчета для стабилизации напряжения.

Защита от поражения электрическим током:

Общие риски незаземленной электрической системы – это серьезное поражение электрическим током или возгорание. В худшем случае незаземленная система вызывает возгорание, повреждение оборудования, потерю данных и травмы или смерть персонала. Система с заземлением обеспечивает бесчисленные преимущества, устраняет опасность поражения электрическим током, защищает оборудование от напряжения, предотвращает электрические пожары, снижает затраты на ремонт и время простоя оборудования, снижает уровень электрического шума (колебания электрического сигнала).

Советы по безопасности при электрическом заземлении:

В электрической системе поддержание заземления должно быть приоритетом для безопасности. Чтобы обеспечить безопасность сотрудников и рабочих мест, повсюду соблюдаются меры предосторожности. Некоторые советы по безопасности упомянуты ниже:

  • Перед тем, как начать, ознакомьтесь с правилами электробезопасности (см. OSHA 29 CFR 1910.269 (a) (3) и .269 (c))
  • Заземление следует устанавливать первым и снимать последним при удалении заземления (OSHA 29CFR 1910.269 ​​(п) (6)).
  • Убедитесь, что рабочее место электрооборудования оборудовано датчиками напряжения, токоизмерительными клещами и тестерами розеток.
  • Используйте устройство защиты от перенапряжения для отключения электропитания на рабочем месте при возникновении неисправности, устройства защиты кабеля для пола для предотвращения срабатывания на рабочем месте и прерыватели цепи замыкания на землю для всех розеток для предотвращения поражения электрическим током.
  • Выберите правильное оборудование при заземлении электрической системы. Помните, что ваше оборудование настолько сильное, насколько самое слабое в системе.
  • Убедитесь, что рабочие знают, как правильно использовать каждый инструмент, особенно при постоянном электрическом токе.
  • Используйте автоматический выключатель или предохранитель с соответствующим номинальным током.
  • Регулярная чистка наземных комплектов продлевает срок их службы и продлевает их безопасность.
  • Никогда не используйте оборудование с изношенными шнурами, поврежденной изоляцией или сломанными вилками.
  • Осматривайте, обслуживайте и организуйте ремонт проводов в местах, где они входят в металлическую трубу, в прибор или в местах, где кабели, проложенные в стене, входят в электрическую коробку.

ВЫВОД:

Система электрического заземления обеспечивает безопасность персонала и оборудования при работе на линии. Помните, что обесточенная линия просто активируется в мгновение ока, поэтому электрическая система должна быть надежно заземлена в любое время.

Проверенный опыт нашей команды сертифицированных профессиональных инженеров поможет в оценке вашей системы и предоставит современные решения по заземлению для защиты вашей энергосистемы.Мы тесно сотрудничаем с нашими клиентами в сборе данных, моделировании системы, моделировании наихудших условий и отклонений, построении ступенчатого и контактного потенциалов и предоставлении рекомендаций в соответствии с последними промышленными стандартами.

Если у вас остались вопросы о системах заземления или наших услугах, оставьте их в комментариях ниже, и мы поможем вам ответить.


  • Об авторе

    Абдур Рехман – профессиональный инженер-электрик с более чем восьмилетним опытом работы с оборудованием от 208 В до 115 кВ как в коммунальных, так и в промышленных и коммерческих помещениях.Особое внимание он уделяет вопросам защиты энергосистем и инженерным исследованиям.

Электрическое заземление – методы и типы заземления

Электрическое заземление – компоненты, методы и типы заземления – Установка электрического заземления

Электрическое заземление, заземление, методы заземления, типы заземления, компоненты заземления и их характеристики Что касается электрического заземления для электрических установок.

Что такое электрическое заземление или заземление?


Для соединения металлических (проводящих) частей электрического прибора или установок с землей (землей) называется Заземление или Заземление .

Другими словами, соединение металлических частей электрических машин и устройств с пластиной заземления или заземляющим электродом (который находится во влажной земле) через толстый проводящий провод (который имеет очень низкое сопротивление) в целях безопасности известен как Заземление .

«Заземление» или «заземление», скорее, означает подключение части электрического оборудования, такой как металлическое покрытие, клемма заземления соединительных кабелей, опорные провода, которые не проводят ток на землю. Заземление можно назвать соединением нейтральной точки системы электроснабжения с землей, чтобы избежать или минимизировать опасность при разряде электрической энергии.

Полезно знать

Разница между заземлением, заземлением и соединением

Позвольте мне устранить путаницу между заземлением, заземлением и соединением.

Заземление и Заземление – это те же термины, которые используются для заземления. Заземление – это обычно слово , используемое для заземления в стандартах Северной Америки , таких как IEEE, NEC, ANSI и UL и т. Д., В то время как Заземление используется в европейских стандартах , странах Содружества и Великобритании, таких как IS и IEC и т. Д.

Слово Bonding используется для соединения двух проводов (а также проводов, труб или приборов вместе.Соединение известно как соединение металлических частей различных машин, которые не считаются проводящими электрический ток во время нормальной работы машин, чтобы привести их к одинаковому уровню электрического потенциала.

Почему важно заземление?

Основная цель заземления состоит в том, чтобы избежать или свести к минимуму опасность поражения электрическим током, пожара из-за утечки тока на землю по нежелательному пути и гарантировать, что потенциал токоведущего проводника не поднимется относительно земли, чем это предусмотрено. изоляция.

Когда металлическая часть электроприборов (части, которые могут проводить или пропускать электрический ток) вступает в контакт с токоведущим проводом, возможно, из-за неисправности установки или повреждения изоляции кабеля, металл заряжается и статический заряд накапливается на это . Если человек прикоснется к такому заряженному металлу , получится сильный шок.

Чтобы избежать таких случаев, системы электропитания и части приборов должны быть заземлены, чтобы переносить заряд непосредственно на землю. Вот почему нам необходимо электрическое заземление или заземление в электрических установках.

Ниже приведены основные потребности заземления.

  • Для защиты жизни людей, а также для обеспечения безопасности электрических устройств и приборов от тока утечки.
  • Для поддержания постоянного напряжения в исправной фазе (при отказе в какой-либо одной фазе).
  • Для защиты электрических систем и зданий от освещения.
  • Для выполнения функции обратного проводника в системе электрической тяги и связи.
  • Чтобы избежать риска возгорания в электрических установках.
Различные термины, используемые в электрическом заземлении
  • Земля: Надлежащее соединение между электрическими установками через проводник с заглубленной пластиной в земле известно как Земля.
  • Заземленный: Когда электрическое устройство, прибор или системы проводки подключены к земле через заземляющий электрод, это называется заземленным устройством или просто «заземленным».
  • С твердым заземлением: Когда электрическое устройство, прибор или электрическая установка подключены к заземляющему электроду без предохранителя, прерывателя цепи или сопротивления / импеданса, это называется «глухозаземленным».
  • Электрод заземления: Когда проводник (или токопроводящая пластина) закопан в землю для системы электрического заземления. Известно, что это электрод земли. Заземляющие электроды бывают различной формы, например, токопроводящая пластина, токопроводящий стержень, металлическая водопроводная труба или любой другой проводник с низким сопротивлением.
  • Провод заземления : Провод заземления или проводящая полоса, соединяющая электрод заземления и электрическую систему и устройства, называемые проводом заземления.
  • Провод заземления: Проводник, который подключается между различными электрическими устройствами и приборами, такими как распределительный щит, различные вилки и приборы и т. Д. Другими словами, провод между заземляющим проводом и электрическим устройством или прибором называется непрерывностью заземления. дирижер.Он может иметь форму металлической трубы (полностью или частично), металлической оболочки кабеля или гибкого провода.
  • Дополнительный основной заземляющий провод : Провод, подключенный между распределительным щитом и распределительным щитом, то есть этот провод относится к вспомогательным основным цепям.
  • Сопротивление заземления: Это полное сопротивление между заземляющим электродом и землей в Ом (Ом). Сопротивление заземления – это алгебраическая сумма сопротивлений проводника заземления, провода заземления, заземляющего электрода и земли.
Точки для заземления

Заземление в любом случае не выполняется. Согласно правилам IE и нормам IEE (Института инженеров-электриков),

  • Штырь заземления 3-контактных розеток осветительных вилок и 4-контактных вилок питания должен быть надежно и надежно заземлен.
  • Все металлические корпуса или металлические покрытия, содержащие или защищающие любые линии электропитания или устройства, такие как трубы GI и кабелепроводы, содержащие кабели VIR или ПВХ, выключатели в железной оболочке, распределительные щиты с предохранителями и т. Д., Должны быть заземлены (заземлены).
  • Рама каждого генератора, стационарных двигателей и металлических частей всех трансформаторов, используемых для управления энергией, должна быть заземлена двумя отдельными, но разными соединениями с землей.
  • В трехпроводной системе постоянного тока средние проводники должны быть заземлены на электростанции.
  • Опорные провода, предназначенные для воздушных линий, должны быть заземлены путем подсоединения хотя бы одной жилы к заземляющим проводам.

Связанное сообщение: Тестирование электрических и электронных компонентов и устройств с помощью мультиметра

Компоненты системы заземления

Полная система электрического заземления состоит из следующих основных компонентов.

  • Проводник непрерывности заземления
  • Провод заземления
  • Электрод заземления
Компоненты системы электрического заземления
Проводник непрерывности заземления Система заземления

часть системы заземления

который соединяет металлические части электроустановки в целом, например кабелепровод, каналы, коробки, металлические корпуса переключателей, распределительных щитов, переключателей, предохранителей, регулирующие и управляющие устройства, металлические части электрических машин, такие как двигатели, генераторы, трансформаторы и металлический каркас, на котором установлены электрические устройства и компоненты. как заземляющий провод или провод заземления, как показано на рис.

Сопротивление заземляющего проводника очень низкое. Согласно правилам IEEE, сопротивление между клеммой заземления потребителя и проводом непрерывности заземления (на конце) не должно превышать 1 Ом. Проще говоря, сопротивление заземляющего провода должно быть меньше 1 Ом .

Размер заземляющего проводника или провода заземления зависит от размера кабеля , используемого в электрической цепи .

Размер заземляющего проводника

Площадь поперечного сечения непрерывного заземляющего проводника не должна быть меньше половины площади поперечного сечения самого толстого провода, используемого в установке электропроводки .

Обычно размер неизолированного медного провода, используемого в качестве проводника заземления, составляет 3SWG. Но имейте в виду, что не используйте менее 14SWG в качестве заземляющего провода. Медная полоса также может использоваться в качестве заземляющего проводника вместо неизолированного медного провода, но не используйте ее, пока производитель не порекомендует ее.

Провод заземления или заземляющее соединение

Проводник, соединяющий провод заземления и заземляющий электрод или пластину заземления, называется заземляющим стыком или «заземляющим проводом».Точка, где встречаются проводник непрерывного заземления и заземляющий электрод, известна как «точка соединения», как показано на рисунке выше.

Провод заземления – это последняя часть системы заземления, которая подключается к заземляющему электроду (который находится под землей) через точку заземления.

В заземляющем проводе должно быть минимальное количество стыков, а также они должны быть меньше по размеру и прямые по направлению.

Как правило, медный провод можно использовать в качестве заземляющего провода, но медная полоса также используется для установки на больших площадях, и она может выдерживать высокий ток короткого замыкания из-за большей площади, чем у медного провода.

Жестко вытянутый неизолированный медный провод также используется в качестве заземляющего провода. В этом методе все заземляющие проводники подключаются к общим (одной или нескольким) точкам подключения, а затем заземляющий провод используется для подключения заземляющего электрода (заземляющей пластины) к точке подключения.

Для увеличения запаса прочности при установке в качестве заземляющего провода используются два медных провода для соединения металлического корпуса устройства с заземляющим электродом или пластиной заземления. Т.е. если мы используем два заземляющих электрода или заземляющие пластины, то будет четыре заземляющих провода.Не следует учитывать, что два заземляющих провода используются как параллельные пути для протекания токов короткого замыкания, но оба пути должны работать должным образом, чтобы пропускать ток замыкания, поскольку это важно для большей безопасности.

Размер провода заземления

Размер или площадь провода заземления не должны быть меньше половины самого толстого провода, используемого в установке.

Наибольший размер провода заземления – 3SWG , минимальный – не менее 8SWG .Если используется провод 37 / .083 или ток нагрузки составляет 200A от напряжения питания, то рекомендуется использовать медную ленту вместо двойного заземляющего провода. Способы подключения заземляющего провода показаны на рис.

Примечание: мы опубликуем дополнительную статью о размере Земной плиты с простыми вычислениями… Следите за новостями.

Электрод заземления или пластина заземления

Металлический электрод или пластина, закапываемая в землю (под землей) и являющаяся последней частью системы электрического заземления.Проще говоря, последняя подземная металлическая (пластинчатая) часть системы заземления, которая связана с заземляющим проводом, называется заземляющей пластиной или заземляющим электродом.

В качестве заземляющего электрода можно использовать металлическую пластину, трубу или стержень, который имеет очень низкое сопротивление и безопасно переносит ток короткого замыкания на землю.

Размер заземляющего электрода

В качестве заземляющего электрода можно использовать как медь, так и железо.

Размер заземляющего электрода (в случае меди)

2 × 2 (два фута шириной и длиной) и толщиной 1/8 дюйма.. Т.е. 2 ’x 2’ x 1/8 ″ . ( 600x600x300 мм )

В случае железа

2 ′ x2 ′ x ¼ ” = 600x600x6 мм

Рекомендуется закапывать заземляющий электрод во влажную землю. Если это невозможно, налейте воду в трубу GI (оцинкованное железо), чтобы обеспечить влажность.

В системе заземления установите заземляющий электрод в вертикальное положение (под землей), как показано на рис. Кроме того, нанесите слой порошкообразного угля и извести толщиной футов (около 30 см) вокруг пластины заземления (не путайте с электродом заземления и пластиной заземления, поскольку они оба являются одним и тем же).

Это действие позволяет увеличить размер заземляющего электрода, что обеспечивает лучшую непрерывность заземления (система заземления), а также помогает поддерживать влажность вокруг пластины заземления.

P.S: Мы опубликуем пример расчета размеров заземляющих электродов… Оставайтесь на связи.

Полезно знать:

Не используйте кокс (после сжигания угля в печи для выделения всех газов и других компонентов оставшиеся 88% углерода называют коксом) или каменный уголь вместо древесного угля (древесный уголь), потому что это вызывает коррозию пластины заземления.

Так как уровень воды в разных районах разный; поэтому глубина установки заземляющего электрода также различается в разных областях. Но глубина для установки заземляющего электрода не должна быть меньше 10 футов (3 метра) и должна быть ниже 1 фут ( 304,8 мм ) от постоянного уровня воды.

Двигатели , Генератор , Трансформаторы и т. Д. Должны быть подключены к заземляющему электроду в двух разных местах.

Размер заземляющей пластины или электрода заземления для небольшой установки

При небольшой установке используйте металлический стержень (диаметр = 25 мм (1 дюйм) и длина = 2 м (6 футов) вместо пластины заземления для системы заземления. На 2 метра ниже поверхности земли. Для поддержания влажности поместите 25 мм (1 дюйм) смесь угля и извести вокруг пластины заземления.

Для эффективности и удобства вы можете использовать медные стержни от 12,5 мм (0,5 дюйма) до 25 мм. (1 дюйм) в диаметре и 4 м (12 футов) в длину.Обсудим способ установки стержневого заземления.

Методы и типы электрического заземления

Заземление может быть выполнено разными способами. Ниже описаны различные методы, применяемые для заземления (в домашней проводке или на заводе и другом подключенном электрическом оборудовании и машинах).

Пластинчатое заземление:

В системе пластинчатого заземления пластина из меди с размерами 60 см x 60 см x 3,18 мм (т.е. 2 фута x 2 фута x 1/8 дюйма ) или оцинкованного железа (GI) размером 60 см x 60 см x 6,35 мм (2 фута x 2 фута x дюйма) закапывают вертикально в землю (земляная яма), высота которой не должна быть меньше 3 м. (10 футов) от уровня земли.

Для правильной системы заземления выполните шаги, указанные выше в (Введение в заземляющую пластину), чтобы поддерживать влажность вокруг заземляющего электрода или пластины заземления.

Заземление трубы:

Гальванизированная сталь и перфорированная труба утвержденной длины и диаметра помещаются вертикально во влажную почву в такой системе заземления.Это самая распространенная система заземления.

Размер используемой трубы зависит от силы тока и типа почвы. Размер трубы обычно составляет 40 мм (1,5 дюйма) в диаметре и 2,75 м (9 футов) в длину для обычной почвы или больше для сухой и каменистой почвы. Влажность почвы будет определять длину трубы, которую предстоит заглубить, но обычно она должна составлять 4,75 м (15,5 фута).

Стержневое заземление

это тот же метод, что и заземление труб. Медный стержень 12.Диаметр 5 мм (1/2 дюйма) или 16 мм (0,6 дюйма) из оцинкованной стали или полого сечения 25 мм (1 дюйм) трубы GI длиной более 2,5 м (8,2 фута) закапывают в землю в вертикальном положении вручную или с помощью пневматический молот. Длина электродов, встроенных в почву, снижает сопротивление земли до желаемого значения.

Система заземления с медным стержневым электродом
Заземление через Waterman

В этом методе заземления трубы водяного (оцинкованного GI) используются для заземления.Обязательно проверьте сопротивление труб GI и используйте зажимы заземления, чтобы минимизировать сопротивление для правильного заземления.

Если в качестве заземляющего провода используется многожильный провод, очистите концы жил провода и убедитесь, что он находится в прямом и параллельном положении, которое затем можно плотно подсоединить к трубе водяного коллектора.

Заземление из ленты или проволоки:

В этом методе заземления зачищайте электроды с поперечным сечением не менее 25 мм x 1.6 мм (1 дюйм x 0,06 дюйма) закапывают в горизонтальные траншеи минимальной глубиной 0,5 м. Если используется медь с поперечным сечением 25 мм x 4 мм (1 дюйм x 0,15 дюйма) и размером 3,0 мм, 2 , если это оцинкованное железо или сталь.

Если используются круглые проводники, их поперечное сечение не должно быть слишком маленьким, скажем, менее 6,0 мм. 2 , если это оцинкованный чугун или сталь. Длина проводника, закопанного в землю, обеспечит достаточное сопротивление заземления, и эта длина не должна быть менее 15 м.

Общий метод установки электрического заземления (шаг за шагом)

Обычный метод заземления электрического оборудования, устройств и приборов следующий:

  1. Прежде всего, выройте яму размером 5×5 футов (1,5 × 1,5 м) около 20-30 футов (6-9 метров) в земле. (Обратите внимание, что глубина и ширина зависят от характера и структуры грунта.)
  2. Закопайте подходящую медную пластину (обычно 2 x 2 x 1/8 дюйма (600 x 600 x 300 мм) в этой яме в вертикальном положении.
  3. Надежный заземляющий провод через гайки с двух разных мест на пластине заземления.
  4. Используйте два провода заземления с каждой пластиной заземления (в случае двух пластин заземления) и закрепите их.
  5. Для защиты стыков от коррозии нанесите смазку вокруг них.
  6. Соберите все провода в металлическую трубу от заземляющего электрода (ов). Убедитесь, что труба находится на высоте 1 фута (30 см) над поверхностью земли.
  7. Чтобы поддерживать влажность вокруг земной плиты, поместите 30-сантиметровый слой порошкообразного древесного угля (порошкообразного древесного угля) и смеси извести вокруг земной плиты вокруг земной плиты.
  8. Используйте болты с наконечником и гайкой, чтобы надежно подсоединить провода к опорным плитам машин. Каждая машина должна быть заземлена в двух разных местах. Минимальное расстояние между двумя заземляющими электродами должно составлять 10 футов (3 м).
  9. Провод заземления, который соединяется с корпусом и металлическими частями всей установки, должен быть плотно подключен к заземляющему проводу. Обязательно используйте непрерывность, используя тест на непрерывность.
  10. Наконец (но не в последнюю очередь) проверьте всю систему заземления с помощью тестера заземления.Если все идет по планировке, то яму засыпьте землей. Максимально допустимое сопротивление заземления составляет 1 Ом. Если оно больше 1 Ом, увеличьте размер (не длину) заземляющего провода и проводов заземления. Держите внешние концы труб открытыми и время от времени поливайте воду, чтобы поддерживать влажность вокруг заземляющего электрода, что важно для лучшей системы заземления.
Спецификация SI для заземления

Ниже приведены различные спецификации относительно заземления, рекомендованные индийскими стандартами.Вот несколько;

  • Заземляющий электрод не должен располагаться (устанавливаться) близко к зданию, система заземления которого заземляется, на расстоянии не менее 1,5 м.
  • Сопротивление заземления должно быть достаточно низким, чтобы протекание тока было достаточным для срабатывания защитных реле или срабатывания предохранителей. Это значение не является постоянным, так как оно меняется в зависимости от погоды, поскольку оно зависит от влажности (но не должно быть меньше 1 Ом).
  • Заземляющий провод и заземляющий электрод будут из одного материала.
  • Заземляющий электрод всегда следует размещать в вертикальном положении внутри земли или ямы, чтобы он мог контактировать со всеми различными слоями земли.

Связанные сообщения:

Опасности незаземления системы электроснабжения

Как подчеркивалось ранее, заземление предоставляется в порядке

  • Во избежание поражения электрическим током
  • Во избежание риска пожара в результате тока утечки на землю через нежелательный путь и
  • Чтобы гарантировать, что ни один из проводников с током не поднимется до потенциала по отношению к общей массе земли, чем его проектная изоляция.

Однако, если чрезмерный ток не заземлен, приборы будут повреждены без помощи предохранителя. Обратите внимание, что на их генерирующих станциях происходит заземление чрезмерного тока, поэтому заземляющие провода несут очень небольшой ток или совсем не пропускают ток. Следовательно, это означает, что нет необходимости заземлять какой-либо из проводов (токоведущих, заземляющих и нулевых), содержащихся в ПВХ. Заземлить провод под напряжением – катастрофа.

Я видел человека, убитого просто потому, что провод под напряжением был отрезан от верхней опоры и упал на землю, пока земля была влажной.Чрезмерный ток заземляется на генерирующих станциях, и если заземление вообще неэффективно из-за короткого замыкания, на помощь придут прерыватели замыкания на землю. Предохранитель помогает только тогда, когда передаваемая мощность превышает номинальную мощность наших приборов, он блокирует ток от достижения наших приборов, сгорая и защищая наши приборы в процессе.

В наших электроприборах, если чрезмерные токи не заземлены, мы испытаем сильный ток. Заземление в электроприборах происходит только тогда, когда возникает проблема, и оно должно спасти нас от опасности.Если в электронной установке металлическая часть электроприбора вступает в прямой контакт с проводом под напряжением, что может быть вызвано, возможно, неисправностью установки или иным образом, металл будет заряжен, и на нем будет накапливаться статический заряд.

Если вы случайно прикоснетесь к металлической части в этот момент, вы попадете под удар. Но если металлическая часть прибора заземлена, заряд будет передаваться на землю, а не накапливаться на металлической части прибора. Ток не течет через заземляющие провода в электроприборах, он протекает только тогда, когда есть проблема, и только для того, чтобы направить нежелательный ток на землю, чтобы защитить нас от сильного удара.

Кроме того, если токоведущий провод случайно (в неисправной системе) касается металлической части машины. Теперь, если человек коснется этой металлической части машины, то через его тело будет протекать ток на землю, следовательно, он получит удар током (удар током), что может привести к серьезным травмам, вплоть до смерти. Вот почему так важно заземление?

Электрическое заземление … Продолжение следует …

Пожалуйста, подпишитесь ниже, если вы хотите получить следующий пост о Заземление / заземление , например:

  • Рассчитайте размер заземляющего проводника, заземления Свинцовые и заземляющие электроды для различных электрических устройств и оборудования, таких как двигатели, трансформаторы, домашняя электропроводка и т. Д., Путем простых вычислений
  • Цепь заземления и ток замыкания на землю
  • Защита системы заземления и дополнительных устройств, используемых в системе заземления / заземления
  • О чем следует помнить при обеспечении заземления
  • Важные инструкции по правильной системе заземления
  • Правила электроснабжения относительно заземления
  • Как проверить сопротивление заземления с помощью тестера заземления
  • Как проверить сопротивление контура заземления с помощью амперметра и вольтметра
  • Многократное защитное заземление
  • И многое другое….

Связанные сообщения:

Типы электрического заземления и их значение

Первоначально планировалось написать о другой теме.

Но после некоторых размышлений и размышлений мне пришло в голову, что информации об электрическом заземлении и заземлении очень мало.

Если вы электрик, надеюсь, вы знакомы с заземлением в домах и зданиях (заземление). Но существуют разные типы оснований, и энтузиастам электроники, не ориентированным на строительство, доступно не так много информации.

Кажется, что даже многие инженерные тексты полностью игнорируют эту тему и не дают какого-либо практического объяснения или значения термина «основание».

Что еще хуже, энтузиасты электроники часто путают и неправильно меняют символы для разных типов электрического заземления.

Например, вы можете подумать, что у вашего автомобиля есть «земля». На самом деле ваша машина стоит на четырех изоляторах и никак не связана электрически с Землей.

Так что все это значит? Давайте подробнее рассмотрим типы электрического заземления и то, что на самом деле означает термин «заземление».

Электрическое заземление 101

Технически термин «земля» относится к физическому соединению с Землей. Этот символ показан в части (а) рисунка ниже. Слишком часто этот символ появляется на цепях, которые вообще не связаны с Землей.

Это тот, с которым знакомы многие электрики. В вашем доме в Землю вбивают один (или, может быть, больше) стержней с медным покрытием высотой 8 футов. Вы часто найдете это возле счетчика на улице.Медный провод соединяет заземляющий стержень с главной распределительной коробкой (или панелью).

Этот символ находится на схеме электропроводки вашего дома. Он также может быть нанесен на схематическую диаграмму для обозначения заземления антенной системы. Вы также можете заметить, что ваша телефонная и / или кабельная компания также использует этот стержень в качестве заземления для своих систем.

Почему это работает?

Земля представляет собой чрезвычайно большую проводящую массу, в которой практически нулевое сопротивление между любыми двумя точками.Думайте об этом как о гигантском резервуаре заряда. Поскольку он электрически нейтрален, по всей его массе распределено равное количество положительных и отрицательных зарядов. Из-за этого Земля находится под нулевым потенциалом.

Согласно Национальному электротехническому кодексу сопротивление между этим стержнем и землей должно быть не более 25 Ом.

Еще одним популярным местом электрического заземления в зданиях является труба холодной воды, поскольку труба, по которой вода подается в ваш дом, скорее всего, зарыта в землю и является проводящей.

Не планируете напрямую подключать свой последний проект микроконтроллера к Земле?

Нет проблем.

Я уже упоминал о том, что существует более одного типа земли. Как энтузиаст электроники, вы, вероятно, встретите три разных типа основания, каждое из которых имеет разное значение и схематические символы.

Электрическое заземление: Заземление шасси

На рисунке выше часть (b) изображает заземление шасси. Это правильный символ для обозначения вашего автомобиля.Он также может указывать на такие вещи, как рама самолета или металлический ящик, в который вы собираетесь заключить свой проект.

В вашем автомобиле отрицательная клемма аккумулятора подключается к раме и / или блоку двигателя. Таким образом, весь металлический корпус автомобиля, который находится под одним и тем же потенциалом (надеюсь) ноль вольт, является электрической точкой отсчета (также известной как земля или, точнее, заземление шасси).

В вашем виджете, который находится в металлической коробке, это обычно делается с помощью кольцевого зажима и винта.

Обратите внимание, что если ваше творение работает от батарей, вам может даже не понадобиться заземление шасси.

Мы все раньше помещали наши проекты в пластиковые коробки, что подводит нас к следующему и наиболее распространенному типу «земли».

Электрическое заземление: общая цепь

В части (c) рисунка выше изображен символ общей цепи. На самом деле это просто общая точка отсчета в данной цепи. Это символ, который вы должны использовать чаще всего, а не два других для большинства ваших проектов.На печатных платах это часто слой медной фольги большой площади (также известный как заземляющий слой) платы.

Иногда внутри треугольника вы видите букву, обозначающую различные типы возвратов (например, общий сигнал).

Это связано с тем, что состояние, известное как контур заземления (технически общий контур), может возникнуть, когда общие ресурсы распределяются между, скажем, питанием и сигналом.

Так почему же этот тип «земли» технически называют обычным?

Станьте Создателем, которым вы были рождены.Попробуйте Arduino Academy БЕСПЛАТНО!

Когда мы измеряем напряжение, мы всегда измеряем его относительно другой точки. Например, когда мы измеряем падение напряжения на резисторе, мы измеряем напряжение на одном узле по отношению к другому узлу, при этом резистор находится между двумя узлами. Это пример измерения падения напряжения на резисторе.

Сказать, что мы измеряем напряжение в определенной точке, не имеет смысла, поскольку напряжение – это разность потенциалов, и наличие любой разницы подразумевает, что нужно сравнивать две вещи.Скорее, если кто-то попросит вас измерить напряжение в точке A цепи, они будут иметь в виду точку A относительно общей цепи.

Для всех супер-ботаников формальное научное определение напряжения – это уравнение, приведенное ниже.

V ba = – ∫ E d l

Где интеграл от точки a до точки b, E – электрическое поле, а d l – бесконечно малое приращение смещение.

В этом уравнении используется исчисление, и вы, возможно, знакомы, если изучали инженерное дело.Типичному энтузиасту не следует беспокоиться об этом, хотя вы можете свободно исследовать, если такие вещи вас интересуют.

Часто вы обнаруживаете, что измеряете напряжение относительно «земли» или общей точки цепи. Это связано с тем, что в этой точке должен быть нулевой потенциал или 0 В. Исключение составляет измерение напряжения на одном резисторе в цепи резисторов.

Запутались? Взгляните на схему ниже.

На этом рисунке точка C обычно является общей схемой.Обратите внимание, как точка C подключается к отрицательной клемме батареи 18 В. При измерении напряжения вы обычно помещаете отрицательный щуп вольтметра на общий провод цепи.

Резисторы R 1 и R 2 представляют собой «сеть», поэтому, если мне нужно только напряжение на R 1 , точка B станет моей точкой отсчета, а не точкой C.

Почему?

Поскольку точка B имеет более низкий потенциал, чем точка A. Иными словами, точка B более отрицательна, чем точка A.Конечно, у резисторов нет полярности. Символы + и – служат для обозначения падения напряжения и наличия разности потенциалов между точками A и B.

Если бы мы поместили отрицательный датчик в точку B, а положительный – в точку C, чтобы измерить напряжение через R 2 мы получим -12 В, показанное пунктирной стрелкой. Если бы мы измерили напряжение на R 2 обычным способом (с точкой C в качестве эталона), мы бы получили +12 В, как показано сплошной стрелкой.

Обратите внимание, что абсолютное значение напряжений одинаково независимо от того, как мы ориентируем наши измерительные щупы.

Конечно, если бы мы измерили напряжение на обоих резисторах, мы получили бы полные 18 В (или -18 В, если бы щупы были перевернуты).

Uncommon Commons

До сих пор общий контур цепи был связан с наиболее отрицательной частью цепи, обычно с отрицательной клеммой аккумулятора или источника питания.

На самом деле общая схема может быть где угодно.Изображение ниже из 4 -го выпуска Практической электроники для изобретателей иллюстрирует эту концепцию (хотя символ заземления технически неверен).

Взгляните на три терминала на каждом рисунке. В первой части рисунка, как и ожидалось, общая цепь подключена к отрицательной клемме нижней батареи. Каждая отдельная батарея подает 1,5 В, а обе последовательно подают 3 В.

Однако общее на втором рисунке теперь находится между двумя батареями.Обратите внимание, что каждая батарея по-прежнему имеет 1,5 В, но вместо 1,5 В и 3 В, как на первом рисунке, мы получаем +1,5 В и -1,5 В. Подключение батареи такое же, так почему это возможно?

Просто потому, что общая или контрольная точка находится в другой области. Помните, что когда вы измеряете напряжение, вы измеряете разность потенциалов между двумя точками. Часто одна из двух точек является общей схемой. Если общая точка перемещается, напряжение может быть другим, даже если схема такая же!

Чаще всего вы будете работать со схемами, подобными первой картинке.

Но раздельные источники питания (как на втором рисунке) довольно часто встречаются в аудио и других типах схем, где синусоидальные сигналы колеблются между отрицательным и положительным напряжениями (относительно 0 В, конечно).

И последнее, что следует отметить, это то, что общая разность потенциалов в обеих цепях составляет 3 В, независимо от того, где находится ссылка. В конце концов, только две батареи на 1,5 В способны обеспечить максимальную разницу только в 3 В.

Заземление в целях безопасности

Прежде чем мы закончим, нам нужно еще раз взглянуть на землю.

Заземление не только служит ориентиром, но и защищает вас от поражения электрическим током.

Как?

В качестве примера предположим, что горячая проволока внутри сушилки каким-то образом входит в контакт с внутренней частью металлического корпуса сушилки. Без заземления прикосновение к сушильной машине может вызвать шок или даже смерть.

Однако, поскольку корпус сушилки подключается к заземлению, ток уходит, спасая вашу жизнь и, вероятно, отключая прерыватель из-за короткого замыкания.Фактически, короткое замыкание на землю обычно вызывает срабатывание выключателя в момент его возникновения.

Заземление также помогает от электростатического разряда. Итак, когда вы прогуливаетесь по ковру, заряд на вашем теле (который может составлять десятки тысяч вольт) уходит на землю, а не сжигает микросхемы в вашем гаджете.

Вы еще не заземлены?

Заземление для многих может быть сложной и загадочной темой. Слишком часто книги, образовательные курсы и учебные пособия либо быстро замалчивают это (если они вообще охватывают), либо плохо объясняют его.

Надеюсь, этот пост устранил некоторые тайны, связанные с электрическим заземлением (подразумевается рифма).

Как и в большинстве случаев в электронике, о заземлении можно сказать гораздо больше. Возможно, в следующих статьях мы вернемся к этой теме.

А пока прокомментируйте и расскажите, какие у вас самые большие вопросы по заземлению. Таким образом, у меня есть идеи, о чем писать!

Станьте Создателем, которым вы были рождены. Попробуйте Arduino Academy БЕСПЛАТНО!

5 способов заземления печатных плат и 6 типов заземления в цепях

Что такое заземление? Провод заземления или цепь заземления – это путь возврата тока к электрическому или электронному источнику питания.В цепи он действует как эталон или плоскость 0 В. Обычно все остальные напряжения измеряются относительно земли. Объем заземления не ограничивается только текущим обратным путем. В электроэнергетических системах правильное заземление важно для защиты людей и имущества. А печатная плата (PCB), имеющая заземляющий слой, блокирует электромагнитные помехи (EMI) и улучшает рассеивание тепла в электронике. Для правильной работы систем молниезащиты и защиты от перенапряжения необходимо надлежащее заземление.

Способы заземления могут различаться в зависимости от области применения, местоположения и даже страны. Здесь мы собираемся обсудить методы заземления, используемые в электронной и электротехнической промышленности, а также все основные типы заземления.

Какие методы используются для заземления печатных плат?

Существует несколько методов заземления на печатных платах. Эти методы различаются в зависимости от схемы и практики проектирования инженеров печатных плат.

  • Метод первый: следы земли

Все компоненты, которые подключаются к земле, соединены вместе с помощью общих проводов. Это часто встречается в старых и простых печатных платах.

  • Метод второй: Плоскость общего заземления

Это наиболее распространенная практика при проектировании печатных плат. Свободное пространство печатной платы, не занятое дорожками или компонентами, закрывается с земли. Этот метод значительно улучшает тепловые характеристики печатной платы, а также помогает снизить электромагнитные помехи (EMI).

  • Метод третий: выделенный слой заземления

Этот метод используется в многослойных печатных платах. Компоненты подключаются к заземляющей пластине через заземляющие переходные отверстия. Встречается в плотных сложных печатных платах с 3 и более слоями.

  • Метод четвертый: Заземление систем электроснабжения

В установках энергосистемы все заземляющие соединения подключены к шине заземления. Эта шина подключается к заземляющему проводу, который соединяется с заземляющим стержнем или сеткой.

Шина заземления собирает все провода заземления всех установок в общую точку. Сопротивление заземления в этой точке должно быть ниже 5 Ом, чтобы обеспечить лучшее заземление. Для соединения шины заземления с заземляющим устройством используется провод большого сечения. (Земляной стержень и земляная сетка)

  • Метод пятый: эквипотенциальное заземление или заземление

Эквипотенциальное заземление означает, что каждый проводящий элемент в защищаемой зоне должен иметь одинаковый потенциал земли.Это достигается путем электрического соединения шасси оборудования, металлических труб и всех устройств заземления. Это гарантирует отсутствие значительной разницы потенциалов между любыми проводящими частями в зоне и предотвращает поражение электрическим током во время короткого замыкания.

Типы разных оснований

Это заземление является общим как для переменного, так и для постоянного напряжения. Это текущий обратный путь электронной схемы. Без заземления контур цепи не будет полным. На электронных схемах это заземление обозначается следующим символом.

Компоненты, которые связаны с землей (0 В), обозначаются путем подключения его контрольного контакта к вышеуказанному символу. А в реализации все клеммы, которые подключены к земле (GND), соединены вместе. Так как заземляющих соединений предостаточно. Обычно печатные платы (PCB) имеют целую плоскость, предназначенную для земли, о чем мы поговорим позже в этой статье.

Вышеупомянутый символ используется в электронике и крупных электроэнергетических системах для обозначения заземляющего соединения.На изображении ниже вы можете видеть, что большие трансформаторы привязаны к земле. Разница в том, что эти заземляющие соединения часто заземляются заземляющим стержнем или сеткой. Мы расскажем больше об этих типах заземления в разделе «Методы заземления энергосистемы».

Сигнальная земля – ​​это ссылка на любой аналоговый или цифровой сигнал, который используется в цепи. В большинстве случаев земля сигнала равна силе заземления. Но в некоторых случаях сигналы в цепи используют другое изолированное заземление для возврата сигнальных токов.Это приводит к определению отдельной земли для сигналов. Их можно найти в чувствительном оборудовании и измерительных приборах.

Этот тип заземления обычно используется в операционных усилителях. Точка виртуального заземления (узел) не подключается напрямую к пути возврата тока заземления (GND), но поддерживается в соответствии с опорным потенциалом земли. Виртуальная земля используется для анализа функциональности операционных усилителей.

При рассмотрении потенциала виртуальной земли на землю и в предположении, что операционный усилитель не потребляет ток, получается следующее соотношение.

  • Заземление для защиты от перенапряжения и молнии

Системы молниезащиты (LPS) и системы защиты от перенапряжения нуждаются в надежном заземлении для безопасного рассеивания высоких токов. Эти пути заземления имеют очень низкое сопротивление и часто привариваются к конструкционной стали здания и заземляются с помощью нескольких стержней заземления или сетки заземления. Между землей электрического источника питания и землей LPS используется эквипотенциальное соединение, чтобы избежать разницы напряжений между клеммами заземления.

  • Заземление в системе электроснабжения

Заземление в энергосистеме различается в зависимости от страны. Эти различные типы регулируются Международной электротехнической комиссией (IEC). Но в каждой стране есть свои практики и правила. Основная цель заземления в системе электроснабжения – обеспечение безопасности. Здесь мы говорим о заземлении низковольтных систем или системы распределения электроэнергии.

Эти различные схемы заземления обозначаются двухбуквенными кодами.

Первая буква указывает схему заземления источника питания. (Распределительный трансформатор)

  • T – Прямое подключение к земле
  • I – Нет прямого заземления
  • T – Прямое подключение к земле. (Обычно заземляющий стержень или сетка)
  • N – Земля питается от электросети.

Есть 3 основные категории, образованные из вышеупомянутых договоренностей. Это TT, TN и IT.

Системы

TN имеют 3 подкатегории, которые определяются расположением заземляющего проводника (PE) и нейтрального проводника.

  • TN − S – заземляющий провод и нейтраль идут как отдельные проводники и соединяются рядом с источником питания.
  • TN-C – Земля и нейтраль объединены в один провод, называемый PEN.
  • TN-C-S – Земля и нейтраль объединяются от источников питания как PEN, и когда он достигает здания потребителя, он разделяется на два отдельных проводника заземления и нейтрали.

    Плавающее заземление возникает, когда система не имеет надежного заземления. Следовательно, напряжение в заземляющих выводах и проводниках не определено. Непреднамеренное плавающее заземление считается неисправностью в системе (потенциальный разрыв системы заземления). Но есть приложения, в которых плавающий грунт используется намеренно.

    В источниках низкого напряжения и испытательных приборах изолирующие трансформаторы используются для изоляции низковольтного заземления от основной системы заземления с целью повышения безопасности.Благодаря плавающему заземлению стороны низкого напряжения, он избегает пути тока заземления от основного источника питания. Это обеспечивает электробезопасность в случае неисправности на стороне низкого напряжения.

    Ищете надежного производителя печатных плат? – PCBONLINE

    Когда вы закончите проектирование печатной платы, вы можете спросить PCBONLINE для производства вашей печатной платы. Когда они получат ваш запрос предложения, они проверит ваши файлы Gerber, чтобы избежать таких проблем, как неправильное заземление.Это бесплатно. Причины выбора PCBONLINE – это их высококачественные печатные платы и сборки, комплексные услуги по производству электроники и быстрая доставка. Вы можете получить бесплатное предложение онлайн.


    Электрооборудование – заземление | Управление охраны труда

    Заземление

    Термин «земля» относится к проводящему телу, обычно к земле. «Заземление» инструмента или электрической системы означает намеренное создание пути к земле с низким сопротивлением.При правильном выполнении ток от короткого замыкания или молнии следует по этому пути, предотвращая накопление напряжения, которое в противном случае могло бы привести к поражению электрическим током, травмам и даже смерти.

    Есть два типа оснований; оба требуются строительным стандартом OSHA:

    • Системное или служебное заземление: В этом типе заземления провод, называемый «нейтральный проводник», заземляется на трансформаторе и снова на служебном входе в здание. Это в первую очередь предназначено для защиты машин, инструментов и изоляции от повреждений.
    • Заземление оборудования: оно предназначено для повышения защиты самих рабочих. Если из-за неисправности металлический каркас инструмента оказывается под напряжением, заземление оборудования обеспечивает другой путь для прохождения тока через инструмент к земле.

    У заземления есть один недостаток: обрыв системы заземления может произойти без ведома пользователя. Использование прерывателя цепи замыкания на землю (GFCI) является одним из способов устранения недостатков заземления.

    Сводка требований к заземлению
    • Заземлите все электрические системы. [ для исключений см. 29 CFR 1926.404 (f) (1) (v)]
    • Путь к земле от цепей, оборудования и корпусов должен быть постоянным и непрерывным.
    • Заземлите все опоры и корпуса для проводов. [ для исключений см. 29 CFR 1926.404 (f) (7) (i)]
    • Заземлите все металлические корпуса для сервисного оборудования.
    • Заземлите все открытые нетоковедущие металлические части стационарного оборудования.[ для исключений см. 29 CFR 1926.404 (f) (7) (iii)]
    • Незаземленные нетоковедущие металлические части инструментов и оборудования, соединенные шнуром и вилкой. [ для исключений см. 29 CFR 1926.404 (f) (7) (iv)]
    • Заземлите металлические части следующего неэлектрического оборудования:
      • Рамы и гусеницы кранов с электроприводом.
      • Каркасы лифтов без электрического привода, к которым прикреплены электрические провода.
      • Тросы или тросы электрические подъемные электрические ручные.
      • Металлические перегородки, решетки и аналогичные металлические ограждения вокруг оборудования напряжением более 1 кВ между проводниками.
    Способы заземления оборудования
    • Заземлите все стационарное оборудование с помощью заземляющего проводника оборудования, который находится в том же кабельном канале, кабеле или шнуре, или который проходит вместе с проводниками цепи или закрывает их (за исключением только цепей постоянного тока).
    • Проводники, используемые для заземления стационарного или передвижного оборудования, включая заземляющие проводники для обеспечения непрерывности электрической цепи, должны быть способны безопасно пропускать любой ток короткого замыкания, который может быть на них наложен.
    • Электроды не должны иметь непроводящих покрытий, таких как краска или эмаль, и, если это практически возможно, должны быть заделаны ниже постоянного уровня влажности.
    • Одиночные электроды, сопротивление которых относительно земли превышает 25 Ом, должны быть усилены одним дополнительным электродом, установленным не ближе 6 футов от первого электрода.
    • Для заземления систем и цепей высокого напряжения (1000 В и выше) см. 29 CFR 1926.404 (f) (11).
    Дополнительные ресурсы

    Какие бывают типы заземления? – MVOrganizing

    Какие бывают типы заземления?

    Типы системного заземления, обычно используемые в промышленных и коммерческих энергосистемах: сплошное заземление, заземление с низким сопротивлением, заземление с высоким сопротивлением и незаземленное.

    Как происходит процесс заземления?

    Заземление – это процесс удаления избыточного заряда с объекта посредством передачи электронов между ним и другим объектом значительного размера. Когда заряженный объект заземлен, избыточный заряд уравновешивается переносом электронов между заряженным объектом и землей.

    Зачем нужно заземление?

    Заземление помогает защитить вас и ваш дом от опасностей повреждения цепей или электрических перегрузок.Когда случаются скачки напряжения, избыточное электричество, введенное в систему, может выскочить из проводки. Без электрического заземления это паразитное напряжение может вызвать возгорание, повредить приборы или шокировать окружающих.

    Какое значение имеет заземление?

    Заземляющий провод необходим для защиты и безопасности. Когда в системе накапливается избыточное электричество, и этой энергии некуда уйти, возрастает вероятность поражения электрическим током или возгорания.

    Для чего нужен выключатель заземления?

    Назначение внутреннего заземляющего выключателя – обеспечить процесс заземления распределительного устройства среднего напряжения перед снятием крышек панели и воздействием на персонал потенциально находящегося под напряжением оборудования.

    Нужен ли заземляющий провод?

    В большинстве электрических систем вы найдете провод под напряжением, нейтральный провод и заземляющий провод. Заземляющий провод не является строго необходимым для работы устройства, но это все же важная особенность. Этот провод предназначен для обеспечения прохождения электрического тока, если обычные пути недоступны.

    Что я могу использовать, если у меня нет заземляющего провода?

    Если коробка не заземлена, у вас есть два варианта: Подключить заземление к коробке.Это означало бы проложить новый провод обратно к панели (может быть голая медь, но если вы выполняете работу, может быть лучше просто проложить новый провод – 14/3 будет лучше), что может означать вскрытие гипсокартона. .

    Нет опасного провода заземления?

    Если это «короткое замыкание» происходит при отсутствии заземляющего провода, ток может найти путь к заземлению через другие компоненты здания в стене, потенциально вызывая пожар. Или, если вы прикоснетесь к вилке в неподходящий момент, ток может найти путь к заземлению через ваше тело, вызвав электрошок.

    Что делать, если у заземляющего провода нет заземления?

    Что делать, если заземляющий провод не к чему прикрепить

    1. Если у вас есть провод заземления и нет места для его крепления, поместите соединительный элемент на конец, сверните провод заземления и вставьте его обратно в электрическую распределительную коробку.
    2. ВАЖНАЯ ИНФОРМАЦИЯ: Никогда не обрезайте заземляющий провод.

    Нужно ли заземлять светодиодные светильники?

    В соответствии с электрическими правилами и здравым смыслом, ДА! все нуждается в заземлении, включая светодиоды.Тот факт, что светодиодные светильники потребляют меньше энергии, не означает, что они волшебным образом не могут иметь проблем или попадать в них.

    Что произойдет, если светодиод будет подключен наоборот?

    Светодиоды

    , будучи диодами, пропускают ток только в одном направлении. А когда нет тока, нет и света. К счастью, это также означает, что вы не можете сломать светодиод, подключив его обратной стороной. Перевернутый светодиод может препятствовать правильной работе всей схемы, блокируя прохождение тока.

    Для чего нужен желтый провод светодиодов?

    Желтый и белый справа являются горячими и нейтральными по отношению к источнику, а черный и белый слева – горячими и нейтральными по отношению к вашей осветительной арматуре.Хотя я не уверен.

    Что означает синий провод?

    Синий и желтый провода иногда используются в качестве проволоки под напряжением. Синие провода обычно используются путешественниками в трех- и четырехпозиционных переключателях.

    Какого цвета провод заземления?

    зеленый

    Подключаю ли синий провод к черному проводу?

    Обратите внимание, что синий провод подключен к черному проводу вентилятора, так что они оба могут управляться одним и тем же переключателем. Подключите синий провод потолочного вентилятора к черному проводу вентилятора и черному проводу от потолка.Это соединение позволяет питать потолочный вентилятор и осветительный комплект от одного выключателя света.

    Может ли синий провод быть заземляющим?

    Синий и желтый провода иногда используются в качестве проводов под напряжением и в качестве проводов, зеленые провода (и оголенные медные провода) являются проводами заземления, а белые и серые провода являются нейтральными. Однако все электрические провода, независимо от их функции, в какой-то момент могут пропускать электрический ток, и с ними следует обращаться с одинаковой осторожностью.

    Заземляющий провод

    – ABL Electronics Supplies, Inc.

    ЗАЗЕМЛЕНИЕ ПРОВОДА

    ABL Electronic Supplies, Inc. поставляет заземляющие провода уже 45 лет. Позвоните нам по телефону 704-784-4225 или заполните форму на этой странице, и мы свяжемся с вами, чтобы обсудить, что вы ищете.

    Вот некоторая информация о проводах заземления:

    Заземляющий провод и принцип его работы

    Заземляющий провод – это страховочный провод, который намеренно подключается к земле, как следует из названия. Провода заземления – это простой и разумный способ сделать вашу электрическую систему намного безопаснее.Когда есть избыток электричества, это может быть опасно для всех, кто находится поблизости. Лучше всего иметь заземляющий провод, чтобы избыточное электричество не причиняло вреда. В электрической цепи присутствует как положительное, так и отрицательное электричество. Связь между ними – это то, что дает прибору или любому электронному устройству возможность работать. Если что-то пойдет не так, энергия накапливается и может вызвать отключение.

    Если у вас отключилось питание, вероятно, перегорел автоматический выключатель или предохранитель. Это происходит из-за электрической неисправности.Когда автоматический выключатель отключается, это происходит из-за короткого замыкания. С помощью заземляющего провода вы можете избежать переизбытка электроэнергии, которая приведет к отключениям. Всегда важно проверять заземляющий провод, чтобы убедиться, что он правильно подключен, чтобы избежать осложнений и рисков (например, поражения электрическим током).

    Типы заземляющих проводов

    Медный заземляющий провод обычно используется в электротехнике, особенно из-за его проводимости и долговечности. В зависимости от требований приложения используется множество различных типов медных проводов.Наиболее распространенные типы заземляющих проводов включают неизолированный медный провод и медный провод калибра. Согласно требованиям национального электрического кодекса, заземляющие провода должны быть белого или серого цвета.

    Green 6 THHN – это особый тип медного провода, который используется для заземления вне помещений. Зеленый цвет представляет собой наружный провод, и он изолирован, поэтому влага не попадает внутрь и через провод. Измерительные медные заземляющие провода различаются по размеру. Чем больше номер калибра, тем меньше размер провода.

    О сечениях заземляющих проводов

    Размер заземляющего провода не влияет на работу или расход.Провода заземления предназначены для обеспечения безопасности и, следовательно, не для нормального протекания тока. Текущий поток предназначен для перехода от горячего к нейтральному. В случае неисправности заземление обеспечит путь, достаточный для перегорания предохранителя или отключения автоматического выключателя. В целом, вы можете сэкономить, используя провод меньшего размера.

    Выберите ABL Electronic Supplies, Inc. для провода заземления

    Компания ABL Electronic Supplies, Inc. предлагает широкий спектр решений для заземляющих проводов и с радостью предоставит вам руководство и рекомендации, основанные на ваших уникальных потребностях.Свяжитесь с нами сегодня, заполнив форму на этой странице, или позвонив нам по телефону 704-784-4225.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *