39. Электроемкость. Емкость шара, емкость плоского конденсатора. Единицы измерения емкости.

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу:

Емкость определяется геометрической формой, размерами проводника и свойствами среды (от материала проводника не зависит). Чем больше емкость проводника, тем меньше меняется потенциал при изменении заряда.

Емкость шара в СИ:

Ёмкость плоского конденсатора.

, т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой емкости необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика.

Единицы емкости.

Емкостью 1Ф (фарад) обладает такой проводник, у которого потенциал возрастает на 1 В при сообщении ему заряда в 1 Кл.

Емкостью 1Ф  обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца.

Емкость Земли  700 мкФ

Если проводник не уединенный, то потенциалы складываются по правилу суперпозиции и емкость проводника меняется.

40. Конденсаторы. Электроёмкость конденсатора. Применение конденсаторов

Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.  Проводники наз. обкладками  конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то  под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками: .

Назначение конденсаторов

  1. Накапливать на короткое время заряд или энергию для быстрого изменения потенциала.

  2. Не пропускать постоянный ток.

  3. В радиотехнике: колебательный контур, выпрямитель.

41. Магнитное поле, его свойства. Характеристики магнитного поля: магнитная индукция, напряженность. 

Магнитное поле- форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).Основные свойства магнитного поля: порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем; действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела; переменное магнитное поле порождает переменное электрическое поле. Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции.Магнитными силовыми линияминазываются линии, вдоль которых в магнитном поле располагаются железные опилки или оси маленьких магнитных стрелок. В каждой точке такой линии вектор  направлен по касательной. Линии магнитной индукции всегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.МАГНИТНАЯ ИНДУКЦИЯ

- это силовая характеристика магнитного поля.

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ:

Напряжённость магни́тного по́ля— векторная физическая величина, равная разности вектора магнитной индукцииBи вектора намагниченностиM.

В Международной системе единиц (СИ): где— магнитная постоянная.

Магнитным моментомрамки с током называется вектор равный произведению силы тока, текущего по рамке, на вектор площади.

42. Закон Био - Савара- Лапласа. Примеры простейших магнитных полей проводников с током.  Закон Био́—Савара—Лапла́са — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током.

а) Магнитное поле прямого тока

 

 ;  ;

б) Магнитное поле в центре кругового проводника с током

α = 90°; sin α = 1.

studfiles.net

Электроемкость - это... Что такое Электроемкость?


Электроемкость

Электрическая ёмкость — характеристика проводника, характеризующая его способность накапливать электрический заряд. Ёмкость определяется как отношение величины заряда проводника к потенциалу проводника. Ёмкость обозначается как C.

где Q — заряд, — потенциал.

В системе СИ ёмкость измеряется в фарадах. В системе СГС в сантиметрах.

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удаленной точки принят равным нулю. Она определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость в вакууме проводящего шара радиуса

R равна (в системе СИ):

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком — конденсатору. В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

где S — площадь обкладок, d — расстояние между обкладками, ε — диэлектрическая проницаемость среды между обкладками, ε0 = 8.854*10-12 Ф/м — электрическая постоянная.

Wikimedia Foundation. 2010.

  • Электродинамическая постоянная
  • Электродрель

Смотреть что такое "Электроемкость" в других словарях:

  • электроемкость — электроемкость …   Орфографический словарь-справочник

  • электроемкость — сущ., кол во синонимов: 2 • емкость (66) • электроёмкость (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Электроемкость* — Это отношение количества электричества, имеющегося на каком либо проводящем теле, к величине потенциала этого тела при условии, что все проводящие тела, находящиеся вблизи этого тела, соединены с землей. Обозначая Э. тела через С, заряд на теле… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Электроемкость — Это отношение количества электричества, имеющегося на каком либо проводящем теле, к величине потенциала этого тела при условии, что все проводящие тела, находящиеся вблизи этого тела, соединены с землей. Обозначая Э. тела через С, заряд на теле… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Электроемкость — электроёмкость ж. 1. Способность тела воспринимать электрический заряд. 2. Величина, характеризующая связь между зарядом, сообщенным проводнику его потенциалом (в физике). Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

  • электроемкость (затраты электроэнергии на выполнение некоторого экономического показателя)

    — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electric intensity …   Справочник технического переводчика

  • электроемкость основных производственных фондов — Отношение всей потребляемой за год предприятием электрической энергии к стоимости основных производственных фондов …   Политехнический терминологический толковый словарь

  • электроемкость продукции — Отношение всей потребляемой за год электрической энергии к годовому объему продукции (в натуральном, условном или стоимостном выражении), выпускаемой предприятием …   Политехнический терминологический толковый словарь

  • Энергоемкость (электроемкость) ВВП — (Energy consumption per GDP unit) — удельный показатель потребления энергоресурсов (электроэнергии) по отношению к ВВП, измеряется обычно   в тут  (тонны условного  топлива) на единицу стоимости ВВП в национальной или иностранной валюте …   Экономико-математический словарь

  • Колебательный разряд — При разряде какого либо наэлектризованного тела, конденсатора, лейденской банки или батареи, состоящей из нескольких таких банок, электрический ток, являющийся в проводнике, при посредстве которого производится разряд, имеет вполне определенное… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона


dic.academic.ru

Электроемкость* - это... Что такое Электроемкость*?

— Это отношение количества электричества, имеющегося на каком-либо проводящем теле, к величине потенциала этого тела при условии, что все проводящие тела, находящиеся вблизи этого тела, соединены с землей. Обозначая Э. тела через С, заряд на теле через Q и потенциал через V, имеем C = Q/V.

Употребляя абсолютные электростатические единицы в системе CGS, мы получаем Э. какого-либо тела, выражающуюся в единицах длины, т. е. в сантиметрах. В самом деле, при такой системе единиц "измерения" количества электричества будут: см 3/2 г 1/2 сек. -1, а "измерения" потенциала — см 1/2 г 1/2 сек. -1, или, употребляя для единиц длины, массы и времени символы L, M, T, мы можем представить: "измерения" Q в виде [ Q] = [L3/2M1/2T-1 ], "измерения" V в виде [ V] = [L1/2 M1/2T —1 ]. Отсюда находим: измерения Э.

[C] = [L3/2M1/2/ T—1]/[L1/2M1/2T—1] = [L].

В электростатике доказывается, что Э. шара, помещенного в воздухе вдали от каких-либо проводящих тел, выражается величиной радиуса этого шара, т. е. для одинокого шара в воздухе C = R, если R выражает радиус шара. Э. плоского конденсатора выражается формулой:

С

= KS/4 π d.

Здесь S обозначает величину собирательной поверхности конденсатора, d — толщину изолирующего слоя в конденсаторе и K — диэлектрический коэффициент вещества этого слоя. Эта формула будет истинная только для конденсатора с охранным кольцом и с охранной коробкой (см. Конденсатор). Э. сферического конденсатора выражается формулой:

C = K(R1R2)/(R2—R1).

Здесь R1 и R2 обозначают радиусы соответственно внутренней и внешней сферической поверхности конденсатора, K — диэлектрический коэффициент изолирующего слоя.

Э. цилиндрического конденсатора выражается (приблизительно) как

C

= ½KL/lg(R2/R1).

Здесь L — длина конденсатора, R1 и R2 — радиусы соответственно внутреннего и внешнего цилиндра, K — диэлектрический коэффициент изолирующего слоя. lg обозначает натуральный логарифм. Э. лейденской банки выражается приблизительно как

C

= S/4 π d,

если S обозначает поверхность внутренней обкладки этой балки, d — толщину стенок её и K — диэлектрический коэффициент стекла.

Э. круглого тонкого стержня (приближенно) выражается через

C

= K[a/lg(2a/b)].

Здесь а обозначает длину стержня, b — радиус его, lg — натуральный логарифм и K — диэлектрический коэффициент окружающей среды. Если окружающая среда — воздух, то K = 1.

Употребляя абсолютные электромагнитные единицы в системе СGS, мы имеем: "измерения" количества электричества [ Q] = [L1/2M1/2 ], "измерения" потенциала [V] = [ L3/3M1/2T—2 ], отсюда находим "измерения" Э.:

[C] = [L1/2M1/2] / [L3/2M1/2T—2] = [L—1T2].

Если мы обозначим единицу Э., соответствующую абсолютной электростатической системе, через С e а единицу Э., соответствующую абсолютной электромагнитной системе, через С m, то, как это может быть доказано, мы получим

Cm

/Ce = v2,

где v обозначает скорость света, т. е. v = 3 x 10 10 см/сек.

Практической единицей Э. принимается ныне фарада или, еще чаще, миллионная доля фарады, называемая микрофарадой. Фарада обозначается обыкновенно через F, микрофарада — через μ F. Фарада — это электроемкость такого тела, в котором при потенциале равном 1 вольту, содержится один кулон электричества.

1F = 10—9 абсол. электромагнитн. ед. Э. = 9 x 10 11 абс. электрост. ед. Э.

l μ F = 10—6 F = 10—15 абс. электром. ед. Э. = 9 х 10 5 абс. электростат. ед. Э.

Э., равную одной микрофараде, имеет шар, радиус которого приблизительно равняется 9 км.

Для сравнения электроемкостей тел существует несколько способов. Упомянем только о трех, наиболее часто употребляемых.

1) Способ разделения заряда. Положим, что мы имеем два тела, у которых электроемкости суть С 1 и С 2. Сообщаем первому телу какой-либо заряд электричества Q, и пусть потенциал на этом теле, измеряемый электрометром, емкость которого ничтожно мала, оказывается равным V1. Соединим это тело при помощи очень тонкой проволоки (емкостью этой проволоки пренебрегаем) со вторым телом. Заряд, имевшийся на первом теле, распределится теперь на обоих телах, и потенциал на том и на другом теле пусть сделается равным V2. Мы можем написать:

Q

= C1V1,

Q

= (C1 + C2) V2.

Отсюда получаем

(C1 + C2) V2

= С 1V1,

а потому находим

C2/C1

= (V1 — V2)/V2.

2) Способ баллистического гальванометра. Присоединим тело, Э. которого равна С 1, с источником электричества, развивающим потенциал V. На теле получится заряд Q1 = C1V. Разрядим это тело через баллистический гальванометр. Пусть первое отклонение магнита этого гальванометра будет θ 1. Сделаем то же со вторым телом, имеющим Э. С 2. Заряд на нем будет Q2 = C2V, и первое отклонение магнита гальванометра при разряде этого тела пусть будет θ 2. Тогда имеем

Q1/Q2

= C1V/C2V = θ 1/ θ 2,

т. е. получаем

С

1/C2 = θ 1/ θ 2.

3) Способ сравнения электроемкостей двух конденсаторов при помощи переменных токов. Расположим проводники по схеме мостика Уитстона, причем в ветви AB и АС поместим только сравниваемые конденсаторы, электроемкости которых суть С 1 и С 2, а в ветви BD и DC — сопротивления R1 и R2. В одну диагональную ветвь поместим вторичную обмотку катушки Румкорфа E, в другую диагональную ветвь, т. е. в самый мостик BC, — телефон.

Подбором сопротивлений ветвей BD и DC, которые обозначим соответственно через r1 и r2, мы можем достигнуть наибольшего ослабления звука в телефоне. В этом случае мы будем иметь:

С

1/C2 = r2 /r1.

В настоящее время имеются ящики электроемкостей, т. е. ящики, содержащие в себе конденсаторы различных электроемкостей, долей микрофарады, а также целых микрофарад, которые можно комбинировать в желаемые группы. Сами конденсаторы изготовляются из тонких листов олова (станиоль), отделенных друг от друга листами парафинированной бумаги, и заливаются парафином.

И

. Боргман.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.

dic.academic.ru

что такое электроемкость уединенного проводника и от чего она зависит?

Электроемкость характеризует способность проводников или системы из нескольких проводников накапливать электрические заряды, а следовательно, и электроэнергию, которая в дальнейшем может быть использована, например, при фотосъемке (вспышка) и т. д. Различают электроемкость уединенного проводника, системы проводников (в частности, конденсаторов) . Уединенным называется проводник, расположенный вдали от других заряженных и незаряженных тел так, что они не оказывают на этот проводник никакого влияния. Электроемкость уединенного проводника — физическая величина, равная отношению электрического заряда уединенного проводника к его потенциалу: ~C = \frac{q}{\varphi}. В СИ единицей электроемкости является фарад (Ф) . 1 Ф — это электроемкость такого проводника, потенциал которого изменяется на 1 В при сообщении ему заряда в 1 Кл. Поскольку 1 Ф очень большая единица емкости, применяют дольные единицы: 1 пФ (пикофарад) = 10-12 Ф, 1 нФ (нанофарад) = 10-9 Ф, 1 мкФ (микрофарад) = 10-6 Ф и т. д. Электроемкость проводника не зависит от рода вещества и заряда, но зависит от его формы и размеров, а также от наличия вблизи других проводников или диэлектриков. Действительно, приблизим к заряженному шару, соединенному с электрометром, незаряженную палочку (рис. 1). Он покажет уменьшение потенциала шара. Заряд q шара не изменился, следовательно, увеличилась емкость. Это объясняется тем, что все проводники, расположенные вблизи заряженного проводника, электризуются через влияние в поле его заряда и более близкие к нему индуцированные заряды противоположного знака ослабляют поле заряда q. Рис. 1 Если уединенным проводником является заряженная сфера, то потенциал поля на ее поверхности ~\varphi = \frac{q}{4 \pi \varepsilon_0 \varepsilon R}, где R — радиус сферы, ε — диэлектрическая проницаемость среды, в которой находится проводник. Тогда ~C = \frac{q}{\varphi} = 4 \pi \varepsilon_0 \varepsilon R - электроемкость уединенного сферического проводника. Обычно на практике имеют дело с двумя и более проводниками. Рассмотрим систему из двух разноименно заряженных проводников с разностью потенциалов φ1 - φ2 между ними. Чтобы увеличить разность потенциалов между этими проводниками, необходимо совершить работу против сил электростатического поля и перенести добавочный отрицательный заряд -q с положительно заряженного проводника на отрицательно заряженный (или заряд +q с отрицательно заряженного проводника на положительно заряженный) . При этом увеличивается абсолютное значение обоих зарядов: как положительного, так и отрицательного. Поэтому взаимной электроемкостью двух проводников называют физическую величину, численно равную заряду, который нужно перенести с одного проводника на другой, для того чтобы изменить разность потенциалов между ними на 1 В: ~C = \frac{q}{\varphi_1 - \varphi_2}. Взаимная электроемкость зависит от формы и размеров проводников, от их взаимного расположения и относительной диэлектрической проницаемости среды, заполняющей пространство между ними.

touch.otvet.mail.ru

ЭЛЕКТРОЁМКОСТЬ - это... Что такое ЭЛЕКТРОЁМКОСТЬ?


ЭЛЕКТРОЁМКОСТЬ
ЭЛЕКТРОЁМКОСТЬ
ЭЛЕКТРОЁМКОСТЬ, электроёмкости, мн. нет, жен. (физ.). Величина, характеризующая связь между зарядом, сообщенным двум проводникам, и разностью потенциалов на них.

Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940.

.

  • ЭЛЕКТРОДИНАМИЧЕСКИЙ
  • ЭЛЕКТРОКАР

Смотреть что такое "ЭЛЕКТРОЁМКОСТЬ" в других словарях:

  • электроёмкость — электроёмкость, и …   Русский орфографический словарь

  • электроёмкость — электроёмкость …   Словарь употребления буквы Ё

  • электроёмкость — сущ., кол во синонимов: 1 • электроемкость (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • электроёмкость — электроёмкость, электроёмкости, электроёмкости, электроёмкостей, электроёмкости, электроёмкостям, электроёмкость, электроёмкости, электроёмкостью, электроёмкостями, электроёмкости, электроёмкостях (Источник: «Полная акцентуированная парадигма по… …   Формы слов

  • электроёмкость — (3 ж), Р., Д., Пр. электроёмкости; мн. электроёмкости, Р. электроёмкостей …   Орфографический словарь русского языка

  • электроёмкость — электр/о/ём/к/ость/ …   Морфемно-орфографический словарь

  • ЁМКОСТЬ ЭЛЕКТРИЧЕСКАЯ — (электроёмкость, или просто ёмкость) характеристика проводящего тела, мера его способности накапливать электрич. заряд. Численно Ё. э. С равна заряду q, к рый необходимо сообщить уединённому телу для изменения его потенциала j на единицу, и… …   Физическая энциклопедия

  • Электро-магнитное поле — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона …   Википедия

  • ЭЛЕКТРИЧЕСКАЯ ЁМКОСТЬ — параметр, характеризующий физ. способность проводника, совокупности проводников или электрического конденсатора (см. (2)) удерживать электрический заряд, равный отношению заряда, который сообщается уединённому проводнику, к его потенциалу.… …   Большая политехническая энциклопедия

  • Электроемкость — электроёмкость ж. 1. Способность тела воспринимать электрический заряд. 2. Величина, характеризующая связь между зарядом, сообщенным проводнику его потенциалом (в физике). Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

dic.academic.ru

Электроемкость Википедия

Электри́ческая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками[1].

В Международной системе единиц (СИ) ёмкость измеряется в фарадах, в системе СГС — в сантиметрах.

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид

C=Qφ,{\displaystyle C={\frac {Q}{\varphi }},}

где Q{\displaystyle Q} — заряд, φ{\displaystyle \varphi } — потенциал проводника.

Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара (или сферы) радиуса R равна (в системе СИ):

C=4πε0εrR,{\displaystyle C=4\pi \varepsilon _{0}\varepsilon _{r}R,}

где ε0 — электрическая постоянная, равная 8,854⋅10−12Ф/м, εr — относительная диэлектрическая проницаемость.

Вывод формулы

Известно, что φ1−φ2=∫12Edl⇒φ=∫R∞Edl=14πεrε0∫R∞qr2dr=14πεε0qR.{\displaystyle \varphi _{1}-\varphi _{2}=\int _{1}^{2}E\,dl\Rightarrow \varphi =\int _{R}^{\mathcal {\infty }}E\,dl={\frac {1}{4\pi \varepsilon _{r}\varepsilon _{0}}}\int _{R}^{\mathcal {\infty }}{\frac {q}{r^{2}}}\,dr={\frac {1}{4\pi \varepsilon \varepsilon _{0}}}{\frac {q}{R}}.}

Так как C=qφ{\displaystyle C={\frac {q}{\varphi }}}, то подставив сюда найденный φ{\displaystyle \varphi }, получим, что C=4πε0εrR.{\displaystyle C=4\pi \varepsilon _{0}\varepsilon _{r}R.}

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком или вакуумом, — к конденсатору. В этом случае ёмкость (взаимная ёмкость) этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

C=ε0εrSd,{\displaystyle C=\varepsilon _{0}\varepsilon _{r}{\frac {S}{d}},}

где S — площадь одной обкладки (подразумевается, что обкладки одинаковы), d — расстояние между обкладками, εr — относительная диэлектрическая проницаемость среды между обкладками.

Электрическая ёмкость некоторых систем

Вычисление электрической ёмкости системы требует решение Уравнения Лапласа 2φ = 0 с постоянным потенциалом φ на поверхности проводников. Это тривиально в случаях с высокой симметрией. Нет никакого решения в терминах элементарных функций в более сложных случаях.

В квазидвумерных случаях аналитические функции отображают одну ситуацию на другую, электрическая ёмкость не изменяется при таких отображениях. См. также Отображение Шварца — Кристоффеля.

Эластанс

Величина обратная ёмкости называется эластанс (эластичность). Единицей эластичности является дараф (daraf), но он не определён в системе физических единиц измерений СИ[10].

См. также

Примечания

  1. Шакирзянов Ф. Н. Ёмкость электрическая // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 28—29. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  2. 1 2 Jackson, J. D. Classical Electrodynamics. — Wiley, 1975. — P. 80.
  3. Binns. Analysis and computation of electric and magnetic field problems / Binns, Lawrenson. — Pergamon Press, 1973. — ISBN 978-0-08-016638-4.
  4. 1 2 Maxwell, J. C. A Treatise on Electricity and Magnetism. — Dover, 1873. — P. 266 ff. — ISBN 0-486-60637-6.
  5. Rawlins, A. D. Note on the Capacitance of Two Closely Separated Spheres (англ.) // IMA Journal of Applied Mathematics (англ.)русск. : journal. — 1985. — Vol. 34, no. 1. — P. 119—120. — DOI:10.1093/imamat/34.1.119.
  6. Jackson, J. D. Classical Electrodynamics. — Wiley, 1975. — P. 128, problem 3.3.
  7. Maxwell, J. C. On the electrical capacity of a long narrow cylinder and of a disk of sensible thickness (англ.) // Proc. London Math. Soc. : journal. — 1878. — Vol. IX. — P. 94—101. — DOI:10.1112/plms/s1-9.1.94.
  8. Vainshtein, L. A. Static boundary problems for a hollow cylinder of finite length. III Approximate formulas (англ.) // Zh. Tekh. Fiz. : journal. — 1962. — Vol. 32. — P. 1165—1173.
  9. Jackson, J. D. Charge density on thin straight wire, revisited (неопр.) // Am. J. Phys. — 2000. — Т. 68, № 9. — С. 789—799. — DOI:10.1119/1.1302908. — Bibcode: 2000AmJPh..68..789J.
  10. ↑ Тензорный анализ сетей, 1978, с. 509.

Литература

wikiredia.ru

Единица - электроемкость - Большая Энциклопедия Нефти и Газа, статья, страница 1

Единица - электроемкость

Cтраница 1

Единица электроемкости в системе СИ называется фарадой.  [1]

За единицу электроемкости в СИ принята емкость такого проводника, у которого потенциал возрастает на 1 В при сообщении проводнику заряда 1 Кл. Эту единицу электроемкости называют фарадой: 1 Ф 1 Кл / 1 В.  [2]

В системе СИ за единицу электроемкости принимают емкость такого проводника, при сообщении которому заряда в 1 кулон его потенциал изменяется на 1 вольт.  [3]

В системе СИ за единицу электроемкости принята фарада. Фарадой называется электроемкость такого проводника, которому для повышения потенциала на 1 В необходимо сообщить заряд в 1 Кл.  [4]

В системе СИ за единицу электроемкости принимают емкость такого проводника, при сообщении которому заряда в 1 кулон его потенциал изменяется на 1 вольт.  [5]

Из формулы ( 5.5) следует, что размерность электроемкости в системе единиц СГСЭ совпадает с размерностью длины, так как относительная диэлектрическая проницаемость е - величина безразмерная. Поэтому единица электроемкости в системе СГСЭ называется сантиметром. В вакууме е 1 и электроемкость шара равна его радиусу, выраженному в сантиметрах.  [6]

За единицу электроемкости в СИ принята емкость такого проводника, у которого потенциал возрастает на 1 В при сообщении проводнику заряда 1 Кл. Эту единицу электроемкости называют фарадой: 1 Ф 1 Кл / 1 В.  [7]

Электрическая емкость тела численно равна количеству электричества, которое следует сообщить телу для изменения его потенциала на одну единицу. В системах МКСА и СИ единицей электроемкости является фарада - электрическая емкость такого тела, в котором заряд в один кулон изменяет потенциал на один вольт.  [8]

Электрическая емкость тела численно равна количеству электричества, которое следует сообщить телу для изменения его потенциала на одну единицу. В системах МКСА и СИ единицей электроемкости является фарада - электрическая емкость такого тела, в котором заряд в один кулон изменяет потенциал на один вольт.  [9]

В частности, емкость уединенного шара зависит только от его радиуса и, как показывают расчеты и измерения, численно равна его радиусу. Так как в системе СГС радиус выражается в сантиметрах, то в системе СГС и емкость измеряют в сантиметрах. Следовательно, единицей электроемкости в системе СГС является электроемкость уединенного шара с радиусом в 1 см. Эта емкость мало отличается от пикофарады.  [10]

В частности, емкость уединенного шара зависит только от его радиуса и, как показывают расчеты и измерения, численно равна его радиусу. Так как в системе СГС радиус выражается в сантиметрах, то в системе СГС и емкость измеряют в сантиметрах. Следовательно, единицей электроемкости в системе СГС является электроемкость уединенного шара с радиусом а I см. Эта емкость мало отличается от пикофарады.  [11]

В частности, емкость уединенного шара зависит только от его радиуса и, как показывают расчеты и измерения, численно равна его радиусу. Так как в системе СГС радиус выражается в сантиметрах, то в системе СГС и емкость измеряют в сантиметрах. Следовательно, единицей электроемкости в системе СГС является электроемкость уединенного шара с радиусом в I см. Эта емкость мало отличается от пикофарады.  [12]

Страницы:      1

www.ngpedia.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *