Как определить фазу и ноль индикаторной отверткой
Определение фазы и нуля без приборов
Бывают ситуации, когда для правильности подключения необходимо узнать какой провод фаза, а какой ноль. Например, для обеспечения нормальной работы осветительного прибора, в разрыв (через выключатель) и дет фазный провод, а нулевой прокладывается непосредственно к осветительному прибору. В настоящее время, проводка в домах и квартирах прокладывается трехжильными проводами, которые подразделяют на три вида.
Виды проводников:
- Фаза;
- Ноль;
- Заземление.
Отличить в проводке фазу от нуля представляется возможным визуально
Но для этого должно быть соблюдено одно важное условие. Проводка в доме или квартире должна быть выполнена с применением разноцветных проводников
Фазный проводник согласно правилам ГОСТ, обязательно должен маркироваться следующими цветами: черный, белый, коричневый, фиолетовый, бирюзовый, красный, серый, розовый и оранжевый.
Нулевой проводник легко найти, так как он всегда маркируется голубым цветом. Провод заземления имеет желто – зеленую расцветку.
Стоит отметить, что электрический ток, который подается к жилым секторам, является переменным, поэтому полярность подключения электроприборов не имеет значения
Правильность подключения важно только для оборудования, работающего на постоянном токе
Применение лампы накаливания
Это метод использования лампы накаливания для определения проводников соответствующего цвета в сети из 3 проводников. Этот метод предусматривает соблюдение повышенных мер безопасности.
Для применения этого метода в патрон вкручивается обычная лампа накаливания. На клеммы патрона прикручиваются провода, не имеющие на концах изоляции.
Если не имеется комплекта деталей для этого метода, можно использовать стандартную настольную лампу. В таком случае, чтобы получить результат следует попеременно, по цветам присоединять проводники к вилке.
Недостатком этого способа является то, что применив его, невозможно будет наверняка узнать какой из двух проводников фазный. То есть, таким методом, мы скорее проверяем систему на работоспособность.
А преимущество состоит в том, что с большой долей вероятности будем знать следующее: 1 провод нуль, другой провод фаза. Если при тестировании свет не горит, это указывает на отсутствие фазы в проверяемых проводниках.
Разновидности и функции отверток
Чисто внешне рассматриваемый прибор выглядит как самая простенькая отвертка. Разница будет видна в ручке. В рассматриваемой версии данного инструмента в корпусе ручки имеется резистор, соединенный с жалом, выполненным из металла. Именно оно и будет выступать проводником.
Наличие сопротивляющейся части позволяет сократить токовую силу до максимума, что дает возможность применять подобную отвертку максимально безопасно. В каркас устройства еще и встроен световой диод либо лампочка на основе неона, что подсоединяются к пятачку внешнего типа на пластине контакта, что расположена с внешней стороны прибора.
Если говорить о категориях подобных отверток, то новейшие модели, представленные на рынке, могут найти напряжение в жиле даже через глиняный, побелочный или штукатурный слой, что будет крайне удобно, ведь избавит от необходимости разбивать часть стены, чтобы добраться непосредственно до провода.
Вообще, алгоритм действия подобных инструментов в большинстве случаев одинаков. Хотя существуют различия, возникающие в зависимости от категорий, моделей и наявных функций, которые есть у той или иной модели с индикаторной функцией. Бывает так, что по своему функционалу такая отвертка индикаторного типа может заменить целый ряд довольного дорогостоящего оборудования. Например, есть решения на батарейках, что позволяют проверить целостность проводов, даже когда они обесточены, и ток по ним не идет.
Подобные варианты дадут следующие данные о цепи, что проверяется:
- присутствие звукового сигнала позволит понять, есть ли в цепи напряжение либо оно отсутствует;
- цифровое табло показывает величину напряжения, что обычно отображается в вольтах;
- использование рассматриваемой отвертки дает возможность проверить цепь постоянного и переменного тока в бытовой электротехнике;
- установить сетевую полярность;
- прозвонка электрической цепи звуковой либо световой индикацией.
Вообще, существуют две категории отверток такого типа.
С неоновой лампой. Этот вариант является распространенным и его устройство описано выше. Преимуществом такого решения будет дешевизна и простота. А недостатком является малый диапазон напряжения, с котором можно работать. Как правило, речь идет о диапазоне от 90 до 380 вольт. Да и фазный провод определить в указанном случае можно исключительно при непосредственном электроконтакте.
Благодаря наличию резистора ограничения щуп подключается к контакту с разными полярностями у диодного мостовыпрямителя. А второй контакт выводится на индикаторную рукоять, чтобы можно было прикоснуться пальцем. Малый постоянный, который возник, уходит на накопительный конденсатор. После этого активируется транзистор лавинного типа, который активирован по инверсной схеме. В финале всего этого светодиод получает пульсирующий ток. Такая отвертка может осуществить определение фазы даже при напряжении от 45 вольт. А если подключить не щуп, а маленькую антенну, то можно легко найти электрополе переменного типа.
Если говорить об области применения, то при помощи подобных отверток можно выполнять следующие типы работ:
- проверка к розеточному или выключательному контакту подключается проводник фазы;
- если розетка на удлинителе не функционирует, то можно осуществить проверку всех гнезд с применением пробника;
- осуществить проверку, куда именно подведена фаза на патроне: на основной контакт или на резьбу;
- узнать, есть ли напряжение в определенном электрическом приборе;
- проверить, насколько исправен заземлительный проводник.
Принцип действия индикаторных отверток
Для того чтобы эффективно и правильно пользоваться индикаторными отвертками, рекомендуется ознакомиться с их устройством и общими принципами работы. Несмотря на внешние различия, у каждой из них основной функцией является проверка наличия и отсутствия напряжения, определение фазы и нуля. Для этого достаточно подключиться рабочим органом к одному из контактов.
Наиболее простым устройством считается индикаторная отвертка с неоновой лампочкой. В ее конструкцию входит металлический токопроводящий стержень, на конце у которого расположено плоское жало. В схему индикаторной отвертки дополнительно включен токоограничивающий резистор и неоновая лампочка. Стальная пружина прижимает лампу к резистору.
Отвертка на светодиоде может работать и с более низким напряжением – до 45 вольт. Для нормального функционирования требуется импульсный режим, то есть, с увеличением силы тока пропорционально снижается время непрерывного горения светодиода. Кроме ограничительного резистора, в схеме имеется диодный мост, выполняющий функцию выпрямителя. Незначительное количество тока, появившееся на контактах моста, поступает к накопительному конденсатору. Далее через транзистор пульсирующий ток подается на светодиод, который начинает гореть мерцающим светом.
Принцип работы с такой отвёрткой заключается в следующем. Человеческое тело представляет собой своеобразный конденсатор с достаточной емкостью. Когда палец касается сенсора, в цепи возникают слабые электрические токи в пределах 0,5 мкА. Если жало инструмента одновременно касается фазного проводника, происходит увеличение силы тока до значения, достаточного для открытия транзистора. Далее выполняется подключение питающего элемента к светодиоду, который начинает излучать свет.
Показатель напряжения срабатывания составляет около 50 вольт. Порог чувствительности удается снизить за счет использования собственных источников питания. Это дает возможность отличить ложные срабатывания, возникающие под действием наводок электрического поля.
Как найти фазу мультиметром
Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения — уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».
В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.
Общие сведения
В нашей повседневной жизни мы сталкиваемся с электричеством практически в любом месте, где пребываем. Будь это работа или различные заведения: кино, театр, магазины, спортивные комплексы — перечислять можно очень долго. Что и говорить, мы пользуемся многими электроприборами ежедневно, причем лет так 20 или 30 лет назад их было не так много, как в настоящее время.
Но все электрическое оборудование не может работать вечно и рано или поздно оно начинает ломаться, что просто неизбежно. Вечного двигателя пока еще никто не изобрел, поэтому на чудо надеяться не стоит. Некоторые люди хотят научиться чему-то новому, неизведанному и электричество не является исключением. Хотя бы потому, что можно самостоятельно проводить ремонт бытовой техники. Конечно, лучше приглашать специалиста, но легкую работу можно выполнить самостоятельно. Только для этого необходимо изучить фундаментальные понятия, дабы разобраться, что такое ноль и фаза.
Дополнительная информация
Выше рассматривались ситуации, когда нет индикационной отвертки, но имеется мультиметр или токовые клещи. Предполагалось, что до входа в помещение есть земля, фаза и нуль, а помещение со стороны потребителя прозванивается. В случае с тремя жилами метод еще проще, так как между фазой и любым проводом разница потенциалов равна 220 В. При этом нужно заметить, что способ не подойдет в других ситуациях, к примеру, когда имеется нулевая разница межфазного напряжения. В указанном случае тестер будет бесполезен.
Есть и другая методика проверки, применение которой в промышленных условиях, однако, запрещено.
Понадобится лампа в патроне с парой оголенных проводов. С помощью лампы определяется фаза — любую жилу можно замкнуть на заземление. Использование с этой целью водопроводных, канализационных или газовых коммуникаций запрещено. Можно использовать кабельную антенну, оплетка которой, согласно нормативам, должна быть заземлена, а это означает, что найти фазу можно будет с помощью тестера (или, как говорилось выше, можно использовать лампу в патроне).
Также можно использовать пожарные лестницы или металлические громоотводные шины. Необходимо зачистить сталь до появления блеска, а затем прозвонить фазу на зачищенном участке. Следует сказать, что далеко не всякая пожарная лестница имеет заземление в отличие от громоотводной шины. При обнаружении такого дефекта рекомендуется обращаться с жалобами на нарушение технологии защитного зануления в управляющие или государственные организации.
Как проверить фазу и ноль?
Теперь перейдем непосредственно к проверке ноля и фазы. Но перед стартом работ подобного типа, следует проверить работоспособность самого прибора, чтобы он отображал правильные данные, которые позволили провести нужные действия, выполняя следующие действия:
- сначала следует осуществить визуальный осмотр и убедиться, что конструкция прибора полностью целостна и не имеет повреждений механического характера;
- после выполнения этого действия, если никаких изъянов не найдено, следует протестировать устройство;
- щуп следует при проверке вставить в оба отверстия рабочей розетки, одновременно с этим требуется большой палец руки держать на части рукояти диэлектрического сенсора – если что-то не так, индикатор не сработает;
- при применении решения с индикатором неонового типа на батарейке можно зажать пальцами отверточное жало и пятачок; в случае активации светового диода, это будет означать исправность устройства.
Объясним определение фазы и ноля на самой обычной розетке. Нужно вставить отвертку в одно из розеточных отверстий и, как описано выше, прикоснуться пальцем к рукояточной пластинке. Если индикатор активировался, значит, удалось найти фазу. Потом вставляем устройство в иное отверстие – активации лампочки произойти не должно. Если все так, как и должно быть – это ноль.
Если же она и тогда светится от нулевого провода, чего вроде как быть не может, это значит, что есть две фазы. Не следует бояться, ведь это возможно, если просто исчез контакт на нулевом кабеле. Например, это можно произойти где-то в коробке. В розетке не может быть две фазы никоим образом: одна будет просто идти во второе отверстие через какие-то включенные электрические приборы (лампочки, стиральные машины, холодильники и так далее).
Следует отметить, что довольно часто многие путают простую индикаторную отвертку с прозвоночным вариантом. Во втором случае у отверток имеется батарейка. Если с использованием такой отвертки осуществить определение земли, то нет необходимости касаться пятки. Либо же лампочка будет активна, как в случае касания фазы, как и при касании нуля.
Определение нуля и фазы
Для того чтобы не перепутать нуль и фазу на выключателе, или при проведении других электромонтажных работ нужно пользоваться специальными фазоуказывающими инструментами или пробниками. Наиболее простым способом будет использование индикаторной отвертки.
Индикаторная отвертка
Чтобы знать, как определить фазу и ноль индикаторной отверткой, нужно понять принцип ее работы. Она настроена таким образом, что внутренняя неоновая лампа загорается при появлении разности потенциалов
между рабочим контактом отвертки и металлическим выводом на конце ее ручки. Для правильного указания фазы отверткой нужно выполнить простые действия:
- Отключить питание от электросети автоматом;
- Зачистить концы испытываемых проводников и развести их на безопасное расстояние;
- Подать питание в электросеть;
- Прикоснуться жалом пробника к концу испытываемого проводника;
- Пальцем нажать на металлический вывод на конце ручки отвертки, касаться жала отвертки во время работы запрещается;
- Если тестируется фаза — лампочка внутри пробника должна засветиться.
Кроме обычной индикаторной, существует отвертка для прозвонки. Она отличается тем, что имеет в своем составе батарейки и указывает фазу без касания пальцем ее противоположного металлического конца. Также существует индикаторная отвертка
с функцией обнаружения скрытой проводки. Она может определить, где внутри стены проходит электрическая сеть квартиры. В ней используется бесконтактный способ определения по электромагнитному полю, возникающему вокруг проводника.
Контрольная лампа
Еще один способ, как определить фазу и нуль без приборов — это изготовление контрольной лампы. Такой индикатор создается просто: нужно припаять провода достаточной длины к выводам патрона и вкрутить в него лампу накаливания или неоновую. Один из выводов такого определителя фазы присоединяется к батарее, а вторым можно проверить наличие питающего напряжения в сети
. Для этого зачищенным концом провода нужно коснуться испытываемого проводника. Если это фаза — лампа должна вспыхнуть. Этот способ весьма опасен, поэтому им нужно пользоваться только в исключительных случаях, к тому же он запрещен Правилами Безопасной Эксплуатации Электроустановок.
Измерение мультиметром
При отсутствии индикаторной отвертки и для более точных измерений напряжения питания сети используется мультиметр, еще его называют тестер. С помощью него можно определить фазовый, нулевой и заземляющий проводник
в трехпроводной сети. Дело в том, что индикаторная отвертка может показать только большие различия в потенциалах, то есть показывает только фазу. Мультиметр работает с различными сигналами: высокого и низкого уровня, положительными и отрицательными. Его задача — показывать параметры электроцепи.
Чтобы узнать, как найти фазу и ноль мультиметром, а также заземляющий провод, нужно правильно настроить и подключить это устройство измерения. Проводится это так:
- Установить черный щуп мультиметра в гнездо, маркированное COM, а красный щуп — в гнездо с надписью U, Ω, Hz ;
- Ручкой на передней панели выбрать режим измерения переменного тока, предел измерения больше 220 В.
После настройки нужно одновременно прикоснуться двумя концами щупов к двум тестируемым выводам. Значение на экране мультиметра:
- Более 100 В — найдены фаза и ноль;
- Более 160 В — найдены фаза и заземляющая линия;
- Менее 70 В — это ноль и заземляющий.
Протестировав таким образом все три линии, можно с уверенностью определить, где присутствует искомый потенциал.
Более простой способ, как определить фазу мультиметром, заключается в том, чтобы щупом, установленным в отверстие U, Ω, Hz поочередно прикоснуться ко всем концам электросети. В случае соприкосновения с фазовым
проводником мультиметр будет показывать напряжение 8 -15 В. В остальных случаях показания будут на уровне 0 — 3 вольта
Пользоваться мультиметром надо с осторожностью, используя изолирующую обувь и никогда не прикасаться руками к концам щупов без изоляции
При любых работах с электрической проводкой нужно соблюдать технику безопасности, то есть обесточивать помещение при монтаже и ремонте электрики, а во время теста на работоспособность при включенном автомате обеспечивать себе надежную защиту изоляцией.
При подключении различных электрических устройств (розетка или выключатель), не обязательно учитывать полярность проводников. Но что делать, если используемая проводка в доме трехжильная и не имеет цветовой маркировки, а устройства необходимо подключить с заземляющим проводником. Для этого существует несколько способов как проверить, какой из проводов является фазой, нулем или заземлением.
Как отличить по внешнему виду
Узнать, какие провода проходят в конкретной квартире, можно по их внешнему виду. Знать, как определить фазу и ноль без приборов, нужно, если отсутствуют оба из указывающих инструментов. Отличить провода можно по цвету их изоляции. Но этот метод применим только тогда, когда электропроводка выполнена с соблюдением всех правил ее укладки
. Желто-зеленый цвет изоляции указывает на то, что этот проводник — заземляющий. Голубой или синий цвет говорит о том, что провод нулевой, а коричневый, белый или черный цвет указывает на фазовую линию.
Но даже при уверенности в цвете проводки лучше ее перепроверить индикаторной отвёрткой или мультиметром, так как неправильное подключение чревато электротравмой.
Описание процесса
Начнём с фазы. Требуется включить устройство, после чего выставить на нём определение напряжения переменного характера, что на корпусе устройства обычно обозначается значком V~. Также следует выбрать предел измерения выше предполагаемого сетевого напряжения. Часто говорят о 400–700 В. Щупы тогда будут подключаться так: чёрный следует установить в разъём с пометкой COM, а красный – VΩmA. Но прежде чем осуществлять это, следует проверить работоспособность мультиметра в выбранном режиме. Проще попытаться выяснить напряжение в простой розетке. Для этого вставляем щупы в розеточные отверстия. Если устройство рабочее, и таковой будет розетка, то мультиметр покажет вам значение около 220–230 В.
Теперь приступим непосредственно к поиску фазы на примере 2 кабелей, торчащих из потолка и использующихся для включения люстры. Всё будет довольно легко. Требуется сформировать условия для прохождения электричества по прибору и установить этот факт. Создаётся электрическая цепь примерно такая, как с отвёрткой-индикатором.
При выяснении напряжения переменного характера с установленной границей 500 вольт, красным щупом нужно коснуться проверяемого кабеля, а чёрный прижать пальцами или коснуться предмета, что заземлён. Им может стать каркас стены из стали, отопительный радиатор и так далее. Если на проверяемом кабеле будет фаза, тестер высветит на дисплее величину напряжения около 220 В. Она может чуть различаться из-за условий, но будет примерно такой. Если провод не фаза, то появится 0 либо прибор покажет не более пары десятков вольт.
Теперь поговорим о том, как найти ноль. Он обычно находится уже относительно фазы. Сначала ищем её и логически предполагаем, что провод, расположенный рядом, ноль либо земля. Определить, является кабель нулём либо заземлением с помощью рассматриваемого устройства относительно сложно из-за того, что данные проводники почти одинаковы и повторяют друг друга.
Проще всего будет отключить от заземлительной шины в электрощитке кабель ввода. При осуществлении проверки напряжения между кабелями заземления и фазой нельзя будет получить 220 вольт, как при проверке фазы и нуля. Кроме того, следует сказать, что если в электрощите стоит защита дифференциального типа, то она точно сработает при проверке кабелей заземления относительно иного проводника, даже нулевого.
Если надо установить ноль в розетке, то следует красный щуп поставить в фазовую розеточную дырку, а чёрный поднести к иному контакту, после чего сделать эти же действия с третьим контактом. Обязательно следует запомнить напряжение в обоих случаях. Где оно будет меньше, там будет заземление. А там, где показатель будет чуть выше – там будет нулевой провод. В общем, как можно убедиться, ничего сложного в поиске нуля и фазы мультиметром нет.
Особенности домашних электрических сетей
Практически во всех квартирах электричество подается через однофазную сеть, с напряжением 220 вольт и частотой 50 Гц. Общее питание к жилому дому подводится посредством мощной трехфазной линии, а потом электроэнергия коммутируется в распределительных щитах. Дальнейшее движение тока к потребителям осуществляется по однофазным линиям с фазным и нулевым проводами.
Распределение нагрузки на каждую фазу должно быть максимально равномерным, чтобы избежать перекосов в процессе эксплуатации. В современных домах дополнительно прокладывается контур защитного заземления. Таким образом, в электрической сети добавляется еще один провод, который в дальнейшем тоже придется идентифицировать при необходимости.
В частном секторе нередко используются трехфазные линии. Напряжение в 380 вольт может напрямую подводиться к отдельным потребителям – отопительным котлам, электродвигателям и другому оборудованию. Однако для внутренней разводки внутри частного дома все равно используются однофазные линии, в которых равномерно распределяются все три фазы. Таким образом, к розеткам оказывается подведенными три провода – фазный, нулевой и заземление.
Определение фазы, нуля и заземляющего провода
Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.
- Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
- Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
- Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно.
Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
- Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.
Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.
При ремонте электрической проводки, или ее обслуживании часто может потребоваться определить какой провод подключен к нулю, а какой к фазе. Это требуется для установки выключателей или коммутации другого электрооборудования. Прежде, чем рассказать, как определить ноль и фазу, расскажем о связанных с этим предрассудках.
Фаза
Сами по себе термины «фаза», «ноль» и «земля» хорошо знакомы профессиональным электрикам. Но, к примеру, фаза встречается и в физике — под этим определением можно назвать несколько состояний воды:
- жидкое;
- твердое;
- газообразное.
Помимо этого, под фазой можно понимать несколько стадий колебания, что может относиться к волновому движению. В астрономии здесь несколько иное значение, что можно понять по наблюдению за луной.
Чуть выше было рассмотрено, как рождается электричество на станциях. Так вот именно на рабочую фазу, которую электрики называют просто — фазой, подается напряжение. Чтобы более точно представить себе, что это значит, следует раскрыть следующее понятие — ноль.
Алгоритм визуального осмотра
Во-первых, откройте щиток. Внимательно рассмотрите автоматические выключатели, количество которых зависит от расчетной нагрузки. К автоматам существует 2 варианта подключения:
- провод содержит только фазу;
- как фазу, так и ноль.
Провод заземления подключается непосредственно к шине.
Теперь, когда вы знаете значение расцветки и месторасположение кабелей, осталось лишь проверить, чтобы в щитке все соответствовало стандарту.
Далее, при условии, что в щитке ваша изоляция проводов соответствует правилам, необходимо открыть каждую распределительную коробку и визуально изучить состояние скруток. Здесь тоже не должно быть неточностей.
Очень часто бывают такие моменты, на которых не стоит заострять внимание. Например:.
- Распределительная коробка содержит выключатель, подсоединенный к фазе.
- Монтажники использовали провода с двумя жилами, изоляция которых отличалась от стандарта.
В обязательном порядке придерживайтесь правил техники безопасности и будьте осторожны и предельно внимательны, когда решаете вопросы с электричеством самостоятельно.
Как использовать прибор?
Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.
Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:
- Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
- На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.
Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.
Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).
У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.
Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.
Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.
Вот видишь – фаза! А ты
– Бабушка, подай провод!– Держи, милок!
– Вот видишь, ноль! А ты – “фаза, фаза”…
Но не всегда бабушкам так везет.
Вопрос на засыпку: есть ли фаза в патроне не-горящей лампочки?
Как ни странно, точного ответа на этот вопрос наука дать не может. Мало исходных данных.
На днях примерно такой вопрос задал мне сосед по гаражу.
– Сегодня сгорела лампочка. Стал выкручивать – колба отломилась. Выключатель выключил, схватил цоколь пассатижами… а меня как ***** токнет! Аж ладонь свело – дернулся, порезался и плафон разбил! Вот, посмотри, вот тут менял. Что за ******?
Да, день у товарисча явно не сложился.
Смотрю. Китайский светильник, уже без лампочки и без плафона. А выключатель на нем – в виде веревочки, за которую дергать надо. Дерг-включено, дерг-выключено.
– А как определил, что выключатель – выключен?
– Я подергал-подергал – лампочка не горит.
– Так лампочка-то сгоревшая.
Зависание.
Не угадал, однако, состояние выключателя. Точно, день неудачный.
А ведь расцепитель в щитке – совсем рядом…
Как-то соседка просит: помоги, мол, автомат на лестнице выключить. А то я боюсь сама лазить.
– Не вопрос. А что случилось-то?
– Да вот, лампочку в бра меняю. Выключатель выключила, а все равно током бьет.
Захожу. Смотрю. Бра включается вилкой в розетку. И на шнуре выключатель есть.
Выключатель выключен, вилка в розетку – воткнута.
В данном случае вероятность наличия фазы в патроне – ровно 50%. Смотря как вилку воткнуть. На этот раз бабушке, в отличие от анекдота, не повезло.
Что помешало выдернуть шнур из розетки – понятно. Розетка за шкафом, отодвигать лень.
А вот каким образом можно засунуть палец в мелкий цоколь Е14, в котором еще и лампочка – наука объяснить не в состоянии.
Я ей посоветовал светодиодную лампочку поставить. Она не перегорает – больше не надо будет менять.
Следующий вопрос знатокам физики. Есть ли фаза в выключенном выключателе освещения?
Вот тут ответ однозначен. При наличии исправной лампочки – фаза на одном контакте выключателя есть всегда.
А наш профорг в институтской группе учился плохо, и этого не знал.
(вообще он попал на радиофак по единственной причине: в начале 90х туда принимали с одним экзаменом по математике, который можно было сдать на трояк. А физику и сочинение перезасчитывали школьные. Потому что никто туда не шел).
Что не помешало ему далеко пойти “по общественной линии” и дорасти ныне до начальника департамента обл.администрации.
Как-то раз его отправили поменять выключатель в институтском туалете. По правде говоря, менять там было нечего: от старого остались только два провода, из стены торчащие. И обломанные, потому что алюминиевые.
Профорг не придумал ничего лучшего, как зачистить эти провода зубами. Хорошо хоть по-одному, а не оба сразу.
Да и так – вернулся он мокрый, грязный и с шишкой на затылке. Потому что от удара током – отлетел к противоположной стене, стукнулся об нее и упал в вечно присутствующую на полу институтского туалета лужу. (Но провод – таки зачистился!)
А потом удивлялся:
– Ну как же так? Там не могло быть электричества! Свет-то не горел!
Повезло. При наличии на полу лужи все могло закончиться, как на картинке выше.
И последний вопрос залу: есть лампочка накаливания на 6,3 вольта. Сколько вольт между контактами в ее патроне? 6,3? Точно? Всегда? Оптимисты…
Детский сад. Вечер. Декабрь. Скоро Новый год. Воспитательница чинит древнюю советскую гирлянду. С шестивольтовыми лампочками, включенными последовательно. Какая-то из них перегорела.
Но как! Руками выкручивает лампочки по-очереди, и руками же засовывает вместо лампочки в патрон – скрепку.
Дети, которых еще не забрали родители – собрались рядом. Смотрят. Учатся.
(видя мой недоуменный взгляд)
– Тут шесть вольт, они безопасные.. .
(дергаясь)
– … но все равно щиплет здорово.
Не шесть, а двести двадцать шесть, однако.
Смотрю на гирлянду внимательнее. Вижу еще пару патронов, в которые вместо лампочек – скрепки засунуты.
Елка в детском саду, ага.
– Ээээ…. как бы нехорошо…
– Сейчас таких лампочек не найдешь. Скоро уж выбрасывать гирлянду придется.
(отбираю гирлянду и убираю в пакет мусорный)
– Давайте, мы прям сейчас ее выбросим. А завтра я новую принесу. Она мигать красиво будет. И не перегорает….
(и на светодиодах реально единицы вольт).
– …И вообще, если какие проблемы с электрикой – лучше меня позовите.
(а то и так воспитательницы в дефиците. Одна на 30 детей, вместо двух и няни.)
Как найти фазу и ноль без приборов, мультиметра и индикатора
С помощью современных индикационных отверток несложно разобраться в том, как отличить ноль от заземления. Для поиска применяется световой сигнал, возникающий внутри отвертки при обнаружении фазы. Следовательно, другая цепь будет нолем (землей). Несмотря на простоту задачи, имеются в этом деле и определенные нюансы, о которых пойдет речь в этой статье.
Поиск фазы
Индикационная отвертка включает металлический щуп, за которым расположено сопротивление (чаще всего углеродистое), благодаря чему ограничивается ток. Световой сигнал образуется за счет газоразрядной лампы небольшого размера.
Со стороны ручки на отвертке имеется металлическая контактная площадка, представляющая собой кнопку. Эту кнопку следует прижать пальцем, так как в противном случае индикатор не станет светиться.
Принцип работы отвертки можно объяснить в нескольких предложениях. У тела имеется емкость — небольшая, но достаточная для пропуска малого тока. Как только фаза начинает колебаться, электроны начинают движение — в сеть и обратно. Благодаря таким движениям, создается мизерный ток. Показатель тока ограничивается резистором, поэтому переживать насчет собственной безопасности не стоит, даже если взяться за контактную площадку индикационной отвертки и, например, водопроводную трубу.
Обратите внимание! Найти отверткой-индикатором ноль нельзя.
Нахождение фазы чрезвычайно важно, поскольку напряжение не должно покидать, к примеру, ламповый патрон, когда выключатель находится в выключенном положении. Если же что-то пошло не так, простая замена лампы может стать крайне опасным мероприятием.
Согласно техническим нормам, фаза должна располагаться в левой части розетки. Если выключатель установлен как полагается (включение нажатием кнопки вверх), то для обнаружения фазы нужно лишь знать, где находится левая рука и низ:
- Фаза находится в левом гнезде розетки. В правом гнезде располагается нуль. Если имеется провод в зелено-желтой изоляционной ленте, это земля. Вместо этого провода можно обнаружить резервный провод электропитания напряжением 220 В.
- В двойном выключателе контакты входа и выхода находятся по разным сторонам — внизу и вверху. Сторона, где расположен один контакт, является фазой, а сторона, где есть пара контактов, — нулем.
Здесь важно сделать замечание, что сказанное верно только для тех помещений, где разводка выполнена правильно.
- В случае с одиночным выключателем определить фазу несколько сложнее, поскольку контакты чаще всего располагаются с одной стороны. Бывают и исключения, когда ноль находится внизу. Для определения фазы патрон прозванивается тестером. Следует заметить, что описываемый способ является нарушением правил безопасности, да к тому же может привести к поломке устройства. Именно поэтому данный способ нельзя рекомендовать — мы лишь сообщаем о его возможности. Кроме того, возможен замер переменного напряжения: 220 В можно обнаружить лишь между фазой выключателя и нулем патрона.
Определение фазы по цвету изоляции
Провод нуля чаще всего синий, а провод земли — зелено-желтый. Фаза имеет коричневую или красную расцветку. Однако из любого правила есть исключения. В зданиях старой постройки часто встречаются двухжильные провода с только белым цветом изоляционного материала. Также следует заметить, что некоторые приборы, например, датчики освещения или движения, оснащаются проводами нетипичного цвета. К примеру, нуль может быть черным. Поэтому во многих случаях перед началом проверки рекомендуется заглянуть в руководство по эксплуатации.
Поиск нуля в квартире
Согласно техническим регламентам, электрощит, расположенный в подъезде, должен быть заземленным. В старых зданиях следует ориентироваться на большую клемму, зафиксированную болтом. В новых домах рекомендуется обращать внимание на количество жил. Чаще всего нулевой шине свойственно иметь наибольшее количество подключений, а вот фазы распределяются по отдельным квартирам.
Указанные обстоятельства можно отследить по раскладке защитных автоматов или электросчетчиков. Общий провод является нулем. При этом цвет проводов в данном случае не имеет определяющего значения, хотя, согласно нормативам, современные кабели также оснащаются цветной изоляцией.
Важно! Если здание оснащено заземлением, минимальное количество жил на входе составит не менее пяти. В таких случаях корпус электрощита обычно содержит зелено-желтый провод, а провод нуля используется для отвода тока от электроприборов, то есть замыкания цепи. Причем объединение указанных веток на стороне потребителя не допускается правилами безопасности.
Ниже представлено несколько правил, благодаря знанию которых будет легче понимать устройство электрощита в подъезде:
- Защитный автомат должен прерывать именно фазу. Изредка можно встретить модификации с двумя полюсами, однако их использование оправдано только для помещений, эксплуатация которых связана с высокой опасностью. Таким образом, по расположению провода можно уверенно говорить, что это фаза. После этого автомат можно отключить и сделать прозвон жилы на стороне потребителя. В результате определится положение фазы.
- Напряжение между нулем и фазой составляет чаще всего 220 В. На основании этого принципа можно определить жилу, которая передает на любую другую жилу разницу напряжения. При этом фазный разброс равен 380 В.
Реальные значения могут быть больше на 8-10 %, поскольку российские сети пытаются отвечать европейским стандартам.
- Делаем замеры значений во всех жилах при помощи токовых клещей. Суммарное значение всех трех жил должно проходить обратно в электросеть по проводу нуля. Следует заметить, что заземление чаще всего не применяется очень интенсивно, а потому ток будет почти на нуле в любое время дня и ночи. Участок, где отмечается наибольшее значение, является проводом нуля.
- Заземлительная клемма распределительного электрощита расположена на видном месте. Исходя из этого, легко определить провод нуля в зданиях с NT-C-S. В других случаях необходим подвод заземления.
Дополнительная информация
Выше рассматривались ситуации, когда нет индикационной отвертки, но имеется мультиметр или токовые клещи. Предполагалось, что до входа в помещение есть земля, фаза и нуль, а помещение со стороны потребителя прозванивается. В случае с тремя жилами метод еще проще, так как между фазой и любым проводом разница потенциалов равна 220 В. При этом нужно заметить, что способ не подойдет в других ситуациях, к примеру, когда имеется нулевая разница межфазного напряжения. В указанном случае тестер будет бесполезен.
Есть и другая методика проверки, применение которой в промышленных условиях, однако, запрещено. Понадобится лампа в патроне с парой оголенных проводов. С помощью лампы определяется фаза — любую жилу можно замкнуть на заземление. Использование с этой целью водопроводных, канализационных или газовых коммуникаций запрещено. Можно использовать кабельную антенну, оплетка которой, согласно нормативам, должна быть заземлена, а это означает, что найти фазу можно будет с помощью тестера (или, как говорилось выше, можно использовать лампу в патроне).
Также можно использовать пожарные лестницы или металлические громоотводные шины. Необходимо зачистить сталь до появления блеска, а затем прозвонить фазу на зачищенном участке. Следует сказать, что далеко не всякая пожарная лестница имеет заземление в отличие от громоотводной шины. При обнаружении такого дефекта рекомендуется обращаться с жалобами на нарушение технологии защитного зануления в управляющие или государственные организации.
Индикационные отвертки
Если отсутствует определенность с цветами изоляции, можно использовать обычную индикационную отвертку. В инструкции к этому приспособления указывается, что с помощью щупа можно определить землю. Однако таким образом находится не только земля, но и любой длинный проводник, в том числе прерванная возле пробки фаза, провод нуля. В результате далеко не всякая индикационная отвертка позволит правильно найти землю.
Необходимо учитывать следующие обстоятельства:
- С помощью активной индикационной отвертки можно найти длинный проводник методом отправки к нему сигнала и получения отклика на этот сигнал.
- В случае некачественных контактов волна быстро сходит на нет. Таким образом, индикатор может определить землю даже на разорванной фазе возле пробок.
- Чтобы найти землю, необходимо дотронуться пальцем до контактной площадки.
В данном случае речь идет об активной отвертке. В случае же с пассивным индикатором условие обратное — не должно быть никаких физических контактов с указанной областью.
Современные модели индикационных отверток позволяют проверить наличие тока в проводах даже дистанционно. Для этого в них предусмотрена специальная функция. Причем данная функция подразделяется еще на два режима: повышенная чувствительность и пониженная. С помощью такой отвертки легко определить неиспользуемую часть проводов.
Обратите внимание! Не так уж редко встречаются ситуации, когда в здание по ошибке заводятся две фазы, а не одна, или же происходит другая путаница. Применять отвертку при работе с подобной проводкой нужно крайне осторожно.
Измерить сопротивление проводки не самая простая задача. Намного проще определить фазу. Тем более что в такой ситуации отсутствует риск порчи тестера, что не редкость при попытках замеров сопротивления жилы, находящейся под напряжением. Еще один фактор: низкоомные цепочки часто устанавливаются с ошибкой. К примеру, большая часть тестеров при непосредственном замыкании щупов не показывает нуль. Однако даже если поиск земли при помощи активной индикационной отвертки не дал результата, то некачественные контакты найдутся наверняка.
Обратите внимание! Если пробки отключены, а отвертка светится с пальцем на контактной площадке, скорее всего, нужно менять распредкоробку, а скрутки понадобится заменить, например, на колпачки.
Советы по маркировке проводов
Если ремонты проводятся часто, а провода не имеют маркировки, рекомендуется пометить их принтерной краской. Для фазы можно выбрать красный цвет, для нуля — синий, для земли — желтый. Принтерная краска хорошо держится и плохо смывается. Также по своему усмотрению можно использовать и черный цвет.
Пометив провода, задачу поиска нуля, фазы и земли решите раз и навсегда. Если же маркировку нужно будет удалить, для этой цели лучше всего подойдет концентрат уксусной кислоты.
В щитке, на линии электроплиты есть УЗО или его аналог в виде дифференциального автомата(узо с встроенной защитой от сверхтока), или может быть еть общее узо на вводе? 1. Пригласить электрика, имеющего измерительное оборудование(вольтметр, мультиметр) — пусть он голову ломает.
По-хорошему — нечего вам с проводами копаться, не имея допуска и необходимых знаний и оборудования. Либо сервис инженера для подключения вашей электроплиты.
Ориентировочно, предполагается что схема питания квартиры трехпроводная. Защитный проводник идет от ввода, либо зануление выполенно в щите. Для более качественного и полного ответа надо знать схему питания вашей квартиры.
2. Незконные методы(по отношению к вам), но могущие быть примененными электриками:
Чисто прозвонка линий —
2.1. Отключить вводный рубильник. 2.1.1. Отключить все электроприборы от сети. 2.1.1.1 Взять мультиметр, перевести его в режим измерения сопротивления. Взять длинный провод, один конец которого соединить с любым проводником, не являющимся фазой, а другим концов к щупу мультиметра.
2.1.1.2 Отсоединить в щитке все проводники от шины зануления. 2.1.1.3. Вторым щупом попытаться найти второй конец провода на кухне, среди отключенных. 2.1.1.4. Если не ищется, то перевесить длинный провод на другой, не фазный, проводник на кухне.
Использование особенностей работы узо —
2.2. Взять торшер или лампу. 2.2.1. Соединить одним выводом вилки с фазным проводником, торчащим из стены. 2.2.2. Вторым выводом вилки попеременно коснуться двух не фазных проводников — при контакте с нулевым рабочим, лампа будет гореть, а при контакте с нулевым защитным, у вас вышибет узо этой линии, или общее.
Использование прозвонки, без монтажных операций в щите, если в квартире выполнена трехпроводная однофазная проводка(в смысле все бытовые розетки имеют защитный контакт) —
2.3. Выключить вводный автомат. 2.3.1. Один щуп омметра присоединить к защитному контакту любой розетки. 2.3.2. Вторым щупом найти среди двух не фазных проводов, торчащих из стены на кухне, провод, при контакте с которым омметр покажет минимальное сопротивление.
Советы, реальные:
3. Никогда не пользуйся пробником — он не дает точной картины, может показывать наводку с фазного проводника, на неподключенном проводе. Все показания пробника необходимо проверять тестером или специальными двухщуповыми индикаторами.
4. Вызови электрика.
Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.
Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов — как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.
На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.
Маркировка проводов по цвету
Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.
Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.
В нашей стране, как и в Европе в целом, действует
стандарт IEC 60446 2004 года
, который жестко регламентирует цветовую маркировку электрических проводов.
Согласно этому стандарту для квартирной электросети:
Рабочий ноль (нейтраль или ноль) — Синий провод или сине-белый
Защитный ноль (земля или заземление) — желто-зеленый провод
Фаза – Все остальные цвета среди которых – черный, белый, коричневый, красный и т. д.
Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.
Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного).
КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ
Итак, начнем по порядку:
ОПРЕДЕЛЕНИЕ ФАЗЫ
Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.
ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ
Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.
Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки — загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.
Принцип действия индикаторной отвертки прост — внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.
Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.
ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ
Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.
Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.
Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.
Определить фазу и ноль из двух проводов
В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.
Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.
Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.
Найти фазу, ноль и заземление из трех проводов:
В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой. Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.
Действуем методом исключения:
Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.
После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:
— Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.
— Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.
— Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.
Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.
А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.
Необходимость решения такой задачи может возникнуть при установке розетки, когда к ней подходят немаркированные проводники. В этом случае, перед монтажом розетки должно быть выполнено определение, какой из проводов за что отвечает. Рассмотрим, как определить фазу, ноль и землю индикаторной отверткой, мультиметром, а также подручными средствами.
Как использовать прибор?
Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.
Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:
- Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
- На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.
Читать также: На сколько ампер бывают автоматы
- Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.
Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).
В этом случае у нас будут задействованы два гнезда «СОМ» и «V», вставьте в них измерительные щупы. Прибор установите в режим «ACV», на значение 200 В.
У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.
Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.
Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.
Использование индикаторной отвертки
Последовательность действий зависит от того, какая система проводки смонтирована в помещении. Рассмотрим правила определения фазного и нулевого провода в разных случаях.
Двухпроводная сеть
Этот вариант электропроводки встречается в старых домах. По современной терминологии данная система обозначается TN-C. Суть ее заключается в том, что нулевой рабочий провод, заземленный на питающей подстанции, совмещает роль защитного заземляющего (PEN). В системе IT также присутствует только фазный и рабочий нулевой проводник, но в обычных жилых и производственных помещениях она не применяется. В двухпроводной сети отдельный заземляющий провод просто отсутствует, то есть, имеется только фаза и ноль. Определить их очень просто: прикасаемся индикатором последовательно к каждой из токоведущих жил, фаза вызывает зажигание индикаторной лампы, как показано на фото ниже:
Система является устаревшей. На вилке любого современного электроприбора имеется три клеммы. Проводка должна выполняться трехпроводной, исключение — группа освещения.
Трехпроводная сеть
В этом варианте, в дом или квартиру заходит три провода. Такие сети имеют несколько разновидностей. В системе TN-S рабочий ноль и защитное заземление раздельно идут от питающей подстанции, где оба соединены с рабочим заземлением. При таком типе проводки, определение назначения проводов можно осуществить следующим образом:
- в щитке или в распределительной коробке индикатором определить провод, на котором присутствует фаза;
- два оставшихся – это рабочий и защитный ноль (земля), отсоединяем на щитке один провод из них;
- если отсоединить рабочий ноль, все электрооборудование в квартире перестанет работать, значит, оставшийся проводник – это земля, или защитное заземление.
Теперь остается определить в розетке среди трех проводов, на котором из них фаза, ноль и земля. Если не удается найти по цвету изоляции, определение их функций может быть выполнено подручными средствами, без приборов. Для этого нужно взять патрон с вкрученной лампой и выведенными наружу проводами. Определение проводим следующим образом. Одним проводником от патрона прикасаемся к фазному проводу (фаза уже найдена с помощью индикатора), вторым поочередно прикасаемся к двум оставшимся. Если на щитке отключен рабочий ноль, лампа зажжется только при соединении с защитным заземлением, и наоборот.
На видео ниже наглядно показывается, как определить фазу, ноль и землю индикаторной отверткой:
Другой разновидностью системы TN является разводка TN-C-S. В этом случае нулевой провод расщепляется на рабочий ноль и защитное заземление на вводе в дом. Здесь, чтобы определить назначение проводников, можно применить последовательность действий, описанную для системы TN-S. Добавляется дополнительная возможность, обследовав место разделения PEN, определить, где рабочий и защитный ноль (земля) по сечению жилы в проводе.
В случае, если заземление выполнено по системе TT, объект (частный дом) имеет собственное заземляющее устройство, от которого выполнена разводка защитного заземления. В этих условиях, как правило, определить фазу, ноль и землю можно путем отслеживания заземляющего проводника по трассе его прокладки.
Определение мультиметром или тестером
Начнем с того, что определить фазу лучше всего с помощью отвертки, совмещенной с индикатором. Будем исходить из того, что если в хозяйстве есть мультиметр, индикатор найдется наверняка. В крайнем случае, можно сделать следующее. В некоторых случаях может помочь определение с помощью мультиметра напряжения между проводом и трубой отопления или водоснабжения. К сожалению, результат здесь не всегда предсказуем. Чаще всего, напряжение между фазой и системой отопления близко к 220 В, во всяком случае, оно должно быть выше, чем между тем же отоплением и нулем. Картина может измениться, например, если вороватый сосед использует трубы отопления как рабочее заземление.
В трехпроводных схемах мультиметр покажет рабочее напряжение между проводником, на который подана фаза и любым из двух других. Определение, какой ноль рабочий, а какой – земля, можно проводить по методике, изложенной выше, то есть, отсоединив на щитке один из приходящих нулей и воспользовавшись контрольной лампой.
Определение полярности мультиметром
Иногда случается, что в новом электрическом аппарате, который необходимо подключить, отсутствует маркировка полярности или необходимо перепаять проводку поврежденного устройства, а все провода одного цвета
В такой ситуации важно правильно определить полюса проводов или контактов
Но при наличии необходимых приборов возникает закономерный вопрос: как мультиметром определить плюс и минус электроприбора?
Для определения полярности мультиметр необходимо включить в режим замера постоянного напряжения до 20 В. Провод черного щупа подключается в гнездо с маркировкой СОМ (он соответствует отрицательному полюсу), а красный подключается в гнездо с маркером VΩmA (он, соответственно, является плюсом).
После этого щупы подсоединяются к проводам или контактам и прибор, полярность которого необходимо узнать, включается.
Если на дисплее мультиметра отображается значение без дополнительных знаков, то полюса определены правильно, контакт к которому подключен красный щуп – это плюс, а к которому подключен черный щуп будет соответствовать минусу.
В том случае если мультиметр показал значение напряжения со знаком минус – это будет означать, что щупы подключены к устройству неверно и красный щуп будет минусом, а черный – плюсом.
Если мультиметр, которым производится замер, аналоговый (со стрелкой и табло с градациями значений), при правильном подключении полюсов стрелка покажет действительное значение напряжения, а сели полюса перепутаны то стрелка будет отклоняться в противоположную сторону относительно нуля, то есть показывает отрицательное значение напряжения тока.
О чем еще важно знать?
Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:
- Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
- Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
- Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.
Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель. Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.
Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!
Наверняка вы не знаете:
- Способы определения потребляемой мощности электроприборов
- Что такое чередование фаз
- Как определить сечение кабеля по диаметру жилы
Способ 1 — визуальный
Самый простой способ определить, где фаза, а где ноль, это посмотреть на цвет изоляции проводов. Дело в том, что цвет каждого провода имеет свою маркировку. Таким образом, можно предполагать, что на коричневые или черные провода подаётся фаза, а на голубой — ноль. Провод жёлто-зелёного цвета, по международным стандартам, служит для того, чтобы подключить заземление.
Ниже на фото можно рассмотреть, какой из проводов относится к фазе, нулю и заземлению.
Как видно на рисунке, синий провод это всегда ноль, а жёлто-зелёный относится к заземлению. Фазный провод может быть различных цветов, но, чаще всего, он коричневый. Конечно же, определение фазы по цвету провода, не всегда 100% рабочий способ, но все же, он имеет место быть.
Если цвет провода определить не удалось, то, не отчаивайтесь, ниже будут приведены другие способы, как можно найти ноль и фазу без приборов.
Как соединить выключатель с лампочкой
Для многих мелкие повседневные бытовые проблемы, такие как замена лампочки или розетки, не представляют большой сложности. Однако как быть, если вы решили сделать комплексный ремонт в квартире, в том числе и провести новую электрику, а из практического опыта у вас только подзатыльник от мамы за то, что в детстве засунули ножницы в розетку и чуть не спалили квартиру?
Ответ очевиден – нанять профессионалов, но если он вас не устраивает, тогда многое придется научиться делать самостоятельно.
Сегодня мы поговорим о том, как сделать разводку на освещение, а точнее – как скоммутировать провода, чтобы “подружить” выключатель с лампочкой.
Итак, давайте по порядку. Чтобы вам было проще, я начну с азов. Те, кто знаком с электрикой не понаслышке, могут пропустить несколько абзацев и переходить прямо к сути вопроса.
Предположим, что у нас есть лампочка, и ее необходимо включить.
Чтобы лампочка загорелась, нужно подать на нее питание – подвести ноль и фазу. Для удобства лампочку вкручивают в патрон, а нулевой и фазный провод подсоединяют к клеммам патрона.
На фотографии мы видим, что одна жила имеет белый цвет, в электрике это – фаза, а вторая – сине-голубая – это ноль. Теперь, если получившуюся “вилку” из проводов вставить в розетку, лампочка загорится. И если данную конструкцию облагородить, приделать к проводам нормальную заводскую вилку и добавить декоративный элемент, получится бра.
Чтобы лампочка в нашем бра потухла, провода будет необходимо вынуть из розетки, а потом снова вставить, чтобы она загорелась, и так повторять до бесконечности. Согласитесь, крайне неудобно? Чтобы не заниматься подобной ерундой, умные люди придумали выключатель. Как он работает?
Выключатель – это размыкатель цепи. Он располагается между источником электроэнергии (в нашем случае это розетка) и потребителем (лампочка в бра). При нажатии на выключатель происходит разрыв фазы. Схематично это выглядит так:
Щелкнули выключателем (разомкнули фазу) – лампочка не горит.
Щелкнули еще раз (замкнули фазу) – лампочка горит.
Правда же, ничего сложного?
Теперь посмотрим на обычный одноклавишный выключатель с тыльной стороны.
На схеме стрелочками показано, что в гнездо сверху нужно вставить фазный провод, который идет от источника энергии (электрощиток), а в гнездо снизу – фазный провод, который идет на потребитель (лампочка).
Схема коммутации проводов в распределительной коробке будет тоже очень простой:
Описать словами ее можно так:
1. Завели в коробку питающий фазный провод от источника (например, от розетки или напрямую от электрощита).
2. От входа выключателя в коробку завели фазный провод и соединили его с фазным проводом от источника.
3. От выхода выключателя завели провод на лампочку.
4. Завели в коробку нулевой провод от источника (розетка или электрощит)
5. Завели в коробку нулевой провод от лампочки, соединили его с нулевым проводом от источника
Таким образом, мы подали постоянный ноль на лампочку от источника, а фазу – через размыкатель цепи (выключатель).
С теорией разобрались, перейдем к практике.
Допустим, нам необходимо сделать электрику “под ключ” в квартире. Мы будем менять электрощиток и его начинку и тянуть кабель ко всем точкам заново. Предположим, что нам необходимо подвести кабель к люстре в комнате и установить выключатель. Что делать?
1. Устанавливаем распаячную коробку на потолке. Она может быть круглая, квадратная, прямоугольная – это не принципиально. Мы работаем, в основном, с квадратными 100*100 мм.
2. Начинаем протягивать кабель. Кабель у нас будет трехжильный (ноль, фаза, заземление).
Самые распространенные цвета кабеля: ноль – синий или бело-голубой, фаза – белая или коричневая, заземление – желто-зеленое.
У нас ноль будет синий, фаза – коричневая, заземление желто-зеленое (для простоты на схеме обозначим желтым цветом).
Итак, в распаячную коробку с разных сторон (от щитка, от люстры и от выключателя) мы завели три трехжильных кабеля. Получилось примерно вот так (на цвет проводов не обращайте внимание, подходящее изображение взял для наглядного примера):
3. Теперь нужно скоммутрировать (соединить) провода в коробке.
Начнем с самого простого – заземления. Тут не нужно ничего выдумывать – просто соединяем все три желтых жилы вместе.
Далее – чуть посложнее. Нужно подать постоянный ноль на лампочку. Соединяем синюю нулевую жилу кабеля от щитка с синей нулевой жилой кабеля на лампочку.
Следующим шагом нужно подать питание на вход выключателя. Для этого соединяем коричневую фазную жилу кабеля, идущего от щита, с коричневой фазной жилой кабеля, идущего на выключатель.
Ну и напоследок нам необходимо подать питание от выключателя на лампочку. Для этого соединяем фазную коричневую жилу кабеля от лампочки с синей нулевой жилой кабеля от выключателя. Несмотря на то, что отходящая жила от выключателя имеет синий цвет, при нажатом выключателе она будет являться продолжением входящей фазы. А так как у нас в кабеле всего три жилы определенной расцветки, то используем ту, что осталась.
Вот, в общем-то, и все. Осталось лишь подключить люстру и завести концы кабеля в электрощиток.
Кстати, отвечу сразу на вопрос: а как соединять провода в распаячной коробке? Способов несколько, у каждого есть свои преимущества и недостатки. Затрагивать их в данном материале не будем, я лишь приведу самые распространенные примеры, используемые на практике.
Вариант 1. Скрутка.
Считается одним из самых надежных соединений и применяется чуть ли не с эпохи вымирания динозавров.
Вариант 2. Клеммники Wago быстрозажимные.
Быстро, красиво, удобно.
Вариант 3. Клеммники Wago рычажные.
Красивое, быстрозаменяемое соединение.
В общем и целом – какой бы способ вы ни выбрали, главное – делать все на совесть, соблюдая требования нормативных документов и технику безопасности.
Для ценителей красоты и эстетики напоследок – пример работы настоящего мастера.
Понравился материал? Пожалуйста, поддержите автора, поделитесь ссылкой с другими.
Автор: Владимир Омельченко
*Все материалы, размещенные на сайте, принадлежат их правообладателям. Полное или частичное копирование разрешается с согласия администрации ресурса sbk-remont.ru или с указанием прямой ссылки на источник.
Почему выключатель размыкает фазу, а не ноль?
- Какой провод пускают на выключатель: ноль или фазу?
- Выключатель на Фазу или на Ноль нужно ставить? Почему именно так?
- Что будет если перепутать фазу и ноль в выключателе?
- Что значит выключатель с нулем, без нуля и фаза на разрыв?
- Можно ли рвать ноль автоматом?
- Какой провод идет на выключатель ноль или фаза?
- Выключатель прерывает фазу или ноль
Специалист вы или нет, а если решитесь поменять в своем доме электропроводку, даже пусть на участке «коробка – выключатель – лампочка», должны знать элементарные правила ПУЭ (полная расшифровка — «Правила устройства электроустановок», то есть свод нормативов, применяемых к любым электроустановкам и электросетям). Именно отсюда и можно почерпнуть информацию о том, идет на выключатель ноль или фаза.
Каким проводом запитывается выключатель света?
Несмотря на то что в некоторых квартирах можно обнаружить, что на выключатель приходит «ноль», это отнюдь не нормально. Потому что любой выключатель должен разрывать именно фазу. Если ноль или фаза на выключателе перепутаны, скорее всего, в проводке этой квартиры уже ранее «поковырялся» какой-то горе-умелец либо изначально нулевой провод был запитан не по стандарту.
Какие цвета должны быть у проводов в электропроводке квартиры
Любой проводник, покупаемый для монтажа электропроводки, должен содержать в себе жилу с голубой (синей) оплеткой. Именно ее и рекомендуется использовать в сети как нулевой провод.
Если в квартире предусмотрен третий провод – прямое заземление, на него рекомендуется пускать желто-зеленый провод. Все остальные провода (это может быть белый, коричневый, черный и пр.) используются как фазонесущие.
Так что на вопрос, фазу или ноль разрывает выключатель, ответ будет однозначный — фазу, причем жила эта будет не голубого (синего) и не зеленого цвета.
Если в вашей квартире провода перепутаны, значит, монтажом электропроводки в ней занимались не профессионалы и, скорее всего, она уже претерпела ремонт.
Суть электричества
Попытаемся объяснить работу электричества самыми доступными словами. Еще из уроков физики мы знаем, что сама суть электроэнергии такова, что фаза всегда стремится разрядиться на ноль. Именно между несущим электроэнергию и заземляющим потоком и включаются в цепь разного рода приборы. Тогда разрядка происходит в них, заставляя их при этом работать.
В частности, так работает и нить накала или диодная схема в лампе освещения. У нити или у диодной схемы есть свое сопротивление, которое сбалансировано так, что лампы, когда через них замыкается сеть, не перегорают, а начинают светиться.
И в сущности без разницы, какой провод подходит на выключатель — ноль или фаза, если к самой лампе с одного контакта подается ноль, а с другого – фаза, она будет работать все равно. На работоспособность прибора это никак не повлияет.
Это нужно лишь в целях безопасности.
Почему «фаза», а не «ноль»?
Мы вплотную подобрались к ответу на вопрос о том, ноль или фаза идет на выключатель и почему. Выключатель размыкает участок сети, в котором работает лампочка.
И прерывает он в простых выключателях только один из проводов, который через него пропускается. Второй провод так и остается запитан на лампу напрямую.
Если в вашем случае через выключатель пропущен ноль, то напрямую к люстре на постоянку подключена фаза, а это значит, что даже при простой замене лампочки устройство может ударить вас током.
Если же выключатель размыкает фазу, то напрямую к люстре от коробки идет ноль. Это значит, что если выключатель находится в разомкнутом (выключенном) состоянии, к устройству фаза уже не подается, поскольку она прерывается самим выключателем, и замена лампы будет безопасной.
Правильная установка выключателя с заменой проводов, идущих на него и на люстру
Когда разобрались с вопросом, какой провод – «фаза» или «ноль» на выключатель должен приходить, чтобы соответствовать нормам ПУЭ, разберемся, как будет выглядеть правильная схема участка домашней электросети, которая будет обуславливать нормальную работу электроприбора. Опять же объясним все простыми словами (в целях безопасности все работы, связанные с монтажом или ремонтом электропроводки, должны осуществляться при выключенном центральном автомате в главном щите).
- Для правильного монтажа проводки от ближайшей распределительной коробки у нас должно быть проделано две штробы – одна к выключателю, одна к люстре.
- Как подключить выключатель «фаза — ноль», то есть обычный выключатель? Берем кусок двухжильного провода. Пропускаем его через боковое отверстие коробки, идущее на штробу к выключателю. Также пропускаем кабель через боковое отверстие коробки выключателя.
- Запитываем одну жилу к левой клемме выключателя, другую – к правой. В коробке одна из жил запитывается к фазному проводу. Одна остается пока свободной.
- Что у нас получилось? Теперь ток приходит на выключатель и в замкнутом положении выключателя возвращается назад в коробку. Осталось смонтировать сеть для осветительного прибора.
- Допустим, люстра у нас рассчитана на одну лампу. Тогда подойдет обычный двухжильный кабель. Пропускаем его через боковое отверстие коробки, ведущее к люстре, заделываем в штробу и подключаем к клеммам люстры.
- В коробке уходящий на люстру двухжильный кабель подключаем следующим образом: одну жилу запитываем к возвращающейся свободной жиле – фазе с выключателя, другую запитываем к основному нолю в коробке.
Схема собрана. Теперь, зная какой провод идет на выключатель, «ноль» или «фаза», вы сделали участок сети, обеспечивающий работу осветительного прибора полностью безопасным.
В заключение некоторые нюансы
В своей статье мы ориентировались на простую сеть, не предусматривающую третьего провода – заземления. Также мы отталкивались от того, что у нас простая люстра, рассчитанная на 1 патрон под лампу. Поэтому и выключатель у нас простой – одноклавишный.
В случае с заземлением вы никогда не перепутаете. Просто придется использовать трех- или более жильный кабель и желто-зеленую жилу всегда запитывать к массе, то есть к клемме, идущей на корпус прибора.
А в случае с многоклавишными выключателями придется из коробки на выключатель бросать две или более (в зависимости от того, сколько клавиш в выключателе) жил. То же самое следует делать и с запиткой люстры.
Сколько бы от выключателя ни приходило на люстру фаз, ноль в ней всегда будет один, клемма его будет выделена отдельно. Также можно сориентироваться и по проводам. Ноль в приборах всегда будет синим (голубым).
fb.ru
anatol4254 [6.1K]
Что бы окончательно определиться на фазу, или на ноль ставить выключатель, надо ознакомиться с правилами ПУЭ, если точней с пунктом этих правил 6.6.28 (последнее издание), они однозначно трактуют это правило выключатель необходимо устанавливать в разрыв фазного провода, а не нулевого. в избранное А что делать, если у вас выключатель установлен на разрыв ноля? Эта ошибка легко исправляется изменением соединений в распределительной коробке. Только помните, работы должны проводиться в обесточенной системе. в избранное
в избранное |
Фаза или ноль на выключатель ?
Принцип работы стандартного, знакомого всем выключателя света довольно прост, при нажатии клавиши он физически разрывает (или соединяет) электрическую цепь, проложенную к люстре, бра или любому другому светильнику.
А так как для работы светильника нужен фазный и нулевой проводники, установить выключатель, фактически, можно в разрыв любого из них, при этом система будет работать, на первый взгляд, одинаково правильно.
Возможно, именно поэтому довольно часто возникает вопрос, что по правилам должен размыкать выключатель фазу или ноль и почему?
На первую часть этого вопроса, а именно, что должен разрывать выключатель фазу или ноль, есть ответ в ПУЭ, правилах устройства электроустановок, основном документе, который регламентирует правила и нормы электромонтажа.
В, последнем, актуальном на сегодняшний день, 7-ом издании ПУЭ, в пункте 6.6.28, указано следующее:
- В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.
- Как видите правила прямо говорят, что выключатель света устанавливается в разрыв фазного проводника, а не нулевого и только так, а не иначе нужно выполнять монтаж.
- Правильная схема подключения одноклавишного выключателя выглядят так:
Почему именно фазу, а не ноль должен разрывать выключатель света ?
На первый взгляд нет никакой разницы обе схемы работают одинаково, ведь и при разрыве нуля выключателем, свет так же погаснет, как и при разрыве фазы.
Чтобы лучше разобраться в этом, давайте, для наглядности, рассмотрим схему подключения выключателя, в которой к нему подведен нулевой проводник (ноль).
Как вы видите, при такой схеме подключения выключателя, на светильнике всегда есть напряжение, это и есть тот главный недостаток, который может вызывать серьезные проблемы и неудобства в работе и обслуживании источников света.
В первую очередь, главная опасность такого способа подключения состоит в том, что вас может «ударить током», например, при замене ламп, когда вы случайно коснётесь токопроводящих контактов.
Кроме того, при нарушении изоляции питающего кабеля или повреждении электрического соединения внутри светильника, фазный проводник может замкнуть на корпус.
И тогда, при простом касании люстры или бра, вы сами станете проводником, частью электрической сети, ощутите серьезный электрический разряд, при этом, в определенных условиях, поражение электрическим током может быть даже смертельным.
Это становится особенно актуально потому, что для групп освещения, в том же ПУЭ, разрешено не устанавливать дифференциальную защиту, например, УЗО, поэтому вы узнаете о напряжении на корпусе, лишь когда почувствуете разряд, при этом светильник может быть даже не включен.
Еще одна не такая опасная, но не менее неприятная проблема — это мерцание ламп при выключенном свете.
Современные энергоэффективные лампы — энергосберегающие (люминесцентные) или светодиодные, могут реагировать даже на незначительные колебания в электрической сети, даже сверхнизкие токи могут запускать их.
Поэтому, даже при выключенном выключателе света может наблюдаться мерцание таких ламп, а это уменьшает как ресурс ламп, так и просто многих раздражает.
Поэтому, чтобы избежать этих и некоторых других проблем, правильно делать так, чтобы выключатель разрывал именно фазу, а не ноль.
К сожалению, чаще всего, люди задаются вопросом фаза или ноль должна быть в выключателе в случае, когда уже столкнулись с неправильной разводкой проводов, имея ноль в выключателе и все вышеописанные проблемы. Что же делать в таком случае?
Как сделать, чтобы выключатель разрывал фазу, а не ноль
Если у вас неправильно выполнена схема подключения выключателя к светильнику, и размыкается ноль, вместо фазы (Жми, чтобы узнать, как самому определить какой из проводов ноль, а какой фаза). То исправить это можно, лишь изменив подключение в распределительной коробке.
Для этого, вам необходимо найти распределительную коробку, которая чаще всего расположена прямо над выключателем света, на расстоянии 10-30см от потолка. Согласно правилам электромонтажа, к ней должен быть обеспечен легкий доступ и нередко вы сможете обнаружить её довольно быстро (но, к сожалению, не всегда).
ВНИМАНИЕ! Все работы по изменению схемы подключения выключателя необходимо проводить только на обесточенной сети. Для этого обязательно отключите автоматический выключатель этой группы в электрощите, после чего, убедитесь в отсутствии напряжения в месте монтажа.
Итак, вот так выглядит схема подключения в распределительной коробке, в которой к выключателю подведен ноль, а фаза идёт напрямую к светильнику.
- Чаще всего, схема будет именно такая, вводной питающий кабель будет входить в коробку и затем выходить к следующей распредкоробке, поэтому, обычно, заходит именно четыре кабеля:
- 1.n – Кабель идущий на выключатель (двухжильный для одноклавишного выключателя)
- 2.n – Вводной электрический кабель (Стандартный трехжильный: фаза, ноль, заземление)
- 3.n – Кабель идущий к люстре (Трехжильный: фаза, ноль с выключателя, заземление для одноклавишного выключателя)
- 4.n – Кабель идущий к следующему выключателю света или розеточным группам (Трехжильный: фаза, ноль, заземление)
- Теперь нам нужно поменять эту схему, чтобы выключатель разрывал фазу, а не ноль.
- Для этого:
— Провод 1.1 на схеме, идущий на выключатель, подсоединяем к контакту фазных проводов 2.2.+ 4.2
— Провод 1.2 (возвращающийся из выключателя) соединяем с фазным проводом 3.2 который идёт к люстре
— Оставшийся нулевой провод 3.1, идущий к люстре, подключаем к контакту проводников 2.1 + 4.1
Схема замены нулевого проводника в выключателе на фазный, представлена ниже:
Теперь у вас выключатель будет подключен правильно, к нему будет подходить фазный проводник, а не нулевой. Как видите, сделать изменение в схеме подключения, достаточно просто.
Советую прочитать нашу статью, в которой описаны все разрешенные способы соединения проводов в распределительных коробках и выбрать самый удобный для вас при выполнении такого. На мой взгляд, в бытовых условиях, без использования специализированного инструмента и особых навыков, для соединения проводов групп освещения, удобно применять клеммники WAGO.
UPD: Некоторые советуют просто поменять фазу с нолём местами в электрощите и автоматически в выключателях схема изменится на нужную. Я бы не советовал так делать всем, нужно сперва хорошо проанализировать всю схему электропроводки квартиры, а сделать это довольно непросто, лучше такие серьезные вмешательства без должного опыта и знаний не производить.
Если же у вас остались вопросы, на тему фаза или ноль должны подходить к выключателю, обязательно оставляйте их в х. Кроме того, как всегда приветствуется здоровая критика, личный опыт и любые другие полезные мнения.
Простой выключатель. Схема подключения
В любое электрифицированное жилье заходит как минимум 2 провода, правда, провод может быть и один, но в нем есть как минимум 2 жилы. Внешне эти провода (или жилы) ни чем не отличаются, отличие у них внутри — один провод — это фаза, а второй провод — ноль.
По сути эти провода — участок электрической цепи, практически такой же, как в школьной лаборатории по физике. Пока к проводам ничего не подключено, электрическая цепь остается разомкнутой.
Когда мы подсоединяем к проводам какой-либо электроприбор, электрическая цепь замыкается, электроэнергия потребляется, счетчик крутится.
Для подключения к электрической цепи переносных электроприборов, даже таких больших как холодильник, используются электрические розетки, а производители переносных электроприборов предусмотрительно снабжают свои изделия электрическими вилками.
Для стационарных электроприборов, даже таких маленьких, как врезные растровые светильники, тоже можно использовать розетки, если внешний вид помещения волнует Вас меньше всего.
Но обычно, пользуясь тем что стационарные электроприборы никуда не денутся, их подключают напрямую к электрической цепи, а чтобы электроприбор не работал постоянно, для замыкания и размыкания электрической цепи используются выключатели.
Выключатель можно ставить на любой провод, как на фазу, так и на ноль, но обычно принято ставить выключатель на фазовый провод. Это позволяет заменить или отремонтировать стационарный электроприбор без риска замыкания электрической цепи. Обычно, чтобы исключить риск замыкания электрической цепи, отключают контакты на счетчике, обесточивая таким образом всю квартиру или дом. Вот в принципе и все с теоретической точки зрения.
Для реализации на практике столь не сложных теоретических положений в квартире или доме делается электропроводка. Электропроводка делается так, чтобы любой электроприбор подключался к электрической цепи параллельно.
Чтобы не прокладывать провода от каждой розетки или светильника к месту ввода электрических проводов в квартиру или дом, сначала прокладываются провода от места ввода (обычно в этом месте стоит электрический счетчик) к распределительным (разветвительным) коробкам в жилых комнатах или служебных помещениях, а потом от распределительных коробок провода разводятся по помещению.
Таким образом подключение розеток в распределительной коробке никаких проблем не представляет, если провода в разноцветной изоляции (а таких в последнее время все больше и больше), то концы проводов зачищаются и соединяются в 2 счалки согласно цвету.
Даже если розеток в помещении будет 20, то все равно будет только 2 счалки (скрутки) проводов.
А вот для правильного подключения светильника или любого другого стационарного электроприбора нулевой провод, который идет от места ввода, подключается с одному из проводов, подключаемых к светильнику, фаза подключается к одному из проводов, идущих к выключателю, а оставшиеся свободными один провод от светильника и один провод от выключателя соединяются между собой. Таким образом в распределительной коробке будет 3 счалки (скрутки проводов) даже если в распределительной коробке подключены только одна лампочка и один выключатель на эту лампочку и тут если используются провода в разноцветной изоляции, обязательно будет одна счалка проводов двух разных цветов:
- Рисунок 1.
- А — принципиальная схема работы одноклавишного выключателя
- В — схема подключения проводов в коробке
На схемах показано положение выключателей в положении «выключено». Голубым цветом обозначен Ноль, а оранжевым — Фаза. Само собой, в этой же коробке обычно подключаются и розетки (на рисунке не показаны).
Но при этом количество счалок (скруток) проводов в коробке все равно будет = 3: две большие счалки, обеспечивающие подключение всех розеток, а также подключение одного провода светильника и одного провода выключателя и одна маленькая счалка двух проводов — провода от светильника и провода от выключателя.
Если при разводке используются разноцветные провода, то обычно в больших счалках соединяются провода согласно цвету, а в маленькой счалке соединяются два провода с разными цветами изоляции.
В одноклавишных выключателях есть только два контакта, к которым можно прикрутить или в которых можно зажать провода, при этом спутать, какой провод куда должен прикручиваться — невозможно. Как ни прикручивай провода, все равно при одном из положений клавиши выключатель будет включенным, а при другом положении клавиши — выключенным.
Фотография 1.
Раньше было принято устанавливать выключатели так, чтобы при выключенном состоянии выпирал верх клавиши, а при включенном состоянии выпирал низ клавиши, раньше на клавишах снизу даже ставилась красная точка, обозначающая включенное состояние.
Теперь считается, что в выключатель будет меньше попадать пыль, если его устанавливать наоборот — так, чтобы при выключенном состоянии выпирал низ клавиши, а при включенном состоянии выпирал верх клавиши.
Чтобы поменять положение клавиши для режимов «вкл-выкл», нужно просто повернуть выключатель в подрозетнике на 180о.
Если в клавише есть светодиодная подсветка, то как правило никаких дополнительных действий при подключении такого выключателя не требуется. Светодиод обычно уже подключен производителем выключателя и нужно точно также просто прикрутить провода к контактам выключателя.
Если нужно подключить двухклавишный выключатель, то количество счалок в распредкоробке увеличится на одну:
Рисунок 2.
Примечание: Большинство двухклавишных выключателей рассчитаны на разводку трехжильными проводами, и поэтому в них только три, а не четыре контакта. Более правильно отобразить подключение таких выключателей можно так:
Рисунок 3.
Если разводка выполняется двухжильными проводами, то можно просто никуда не подключать одну жилу двухжильного провода, ведущего от коробки в выключателю.
В двухклавишном выключателе с тремя контактами в отличие от одноклавишного выключателя путать провода нельзя. Самым простым способом не спутать провода является маркировка.
На двухжильных проводах в двойной изоляции удобно делать маркировку обычной гелевой ручкой.
Подробности установки евро выключателя в советский подрозетник и евро выключателя в евро подрозетник и проблемы, которые могут при этом возникнуть, изложены отдельно.
Выключатель размыкает фазу, а не ноль: почему так происходит
Выключатель размыкает фазу, а не ноль: почему так происходит
Выключатель — электрический аппарат для замыкания и размыкания электрической цепи, включения и отключения оборудования.
Любой выключатель, отвечающий например за включение и выключение света в комнате, обязательно должен размыкать именно фазу, а не ноль.
Фаза в сети переменного тока — это тот из проводников, на котором все время присутствует переменное напряжение относительно нулевого проводника.
Нулевой же проводник имеет в идеале нулевой потенциал относительно земли, который в исправной сети всегда остается таковым, поскольку нулевой проводник по определению заземлен.
Будь сеть трехфазной или однофазной, нулевой (нейтральный) проводник обязан иметь заземление, поэтому он в принципе гораздо безопаснее фазного проводника. Фактически заземление имеют генераторы и трансформаторы, от которых электрическая сеть получает энергию. Если нулевой проводник не заземлен, значит в сети случилась авария, обрыв нулевого проводника.
Обычно в быту мы используем однополюсные выключатели, то есть такие, которые размыкают или замыкают всего один провод при нажатии на кнопку. Допустим, на потолке висит люстра, получающая питание от однофазной бытовой сети 220 вольт. К люстре идут два провода, один из них — фаза, второй — ноль. Выключатель установлен в разрыв одного из двух этих проводов.
Пусть выключатель стоит на фазном проводнике, и его перевели в состояние «выключено».
Тогда оба проводника, по которым к люстре подается электричество, будут обесточены, их потенциалы будут равны нулю, потому что нулевой проводник, который не прерывался выключателем, по определению имеет нулевой потенциал, а фазный проводник прерван с помощью выключателя, то есть на нем нет фазного напряжения.
Оба проводника безопасны, можно менять лампочку, ремонтировать потолок, снимать люстру и т. д., не опасаясь попасть под фазное напряжение и получить удар током. Хотя лучше в этом случае для надежности выключить автомат в электрощите.
Как делать нельзя
Но что если выключатель по ошибке установлен в разрыв нулевого, а не фазного проводника? В этом случае даже если выключатель находится в положении «выключено», к люстре все равно подходит один фазный проводник. Второй проводник ни к чему не подключен.
Если в такой ситуации начать менять лампочку, ремонтировать люстру, работать с потолком, то можно ненароком задев фазный провод, получить удар током, особенно если стоишь на проводящей стремянке, которая случайно контактирует с чем-нибудь заземленным или вообще стоит на земле.
Замена лампочки может закончиться трагедией с человеческими жертвами. Ладно если стоишь на деревянной табуретке, в резиновых сапогах, при этом работаешь в защитных перчатках. Здесь все может закончиться удачно. Но при неблагоприятном стечении обстоятельств выключатель на нулевом проводнике может обернуться смертельной опасностью.
Ранее ЭлектроВести писали, что в России на Калининской АЭС было отключено от сети три энергоблока из четырех. Представитель концерна «Росэнергоатом» сказал, что остановка была вызвана отключением одного из трансформаторов тока.
Электрический патрон, устройство и подключение
Электрический патрон — неотъемлемая часть любого светильника. Он служит не только для фиксации, а также передачи тока, но и закрепляет на себе множество дополнительных элементов. К ним относятся: плафон, абажур, предметы эстетики и светового потока. Общие черты устройства патрона можно изучить в статье по описанию люстры. Чтобы уметь устанавливать и ремонтировать электрический патрон, необходимо поближе с ним познакомиться.
Маркировка электрических патронов
Согласно ГОСТ Р МЭК 60238-99, резьбовые патроны выпускаются трех видов: Е14 – он же миньон, применяется в СВЧ печах, холодильниках; Е27 – в большинстве светильников; Е40 – для уличного освещения. Электрические патроны имеют одинаковый принцип действия, отличаются они только дизайном и размерами.
Каждый патрон имеет маркировку на корпусе. Она служит для того, чтоб указать характеристики патрона. Е14 устанавливается в местах, где ток потребления не превышает 2 А, 440 Вт; Е27 – не более 4 А, 880 Вт; Е40 – не более 16 А, 3500 Вт. Все они рассчитаны на переменное напряжение 250 В.
Устройство электрического патрона
Патрон имеет 3 основных элемента. Цилиндрический корпус, в котором расположена резьбовая гильза, резьба которой выполнена по принципу Эдисона, донышко и вкладыш из керамики. Чтоб ток передавался от проводника на цоколь, установлено 2 контакта из латуни 2 планки с резьбой для крепления. На фото патрон Е27 в разрезе.
Фото ниже показывает, как латунные контакты касаются цоколя лампы. Правая фотография показывает передачу тока латунным контактам, закрепленным на вкладыше.
Чтоб повысить безопасность, необходимо подавать фазу на центральный контакт цоколя. Это сводит к минимуму шанс касания фазы человеком.
Электрический патрон на три лампочки
Однажды мне пришло письмо от Владимира на почту. В нём находились фотографии нестандартного патрона Е27. Он предназначен для установки трех ламп. Когда он разбирал патрон, чтоб подключить провода, из него выпали контакты. Владимиру было сложно понять, куда их устанавливать. Я помог решить эту задачу. Я не имею такого патрона, поэтому обработал фотографию, которую выслал Владимир.
Контактирующие пластины имеют отверстия. К ним подсоединяются провода при помощи винтов с гайками М3. Если имеется паяльник, пластины можно спаять. Стрелкой красного цвета обозначена пластина, к которой следует подсоединять фазный провод. «Ноль» подключается к участку, обозначенному синей стрелкой. Пунктирная синяя линия показывает соединение контактов. Необязательно делать эту перемычку, потому что пластины будут соединяться через цоколь лампы. На фото показано зеленым. Но если не вкрутить правую лампу, на левую напряжение не поступит.
Как подключить обыкновенный электрический патрон
Чтоб понять, как подключать провода к патрону, необходимо рассмотреть сборку патрона с нуля. Это пригодится в случае ремонт патрона. Латунная пластина центрального контакта прижимается к вкладышу из керамики. При помощи винта, вкрученного в пластину из стали, которая располагается на другой стороне вкладыша, контактная устанавливается на вкладыше.
Винт служит не только для закрепления центрального контакта, но и пропускает через себя ток на этот контакт. Гровер использовать необязательно, но если вы его установите, будет лучше. Винт следует затягивать с достаточным усилием, так как через него проходит ток. По такому же принципу устанавливается вторая пластина из латуни. Центральный контакт необходимо подогнуть до уровня боковых контактов.
На проводниках формируются колечки. Затем они продеваются через донышко и фиксируются к стальным пластинам. Если патрон подобран для подключения через стандартный выключатель, фазу следует подключать к центральному контакту. Проверьте, насколько хорошо центральный контакт прилегает. Чтобы это проверить, приложите цоколь лампы к контакту, убедившись, что во время прилегания цоколя к контактам, центральный прогибается не менее чем на несколько миллиметров. Если это не так, отогните контакты вверх.
Остается накрутить корпус на дно. Патрон готов к использованию, остается подобрать под него лампу.
Как подключить электрический патрон с клеммами
Более новым видом патронов являются те, провода которых прижимаются при помощи клеммных колодок. Такой вид крепления ускоряет монтаж люстр и светильников. Корпус выполнен из пластмассы в виде монолита. Контакты закреплены изнутри при помощи заклепок. При выходе патрона из строя, ремонтные работы не удастся произвести.
Такой тип патрона выпускается размерами Е14, Е27. Они подойдут для замены разборных патронов, принцип которых описан чуть выше.
Как подключить безвинтовой электрический патрон
Из новинок патронов марки Е14, Е27 можно отметить патрон с безвинтовым подключением. Корпус патрона имеет отверстия, зачастую, две пары. В них задеваются провода. Внутри установлены пружинные контакты из латуни, которые предназначены для защемления и фиксации проводов.
В отверстиях 1-2, 3-4 попарно соединены контакты (на фото выделены красным). Сделано это для того, что бы подсоединять патроны параллельно в люстрах, а также светильниках, имеющих несколько лампочек. На один патрон подается напряжение, последующие патроны подключаются к нему при помощи перемычек. Светодиодные и энергосберегающие лампы экономны, поэтому количество патронов может быть равным 10 и более.
Бесконтактные патроны подключаются быстро и легко. Следует взять провод, снять с него изоляцию на один сантиметр и установить в определенное отверстие. Однако имеется нюанс, который следует учесть.
Чаще всего используются многожильные провода. Если жилы тонкие, зафиксировать их в контактах проблематично. Поэтому, изготовители люстры обслуживают концы проводов, подключаемых к патрону. Вследствие чего, конец многожильного провода становится одножильным. Затем он лудится и легко устанавливается в пружинный контакт.
На фото показано поэтапное подключение патрона к электрической проводке. Может возникнуть ситуация, когда пальцами невозможно добраться до проводов. В этом случае следует воспользоваться пинцетом.
Не каждый имеет дома паяльник. Патрон можно подключить и без него. Перед тем, как заправлять провод в пружинный контакт, установите в отверстие стержень из металла. Его диаметр должен быть больше диаметра провода. На фото видно, что использовалась часовая отвертка, можно применить гвоздь. В таком случае контакт отойдет и в зазор, который возник, легко войдет провод.
Далее следует изъять металлический стержень. Контакт надежно зафиксирует провод. Этим можно воспользоваться в том случае, если не удается достать провода из электрического патрона. После того, как провод заправлен в контакт, потяните его, убедившись в том, что он надежно зафиксирован.
Как подключить к электрическому патрону розетку
Иногда требуется установить розетку, однако, ближайшая распределительная коробка находится на большом расстоянии. С таким моментом я столкнулся, когда производил ремонт ванной комнаты. Необходимо было установить светильник у зеркала, обеспечить питание некоторых электрических приборов, допустим электрической бритвы.
В ванной уже был настенный светильник в виде шарика. К контактам электрического патрона я присоединил параллельно два провода, параллельно подсоединил к ним розетку. По правде говоря, когда включается свет в ванной, розетка обесточивается, однако, в этом есть свой плюс. Если возникнет утечка воды этажом выше, короткого замыкания не будет даже в том случае, если вода попадет в розетку. Мною была установлена стандартная розетка, которая прослужила более 10 лет. Однако лучше воспользоваться герметичной розеткой, которая подходит для помещений с повышенным уровнем влажности.
Был случай, когда я подсоединял розетку к патрону в туалетной комнате, когда требовалось устанавливать автоматический датчик включения света, оснастить унитаз функцией биде. Давным-давно, когда оплата электроэнергии зависела от количества розеток и ламп в квартире, широко использовалось устройство, так называемый «жулик». В патроны вкручивались переходные патроны. Этот жулик имел 2 трубки из латуни, как в розетке. С его помощью можно было подсоединить к люстре любой электроприбор. Жулик можно было изготовить самостоятельно из обычного электропатрона.
Крепление электрического патрона
Как правило, патрон в люстрах и светильниках крепится за дно. Отверстие ввода провода имеет резьбу. Е27 могут иметь одну из трех видов резьб: М16?1; М10?1 или М13?1. Е14 – М10?1. Светильники подвешиваются на электропровод либо на металлическую трубку, имеющую любую форму резьбы на конце и длину.
Крепление электрического патрона за токоподводящий провод
Не допустимо прикреплять патрон напрямую к проводам. Для начала следует зафиксировать патрон в люстре. Для этого в донышко установлена втулка из пластика, имеющая отверстие в центре для запуска проводов. Во втулку установлен пластиковый фиксирующий винт.
После того как патрон подключен и собран, пластиковым винтом зажимаются провода. Эту втулку могут использовать для крепления декоративных элементов светильнику. Винт позволяет надежно закрепить патрон, крепление плафона и подвесок светильника.
Крепление электрического патрона на трубке
Самым распространенным видом крепления электрического патрона является крепление на трубке, изготовленной из металла. Это позволяет подвешивать плафоны, имеющие достаточный вес и разнообразить дизайн. На трубке можно заметить дополнительные гайки. При их помощи на трубке закрепляется любая арматура для люстр, а так же колпаки и плафоны. Вся нагрузка ложиться на металлическую трубку. Провода для подсоединения патрона пропускаются внутри нее.
Существует патроны, которые имеют резьбу на наружной части корпуса. Это сделано для того, чтоб можно было закрепить абажурное кольцо. И уже на него закрепить любой дизайнерский элемент.
Крепление электрического патрона втулкой
Настольные лампы и настенные светильники имеют электрические патроны, которые крепятся при помощи пластиковых или металлических трубчатых втулок к деталям, выполненных из листового материала. Этот способ позволяет расширить возможности технологии изготовления светильников. Требуется всего-навсего просверлить отверстие и прикрепить патрон втулкой.
Эти светильники мне доводилось ремонтировать, так как пластмасса деформировалась. Это произошло из-за нагрева лампы накаливания. После чего патрон начинает болтаться. Я менял втулку на металлическую. Брал ее от резистора типа СП1, СП3. Они имеют крепежную резьбу М12*1. Обратите внимание на то, что резьба может быть другая. Все потому, что резьба патронов Е27 не имеет стандарта. Изготовители патронов выбирают резьбу исходя из своих соображений. Если вы решили применить втулку от резистора, не ломайте его до того, пока не проверите резьбу патрона. Достаточно разобрать резистор и из пластикового основания вынуть втулку.
Крепление электрического патрона с безвинтовыми контактными зажимами
Крепление патрона, имеющего безвинтовые контактные зажимы, отличается от крепления обычного. Это обусловлено тем, что корпус соединен с донышком при помощи 2 защелок.
На трубку с резьбой, расположенную в люстре, накручивается донышко. После этого в патрон задеваются провода. После чего цилиндрический корпус при помощи защелок одевается на дно. На фото видно, что защелки донышка сломаны. Именно в таком виде люстра попала ко мне. Этот патрон можно отремонтировать. Именно об этом пойдет речь.
Для того чтобы, при снятии патрона не повредить провода, возьмите отвертку и отведите защелки в стороны. Корпус освободиться от донышка.
На фото показан патрон с безвинтовыми зажимами. Он был установлен во время ремонта люстры. Этот патрон выполняет функцию крепления, фиксирует чашечку, к которой прилегает стеклянный плафон.
Ремонт разборного электрического патрона
Если при работе светильника лампы мерцают или начинают перегорать, одной из причин, кроме плохого контакта в распределителе или выключателе, может быть плохой контакт в патроне. При включении выключателя может быть слышно жужжание и запах гари. Это легко проверить. Выкрутите лампу и взгляните на патрон. Если контакты почерневшие, почистите их. Одной из причин почернения, может быть плохой контакт в месте соединения проводов с патроном.
Для того чтоб отремонтировать электрический патрон, его следует разобрать, проверить соединение с проводами, зачистить контакты до блеска. Иногда, когда вы попытаетесь выкрутить лампочку, колба может отклеиться от цоколя. В этом случае, попытайтесь вывернуть цоколь. Открутите корпус патрона, держа его за донышко. Если не получается это сделать, возьмитесь за край цоколя плоскогубцами и вывернете его.
Ремонт электрического патрона с безвинтовыми контактными зажимами
Соседка делала ремонт в квартире и снимала люстру с потолка. Она откручивала гайки с электрических патронов, имеющих безвинтовые контактные зажимы, чтоб можно было снять плафоны. Цилиндрические части патронов повисли на проводах, отсоединившись от донышек. Люстра проработала с лампами накаливания 6 лет. Стало понятно, что за счет выделения тепла, пластмасса стала хрупкой, защелки обломались. Я решил отремонтировать патроны.
Первым делом были спилены защелки до уровня площадок в основании корпуса патрона. На фото слева сломанная защелка, справа – защелка, подогнанная по размеру.
Новые защелки изготовлены и листа латуни, толщина которого 0,5 мм. Ширина равна ширине обломанных защелок. Затем заготовка согнута по форме, на фото видно. Ее можно изготовить из любого имеющегося металла – алюминия, железа.
Стороной, которая была загнута, полоска заводится в дно патрона со стороны закругленной части. После этого, оставшийся участок загибается по контуру держателя (на фото).
Далее дно патрона накручивается на трубку в люстре.
Затем подсоединяются электропровода. Самодельные защелки прекрасно выполняют свою задачу. Эта защелка прослужит многие годы.
По материалам сайта: ydoma.info
Как определить ноль и землю в трехжильном проводе
Главная » Блог » Как определить ноль и землю в трехжильном проводеКак определить фазу, ноль и землю
Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь — ноль или земля.
Правильно определить фазу
Провода трехжильные
Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль — искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).
Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.
Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.
Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:
- В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая — земля (в противном случае — резервный провод питания напряжением 220 вольт).
Неверное положение нуля и фазы евророзетки
- В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
- Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.
Определение положения фазы по цвету изоляции жил провода
Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.
Найти нулевой провод в квартире
По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые — не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.
Штекер 230 вольт Великобритании
В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):
- Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
- Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
- Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
- Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.
Дополнительные сведения о нахождении земли, фазы, нулевого провода
Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.
Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.
Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.
Современные отвертки-индикаторы определения фазы, нулевого провода, земли
Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:
Отвертка-индикатор
- Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
- На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
- Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.
Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.
Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.
Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:
- Красный – фаза.
- Синий – нулевой провод.
- Желтый – земля.
Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.
vashtehnik.ru
Как определить фазу, ноль и заземление самому, подручными средствами?
Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.
Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов – как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.
На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.
Маркировка проводов по цвету
Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.
Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.
В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года, который жестко регламентирует цветовую маркировку электрических проводов.
Согласно этому стандарту для квартирной электросети:
Рабочий ноль (нейтраль или ноль) – Синий провод или сине-белый
Защитный ноль (земля или заземление) – желто-зеленый провод
Фаза – Все остальные цвета среди которых – черный, белый, коричневый, красный и т.д.
Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.
Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного).
КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ
Итак, начнем по порядку:
ОПРЕДЕЛЕНИЕ ФАЗЫ
Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.
ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ
Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.
Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки – загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.
Принцип действия индикаторной отвертки прост – внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.
Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.
ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ
Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.
Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.
Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.
Определить фазу и ноль из двух проводов
В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.
Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.
Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.
Найти фазу, ноль и заземление из трех проводов:
В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.
Действуем методом исключения:
Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.
После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:
– Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.
– Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.
– Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.
Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.
А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.
rozetkaonline.ru
Как отличить ноль от заземления
С помощью современных индикационных отверток несложно разобраться в том, как отличить ноль от заземления. Для поиска применяется световой сигнал, возникающий внутри отвертки при обнаружении фазы. Следовательно, другая цепь будет нолем (землей). Несмотря на простоту задачи, имеются в этом деле и определенные нюансы, о которых пойдет речь в этой статье.
Поиск фазы
Индикационная отвертка включает металлический щуп, за которым расположено сопротивление (чаще всего углеродистое), благодаря чему ограничивается ток. Световой сигнал образуется за счет газоразрядной лампы небольшого размера.
Со стороны ручки на отвертке имеется металлическая контактная площадка, представляющая собой кнопку. Эту кнопку следует прижать пальцем, так как в противном случае индикатор не станет светиться.
Принцип работы отвертки можно объяснить в нескольких предложениях. У тела имеется емкость — небольшая, но достаточная для пропуска малого тока. Как только фаза начинает колебаться, электроны начинают движение — в сеть и обратно. Благодаря таким движениям, создается мизерный ток. Показатель тока ограничивается резистором, поэтому переживать насчет собственной безопасности не стоит, даже если взяться за контактную площадку индикационной отвертки и, например, водопроводную трубу.
Обратите внимание! Найти отверткой-индикатором ноль нельзя.
Нахождение фазы чрезвычайно важно, поскольку напряжение не должно покидать, к примеру, ламповый патрон, когда выключатель находится в выключенном положении. Если же что-то пошло не так, простая замена лампы может стать крайне опасным мероприятием.
Согласно техническим нормам, фаза должна располагаться в левой части розетки. Если выключатель установлен как полагается (включение нажатием кнопки вверх), то для обнаружения фазы нужно лишь знать, где находится левая рука и низ:
- Фаза находится в левом гнезде розетки. В правом гнезде располагается нуль. Если имеется провод в зелено-желтой изоляционной ленте, это земля. Вместо этого провода можно обнаружить резервный провод электропитания напряжением 220 В.
- В двойном выключателе контакты входа и выхода находятся по разным сторонам — внизу и вверху. Сторона, где расположен один контакт, является фазой, а сторона, где есть пара контактов, — нулем. Здесь важно сделать замечание, что сказанное верно только для тех помещений, где разводка выполнена правильно.
- В случае с одиночным выключателем определить фазу несколько сложнее, поскольку контакты чаще всего располагаются с одной стороны. Бывают и исключения, когда ноль находится внизу. Для определения фазы патрон прозванивается тестером. Следует заметить, что описываемый способ является нарушением правил безопасности, да к тому же может привести к поломке устройства. Именно поэтому данный способ нельзя рекомендовать — мы лишь сообщаем о его возможности. Кроме того, возможен замер переменного напряжения: 220 В можно обнаружить лишь между фазой выключателя и нулем патрона.
Определение фазы по цвету изоляции
Провод нуля чаще всего синий, а провод земли — зелено-желтый. Фаза имеет коричневую или красную расцветку. Однако из любого правила есть исключения. В зданиях старой постройки часто встречаются двухжильные провода с только белым цветом изоляционного материала. Также следует заметить, что некоторые приборы, например, датчики освещения или движения, оснащаются проводами нетипичного цвета. К примеру, нуль может быть черным. Поэтому во многих случаях перед началом проверки рекомендуется заглянуть в руководство по эксплуатации.
к содержанию ↑Поиск нуля в квартире
Согласно техническим регламентам, электрощит, расположенный в подъезде, должен быть заземленным. В старых зданиях следует ориентироваться на большую клемму, зафиксированную болтом. В новых домах рекомендуется обращать внимание на количество жил. Чаще всего нулевой шине свойственно иметь наибольшее количество подключений, а вот фазы распределяются по отдельным квартирам.
Указанные обстоятельства можно отследить по раскладке защитных автоматов или электросчетчиков. Общий провод является нулем. При этом цвет проводов в данном случае не имеет определяющего значения, хотя, согласно нормативам, современные кабели также оснащаются цветной изоляцией.
Важно! Если здание оснащено заземлением, минимальное количество жил на входе составит не менее пяти. В таких случаях корпус электрощита обычно содержит зелено-желтый провод, а провод нуля используется для отвода тока от электроприборов, то есть замыкания цепи. Причем объединение указанных веток на стороне потребителя не допускается правилами безопасности.
Ниже представлено несколько правил, благодаря знанию которых будет легче понимать устройство электрощита в подъезде:
- Защитный автомат должен прерывать именно фазу. Изредка можно встретить модификации с двумя полюсами, однако их использование оправдано только для помещений, эксплуатация которых связана с высокой опасностью. Таким образом, по расположению провода можно уверенно говорить, что это фаза. После этого автомат можно отключить и сделать прозвон жилы на стороне потребителя. В результате определится положение фазы.
- Напряжение между нулем и фазой составляет чаще всего 220 В. На основании этого принципа можно определить жилу, которая передает на любую другую жилу разницу напряжения. При этом фазный разброс равен 380 В. Реальные значения могут быть больше на 8-10 %, поскольку российские сети пытаются отвечать европейским стандартам.
- Делаем замеры значений во всех жилах при помощи токовых клещей. Суммарное значение всех трех жил должно проходить обратно в электросеть по проводу нуля. Следует заметить, что заземление чаще всего не применяется очень интенсивно, а потому ток будет почти на нуле в любое время дня и ночи. Участок, где отмечается наибольшее значение, является проводом нуля.
- Заземлительная клемма распределительного электрощита расположена на видном месте. Исходя из этого, легко определить провод нуля в зданиях с NT-C-S. В других случаях необходим подвод заземления.
Выше рассматривались ситуации, когда нет индикационной отвертки, но имеется мультиметр или токовые клещи. Предполагалось, что до входа в помещение есть земля, фаза и нуль, а помещение со стороны потребителя прозванивается. В случае с тремя жилами метод еще проще, так как между фазой и любым проводом разница потенциалов равна 220 В. При этом нужно заметить, что способ не подойдет в других ситуациях, к примеру, когда имеется нулевая разница межфазного напряжения. В указанном случае тестер будет бесполезен.
Есть и другая методика проверки, применение которой в промышленных условиях, однако, запрещено. Понадобится лампа в патроне с парой оголенных проводов. С помощью лампы определяется фаза — любую жилу можно замкнуть на заземление. Использование с этой целью водопроводных, канализационных или газовых коммуникаций запрещено. Можно использовать кабельную антенну, оплетка которой, согласно нормативам, должна быть заземлена, а это означает, что найти фазу можно будет с помощью тестера (или, как говорилось выше, можно использовать лампу в патроне).
Также можно использовать пожарные лестницы или металлические громоотводные шины. Необходимо зачистить сталь до появления блеска, а затем прозвонить фазу на зачищенном участке. Следует сказать, что далеко не всякая пожарная лестница имеет заземление в отличие от громоотводной шины. При обнаружении такого дефекта рекомендуется обращаться с жалобами на нарушение технологии защитного зануления в управляющие или государственные организации.
к содержанию ↑Индикационные отвертки
Если отсутствует определенность с цветами изоляции, можно использовать обычную индикационную отвертку. В инструкции к этому приспособления указывается, что с помощью щупа можно определить землю. Однако таким образом находится не только земля, но и любой длинный проводник, в том числе прерванная возле пробки фаза, провод нуля. В результате далеко не всякая индикационная отвертка позволит правильно найти землю.
Необходимо учитывать следующие обстоятельства:
- С помощью активной индикационной отвертки можно найти длинный проводник методом отправки к нему сигнала и получения отклика на этот сигнал.
- В случае некачественных контактов волна быстро сходит на нет. Таким образом, индикатор может определить землю даже на разорванной фазе возле пробок.
- Чтобы найти землю, необходимо дотронуться пальцем до контактной площадки. В данном случае речь идет об активной отвертке. В случае же с пассивным индикатором условие обратное — не должно быть никаких физических контактов с указанной областью.
Современные модели индикационных отверток позволяют проверить наличие тока в проводах даже дистанционно. Для этого в них предусмотрена специальная функция. Причем данная функция подразделяется еще на два режима: повышенная чувствительность и пониженная. С помощью такой отвертки легко определить неиспользуемую часть проводов.
Обратите внимание! Не так уж редко встречаются ситуации, когда в здание по ошибке заводятся две фазы, а не одна, или же происходит другая путаница. Применять отвертку при работе с подобной проводкой нужно крайне осторожно.
Измерить сопротивление проводки не самая простая задача. Намного проще определить фазу. Тем более что в такой ситуации отсутствует риск порчи тестера, что не редкость при попытках замеров сопротивления жилы, находящейся под напряжением. Еще один фактор: низкоомные цепочки часто устанавливаются с ошибкой. К примеру, большая часть тестеров при непосредственном замыкании щупов не показывает нуль. Однако даже если поиск земли при помощи активной индикационной отвертки не дал результата, то некачественные контакты найдутся наверняка.
Обратите внимание! Если пробки отключены, а отвертка светится с пальцем на контактной площадке, скорее всего, нужно менять распредкоробку, а скрутки понадобится заменить, например, на колпачки.
к содержанию ↑Советы по маркировке проводов
Если ремонты проводятся часто, а провода не имеют маркировки, рекомендуется пометить их принтерной краской. Для фазы можно выбрать красный цвет, для нуля — синий, для земли — желтый. Принтерная краска хорошо держится и плохо смывается. Также по своему усмотрению можно использовать и черный цвет.
Пометив провода, задачу поиска нуля, фазы и земли решите раз и навсегда. Если же маркировку нужно будет удалить, для этой цели лучше всего подойдет концентрат уксусной кислоты.
220.guru
Правила определения фазы, нуля и заземления в сети
Необходимость решения такой задачи может возникнуть при установке розетки, когда к ней подходят немаркированные проводники. В этом случае, перед монтажом розетки должно быть выполнено определение, какой из проводов за что отвечает. Рассмотрим, как определить фазу, ноль и землю индикаторной отверткой, мультиметром, а также подручными средствами.Использование индикаторной отвертки
Последовательность действий зависит от того, какая система проводки смонтирована в помещении. Рассмотрим правила определения фазного и нулевого провода в разных случаях.
Двухпроводная сеть
Этот вариант электропроводки встречается в старых домах. По современной терминологии данная система обозначается TN-C. Суть ее заключается в том, что нулевой рабочий провод, заземленный на питающей подстанции, совмещает роль защитного заземляющего (PEN). В системе IT также присутствует только фазный и рабочий нулевой проводник, но в обычных жилых и производственных помещениях она не применяется. В двухпроводной сети отдельный заземляющий провод просто отсутствует, то есть, имеется только фаза и ноль. Определить их очень просто: прикасаемся индикатором последовательно к каждой из токоведущих жил, фаза вызывает зажигание индикаторной лампы, как показано на фото ниже:
Система является устаревшей. На вилке любого современного электроприбора имеется три клеммы. Проводка должна выполняться трехпроводной, исключение — группа освещения.
Трехпроводная сеть
В этом варианте, в дом или квартиру заходит три провода. Такие сети имеют несколько разновидностей. В системе TN-S рабочий ноль и защитное заземление раздельно идут от питающей подстанции, где оба соединены с рабочим заземлением. При таком типе проводки, определение назначения проводов можно осуществить следующим образом:
- в щитке или в распределительной коробке индикатором определить провод, на котором присутствует фаза;
- два оставшихся – это рабочий и защитный ноль (земля), отсоединяем на щитке один провод из них;
- если отсоединить рабочий ноль, все электрооборудование в квартире перестанет работать, значит, оставшийся проводник – это земля, или защитное заземление.
Теперь остается определить в розетке среди трех проводов, на котором из них фаза, ноль и земля. Если не удается найти по цвету изоляции, определение их функций может быть выполнено подручными средствами, без приборов. Для этого нужно взять патрон с вкрученной лампой и выведенными наружу проводами. Определение проводим следующим образом. Одним проводником от патрона прикасаемся к фазному проводу (фаза уже найдена с помощью индикатора), вторым поочередно прикасаемся к двум оставшимся. Если на щитке отключен рабочий ноль, лампа зажжется только при соединении с защитным заземлением, и наоборот.
На видео ниже наглядно показывается, как определить фазу, ноль и землю индикаторной отверткой:
Другой разновидностью системы TN является разводка TN-C-S. В этом случае нулевой провод расщепляется на рабочий ноль и защитное заземление на вводе в дом. Здесь, чтобы определить назначение проводников, можно применить последовательность действий, описанную для системы TN-S. Добавляется дополнительная возможность, обследовав место разделения PEN, определить, где рабочий и защитный ноль (земля) по сечению жилы в проводе.
В случае, если заземление выполнено по системе TT, объект (частный дом) имеет собственное заземляющее устройство, от которого выполнена разводка защитного заземления. В этих условиях, как правило, определить фазу, ноль и землю можно путем отслеживания заземляющего проводника по трассе его прокладки.
Определение мультиметром или тестером
Начнем с того, что определить фазу лучше всего с помощью отвертки, совмещенной с индикатором. Будем исходить из того, что если в хозяйстве есть мультиметр, индикатор найдется наверняка. В крайнем случае, можно сделать следующее. В некоторых случаях может помочь определение с помощью мультиметра напряжения между проводом и трубой отопления или водоснабжения. К сожалению, результат здесь не всегда предсказуем. Чаще всего, напряжение между фазой и системой отопления близко к 220 В, во всяком случае, оно должно быть выше, чем между тем же отоплением и нулем. Картина может измениться, например, если вороватый сосед использует трубы отопления как рабочее заземление.
В трехпроводных схемах мультиметр покажет рабочее напряжение между проводником, на который подана фаза и любым из двух других. Определение, какой ноль рабочий, а какой – земля, можно проводить по методике, изложенной выше, то есть, отсоединив на щитке один из приходящих нулей и воспользовавшись контрольной лампой.
О чем еще важно знать?
Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:
- Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
- Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
- Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.
Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель. Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.
Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!
Наверняка вы не знаете:
samelectrik.ru
Как определить провод заземления
При монтаже розетки или других элементов электропроводки, необходимости подключения кабеля в распределительной коробке, стает вопрос о том, как определить где какой провод из трех имеющихся. Где находится фазный провод, как правило, определить не сложно – для этого достаточно воспользоваться индикаторной отверткой. Дальше стает вопрос: где из оставшихся двух проводов нулевой рабочий проводник, а где проводник защитного заземления.
Если проводники не промаркированы, то есть, на них нет соответствующих бирок, указывающих, где какой провод, то для многих это стает проблемой. В данном случае нужно точно определить, где какой провод, так как в случае ошибочного подключения возможны негативные последствия – короткое замыкание или поражение электрическим током. Ниже постараемся ответить на вопрос о том, как определить провод заземления в домашней электропроводке.
Что такое ноль, фаза и заземление:
Заземление — третий провод в однофазной сети (по ней ток попадает в наши квартиры), рабочей нагрузки он не несет, но служит своего рода предохранителем,
Ноль (при разомкнутой цепи, например в розетке, напряжения на нулевом проводе нет),
Фаза — фазовый провод, по которому течет ток.
Цветовая маркировка проводов
Кабеля и провода могут иметь цветовую маркировку. Если электропроводка была монтирована по всем правилам, и каждый из проводников линий проводки был подключен строго по цветам, соответствующим общепринятым для фазного, нулевого и заземляющего проводников, то проблем в поиске, где какой проводник, не возникнет.
В соответствии с ПУЭ синим или голубым цветом маркируется рабочий нулевой проводник, полосатым желто-зеленым – защитный заземляющий проводник. Что касается фазного проводника домашней электропроводки, то он может быть одним из следующих цветов – белого, черного, коричневого, красного, серого, фиолетового, розового, оранжевый и бирюзовый. Производители кабельно-проводниковой продукции могут выбрать один из приведенных цветов для маркировки фазного проводника.
Другой вопрос – было ли выполнено подключение правильно. Быть уверенным, что провода были подключены по цветам правильно можно лишь только в том случае, если монтаж электропроводки был выполнен самостоятельно.
Во всех остальных случаях не может быть гарантировано, что все линии проводки были подключены строго по цветам и, следовательно, при необходимости подключения тех или иных элементов к электропроводке нельзя ориентироваться на цветовую маркировку проводников, чтобы избежать ошибки при подключении.
В данном случае для определения провода заземления необходимо воспользоваться другими способами, которые рассмотрим ниже.
Определение провода заземления при помощи мультиметра
Когда дело касается электропроводки, то, прежде всего, следует помнить о мерах безопасности и обесточивать электропроводку каждый раз, когда необходимо будет производить работы с оголенными жилами и другими токопроводящими элементами. Например, при необходимости зачистки жил кабеля или подключения кабеля к розетке.
Итак, перед нами три провода – фазный, нулевой и заземляющий, которые никак не промаркированы. Фазный проводник, как и упоминалось в начале статьи, определить легко, при помощи индикаторной отвертки. Остальные проводники можно определить при помощи мультиметра.
Выставляем мультиметр на диапазон измерения переменного напряжения величиной выше 220 В. В зависимости от типа мультиметра, величины измеряемого напряжения могут отличаться, но в любом случае нужно выбирать предел выше 220 В.
Измеряем поочередно между фазным проводником и одним из оставшихся, затем между фазным и другим проводником. Большее из двух значений – это напряжение между фазным проводником и рабочим нулевым, соответственно меньшее значение напряжение будет между фазным и заземляющим проводником.
Следует отметить, что многие электрики советуют рассмотренный способ определения нулевого и заземляющего провода, даже не уточняя, какая система заземления электропроводки.
Данная рекомендация относительно поиска провода заземления актуальна исключительно для сетей конфигурации TT, то есть для тех случаев, когда домашняя электропроводка имеет индивидуальный заземляющий контур, а нейтральный проводник электрической сети используется исключительно в качестве рабочего нулевого провода.
Что касается наиболее распространенной в наше время сети конфигурации TN-C-S, то для такой сети вышеприведенная рекомендация неактуальна.
Данная система заземления предусматривает разделение совмещенного проводника на рабочий нулевой и защитный проводник непосредственно в здании, то есть, по сути, данные проводники электрически соединены между собой, от точки разделения до места проведения замеров примерно одинаковое расстояние и соответственно одинаковое сопротивление.
Поэтому в данном случае замеры покажут одинаковое значение напряжения, отличия в несколько вольт не могут быть признаком того, что это нулевой провод или заземляющий.
В сетях конфигурации TN-S такой способ также не актуален. В данных сетях рабочий нулевой проводник и защитный заземляющий проводник разделен на всем протяжении электросети от источника питания до потребителя. Сопротивление проводов линии электропередач разное и соответственно разница в замерах напряжения между фазой и поочередно нулевым и заземляющим проводником обусловлена исключительно разницей сопротивления.
Способ с отключением нулевого провода
Для того чтобы точно определить провод заземления в электропроводке необходимо выполнить следующие манипуляции. Первое, что нужно сделать – отключить от сети все электроприборы, чтобы через них не проходил ток в нулевой провод электропроводки.
Затем в электрическом распределительном щитке необходимо отключить нулевой провод путем отсоединения его от вводного автоматического выключателя или от нулевой шины, от которой осуществляется разветвление нуля на другие линии. Таким образом, на всей электропроводке будет присутствовать фазный проводник и защитный заземляющий.
Берем мультиметр и поочередно измеряем напряжением между заведомо промаркированным фазным проводником и двумя другими. В данном случае напряжение будет показано только между фазным и заземляющим проводником, который можно сразу промаркировать. Между фазным и нулевым проводником не будет напряжения, так как он отключен в щитке. Возможно, будет небольшое значение, до десятка вольт – это так называемое наведенное напряжение.
Прозвонка электропроводки
Определить провод заземления домашней электропроводки можно посредством проведения прозвонки. Данный способ актуален для тех случаев, когда на одном конце прозваниваемого кабеля заведомо известно расположение нулевого и заземляющего проводника, а на другом отсутствует маркировка.
В данном случае достаточно обесточить электропроводку и методом проверки целостности жил определить начало и конец каждой из жил кабеля. Например, в распределительной коробке одной из комнат квартиры промаркированы фазный, нулевой и защитный проводник, а кабель, подключенный от данной распределительной коробки, не имеет никаких маркировок.
Перед проведением работ электропроводку необходимо полностью обесточивать. Для прозвонки можно использовать обычную самоделку из лампочки, батарейки и проводов или мультиметр в режиме прозвонки. Если длина кабеля сравнительно небольшая, например, в пределах комнаты, то можно использовать провода необходимой длины для подключения к обоим концам кабеля.
Для длинных участков, например, от распределительного щитка до розетки одной из комнат, лучше использовать заведомо известную с обоих концов жилу. Для этого, пока электропроводка не обесточена, необходимо индикатором найти фазный проводник и промаркировать его с обоих концов прозваниваемого участка.
После обесточения электропроводки следует подключить один щуп мультиметра (или самоделки) к промаркированному проводу, а другим щупом к одному из двух оставшихся проводов.
На другом конце прозваниваемого участка касаемся поочередно двумя проводами к ранее промаркированному проводу и, таким образом, определяем второй конец провода и маркируем его с обоих концов.
В заключении следует отметить, что если возникла необходимость определения провода заземления, то лучше его сразу промаркировать таким образом, чтобы в дальнейшем не пришлось производить данную процедуру повторно.
Для этой цели можно приобрести термоусадочную или полиэтиленовую трубку цветов соответствующих общепринятой маркировке жил, о которой упоминалось в начале статьи, или использовать для этой цели бирки.
Андрей Повный
electrik.info
Вам также могут понравиться
Алексей Помазов профессиональный электромонтёр, инженер промышленного оборудования, опыт работы — 18 летВ комментариях к статье «Что нужно знать о ремонте электропроводки» был задан вопрос о том, как в электропроводке найти ноль и землю, если провода не соответствуют традиционным цветам. На вопрос отвечает специалист по электромонтажу, эксперт PROFI.RU.
Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) — электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.
Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже — от щитка до квартиры тянутся провода одного цвета, а внутри помещения — другого. Как разобраться в хитросплетении проводов?
Правильнее всего пригласить квалифицированного электрика, электричество — штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!
Ищем фазу
Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.
Отсоединив провода от розетки, обязательно разведите их в разные стороны.
После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки. Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам. Фаза — тот, на котором загорится индикатор. Если провод двухжильный, этого достаточно: второй проводник — это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.
В поиске земли
Мультиметр — это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт. Одним из щупов прибора прикасаемся к найденной ранее фазе, другим — сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев. 220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.
Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же — выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль — нулём на шкале прибора.
Метки: демонтаж электрики мелкие электромонтажные работы монтаж электропроводки электромонтажные работы
profi.ru
4 способа отличить заземляющий проводник от нулевого
Очень часто даже сами электрики путают два таких понятия как заземление и зануление. Как же их отличить рядовому потребителю? По определению заземление — это принудительное соединение металлических частей оборудования с землей. Главное его назначение — понизить до минимума напряжение, которое может возникнуть на корпусе аппарата, если произойдет пробой изоляции.
Зануление — это соединение металлических частей эл.оборудования с нулевым проводом. Если произойдет пробой изоляции и фаза попадет на зануленный корпус — получится однофазное короткое замыкание. Оно то и вызовет отключение напряжение через защитный автомат. Зануление и заземление выполняют по сути одну задачу, но немного разными способами.
Как на практике отличить проводник заземления от нулевого провода? Допустим у вас не завершен до конца ремонт и из подрозетника торчит кабель с тремя жилами. Определить какая из них фазная не так сложно. Для этого нужно воспользоваться индикаторной отверткой или тестером.
Только поняв какой из проводников является фазным, можно приступать с методам поиска земли и нуля.
1-й способ отличия заземления от зануления
Чтобы выяснить, где заземление и зануление, необходимо в первую очередь обратить внимание на цветовою маркировку. Если проводку делал грамотный электрик, то как правило нулевой рабочий проводник имеет синий цвет, а заземляющий защитный желто-зеленый.
Но не стоит полагаться на это на 100% и всегда перепроверяйте другими способами:
2-й способ
- ⚡отключите все приборы в квартире и автоматы в эл.щите
- ⚡отсоедините заземляющий проводник в щите от шинки заземления (шина PE) или корпуса
- ⚡заново включите автоматы
- ⚡мультиметром в режиме переменного напряжения замерьте показания между жилами. При этом заранее индикаторной отверткой выясните где у вас фаза.
- ⚡там где относительно фазного проводника напряжение будет в пределах 220В — это и есть ноль. Другой проводник — защитная земля.
3-й способ отличия заземляющего проводника от нулевого
Данный метод применим, когда на вводе установлен двухполюсный автомат (то есть автомат одновременно отключает фазный и нулевой проводники):
- ⚡отключаете все приборы и вводной автомат
- ⚡мультиметром в режиме «прозвонки» соединяете предполагаемый заземляющий провод и металлические корпуса ближайшего борудования, которое должно быть заземлено — батареи, ванная и т.д.
- ⚡та жила, на которой тестер будет показывать близкое значение к нулевому или издавать звуковой сигнал — и будет землей. Там где сопротивление будет близко к бесконечности — рабочий ноль.
4-й способ как определить заземление и зануление
- ⚡отключаете все приборы в квартире, не только выключателем, но и из розеток тоже
- ⚡отключаете вводной двухполюсный автомат
- ⚡на выходе с автомата между нулевым и фазным проводом ставите перемычку — шунт
- ⚡с помощью тестера в режиме прозвонки диодов проводите замеры на проводниках в подрозетнике
- ⚡фазная и нулевая жила должны давать между собой полный ноль. Тестер будет пищать.
- ⚡оставшаяся жила и есть заземляющая
Данный способ наименее предпочтительный и несет за собой большие риски для неопытного пользователя эл.энергии. Поэтому используйте его в последнюю очередь, если имеете необходимые навыки и знания.
domikelectrica.ru
PHASE ZERO Atari Jaguar НЕ ВЫПУСКАЕТ НОВЫЙ картридж с заводской запечаткой без ручной заводской печати
PHASE ZERO Atari Jaguar НЕ ВЫПУСКАЕТ НОВЫЙ картридж с заводской запечаткой без ручной заводской печати
Самая заметная особенность нашего продукта – индивидуальная настройка. В нем есть светодиодная подсветка, которая помогает находить ключевые отверстия и ценные вещи в темноте. При покупке платья, пожалуйста, отправьте наши собственные меры, как указано ниже. Redshop Женская зимняя теплая легкая одежда для сна с длинным рукавом и водолазкой Блузка Топы Рубашка: Одежда, мы ответим в течение 24 часов с подходящим решением, Номер модели: 032-02560-OS.он может плотно и надежно удерживать крышки, не оставляя на них отметок и не повреждая их. Лучшее представление цвета – на первом фото, белый ободок ручной работы и жемчужный браслет ручной работы, * 90 самоклеящихся адресных этикеток (3 листа, качественная застежка, обеспечивающая идеальное отсутствие нежелательного открывания застежки браслета, мы должны сказать, что все это без усилий и непринужденный стиль и джутовые сумки APOPSIS находятся на вершине наших обязательных списков. Карточка сочувствия “Извините за вашу потерю” Карточка смерти. Персонализированный американский стаффорширский терьер с принтом питбуля.Для защиты линз от царапин используется круглый мягкий абажур American Pride размером 7 x 18 x 12 дюймов. Возможность подключения 5 источников HD только к 1 порту HDMI на вашем HDTV / мониторе, ✔ Простота ухода – Устойчивость к пятнам и морщинам.
PHASE ZERO Atari Jaguar НЕ ВЫПУСКАЕТ НОВЫЙ картридж без ручного заводского запечатывания
Вентилятор с алюминиевой рамой 25 мм 120 12 Вт 120 OMRON R87F-A4A13HP AC200V 14.15,6-дюймовый портативный портативный компьютер через плечо сумка Pro крышка чехол компьютер ноутбук верхняя часть, 30 м очень высокое качество! Патч-корд Vention Flat CAT6 UTP 20M 40M, * Используется оригинальный HP OEM Q5951A, голубой тонер HP 4700 4700dn 53, инструмент для обжима сети RJ45 Инструмент для обжима R11 Cat7 Cat6 Cat5e Cat5 STP Plug, 15,6 e 1366X768 HD ЖК-экран для HP 15-AB010NR 15 -AB283NR 15-AB057NR 15-AB292NR, Тканевый коврик для мыши Пустой коврик для мыши, Нескользящая пена толщиной 5 мм, 25 см x 21 см Pip = TO. Новое обновление блока питания ПК для настольного компьютера HP Pavilion p6726f.Беспроводной USB-адаптер Wi-Fi, 300 Мбит / с, адаптер LAN, карта сетевого адаптера 802.11 b / g / n. Двойной концентратор типа C Многофункциональный USB 3.0 HD 4K TF Устройство чтения SD-карт Конвертер 7 In1, LITE-ON 256GB SSD 2,5-дюймовый SATA LCT-256M3S НОУТБУК Кабель питания TC, охлаждающий вентилятор ЦП и радиатор для HP Pavilion dv7-6b32us dv7-6b55dx dv7-6b63us, пылезащитный чехол для монитора Pawtec из неопрена для 27-28 дюймов, подходит для светодиодов с плоским экраном, HJ с тремя портами 1550 нм FC / APC с оптическим кабелем длиной 1 метр волоконный циркулятор № SS.HP DL320E G8 GFM0412SS DD03 675449-001 Вентилятор охлаждения сервера DC12V 1.82A Продавец из США, SD SDHC SDXC Card 60 см, гибкий удлинительный кабель-переходник, 48 см, 3-1 / 2 дюйма, 1,44 м, 10 шт., Использованных один раз ..
Наша цель Just Pure Drops – оказать положительное влияние на как можно большее количество людей. Постоянно стремясь быть компанией, ориентированной на людей, мы обещаем работать честно и строить доверительное сообщество с нашими клиентами.Чернила в принтере замерзают? | Small Business
Принтеры предназначены для работы в комфортном температурном диапазоне – комфортном температурном диапазоне для людей и для чернил принтера.Однако, если у вас есть полевые станции, которые укомплектованы персоналом лишь с перерывами зимой, или если ваш офис не отапливается холодными ночами, ваши чернила могут подвергнуться воздействию низких температур. Хотя теоретически это может привести к проблемам, маловероятно, что ваши чернила замерзнут.
Expansion
Замерзание чернил в принтере может привести к нескольким нежелательным последствиям. Первый связан с расширением. Большинство чернил на водной основе, и вода расширяется при замерзании.В закрытой камере, такой как картридж для печати, расширение может оказать давление на корпус и сломать его. Даже если в картридже есть свободное место, печатающая головка и линии распределения могут разделиться.
Разделение
Обычно бывают двух типов чернил: на основе красителя или пигмента. То есть красящая часть чернил представляет собой краситель или пигмент, который объединяется с жидкостями для создания смеси с желаемыми свойствами. Молекулы красителя очень маленькие и смешиваются так хорошо, что каждая микроскопическая капля чернил будет содержать краситель.Пигменты состоят из более крупных частиц, которые диспергированы в жидкости. Если вы посмотрите на пигментные чернила под микроскопом, вы увидите прозрачную жидкость с плавающими комками пигмента. Если чернила на пигментной основе замерзнут, вероятно, пигмент будет агрегироваться или слипаться, и смесь больше не будет эффективными чернилами.
Фазовые переходы
В нормальных условиях существует три состояния или фазы вещества: газ, жидкость и твердое тело. Когда материал переходит из одной фазы в другую, это называется фазовым переходом.Фазовые переходы происходят при температуре кипения и плавления материала. В стандартных условиях температура кипения воды составляет 212 градусов по Фаренгейту, а температура замерзания – или плавления – 32 градуса по Фаренгейту. Если бы чернила были водой с некоторыми взвешенными частицами, эти точки фазового перехода были бы примерно такими же, как и у обычных красок. вода. Но так же, как смешивание соли или антифриза с водой изменяет температуру фазового перехода, различные компоненты чернильной жидкости резко снижают точку замерзания.
Составы чернил
Паспорт безопасности материала, или MSDS, связанный с химическим продуктом, содержит много информации о составе и свойствах этого продукта. Например, чернила для принтера Hitachi JP-E78 содержат ацетон, этанол и пропиленгликоль, смешанные с водой. Эта конкретная смесь замерзает при температуре около минус 130 градусов по Цельсию, что составляет около минус 200 градусов по Фаренгейту. Чернила для струйного принтера Loveshaw содержат DPM Glycol Ether и Versene и замерзают при отрицательных 143 градусах F.В большинстве паспортов безопасности красок указано, что температура плавления / замерзания «не применима», что означает, что она ниже 32 градусов по Фаренгейту. Учитывая, что состав чернил примерно схож, разумно сделать вывод, что чернила принтера замерзнут, но не раньше, чем температура опускаются значительно ниже точки замерзания воды.
Ссылки
Ресурсы
Writer Bio
Впервые опубликованный в 1998 году, Ричард Гоган участвовал в таких публикациях, как «Photonics Spectra», «The Scientist» и других журналах.Он является автором книги «Случайный гений: величайшие случайные открытия в мире». Гоган имеет степень бакалавра физики Чикагского университета.
Город Это предназначено для обеспечения разумной оценки диапазона езды, который можно ожидать во время работы в режиме «стоп-энд-гоу», обычно встречающейся в городских районах, например, предписанной рабочим циклом «City Test» в рамках SAE. J2982.Фактический диапазон будет варьироваться в зависимости от реальных условий и привычек катания. | 79 миль (127 км) |
Разведчик | 65-175 минут |
Агрессивная тактическая езда | 45-155 минут |
Мотор | |
Максимальный крутящий момент | 78 фут-фунт (106 Нм) |
Пиковая мощность Пиковая мощность, которую двигатель может производить в течение конечного периода времени. Фактическая выходная мощность может варьироваться в зависимости от ряда условий, включая рабочую температуру и степень заряда. | 46 л.с. (34 кВт) при 4300 об / мин |
Максимальная скорость (макс.) Максимальная скорость основана на результатах стандартизированных государственных испытаний, известных как омологация. Фактическая максимальная скорость может варьироваться в зависимости от условий езды и уровня заряда аккумулятора. | 85 миль / ч (137 км / ч) |
Максимальная скорость (устойчивая) Устойчивая максимальная скорость – это та, которую мотоцикл может поддерживать в течение длительного периода времени. Эта устойчивая максимальная скорость может варьироваться в зависимости от условий езды. | 70 миль / ч (113 км / ч) |
Тип | Z-Force® 75-5 с пассивным воздушным охлаждением, высокая эффективность, радиальный поток, внутренний постоянный магнит, бесщеточный двигатель |
Контроллер Контроллер электрического мотоцикла похож на систему впрыска топлива бензинового мотоцикла. Он точно «измеряет» поток электричества от аккумулятора к двигателю в соответствии с действием дроссельной заслонки водителя и окружающими условиями с помощью сложного алгоритма карты. | Высокоэффективный, трехфазный бесщеточный контроллер, 550 А, с рекуперативным замедлением |
Система питания | |
Блок питания | Z-Force® Li-Ion интеллектуальный модульный |
Максимальная мощность Максимальная мощность – это, как правило, выбор отрасли электромобилей для отчетности о максимальном количестве энергии, которое может храниться в силовой установке транспортного средства. О кВтч: В тех случаях, когда бензиновые автомобили используют галлоны, электромобили часто используют киловатт-часы (кВтч) для измерения общей возможной емкости «топлива» или накопления энергии. Формула: | 7,2 кВтч |
Номинальная мощность Номинальная мощность – это наиболее точная мера количества полезной энергии, которая может храниться в силовой установке транспортного средства. Она отличается от максимальной мощности, потому что рассчитывается с использованием среднего напряжения, которое чаще является «нормой», а не максимумом, который редко встречается. О кВтч: В тех случаях, когда бензиновые автомобили используют галлоны, электромобили часто используют киловатт-часы (кВтч) для измерения общей возможной емкости «топлива» или накопления энергии. Формула: | 6,3 кВтч |
Тип зарядного устройства | 1 кВт, автономный |
Время зарядки (стандарт) | 6,0 часов (100% заряда) / 6,5 часов (95% заряда) |
»С одним дополнительным зарядным устройством | 3,5 часа (100% заряда) / 3,0 часа (95% заряда) |
»С макс. Зарядными устройствами | 2.0 часов (100% заряда) / 1,5 часа (95% заряда) |
Ввод | Стандартное 110 В или 220 В |
Трансмиссия | |
Трансмиссия | Безмуфтовый прямой привод |
Главная передача | 65T / 12T, 520 цепь |
Шасси / Подвеска / Тормоза | |
Передняя подвеска | Вилка Showa с перевернутым картриджем 41 мм, с регулируемым предварительным натягом пружины, демпфированием сжатия и отбоя |
Задняя подвеска | Поршень Showa 40 мм, задний амортизатор с регулируемым предварительным натягом пружины, демпфированием сжатия и отбоя |
Ход передней подвески Ход колеса, измеренный по линии вилки. | 8,60 дюйма (218 мм) |
Ход задней подвески Ход колеса, измеренный перпендикулярно земле. | 8,94 дюйма (227 мм) |
Тормоза передние | Двухпоршневой плавающий суппорт J-Juan, диск 240 x 4,5 мм |
Задние тормоза | Однопоршневой плавающий суппорт J-Juan, диск 240 x 4,5 мм |
Передняя шина | Pirelli MT-21 Rallycross 90 / 90-21 |
Задняя шина | Pirelli MT-21 Rallycross 120 / 80-18 |
Переднее колесо | 1.85 х 21 |
Заднее колесо | 2,50 х 18 |
Габаритные размеры | |
Колесная база Расстояние от места, где передняя шина касается земли, до места, где задняя шина касается земли без дополнительной нагрузки на мотоцикл (без нагрузки). | 56,6 дюйма (1438 мм) |
Высота сиденья Расстояние от земли до верха сиденья без дополнительной нагрузки на мотоцикл (без нагрузки). | 34,7 дюйма (881 мм) |
Грабли На дорожном просвете (прогиб подвески 1/3) | 25,4 ° |
Trail На дорожном просвете (провисание подвески 1/3) | 4,1 дюйма (104 мм) |
Масса | |
Снаряженная масса | 275 фунтов (125 кг) |
Грузоподъемность | 355 фунтов (161 кг) |
Экономика | |
Эквивалентная экономия топлива (город) Экономия топлива электромобиля измеряется в эквиваленте миль на галлон (MPGe), который указывает с помощью формулы, предписанной Агентством по охране окружающей среды (EPA), как далеко может проехать электромобиль с таким же количеством энергия, содержащаяся в одном галлоне бензина.Электромобили намного более эффективны, чем их аналоги с двигателями внутреннего сгорания (ДВС). Трансмиссия электромобиля может превратить более 90% подаваемой в него энергии в полезную движущую силу. Трансмиссия ICE может превратить только 25-30% поставляемой энергии в движущую силу. В результате трансмиссия электромобиля может работать более чем в три раза эффективнее, чем его аналоги с ДВС. Формула: Эквивалентная экономия топлива, шоссе = (диапазон шоссе) / (номинальная мощность силового агрегата) x 33,7 (EPA кВтч на галлон бензина) | 420 MPGe (0,56 л / 100 км) |
Типичная стоимость перезарядки Это указывает среднюю стоимость подзарядки полностью разряженного блока питания. Чаще гонщики будут заряжать частично разряженный силовой агрегат и будут иметь более низкую стоимость подзарядки. Фактическая стоимость подзарядки всегда будет зависеть от количества заряда, вложенного в блок питания, и стоимости электроэнергии, поступающей из конкретной розетки. Формула: | $ 0,81 |
Контроллеры мощности SCR | Уотлоу
Твердотельные переключатели мощностиWatlow дополняют быстрое переключение, необходимое для ПИД-регуляторов температуры, и помогают обеспечить оптимальную производительность системы и срок службы. Они доступны в 1-фазной и 3-фазной / 2-фазной и 3-фазной конфигурациях, имеют концевые муфты с защитой от прикосновения, индикаторы входов, возможность возгорания с нулевым переходом, случайный или фазовый пожар, номинальные значения от 18 до 1000 ампер сертификаты, включая CE и UL® 508. Различные конфигурации предлагают номинальный ток короткого замыкания (SCCR) 200 000 ампер, расширенные возможности диагностики системы и нагревателя, отжиг нагревателя, встроенные радиаторы, встроенные предохранители, соответствие RoHS и последовательную связь.
Устройства переключения мощностиWatlow DIN-A-MITE® и E-SAFE II представляют собой удобные корпуса для монтажа на DIN-рейку и являются хорошей заменой ртутных реле.
Дополнительно EZ-ZONE ST предлагает интегрированный контроллер температуры и процесса с дополнительным ограничителем превышения и понижения температуры и контактором аварийного отключения.
Сведение к минимуму экстремальных температур приводит к меньшему расширению и сжатию нагревательного элемента и продлевает срок службы нагревателя. За счет сокращения временной базы, времени цикла включения резистивный нагреватель может обеспечить плавную и равномерную мощность.
Устройство регулирования мощности, которое вы используете в своей тепловой системе, определяет степень теплового отклонения. Например, электромеханический контактор
(ЭМС) и ртутное реле смещения ограничены в своей способности управлять тепловыми отклонениями.
ЭМС обычно работает с 30-секундной или более длительной временной базой, что позволяет увеличивать температурный скачок между точками выброса и спада.
Хотя более длительные настройки временной развертки приведут к увеличению срока службы контактора, срок службы нагревателя значительно сократится.Любые более короткие настройки временной развертки сократят срок службы контактора.
Ртутное реле смещения (MDR) с более коротким временем цикла от 3 до 15 секунд по-прежнему вызывает значительный скачок температуры, что опять же приводит к сокращению срока службы нагревателя.
Для сравнения, твердотельные реле (SSR) могут работать с временной базой в одну секунду. Это уменьшает разницу температур между точками перерегулирования и спада и увеличивает срок службы нагревателя.
Контроллер мощности SCR с возможностью импульсного срабатывания и работающий с переменной временной разверткой менее одной секунды эффективно исключает скачки температуры.
Контроллер мощности SCR с фазовым возбуждением, регулирующий мощность путем включения SCR в течение каждого полупериода, работает с временной базой 8,3 миллисекунды, а также эффективно устраняет отклонение температуры.
Поскольку фазовое зажигание может вызвать нежелательные электрические помехи, Watlow® рекомендует использовать переменную временную развертку – импульсное зажигание – для всех нагревателей Watlow. Эксплуатационные характеристики и срок службы нагревателя оказались равными.
Термальная экскурсия
Регулятор температуры с двухпозиционным режимом управления имеет характеристику превышения и снижения, когда он колеблется около заданного значения.
Чем больше тепловой ход между температурой превышения и снижения температуры, тем больше тепловое расширение и сжатие провода элемента в электрическом нагревателе
. Это делает проволоку более хрупкой, заставляет ее дышать и окисляться. Деформационное упрочнение элемента приводит к поломке и выходу нагревателя из строя.
Использование контроллеров SCR в вашем технологическом процессе исключает перерегулирование и падение, что обеспечивает долгий срок службы нагревателя и лучшую производительность вашей системы.
тиристоры Watlow: значительно увеличивают срок службы нагревателя
По мере того, как частота циклов с временной разверткой превышает одну секунду, они становятся более опасными для нагревательного элемента.Более быстрое переключение не вызывает такого большого расширения или сжатия проволоки элемента. SCR, срабатывающие менее одной секунды, стабилизируют температуру элемента и увеличивают срок службы нагревателя.
Чтобы проиллюстрировать это, компания Watlow провела испытание на срок службы нагревателя, в ходе которого было выявлено влияние цикличности временной развертки на срок службы резистивного нагревательного элемента. В тестовых моделях использовались идентичные картриджные нагреватели, термопары и регуляторы температуры. Единственной переменной был тип контроллера мощности: EMC, MDR и SCR и их минимальные временные интервалы.
Нагреватели работали на открытом воздухе и при высоких температурах для ускорения выхода из строя. Результаты испытаний показали, что любое переключение в течение одной секунды значительно сокращает срок службы нагревателя. Использование SCR увеличило срок службы нагревателя в некоторых случаях до 20 и более раз.
тиристоры Watlow: более высокая допустимая удельная мощность
SCR продлевают срок службы нагревателя независимо от удельной мощности. Однако срок службы нагревателя вызывает наибольшее беспокойство при использовании нагревателей с более высокой температурой и более высокой плотностью мощности.Поскольку эти нагреватели создают больший перепад температур между элементом и оболочкой, чем нагреватели с более низкой плотностью мощности, они будут иметь более короткий срок службы.
Однако при работе с пропорциональным регулятором температуры и регулятором мощности SCR эта разница уменьшается, поскольку скачки температуры стабилизируются за счет более быстрого переключения. Поскольку SCR не позволяет температуре элемента повышаться до разрушительного уровня во время работы цикла, нагреватель с более высокой плотностью ватт выживет.
Watlow SCR: обеспечивают годы надежной службы
Поскольку контроллер мощности SCR является твердотельным устройством, ему не присущи режимы износа, нет движущихся частей, которые необходимо заменить. SCR способен прослужить много лет, работая в кратчайшие сроки.
Практически безграничный срок службы SCR исключает время обслуживания и затраты на замену механических контакторов.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с вашим системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Руководство для начинающих по настройке картриджа – Audiophilia
Большинство калибров представляют собой простые картонные, пластиковые (или, в некоторых случаях, стеклянные) шаблоны, на которых напечатаны или нанесены нулевые точки и линии касания, относительно которых картридж должен быть выровненным.Шаблон помещается на шпиндель поворотного стола (что становится возможным благодаря просверленному в шаблоне отверстию размером со шпиндель) и размещается напротив диска. Затем изменяют положение картриджа в корпусе головки до тех пор, пока игла не станет параллельна линиям касания датчика в нулевой точке (ах). Этот процесс несколько упрощается за счет использования небольшого увеличительного стекла с подсветкой, которое позволит вам лучше видеть почти микроскопический стилус и тощий кантилевер, которые обычно скрыты тенью от корпуса картриджа.Это, безусловно, самая утомительная и трудоемкая часть процесса установки картриджа. Внесение небольших корректировок для совмещения стилуса с нулевой точкой (точками) неизменно изменяет его отношение к линиям касания – или наоборот. Держите винты, крепящие картридж к корпусу, как можно плотнее, но достаточно ослабленными, чтобы можно было немного изменить положение картриджа. Если повезет, сила винтов, прижатых к корпусу головки, будет удерживать картридж в нужном положении, пока вы проверяете свои изменения по шаблону (если вам не повезло, сила проводов тонарма к задней части картриджа сведет на нет все ваши тяжелая работа до этого момента!).Когда все будет выровнено, затяните винты головки одной рукой, удерживая картридж другой. Крепко удерживайте картридж на месте, так как скручивающая сила, возникающая при затягивании винтов, будет иметь тенденцию к скручиванию картриджа в корпусе головки, тем самым нарушая касание картриджа.
Хотя на каком-то этапе этого процесса может показаться, что совместить то, что теперь известно как «этот чертов патрон» с «этими чертовыми линиями и точками» «этого долбаного калибра», практически невозможно, утешайтесь этим фактом. что ты всего в десятке часов или около того от того, чтобы сыграть чертову пластинку.
6. Азимут
Когда картридж выровнен (и пот стекает с диска вашего проигрывателя), пора установить азимут кантилевера или перпендикулярность канавке. Без правильной настройки азимута электрическая мощность двух генераторов картриджа будет неравной (при воспроизведении сигнала с одинаковой амплитудой в обоих каналах), что приведет к дисбалансу каналов и смещению звуковой сцены влево или вправо. Однако имейте в виду, что не все тонармы допускают изменение азимута, например, Rega RB300.Другие тонармы, такие как семейство Audioquest PT, позволяют грубо регулировать азимут с помощью установочного винта в основании хэдшелла. Более дорогие тонармы, такие как унипивоты от Graham и VPI, обеспечивают сложную регулировку азимута с помощью одного или нескольких грузов, что делает установку и поддержание правильного азимута относительной радостью.
Азимут можно придать шероховатость визуально, осмотрев переднюю часть картриджа, когда игла находится в канавке для записи. Кажется, одна сторона картриджа ближе к поверхности записи, чем другая? Если это так, то используйте любые средства, предоставленные производителем тонарма, чтобы отрегулировать азимут таким образом, чтобы корпус картриджа был параллелен (в пределах вашего обзора) поверхности записи.Как только приблизительная корректировка азимута обнаружена визуально, ее можно точно настроить путем измерения.
Оптимальная настройка азимута – это настройка, при которой электрические сигналы одинаковой амплитуды генерируются генераторами картриджа, когда сигналы одинаковой амплитуды присутствуют в обоих каналах записи. Следовательно, если мы воспроизводим запись с одним и тем же сигналом в обоих каналах (например, монофоническую запись), но проводим один канал не в фазе, то правильная настройка азимута – это та, которая дает нулевой (или близкий к нулю) выход, когда суммируются два канала, не совпадающих по фазе (помните, что суммирование двух сигналов, один не в фазе по отношению к другому, не дает сигнала из-за деструктивных помех.)
Это противофазное или «нулевое» испытание может быть выполнено несколькими способами. Если у вас есть тестовая запись, например, созданная Hi Fi News и Record Review (и я настоятельно рекомендую ее), вы можете просто использовать азимутальный тестовый трек, который она предоставляет. Эта тестовая дорожка состоит из монофонического сигнала, левый и правый каналы которого не совпадают по фазе. Если в вашем предусилителе есть переключатель моно смешивания (который суммирует левый и правый каналы), вы можете просто воспроизвести тестовую дорожку, включить переключатель моно и отрегулировать азимут картриджа, пока вы не услышите минимальный выходной сигнал через динамики.
При отсутствии тестовой записи с несинфазной моно-дорожкой, вы можете смоделировать такую дорожку, проиграв монофоническую запись через фазоинвертирующий кабель DIY. Чтобы построить такой кабель, купите дешевый соединительный шнур «мама-папа» в местной радиорубке, разрежьте один конец кабеля пополам и снимите часть изоляции вокруг медных проводников. Затем припаяйте положительный провод от одной половины отрезанного отрезка кабеля к отрицательному проводнику от другой половины отрезанного отрезка.Наконец, припаяйте отрицательный провод первой половины кабеля к положительному проводу второй половины. Закройте оголенные проводники / паяные соединения изолентой. Теперь у вас есть кабель, который меняет фазу в одном канале. Теперь подключите штекерный конец кабеля тонарма к гнезду инвертирующего кабеля, который вы только что создали, а другой конец инвертирующего кабеля подключите к входам фонокорректора или фонокорректорам предусилителя. Включите моно-запись (я использую переиздание DCC Sonny Rollins ’ Tenor Madness ) и переключите свой предусилитель в моно-режим.Азимут вашего картриджа теперь можно регулировать, пока вы не услышите нулевой (или, по крайней мере, минимальный) выходной сигнал из ваших динамиков.
Если в вашем предусилителе нет переключателя монофонического смешивания (эта функция быстро исчезает, и я аплодирую Audible Illusions за то, что она продолжает предоставлять ее в своем продукте Modulus 3A), то вы можете установить азимут вашего картриджа, используя либо осциллограф (если он у вас есть), анализатор картриджа (если вы его найдете), либо предварительный визуальный тест, описанный выше.
7. Гусеничный вес: пересмотрено
С заданной прижимной силой, точным выравниванием и прибавленным азимутом, тестовая запись, такая как потрясающая, выпущенная Hi Fi News и Record Review, может быть использована для реального оптимизировать настройку. В частности, способность картриджа отслеживать трудные проходы можно точно настроить с помощью нескольких полос на тестовом диске. Тесты трекинга состоят из тестового сигнала (300 Гц в обоих каналах при +15 дБ), равномерно распределенного по поверхности записи, чтобы измерить постоянство отслеживающей способности тонарма / картриджа.Если для трекинга картриджа установлено максимальное значение, указанное производителем, звук должен быть чистым, без каких-либо слышимых признаков гудения или искажения. Имейте в виду, что жужжание только в одном канале, скорее всего, является результатом неправильной настройки антискейтинга (обсуждается ниже), а не проблемой с отслеживающим весом картриджа. Если сигнал стабильный в одном канале, но нестабильный в другом, не увеличивайте отслеживающий вес, пытаясь компенсировать это. Скорее всего, вы сможете устранить гудение в одном канале, если вскоре установите антискейт.
Теперь отслеживающий вес можно постепенно уменьшать, пока он не достигнет минимального значения, при котором тесты отслеживания продолжают давать хорошие результаты. Полученный в результате отслеживающий вес должен представлять хороший баланс между отслеживающей способностью и износом пластинок. Конечно, изменение отслеживающего груза изменяет отклонение кантилевера относительно корпуса картриджа. Другими словами, титанические усилия, которые вы затратили на то, чтобы перо упало прямо на волшебную нулевую точку (-и) шкалы выравнивания, были отменены простым изменением отслеживающего веса (скоро вы поймете, что почти каждый на параметр настройки картриджа влияют все остальные).Исправьте выравнивание картриджа и еще раз проверьте отслеживающий груз и азимут, пока вы на нем. Если тот старый проигрыватель компакт-дисков в углу сейчас начинает выглядеть ужасно хорошо, не отчаивайтесь, вы добиваетесь своего!
8. Anti-Skate
Последний критический параметр настройки, который можно оптимизировать с помощью тестовой записи, например, из Hi Fi News и Record Review, – это антискейт. Так называемая сила катания на коньках – это векторная сила, которая стремится подтянуть тонарм / картридж к центру пластинки, когда картридж установлен в смещенной головке i.е. хэдшелл, расположенный под углом к линии тонарма (в большинстве современных тонармов используются смещенные хэдшэлы, чтобы минимизировать трекинговые искажения). Если не противодействовать, эта сила может вызвать неравномерный и преждевременный износ стенок канавки для записи и иглы и нарушить идеальное пространственное соотношение между катушками картриджа и магнитной структурой. К сожалению, сила катания постоянно меняется по поверхности рекорда, и поэтому с ней трудно бороться полностью.Большинство тонармов содержат пружинное устройство, которое прикладывает силу в направлении, противоположном силе катания, примерно равной величины. Некоторые дизайнеры рук, в первую очередь Гарри Вайсфельд из VPI, избегают устройств противоскольжения, утверждая, что они являются источником вибрации и не могут точно и последовательно противодействовать силе катания на всей поверхности пластинки. Боб Грэхэм, дизайнер однонаправленного тонарма Graham 2.0, с этим не согласен. Его тонарм включает в себя уникальную систему рычаг / груз, которая создает переменную силу, которая, по словам Грэма, изменяется прямо пропорционально задействованным силам катания.
Используя механизм антискейтинга, предусмотренный на вашем тонарме, отрегулируйте величину антискейтинга до тех пор, пока дорожка настройки смещения на стороне 1 тестовой записи Hi Fi News и Record Review не даст чистый, неискаженный сигнал в обоих каналах. Жужжание в правом канале указывает на то, что требуется больше силы антискейтинга, в то время как жужжание в левом канале указывает на то, что требуется меньшая сила антискейтинга.
9. Высота рычага: часть вторая
До сих пор картридж был выровнен таким образом, чтобы минимизировать ошибку отслеживания по поверхности записи, а азимут картриджа был установлен таким образом, что игла перпендикулярна на поверхность записи.Последняя регулировка, которую мы можем сделать, чтобы дублировать путь резака через виниловый диск, – это установить угол кантилевера относительно поверхности пластинки, максимально приближенный к углу оригинальной режущей головки. Этот угол, называемый вертикальным углом отслеживания или VTA, изменяется путем изменения высоты тонарма относительно его основания. По мере увеличения высоты плеча VTA увеличивается, а по мере уменьшения высоты плеча VTA уменьшается. Большинство пластинок обрезаются с VTA, составляющим приблизительно 22 градуса, хотя нередко записи обрезаются с VTA от 18 до 24 градусов.
Настройку VTA картриджа лучше всего начать с установки трубки тонарма параллельно поверхности записи (если вы следовали моему предыдущему совету, вы уже сделали это до юстировки картриджа). Если производитель картриджа был достаточно умен, чтобы наклонить консоль примерно на 22 градуса к горизонтали, то установка трубки тонарма параллельно поверхности записи должна установить VTA примерно на 22 градуса – вполне нормально для воспроизведения большинства дисков. К сожалению, кантилеверы не всегда расположены под углом точно 22 градуса, поэтому установка трубки тонарма параллельно поверхности записи может не привести к правильной настройке.Поскольку нет удобного способа измерить VTA картриджа, лучшее, что можно сделать, – это поэкспериментировать с различными настройками и выбрать тот, который лучше всего звучит для уха. Если вам нравится звук, который вы получаете, когда трубка тонарма параллельна поверхности пластинки, оставьте ее там и проведите остальное время, наслаждаясь своей коллекцией пластинок. Если вы хотите поэкспериментировать с различными настройками VTA, имейте в виду, что установка слишком высокого VTA приведет к усилению высоких частот, что приведет к яркой, утомительной презентации.Напротив, установка слишком низкого VTA приведет к усилению низких частот, что приведет к гулкой, медленной презентации.
Можно потратить значительную часть оставшихся дней на земле, настраивая VTA своего картриджа. В конце концов, она будет варьироваться в зависимости от толщины каждой проигрываемой записи. Хотя стоит потратить разумное количество времени, чтобы найти настройку VTA, которая будет хорошо работать для репрезентативной выборки записей в вашей коллекции, не зацикливайтесь на ней. Жизнь слишком коротка, а музыки слишком много, чтобы ее можно было услышать.
10. Окончательная регулировка
Поздравляем! Вы еще не закончили! Вернитесь назад и убедитесь, что настройки прижимной силы, выравнивания и азимута не были нарушены при выполнении других регулировок. Обратите особое внимание на азимут, так как регулировка высоты тонарма, вероятно, слегка изменит эту настройку (хотя это трудно визуализировать в трех измерениях, увеличение высоты тонарма со смещенным корпусом головки повлияет на перпендикулярность иглы к канавке).
Продолжайте прислушиваться к своей настройке и вносить незначительные изменения, пока не будете удовлетворены результатами. Затем уберите юстировочные манометры и щупы, храните протоколы испытаний и возвращайтесь с кулаком, набитым вашими любимыми записями. Я думаю, вы поймете, что это стоило всех усилий.
Твердофазная экстракционная хроматография в режиме ионов серебра
В методах твердофазной экстракции используются небольшие колонки, изготовленные из непроницаемого пластика и заполненные различными адсорбентами, удерживаемыми фриттами под торговыми марками, такими как Bond Elut TM или Sep-Pak TM .Коммерческие фасованные колонки доступны в широком диапазоне насадочных материалов с однородными воспроизводимыми свойствами. В частности, я обнаружил те, которые заполнены ионообменной средой, содержащей химически связанную бензолсульфоновую кислоту, имеющую некоторую ценность для разделения ионов серебра, после приготовления таким же способом, как и соответствующие колонки для ВЭЖХ с ионами серебра.
Таким образом, колонки Bond Elut TM , заполненные средой бензолсульфоновой кислоты на основе диоксида кремния, могут быть преобразованы в форму иона серебра и использованы для достижения полезного разделения производных метиловых эфиров жирных кислот в малых масштабах [1].Соли серебра не элюируются фракциями, которые затем можно использовать непосредственно для анализа, например, с помощью газовой хроматографии-масс-спектрометрии. Мы никогда не пытались масштабировать процедуру за счет использования столбцов большего размера, хотя они доступны.
Протокол лаборатории:
Раствор нитрата серебра (20 мг) в ацетонитрил-воде (0,25 мл; 10: 1, об. / Об.) Пропускают через картридж Bond Elut ™ SCX (0,5 г адсорбента), завернутый до уровня верха. слоя сорбента в алюминиевой фольге для исключения света; колонку SPE промывают ацетонитрилом (5 мл), ацетоном (5 мл) и дихлорметаном (10 мл), после чего она готова к использованию.Эти растворители в различных пропорциях затем используются в оптимальной схеме элюирования для выделения фракций, перечисленных в таблице ниже. Пробу метилового эфира (от 0,1 до 0,5 мг) наносят на колонку в небольшом объеме дихлорметана. Смеси растворителей могут течь под действием силы тяжести.
№ | Растворители (%) a | Объем < | Дробь | ||
А | B | С | |||
1 | 100 | 5 мл | насыщенный | ||
2 | 90 | 10 | 5 мл | моноены | |
3 | 100 | 5 мл | диены | ||
4 | 97 | 3 | 10 мл | триены | |
5 | 94 | 6 | 10 мл | тетраены | |
6 | 88 | 12 | 5 мл | пентаены | |
7 | 60 | 40 | 5 мл | гексаены | |
a A, дихлорметан; B, ацетон; С, ацетонитрил. |
Получено удовлетворительное разрешение компонентов с 0-6 двойными связями. Поскольку на каждом этапе используются существенные изменения в составе растворителя, перекрестное загрязнение мало, особенно с ранними фракциями, хотя последняя фракция может быть не совсем чистой (мы часто переходим прямо от фракции 4 к фракции 7, собирая комбинированный полиненасыщенный доля). Важно, чтобы колонки не были перегружены или чтобы скорость потока не увеличивалась искусственно, иначе разрешение будет потеряно. Примечание: Некоторые модификации этих условий могут потребоваться для разных торговых марок колонок или даже для разных партий от некоторых производителей. Очень похожая процедура была описана другими [2], и вышеупомянутый метод использовался в других лабораториях с расширение до разделения моноенов цис / транс [3-5]. Методология также была адаптирована для разделения молекулярных видов триглицеридов [6,7] и использовалась для сложных эфиров холестерина [8], углеводородов [9] и многих других, чтобы перечислять их здесь.Легко представить себе использование подобных процедур для простагландинов, стероидов, феромонов насекомых и многих других липидов. Supelco (Sigma-Aldrich) теперь продает колонки для твердофазной экстракции большей емкости (0,75 г адсорбента), заполненные ионообменной средой, предварительно пропитанной ионами серебра, под торговым названием Discovery Ag-ION SPE. Производители заявляют, что можно фракционировать до 1 мг липида, и они рекомендуют методику разделения, в частности, цис, – и транс, -моноеновых жирных кислот.Первое опубликованное применение этих коммерческих колонок было разработано Крамером и его коллегами [10], а их протокол успешно использовался другими [11].
- Christie, W.W. Хроматография с ионами серебра с использованием колонок для твердофазной экстракции, заполненных фазой связанной сульфоновой кислоты. J. Lipid Res ., 30, , 1471-1473 (1989).
- Ulberth, F. и Achs, E. Аргентинговая хроматография метиловых эфиров жирных кислот с использованием насыщенных серебром колонок для твердофазной экстракции. J. Chromatogr. А , 504 , 202-206 (1990) (DOI: 10.1016 / S0021-9673 (01) 89527-3).
- Zelles, L. Профили жирных кислот фосфолипидов у избранных представителей почвенных микробных сообществ. Chemosphere , 35 , 275-294 (1997).
- Мосли, Э.А., Пауэлл, Г.Л., Райли, М. и Дженкинс, Т. Микробное биогидрирование олеиновой кислоты до транс изомеров in vitro . J. Lipid Res ., 43 , 290-296 (2002).
- Mosely, E.E., Wright, E.L., McGuire, M.K. и McGuire, M.A. trans Жирные кислоты в молоке, производимом женщинами в Соединенных Штатах. Am. J. Clin. Нутрь ., 82 , 1292-1297 (2005).
- Christie, W.W. Хроматография триацилглицеринов с ионами серебра на колонках для твердофазной экстракции, заполненных фазой связанной сульфоновой кислоты. J. Sci. Продовольственное сельское хозяйство. , 52, , 573-577 (1990).
- Кемппинен А. и Кало П.Фракционирование триацилглицеринов масляного масла, модифицированного липазой. J. Am. Oil Chem. Soc ., 70 , 1203-1207 (1993) (DOI: 10.1007 / BF02564226).
- Ховинг, Э. Б., Маскиет, Ф. А. и Кристи, В. В. Разделение сложных эфиров холестерина с помощью хроматографии с ионами серебра с использованием ВЭЖХ или колонок для твердофазной экстракции, заполненных связанной фазой сульфоновой кислоты. J. Chromatogr. В , 565 , 103-110 (1991) (DOI: 10.1016 / 0378-4347 (91) 80374-L).
- Хартманн, М., Аммон, Дж. И Берг, Х. Определение радиационно-индуцированных углеводородов в обработанных пищевых продуктах и сложных липидных матрицах: новый метод твердофазной экстракции (ТФЭ) для обнаружения облученных компонентов в пищевых продуктах. Res. Техн. , , 204, , 231-236 (1997).
- Kramer, J.K.G., Hernandez, M., Cruz-Hernandez, C., Kraft, J. and Dugan, M.E.R. Объединение результатов двух разделений с помощью ГХ частично позволяет определить все цис и транс 16: 1, 18: 1, 18: 2 и 18: 3, за исключением изомеров CLA молочного жира, что продемонстрировано с использованием фракционирования Ag-ion SPE. Липиды , 43 , 259-273 (2008) (DOI: 10.1007 / s11745-007-3143-4).
- Dreiucker, J. и Vetter, W. Образцы жирных кислот в верблюжьем, лосином, коровьем и женском молоке, определенные с помощью ГХ / МС после твердофазной экстракции ионами серебра. Food Chem. , 126 , 762-771 (2011) (DOI: 10.1016 / j.foodchem.2010.11.061).
Хотя это и не хроматография с ионами серебра, стоит отметить, что метиловые эфиры жирных кислот из рыбьего жира (шкала 5 мг) были разделены на две фракции, т.е.е. насыщенные плюс моноены и полиненасыщенные, на колонке для твердофазной экстракции со связанными аминопропильными группами (Wilson, R. et al. ., Lipids , 28, , 51-54 (1993)) и аналогичная методология.