Содержание

Сопротивление ом на метр. Удельное сопротивление железа, алюминия, меди и других металлов. Удельное сопротивление изоляторов

Большинство законов физики основано на экспериментах. Имена экспериментаторов увековечены в названиях этих законов. Одним из них был Георг Ом.

Опыты Георга Ома

Он установил в ходе экспериментов по взаимодействию электричества с различными веществами, в том числе металлами фундаментальную взаимосвязь плотности , напряжённости электрического поля и свойства вещества, которое получило название «удельная проводимость». Формула, соответствующая этой закономерности, названная как «Закон Ома» выглядит следующим образом:

j= λE , в которой

  • j — плотность электрического тока;
  • λ — удельная проводимость, именуемая также как «электропроводность»;
  • E – напряжённость электрического поля.

В некоторых случаях для обозначения удельной проводимости используется другая буква греческого алфавита — σ .

Удельная проводимость зависит от некоторых параметров вещества. На её величину оказывают влияние температура, вещества, давление, если это газ, и самое главное структура этого вещества. Закон Ома соблюдается только для однородных веществ.

Для более удобных расчётов используется величина обратная удельной проводимости. Она получила название «удельное сопротивление», что так же связано со свойствами вещества, в котором течёт электрический ток, обозначается греческой буквой ρ и имеет размерность Ом*м. Но поскольку для различных физических явлений применяются разные теоретические обоснования, для удельного сопротивления могут быть использованы альтернативные формулы. Они являются отображением классической электронной теории металлов, а также квантовой теории.

Формулы

В этих утомительных, для простых читателей, формулах появляются такие множители, как постоянная Больцмана, постоянная Авогадро и постоянная Планка. Эти постоянные применяются для расчетов, которые учитывают свободный пробег электронов в проводнике, их скорость при тепловом движении, степень ионизации, концентрацию и плотность вещества.

Словом, всё довольно сложно для не специалиста. Чтобы не быть голословным далее можно ознакомиться с тем, как всё выглядит на самом деле:

Особенности металлов

Поскольку движение электронов зависит от однородности вещества, ток в металлическом проводнике течёт соответственно его структуре, которая влияет на распределение электронов в проводнике с учётом его неоднородности. Она определяется не только присутствием включений примесей, но и физическими дефектами – трещинами, пустотами и т.п. Неоднородность проводника увеличивает его удельное сопротивление, которое определяется правилом Маттисена.

Это несложное для понимания правило, по сути, говорит о том, что в проводнике с током можно выделить несколько отдельных удельных сопротивлений. А результирующим значением будет их сумма. Слагаемыми будут удельное сопротивления кристаллической решётки металла, примесей и дефектов проводника. Поскольку этот параметр зависит от природы вещества, для вычисления его определены соответствующие закономерности, в том числе и для смешанных веществ.

Несмотря на то, что сплавы это тоже металлы, они рассматриваются как растворы с хаотической структурой, причём для вычисления удельного сопротивления имеет значение, какие именно металлы входят в состав сплава. В основном большинство сплавов из двух компонентов, которые не принадлежат к переходным, а также к редкоземельным металлам попадают под описание законом Нодгейма.

Как отдельная тема рассматривается удельное сопротивление металлических тонких плёнок. То, что его величина должна быть больше чем у объёмного проводника из такого же металла вполне логично предположить. Но при этом для плёнки вводится специальная эмпирическая формула Фукса, которая описывает взаимозависимость удельного сопротивления и толщины плёнки. Оказывается, в плёнках металлы проявляют свойства полупроводников.

А на процесс переноса зарядов оказывают влияние электроны, которые перемещаются в направлении толщины плёнки и мешают перемещению «продольных» зарядов. При этом они отражаются от поверхности плёночного проводника, и таким образом один электрон достаточно долго совершает колебания между его двумя поверхностями. Другим существенным фактором увеличения удельного сопротивления является температура проводника. Чем выше температура – тем сопротивление больше. И наоборот, чем ниже температура, тем сопротивление меньше.

Металлы являются веществами с наименьшим удельным сопротивлением при так называемой «комнатной» температуре. Единственным неметаллом, который оправдывает своё применение как проводник, является углерод. Графит, являющийся одной из его разновидностей, широко используется для изготовления скользящих контактов. Он имеет очень удачное сочетание таких свойств как удельное сопротивление и коэффициент трения скольжения. Поэтому графит является незаменимым материалом для щёток электродвигателей и других скользящих контактов. Величины удельных сопротивлений основных веществ, используемых для промышленных целей, приведены в таблице далее.

Сверхпроводимость

При температурах соответствующих сжижению газов, то есть вплоть до температуры жидкого гелия, которая равна – 273 градуса по Цельсию удельное сопротивление уменьшается почти до полного исчезновения. И не только у хороших металлических проводников, таких как серебро, медь и алюминий. Практически у всех металлов. При таких условиях, которые называются сверхпроводимостью, структура металла не имеет тормозящего влияния на движение зарядов под действием электрического поля. Поэтому ртуть и большинство металлов становятся сверхпроводниками.

Но, как выяснилось, относительно недавно в 80-х годах 20-го века, некоторые разновидности керамики тоже способны к сверхпроводимости. Причём для этого не надо использовать жидкий гелий. Такие материалы назвали высокотемпературными сверхпроводниками. Однако уже прошло несколько десятков лет, и ассортимент высокотемпературных проводников существенно расширился. Но массового использования таких высокотемпературных сверхпроводящих элементов не наблюдается. В некоторых странах сделаны единичные инсталляции с заменой обычных медных проводников на высокотемпературные сверхпроводники. Для поддержания нормального режима высокотемпературной сверхпроводимости необходим жидкий азот. А это получается слишком дорогим техническим решением.

Поэтому, малое значение удельного сопротивления, дарованное Природой меди и алюминию, по-прежнему делает их незаменимыми материалами для изготовления разнообразных проводников электрического тока.

Содержание:

Удельным сопротивлением металлов считается их способность к противодействию электрическому току, проходящему через них. Единицей измерения данной величины служит Ом*м (Ом-метр). В качестве символа используется греческая буква ρ (ро). Высокие показатели удельного сопротивления означают плохую проводимость электрического заряда тем или иным материалом.

Технические характеристики стали

Прежде чем подробно рассматривать удельное сопротивление стали, следует ознакомиться с ее основными физико-механическими свойствами. Благодаря своим качествам, этот материал получил широкое распространение в производственной сфере и других областях жизни и деятельности людей.

Сталь представляет собой сплав железа и углерода, содержащегося в количестве, не превышающем 1,7%.

Кроме углерода, сталь содержит определенное количество примесей – кремния, марганца, серы и фосфора. По своим качествам она значительно лучше чугуна, легко поддается закаливанию, ковке, прокату и другим видам обработки. Все виды сталей отличаются высокой прочностью и пластичностью.

По своему назначению сталь подразделяется на конструкционную, инструментальную, а также с особыми физическими свойствами. В каждой из них содержится различное количество углерода, благодаря которому материал приобретает те или иные специфические качества, например, жаропрочность, жаростойкость, устойчивость к действию ржавчины и коррозии.

Особое место занимают электротехнические стали, выпускаемые в листовом формате и применяющиеся в производстве электротехнических изделий. Для получения этого материала производится легирование кремнием, способным улучшить его магнитные и электрические свойства.

Для того чтобы электротехническая сталь приобрела необходимые характеристики, необходимо соблюдение определенных требований и условий.

Материал должен легко намагничиваться и перемагничиваться, то есть, обладать высокой магнитной проницаемостью. Такие стали имеют хорошую , а их перемагничивание осуществляется с минимальными потерями.

От соблюдения этих требований зависят габариты и масса магнитных сердечников и обмоток, а также коэффициент полезного действия трансформаторов и величина их рабочей температуры. На выполнение условий оказывают влияние многие факторы, в том числе и удельное сопротивление стали.

Удельное сопротивление и другие показатели

Величина удельного электрического сопротивления представляет собой отношение напряженности электрического поля в металле и плотности тока, протекающего в нем. Для практических расчетов используется формула: в которой

ρ является удельным сопротивлением металла (Ом*м), Е – напряженностью электрического поля (В/м), а J – плотностью электротока в металле (А/м 2). При очень большой напряженности электрического поля и низкой плотности тока, удельное сопротивление металла будет высоким.

Существует еще одна величина, называемая удельной электропроводностью, обратная удельному сопротивлению, указывающая на степень проводимости электрического тока тем или иным материалом. Она определяется по формуле и выражается в единицах См/м – сименс на метр.

Удельное сопротивление тесно связано с электрическим сопротивлением. Однако они имеют различия между собой. В первом случае – это свойство материала, в том числе и стали, а во втором случае определяется свойство всего объекта. На качество резистора влияет сочетание нескольких факторов, прежде всего, формы и удельного сопротивления материала, из которого он изготовлен. Например, если для изготовления проволочного резистора использовалась тонкая и длинная проволока, то его сопротивление будет больше, чем у резистора, изготовленного из толстой и короткой проволоки одинакового металла.

В качестве другого примера можно привести резисторы из проволоки с одинаковым диаметром и длиной. Однако, если в одном из них материал имеет высокое удельное сопротивление, а в другом низкое, то соответственно в первом резисторе электрическое сопротивление будет выше, чем во втором.

Зная основные свойства материала, можно использовать удельное сопротивление стали для определения величины сопротивления стального проводника. Для вычислений, кроме удельного электрического сопротивления потребуется диаметр и длина самого провода. Расчеты выполняются по следующей формуле: , в которой R является (Ом), ρ – удельным сопротивлением стали (Ом*м), L – соответствует длине провода, А – площади его поперечного сечения.

Существует зависимость удельного сопротивления стали и других металлов от температуры. В большинстве расчетов используется комнатная температура – 20 0 С. Все изменения под влиянием этого фактора учитываются с помощью температурного коэффициента.

Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R . Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно – от его сопротивления.

Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S ,

где l- длина проводника, S – площадь его поперечного сечения, а ρ – некий коэффициент пропорциональности.

Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее – у. с.) – так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление – это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина – проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ – это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их “отдать”, что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

  1. Проводники;
  2. Полупроводники;
  3. Диэлектрики.

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны . Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ

Между этими двумя классами существуют вещества, называемые полупроводниками. Но выделение их в отдельную группу веществ связано не столько с их промежуточным состоянием в линейке «проводимость – сопротивление», сколько с особенностями этой проводимости в различных условиях.

Зависимость от факторов внешней среды

Проводимость – не совсем постоянная величина. Данные в таблицах, откуда берут ρ для расчетов, существуют для нормальных условий среды, то есть для температуры 20 градусов. В реальности для работы цепи сложно подобрать такие идеальные условия; фактически у.с. (а стало быть, и проводимость) зависят от следующих факторов:

  1. температура;
  2. давление;
  3. наличие магнитных полей;
  4. свет;
  5. агрегатное состояние.

Разные вещества имеют свой график изменения этого параметра в разных условиях. Так, ферромагнетики (железо и никель) увеличивают его при совпадении направления тока с направлением силовых линий магнитного поля. Что касается температуры, то зависимость здесь почти линейная (существует даже понятие температурного коэффициента сопротивления, и это тоже табличная величина). Но направление этой зависимости различно: у металлов оно повышается с повышением температуры, а у редкоземельных элементов и растворов электролитов увеличивается – и это в пределах одного агрегатного состояния.

У полупроводников зависимость от температуры не линейная, а гиперболическая и обратная: при повышении температуры их проводимость увеличивается. Это качественно отличает проводники от полупроводников. Вот так выглядит зависимость ρ от температуры у проводников:

Здесь представлены удельное сопротивление меди, платины и железа. Немного другой график у некоторых металлов, например, ртути – при понижении температуры до 4 К она теряет его почти полностью (такое явление называется сверхпроводимостью).

А для полупроводников эта зависимость будет примерно такая:

При переходе в жидкое состояние ρ металла увеличивается, а вот дальше все они ведут себя по-разному. Например, у расплавленного висмута оно ниже, чем при комнатной температуре, а у меди – в 10 раз выше нормального. Никель выходит из линейного графика еще при 400 градусах, после чего ρ падает.

Зато у вольфрама температурная зависимость настолько высока, что это становится причиной перегорания ламп накаливания. При включении ток нагревает спираль, и ее сопротивление увеличивается в несколько раз.

Также у. с. сплавов зависит от технологии их производства. Так, если мы имеем дело с простой механической смесью, то сопротивление такого вещества можно посчитать по среднему, а вот оно же у сплава замещения (это когда два и более элемента складываются в одну кристаллическую решетку) будет иным, как правило, куда большим. Например, нихром, из которого делают спирали для электроплиток, имеет такую цифру этого параметра, что этот проводник при включении в цепь греется до красноты (из-за чего, собственно, и используется).

Вот характеристика ρ углеродистых сталей:

Как видно, при приближении к температуре плавления оно стабилизируется.

Удельное сопротивление различных проводников

Как бы то ни было, а при расчетах используется ρ именно в нормальных условиях. Приведем таблицу, по которой можно сравнить эту характеристику у разных металлов:

Как видно из таблицы, лучший проводник – это серебро. И только его стоимость мешает массово применять его в производстве кабеля. У.с. алюминия тоже небольшое, но меньше, чем у золота. -7 Ом · м.

Разница между у. с. различных проводников определяет и их применение. Так, медь и алюминий массово применяются при производстве кабеля, а золото и серебро – в качестве контактов в ряде радиотехнических изделий. Высокоомные проводники нашли свое место среди производителей электроприборов (точнее, они и создавались для этого).

Изменчивость этого параметра в зависимости от условий внешней среды легла в основу таких приборов, как датчики магнитного поля, терморезисторы, тензодатчики, фоторезисторы.

На опыте установлено, что сопротивление R металлического проводника прямо пропорционально его длине L и обратно пропорционально площади его поперечного сечения А :

R = ρL/А (26.4)

где коэффициент ρ называется удельным сопротивлением и служит характеристикой вещества, из которого изготовлен проводник. Это соответствует здравому смыслу: сопротивление толстого провода должно быть меньше, чем тонкого, поскольку в толстом проводе электроны могут перемещаться по большей площади. И можно ожидать роста сопротивления с увеличением длины проводника, так как увеличивается количество препятствий на пути потока электронов.

Типичные значения ρ для разных материалов приведены в первом столбце табл. 26.2. (Реальные значения зависят от чистоты вещества, термической обработки, температуры и других факторов.)

Таблица 26.2.
Удельное сопротивление и температурный коэффициент сопротивления (ТКС) (при 20 °С)
Веществоρ ,Ом·м ТКС α ,°C -1
Проводники
Серебро1,59·10 -80,0061
Медь1,68·10 -80,0068
Алюминий2,65·10 -80,00429
Вольфрам5,6·10 -80,0045
Железо9,71·10 -80,00651
Платина10,6·10 -80,003927
Ртуть98·10 -80,0009
Нихром (сплав Ni, Fe, Сг)100·10 -80,0004
Полупроводники 1)
Углерод (графит)(3-60)·10 -5-0,0005
Германий(1-500)·10 -5-0,05
Кремний0,1 – 60-0,07
Диэлектрики
Стекло10 9 – 10 12
Резина твердая10 13 – 10 15
1) Реальные значения сильно зависят от наличия даже малого количества примесей.

Самым низким удельным сопротивлением обладает серебро, которое оказывается, таким образом, наилучшим проводником; однако оно дорого. Немногим уступает серебру медь; ясно, почему провода чаще всего изготовляют из меди.

Удельное сопротивление алюминия выше, чем у меди, однако он имеет гораздо меньшую плотность, и в некоторых случаях ему отдают предпочтение (например, в линиях электропередач), поскольку сопротивление проводов из алюминия той же массы оказывается меньше, чем у медных. Часто пользуются величиной, обратной удельному сопротивлению:

σ = 1/ρ (26.5)

σ называемой удельной проводимостью. Удельная проводимость измеряется в единицах (Ом·м) -1 .

Удельное сопротивление вещества зависит от температуры. Как правило, сопротивление металлов возрастает с температурой. Этому не следует удивляться: с повышением температуры атомы движутся быстрее, их расположение становится менее упорядоченным, и можно ожидать, что они будут сильнее мешать движению потока электронов. В узких диапазонах изменения температуры удельное сопротивление металла увеличивается с температурой практически линейно:

где ρ T – удельное сопротивление при температуре Т , ρ 0 – удельное сопротивление при стандартной температуре Т 0 , а α – температурный коэффициент сопротивления (ТКС). Значения а приведены в табл. 26.2. Заметим, что у полупроводников ТКС может быть отрицательным. Это очевидно, поскольку с ростом температуры увеличивается число свободных электронов и они улучшают проводящие свойства вещества. Таким образом, сопротивление полупроводника с повышением температуры может уменьшаться (хотя и не всегда).

Значения а зависят от температуры, поэтому следует обращать внимание на диапазон температур, в пределах которого справедливо данное значение (например, по справочнику физических величин). Если диапазон изменения температуры окажется широким, то линейность будет нарушаться, и вместо (26.6) надо использовать выражение, содержащее члены, которые зависят от второй и третьей степеней температуры:

ρ T = ρ 0 (1+αТ + + βТ 2 + γТ 3),

где коэффициенты β и γ обычно очень малы (мы положили Т 0 = 0°С), но при больших Т вклад этих членов становится существенным.

При очень низких температурах удельное сопротивление некоторых металлов, а также сплавов и соединений падает в пределах точности современных измерений до нуля. Это свойство называют сверхпроводимостью; впервые его наблюдал нидерландский физик Гейке Камер-линг-Оннес (1853-1926) в 1911 г. при охлаждении ртути ниже 4,2 К. При этой температуре электрическое сопротивление ртути внезапно падало до нуля.

Сверхпроводники переходят в сверхпроводящее состояние ниже температуры перехода, составляющей обычно несколько градусов Кельвина (чуть выше абсолютного нуля). Наблюдался электрический ток в сверхпроводящем кольце, который практически не ослабевал в отсутствие напряжения в течение нескольких лет.

В последние годы сверхпроводимость интенсивно исследуется с целью выяснить ее механизм и найти материалы, обладающие сверхпроводимостью при более высоких температурах, чтобы уменьшить стоимость и неудобства, обусловленные необходимостью охлаждения до очень низких температур. Первую успешную теорию сверхпроводимости создали Бардин, Купер и Шриффер в 1957 г. Сверхпроводники уже используются в больших магнитах, где магнитное поле создается электрическим током (см. гл. 28), что значительно снижает расход электроэнергии. Разумеется, для поддержания сверхпроводника при низкой температуре тоже затрачивается энергия.

Замечания и предложения принимаются и приветствуются!

14.04.2018

В качестве токопроводящих частей в электроустановках применяют проводники из меди, алюминия, их сплавов и железа (стали).

Медь является одним из лучших токопроводящих материалов. Плотность меди при 20°С 8,95 г/см 3 , температура плавления 1083° С. Медь химически мало активна, но легко растворяется в азотной кислоте, а в разбавленной соляной и серной кислотах растворяется только в присутствии окислителей (кислорода). На воздухе медь быстро покрывается тонким слоем окиси темного цвета, но это окисление не проникает в глубь металла и служит защитой от дальнейшей коррозии. Медь хорошо поддается ковке и прокатке без нагрева.

Для изготовления применяется электролитическая медь в слитках, содержащих 99,93% чистой меди.

Электропроводность меди сильно зависит от количества и рода примесей и в меньшей степени от механической и термической обработки. при 20° С составляет 0,0172-0,018 ом х мм2/м.

Для изготовления проводников применяют мягкую, полутвердую или твердую медь с удельным весом соответственно 8,9, 8,95 и 8,96 г/см 3 .

Для изготовления деталей токоведущих частей широко используется медь в сплавах с другими металлами . Наибольшее применение получили следующие сплавы.

Латуни – сплав меди с цинком, с содержанием в сплаве не менее 50% меди, с присадкой других металлов. латуни 0,031 – 0,079 ом х мм2/м. Различают латунь – томпак с содержанием меди более 72% (обладает высокой пластичностью, антикоррозионным и антифрикционными свойствами) и специальные латуни с присадкой алюминия, олова, свинца или марганца.

Контакт из латуни

Бронзы – сплав меди с оловом с присадкой различных металлов. В зависимости от содержания в сплаве главного компонента бронзы называют оловянистыми, алюминиевыми, кремниевыми, фосфористыми, кадмиевыми. Удельное сопротивление бронзы 0,021 – 0,052 ом х мм 2 /м.

Латуни и бронзы отличаются хорошими механическими и физико-химическими свойствами. Они легко обрабатываются литьем и давлением, устойчивы против атмосферной коррозии.

Алюминий – по своим качествам второй после меди токопроводящий материал. Температура плавления 659,8° С. Плотность алюминия при температуре 20° – 2,7 г/см 3 . Алюминий легко отливается и хорошо обрабатывается. При температуре 100 – 150° С алюминий ковок и пластичен (может быть прокатан в листы толщиной до 0,01 мм).

Электропроводность алюминия сильно зависит от примесей и мало от механической и тепловой обработки. Чем чище состав алюминия, тем выше его электропроводность и лучше противодействие химическим воздействиям. Обработка, прокатка и отжиг значительно влияют на механическую прочность алюминия. При холодной обработке алюминия увеличивается его твердость, упругость и прочность на растяжение. Удельное сопротивление алюминия при 20° С 0,026 – 0,029 ом х мм 2 /м.

При замене меди алюминием сечение проводника должно быть увеличено в отношении проводимостей, т. е. в 1,63 раза.

При равной проводимости алюминиевый проводник будет в 2 раза легче медного.

Для изготовления проводников применяют алюминий, содержащий не менее 98% чистого алюминия, кремния не более 0,3%, железа не более 0,2%

Для изготовления деталей токоведущих частей используют алюминиевые сплавы с другими металлами , например: Дюралюмины – сплав алюминия с медью и марганцем.

Силумин – легкий литейный сплав из алюминия с примесью кремния, магния, марганца.

Алюминиевые сплавы обладают хорошими литейными свойствами и высокой механической прочностью.

Наибольшее применение в электротехнике получили следующие алюминиевые сплавы :

Алюминиевый деформируемый сплав марки АД, имеющий алюминия не менее 98,8 и прочих примесей до 1,2.

Алюминиевый деформируемый сплав марки АД1 , имеющий алюминия не менее 99,3 н прочих примесей до 0,7.

Алюминиевый деформируемый сплав марки АД31 , имеющий алюминия 97,35 – 98,15 и прочих примесей 1,85 -2,65.

Сплавы марок АД и АД1 применяются для изготовления корпусов и плашек аппаратных зажимов. Из сплава марки АД31 изготовляют профили и шины, применяемые для электрических токопроводов.

Изделия из алюминиевых сплавов в результате термической обработки приобретают высокие пределы прочности н текучести (ползучести).

Железо – температура плавления 1539°С. Плотность железа – 7,87. Железо растворяется в кислотах, окисляется галогенами и кислородом.

В электротехнике применяют стали различных марок, например:

Углеродистые стали – ковкие сплавы железа с углеродом и с другими металлургическими примесями.

Удельное сопротивление углеродистых сталей 0,103 – 0,204 ом х мм 2 /м.

Легированные стали – сплавы с дополнительно вводимыми в углеродистую сталь присадками хрома, никеля и других элементов.

Стали обладают хорошими.

В качестве добавок в сплавы, а также для изготовления припоев и осуществления токопроводящих металлов широко применяют:

Кадмий – ковкий металл. Температура плавления кадмия 321°С. Удельное сопротивление 0,1 ом х мм 2 /м. В электротехнике кадмий применяется для приготовления легкоплавких припоев и для защитных покрытий (кадмировання) поверхности металлов. По своим антикоррозийным свойствам кадмий близок к цинку, но кадмиевые покрытия менее пористы и наносятся более тонким слоем, чем цинковые.

Никель – температура плавления 1455°С. Удельное сопротивление никеля 0,068 – 0,072 ом х мм 2 /м. При обычной температуре не окисляется кислородом воздуха. Никель применяется в сплавах и для защитного покрытия (никелирования) поверхности металлов.

Олово – температура плавления 231,9°С. Удельное сопротивление олова 0,124 – 0,116 ом х мм 2 /м. Олово применяется для пайки защитного покрытия (лужения) металлов в чистом виде и в виде сплавов с другими металлами.

Свинец – температура плавления 327,4°С. Удельное сопротивление 0,217 – 0,227 ом х мм 2 /м. Свинец применяется в сплавах с другими металлами как кислотоупорный материал. Добавляется в паяльные сплавы (припои).

Серебро – очень ковкий, тягучий металл. Температура плавления серебра 960,5°С. Серебро – лучший проводник тепла и электрического тока . Удельное сопротивление серебра 0,015 – 0,016 ом х мм 2 /м. Серебро применяется для защитного покрытия (серебрения) поверхности металлов.

Сурьма – блестящий хрупкий металл, температура плавления 631°С. Сурьма применяется в виде добавок в паяльные сплавы (припои).

Хром – твердый, блестящий металл. Температура плавления 1830°С. На воздухе при обычной температуре не изменяется. Удельное сопротивление хрома 0,026 ом х мм 2 /м. Хром применяется в сплавах и для защитного покрытия (хромирования) металлических поверхностей.

Цинк – температура плавления 419,4°С. Удельное сопротивление цинка 0,053 – 0,062 ом х мм 2 /м. Во влажном воздухе цинк окисляется, покрываясь слоем окиси, являющимся защитным по отношению к последующим химическим воздействиям. В электротехнике цинк применяется в качестве добавок в сплавы и припои, а также для защитного покрытия (цинкования) поверхностей металлических деталей.

Как только электричество покинуло лаборатории учёных и стало широко внедряться в практику повседневной жизни, встал вопрос о поиске материалов, обладающих определёнными, порой совершенно противоположными, характеристиками по отношению к протеканию через них электрического тока.

Например, при передаче электрической энергии на дальнее расстояние, к материалу проводов предъявлялись требования минимизации потерь из-за джоулева нагрева в сочетании с малыми весовыми характеристиками. Примером тому являются всем знакомые высоковольтные линии электропередач, выполненные из алюминиевых проводов со стальным сердечником.

Или, наоборот, для создания компактных трубчатых электронагревателей требовались материалы с относительно высоким электрическим сопротивлением и высокой термостойкостью. Простейшим примером прибора, в котором применяются материалы с подобными свойствами, может служить конфорка обыкновенной кухонной электроплиты.

От проводников, используемых в биологии и медицине в качестве электродов, зондов и щупов, требуется высокая химическая устойчивость и совместимость с биоматериалами в сочетании с малым контактным сопротивлением.

К разработке такого ныне привычного всем прибора, как лампа накаливания, свои усилия приложила целая плеяда изобретателей из разных стран: Англии, России, Германии, Венгрии и США. Томас Эдисон, проведя более тысячи опытов проверки свойств материалов, подходящих на роль нитей накала, создал лампу с платиновой спиралью. Лампы Эдисона, хотя и имели высокий срок эксплуатации, но не были практичными из-за высокой стоимости исходного материала.

Последующие работы русского изобретателя Лодыгина, предложившего использовать в качестве материалов нити относительно дешёвые тугоплавкие вольфрам и молибден с более высоким удельным сопротивлением, нашли практическое применение. К тому же Лодыгин предложил откачивать из баллонов ламп накаливания воздух, заменяя его инертными или благородными газами, что привело к созданию современных ламп накаливания. Пионером массового производства доступных и долговечных электрических ламп стала компания General Electric, которой Лодыгин переуступил права на свои патенты и далее успешно работал в лабораториях компании долгое время.

Этот перечень можно продолжать, поскольку пытливый человеческий ум настолько изобретателен, что порой для решения определённой технической задачи ему нужны материалы с невиданными доселе свойствами или с невероятными сочетаниями этих свойств. Природа уже не успевает за нашими аппетитами и учёные всех стран мира включились в гонку создания материалов, не имеющих природных аналогов.

Оно представляет собой преднамеренное соединение кожуха или корпуса электроустройств с защитным заземляющим устройством. Обычно заземление выполняется в виде зарытых в землю на глубину более 2,5 метра стальных или медных полос, труб, стержней или уголков, которые в случае аварии обеспечивают протекание тока по контуру устройство – корпус или кожух – земля – нулевой провод источника переменного тока. Сопротивление этого контура должно быть не более 4 Ом. В этом случае напряжение на корпусе аварийного устройства снижается до безопасного для человека величин, а автоматические устройства защиты электрической цепи тем или иным способом производят отключение аварийного устройства.

При расчёте элементов защитного заземления существенную роль играет знание удельного сопротивления грунтов, которое может варьироваться в широких пределах.

Сообразуясь с данными справочных таблиц, выбирается площадь заземляющего устройства, по ней вычисляется количество заземляющих элементов и собственно конструкция всего устройства. Соединение элементов конструкции устройства защитного заземления производится сваркой.

Электротомография

Электроразведка изучает приповерхностную геологическую среду, применяется для поиска рудных и нерудных полезных ископаемых и других объектов на основе исследования различных искусственных электрических и электромагнитных полей. Частным случаем электроразведки является электротомография (Electrical Resistivity Tomography) – метод определения свойств горных пород по их удельному сопротивлению.

Суть метода заключается в том, что при определённом положении источника электрического поля проводятся замеры напряжения на различных зондах, затем источник поля перемещают в другое место или переключают на другой источник и повторяют измерения. Источники поля и зонды-приёмники поля размещают на поверхности и в скважинах.

Затем полученные данные обрабатываются и интерпретируются с помощью современных компьютерных методов обработки, позволяющих визуализировать информацию в виде двухмерных и трёхмерных изображений.

Являясь очень точным методом поиска, электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам.

Определение формы залегания месторождений полезных ископаемых и границ их распространения (оконтуривание) позволяет выявить залегание жильных залежей полезных ископаемых, что существенно снижает затраты на их последующую разработку.

Археологам этот метод поиска даёт ценную информацию о расположении древних захоронений и наличия в них артефактов, тем самым сокращая затраты на раскопки.

Палеозоологи с помощью электротомографии ищут окаменевшие останки древних животных; результаты их работ можно увидеть в музеях естественных наук в виде поражающих воображение реконструкций скелетов доисторической мегафауны.

Кроме того, электротомография применяется при возведении и при последующей эксплуатации инженерных сооружений: высотных зданий, плотин, дамб, насыпей и других.

Определения удельного сопротивления на практике

Порой для решения практических задач перед нами может встать задача определения состава вещества, например, проволоки для резака пенополистирола. Имеем два мотка проволоки подходящего диаметра из различных неизвестных нам материалов. Для решения задачи необходимо найти их удельное электрическое сопротивление и далее по разнице найденных значений или по справочной таблице определить материал проволоки.

Отмерим рулеткой и отрежем по 2 метра проволоки от каждого образца. Определим диаметры проволок d₁ и d₂ микрометром. Включив мультиметр на нижний предел измерения сопротивлений, измеряем сопротивление образца R₁. Повторяем процедуру для другого образца и также измеряем его сопротивление R₂.

Учтём, что площадь поперечного сечения проволок рассчитывается по формуле

S = π ∙ d 2 /4

Теперь формула для расчёта удельного электрического сопротивления будет выглядеть следующим образом

ρ = R ∙ π ∙ d 2 /4 ∙ L

Подставляя полученные значения L, d₁ и R₁ в формулу для расчёта удельного сопротивления, приведенную в статье выше, вычисляем значение ρ₁ для первого образца.

ρ 1 = 0,12 ом мм 2 /м

Подставляя полученные значения L, d₂ и R₂ в формулу, вычисляем значение ρ₂ для второго образца.

ρ 2 = 1,2 ом мм 2 /м

Из сравнения значений ρ₁ и ρ₂ со справочными данными вышеприведенной Таблицы 2, делаем вывод, что материалом первого образца является сталь, а второго – нихром, из которого и изготовим струну резака.

Называют возможность металла пропускать сквозь себя заряженный ток. В свою очередь, сопротивлением называется одна из характеристик материала. Чем больше электрическая резистентность при заданном напряжении, тем меньшей будет Оно характеризует силу противодействия проводника направленному вдоль него движению заряженных электронов. Поскольку свойство пропускания электричества – это величина, обратная сопротивлению, значит выражаться в виде формул оно будет как отношение 1/R.

Удельное сопротивление всегда зависит от качества материала, который используют при изготовлении устройств. Его измеряют, отталкиваясь от параметров проводника, обладающего длиной 1 метр, а также площадью сечения 1 квадратный миллиметр. Например, свойство удельной резистентности для меди всегда равно 0,0175 Ом, для алюминия – 0,029, железа – 0,135, константана – 0,48, нихрома – 1-1,1. Удельное сопротивление стали равно числу 2*10-7 Ом.м

Противодействие току прямо пропорционально длине проводника, по которому он движется. Чем больше длина устройства, тем выше показатель сопротивления. Усвоить эту зависимость будет проще, если представить две воображаемых пары сообщающихся между собой сосудов. У одной пары приборов соединяющая трубка пусть остаётся тоньше, а у другой – толще. При заполнении водой обеих пар переход жидкости в по толстой трубке получится гораздо быстрее, потому что она окажет меньшее сопротивление перетеканию воды. По этой аналогии для ему проще пройти вдоль толстого проводника, чем тонкого.

Удельное сопротивление, как единица СИ, измеряется показателем Ом.м. Проводимость зависит от средней длины свободного пролёта заряженных частиц, которая характеризуется структурой материала. Металлы без примесей, у которых наиболее правильная имеют наименьшие значения противодействия. И наоборот, примеси искажают решётку, чем увеличивают его показатели. Удельное сопротивление металлов расположено в узком диапазоне значений при нормальной температуре: от серебра с 0,016 и до 10 мкОм.м (сплавы железа и хрома с алюминием).

На особенности движения заряженных

электронов в проводнике оказывает влияние температура, поскольку при её увеличении возрастает амплитуда волновых колебаний существующих ионов и атомов. В результате электронам остаётся меньше свободного пространства для нормального хода в кристаллической решётке. А это означает, что препятствие упорядоченному передвижению возрастает. Удельное сопротивление любого проводника по обыкновению линейно возрастает с ростом температуры. А для полупроводников, наоборот, характерно уменьшение с увеличением градусов, так как из-за этого высвобождается много зарядов, создающих непосредственно электрический ток.

Процесс охлаждения некоторых металлических проводников заведомо до нужной температуры доводит их удельное сопротивление до скачкообразного состояния и падает до нуля. Такое явление открыли в 1911 году и назвали сверхпроводимостью.

Удельное электрическое сопротивление никеля. Электрическое сопротивление и проводимость


    Удельное сопротивление железа, алюминия и других проводников

    Передача электроэнергии на дальние расстояния требует заботиться о минимизации потерь, происходящих от преодоления током сопротивления проводников, составляющих электрическую линию. Разумеется, это не значит, что подобные потери, происходящие уже конкретно в цепях и устройствах потребления, не играют роли.

    Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики – то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

    Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление – это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ). Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации – при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей.

    Виды удельного сопротивления

    Так как сопротивление бывает:

    • активное – или омическое, резистивное, – происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
    • реактивное – емкостное или индуктивное, – которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
  1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
  2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП – активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.


Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin – кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.


Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.


Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса – играющих роль проводов других фаз, нулевых, заземляющих.

Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление -порядка ом *10-6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления – обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

Таблица

Железо как проводник в электротехнике

Железо – самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

, где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.

Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

После этого разрешим формулу относительно S

, будем подставлять значения из таблицы и получать площади сечений для разных металлов.

Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10-6. Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм2.

Как видим, сопротивление железа достаточно большое, проволока получается толстая.


Но существуют материалы, у которых оно еще больше, например, никелин или константан.

Похожие статьи:

domelectrik.ru

Таблица удельного электрического сопротивления металлов и сплавов в электротехнике

Главная > у >


Удельное сопротивление металлов.
Удельное сопротивление сплавов.
Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава. comments powered by HyperComments

tab.wikimassa.org

Удельное электрическое сопротивление | Мир сварки

Удельное электрическое сопротивление материалов

Удельное электрическое сопротивление (удельное сопротивление) – способность вещества препятствовать прохождению электрического тока.

Единица измерения (СИ) – Ом·м; также измеряется в Ом·см и Ом·мм2/м.

Материал Температура, °С Удельное электрическоесопротивление, Ом·м
Металлы
Алюминий200,028·10-6
Бериллий200,036·10-6
Бронза фосфористая200,08·10-6
Ванадий200,196·10-6
Вольфрам200,055·10-6
Гафний200,322·10-6
Дюралюминий200,034·10-6
Железо200,097·10-6
Золото200,024·10-6
Иридий200,063·10-6
Кадмий200,076·10-6
Калий200,066·10-6
Кальций200,046·10-6
Кобальт200,097·10-6
Кремний270,58·10-4
Латунь200,075·10-6
Магний200,045·10-6
Марганец200,050·10-6
Медь200,017·10-6
Магний200,054·10-6
Молибден200,057·10-6
Натрий200,047·10-6
Никель200,073·10-6
Ниобий200,152·10-6
Олово200,113·10-6
Палладий200,107·10-6
Платина200,110·10-6
Родий200,047·10-6
Ртуть200,958·10-6
Свинец200,221·10-6
Серебро200,016·10-6
Сталь200,12·10-6
Тантал200,146·10-6
Титан200,54·10-6
Хром200,131·10-6
Цинк200,061·10-6
Цирконий200,45·10-6
Чугун200,65·10-6
Пластмассы
Гетинакс20109–1012
Капрон201010–1011
Лавсан201014–1016
Органическое стекло201011–1013
Пенопласт201011
Поливинилхлорид201010–1012
Полистирол201013–1015
Полиэтилен201015
Стеклотекстолит201011–1012
Текстолит20107–1010
Целлулоид20109
Эбонит201012–1014
Резины
Резина201011–1012
Жидкости
Масло трансформаторное201010–1013
Газы
Воздух01015–1018
Дерево
Древесина сухая20109–1010
Минералы
Кварц230109
Слюда201011–1015
Различные материалы
Стекло20109–1013
ЛИТЕРАТУРА
  • Альфа и омега. Краткий справочник / Таллин: Принтэст, 1991 – 448 с.
  • Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
  • Справочник по сварке цветных металлов / С.М. Гуревич. Киев.: Наукова думка. 1990. 512 с.

weldworld.ru

Удельное сопротивление металлов, электролитов и веществ (Таблица)

Удельное сопротивление металлов и изоляторов

В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18-20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

Таблица удельное сопротивление металлов

Чистые металлы

104 ρ (ом·см)

Чистые металлы

104 ρ (ом·см)

Алюминий

Дюралюминий

Платинит 2)

Аргентан

Марганец

Манганин

Вольфрам

Константан

Молибден

Сплав Вуда 3)

Сплав Розе 4)

Палладий

Фехраль 6)

Таблица удельное сопротивление изоляторов

Изоляторы

Изоляторы

Дерево сухое

Целлулоид

Канифоль

Гетинакс

Кварц _|_ оси

Стекло натр

Полистирол

Стекло пирекс

Кварц || оси

Кварц плавленый

Удельное сопротивление чистых металлов при низких температурах

В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.

В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

Чистые металлы

Алюминий

Вольфрам

Молибден

Удельное сопротивление электролитов

В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, – М.: 1960.

infotables.ru

Удельное электрическое сопротивление – сталь

Cтраница 1

Удельное электрическое сопротивление стали возрастает с ростом температуры, причем наибольшие изменения наблюдаются при нагреве до температуры точки Кюри. После точки Кюри величина удельного электросопротивления изменяется незначительно и при температурах выше 1000 С практически остается постоянной.  

Ввиду большого удельного электрического сопротивления стали эти iuKii создают НсОольшое замедление в спадании потока. В контакторах на 100 а время отпадания составляет 0 07 сек, а в контакторах 600 а-0 23 сек. В связи с особыми требованиями, предъявляемыми к контакторам серии КМВ, которые предназначены для включения и отключения электромагнитов приводов масляных выключателей, электромагнитный механизм у этих контакторов допускает регулировку напряжения срабатывания и напряжения отпускания за счет регулировки силы возвратной пружины и специальной отрывной пружины. Контакторы типа КМВ должны работать при глубокой посадке напряжения. Поэтому минимальное напряжение срабатывания у этих контакторов может спускаться до 65 % UH. Такое низкое напряжение срабатывания приводит к тому, что при номинальном напряжении через обмотку протекает ток, приводящий к повышенному нагреву катушки.  

Присадка кремния увеличивает удельное электрическое сопротивление стали почти пропорционально содержанию кремния и этим способствует уменьшению потерь на вихревые токи, возникающие в стали при ее работе в переменном магнитном поле.  

Присадка кремния увеличивает удельное электрическое сопротивление стали, что способствует уменьшению потерь на вихревые токи, но одновременно кремний ухудшает механические свойства стали, делает ее хрупкой.  

Ом – мм2 / м – удельное электрическое сопротивление стали.  

Для уменьшения вихревых токов применяются сердечники, выполненные из сортов стали с повышенным удельным электрическим сопротивлением стали, содержащие 0 5 – 4 8 % кремния.  

Для этого на массивный ротор из оптимального сплава СМ-19 был надет тонкий экран из магнитно-мягкой стали. Удельное электрическое сопротивление стали мало отличается от удельного сопротивления сплава, а цг стали примерно на порядок выше. Толщина экрана выбрана по глубине проникновения зубцовых гармоник первого порядка и равна йэ 0 8 мм. Для сравнения приведены добавочные потери, Вт, при базовом короткозамкнутом роторе и двухслойном роторе с массивным цилиндром из сплава СМ-19 и с медными торцевыми кольцами.  

Основным магнитопроводящим материалом является листовая легированная электротехническая сталь, содержащая от 2 до 5 % кремния. Присадка кремния увеличивает удельное электрическое сопротивление стали, в результате чего уменьшаются потери на вихревые токи, сталь становится устойчивой к окислению и старению, но делается более хрупкой. В последние годы широко используется холоднокатаная текстурованная сталь с более высокими магнитными свойствами в направлении проката. Для уменьшения потерь от вихревых токов сердечник магнитопровода выполняется в виде пакета, собранного из листов штампованной стали.  

Электротехническая сталь является низкоуглеродистой сталью. Для улучшения магнитных характеристик в нее вводят кремний, который вызывает повышение удельного электрического сопротивления стали. Это приводит к уменьшению потерь на вихревые токи.  

После механической обработки магнитопровод отжигают. Так как в создании замедления участвуют вихревые токи в стали, следует ориентироваться на величину удельного электрического сопротивления стали порядка Рс (Ю-15) 10 – 6 ом см. В притянутом положении якоря магнитная система достаточно сильно насыщена, поэтому начальная индукция в различных магнитных системах колеблется в очень незначительных пределах и составляет для стали марки Э Вн1 6 – 1 7 гл. Указанное значение индукции поддерживает напряженность поля в стали порядка Ян.  

Для изготовления магнитных систем (магнитопроводов) трансформаторов применяются специальные тонколистовые электротехнические стали, имеющие повышенное (до 5 %) содержание кремния. Кремний способствует обезуглероживанию стали, что приводит к увеличению магнитной проницаемости, снижает потери на гистерезис и увеличивает ее удельное электрическое сопротивление. Увеличение удельного электрического сопротивления стали позволяет уменьшить потери в ней от вихревых токов. Кроме того, кремний ослабляет старение стали (увеличение потерь в стали с течением времени), уменьшает ее магнитострикцию (изменение формы и размеров тела при намагничивании) и, следовательно, шум трансформаторов. В то же время наличие кремния в стали приводит к повышению ее хрупкости и затрудняет ее механическую обработку.  

Страницы:      1    2

www.ngpedia.ru

Удельное сопротивление | Викитроника вики

Удельное сопротивление – характеристика материала, определяющая его способность проводить электрический ток. Определяется как отношение электрического поля к плотности тока. В общем случае является тензором, однако для большинства материалов, не проявляющих анизотропных свойств, принимается скалярной величиной.

Обозначение – ρ

$ \vec E = \rho \vec j, $

$ \vec E $ – напряжённость электрического поля, $ \vec j $ – плотность тока.

Единица измерения СИ – ом-метр (ом·м, Ω·m).

Сопротивление цилиндра или призмы (между торцами) из материала длиной l, и сечением S по удельному сопротивлению определяется следующим образом:

$ R = \frac{\rho l}{S}. $

В технике применяется определение удельного сопротивления, как сопротивление проводника единичного сечения и единичной длины.

Удельное сопротивление некоторых материалов, используемых в электротехнике Править

Материал ρ при 300 К, Ом·м ТКС, К⁻¹
серебро 1,59·10⁻⁸ 4,10·10⁻³
медь 1,67·10⁻⁸ 4,33·10⁻³
золото 2,35·10⁻⁸ 3,98·10⁻³
алюминий 2,65·10⁻⁸ 4,29·10⁻³
вольфрам 5,65·10⁻⁸ 4,83·10⁻³
латунь 6,5·10⁻⁸ 1,5·10⁻³
никель 6,84·10⁻⁸ 6,75·10⁻³
железо (α) 9,7·10⁻⁸ 6,57·10⁻³
олово серое 1,01·10⁻⁷ 4,63·10⁻³
платина 1,06·10⁻⁷ 6,75·10⁻³
олово белое 1,1·10⁻⁷ 4,63·10⁻³
сталь 1,6·10⁻⁷ 3,3·10⁻³
свинец 2,06·10⁻⁷ 4,22·10⁻³
дюралюминий 4,0·10⁻⁷ 2,8·10⁻³
манганин 4,3·10⁻⁷ ±2·10⁻⁵
константан 5,0·10⁻⁷ ±3·10⁻⁵
ртуть 9,84·10⁻⁷ 9,9·10⁻⁴
нихром 80/20 1,05·10⁻⁶ 1,8·10⁻⁴
канталь А1 1,45·10⁻⁶ 3·10⁻⁵
углерод (алмаз, графит) 1,3·10⁻⁵
германий 4,6·10⁻¹
кремний 6,4·10²
этанол 3·10³
вода, дистиллированная 5·10³
эбонит 10⁸
бумага твёрдая 10¹⁰
трансформаторное масло 10¹¹
стекло обычное 5·10¹¹
поливинил 10¹²
фарфор 10¹²
древесина 10¹²
ПТФЭ (тефлон) >10¹³
резина 5·10¹³
стекло кварцевое 10¹⁴
бумага вощёная 10¹⁴
полистирол >10¹⁴
слюда 5·10¹⁴
парафин 10¹⁵
полиэтилен 3·10¹⁵
акриловая смола 10¹⁹

ru.electronics.wikia.com

Удельное электрическое сопротивление | формула, объемное, таблица

Удельное электрическое сопротивление является физической величиной, которая показывает, в какой степени материал может сопротивляться прохождению через него электрического тока. Некоторые люди могут перепутать данную характеристику с обыкновенным электрическим сопротивлением. Несмотря на схожесть понятий, разница между ними заключается в том, что удельное касается веществ, а второй термин относится исключительно к проводникам и зависит от материала их изготовления.

Обратной величиной данного материала является удельная электрическая проводимость. Чем выше этот параметр, тем лучше проходит ток по веществу. Соответственно, чем выше сопротивление, тем больше потерь предвидится на выходе.

Формула расчета и величина измерения

Рассматривая, в чем измеряется удельное электрическое сопротивление, также можно проследить связь с не удельным, так как для обозначения параметра используются единицы Ом·м. Сама величина обозначается как ρ. С таким значением можно определять сопротивление вещества в конкретном случае, исходя из его размеров. Эта единица измерения соответствует системе СИ, но могут встречаться и другие варианты. В технике периодически можно увидеть устаревшее обозначение Ом·мм2/м. Для перевода из этой системы в международного не потребуется использовать сложные формулы, так как 1 Ом·мм2/м равняется 10-6 Ом·м.

Формула удельного электрического сопротивления выглядит следующим образом:

R= (ρ·l)/S, где:

  • R – сопротивление проводника;
  • Ρ – удельное сопротивление материал;
  • l – длина проводника;
  • S – сечение проводника.

Зависимость от температуры

Удельное электрическое сопротивление зависит от температуры. Но все группы веществ проявляют себя по-разному при ее изменении. Это необходимо учитывать при расчете проводов, которые будут работать в определенных условиях. К примеру, на улице, где значения температуры зависят от времени года, необходимые материалы с меньшей подверженностью изменениям в диапазоне от -30 до +30 градусов Цельсия. Если же планируется применение в технике, которая будет работать в одних и тех же условиях, то здесь также нужно оптимизировать проводку под конкретные параметры. Материал всегда подбирается с учетом эксплуатации.

В номинальной таблице удельное электрическое сопротивление берется при температуре 0 градусов Цельсия. Повышение показателей данного параметра при нагреве материала обусловлено тем, что интенсивность передвижения атомов в веществе начинает возрастать. Носители электрических зарядов хаотично рассеиваются во всех направлениях, что приводит к созданию препятствий при передвижении частиц. Величина электрического потока снижается.

При уменьшении температуры условия прохождения тока становятся лучше. При достижении определенной температуры, которая для каждого металла будет отличаться, появляется сверхпроводимость, при которой рассматриваемая характеристика почти достигает нуля.

Отличия в параметрах порой достигают очень больших значений. Те материалы, которые обладают высокими показателями, могут использовать в качестве изоляторов. Они помогают защищать проводку от замыкания и ненамеренного контакта с человеком. Некоторые вещества вообще не применимы для электротехники, если у них высокое значение этого параметра. Этому могут мешать другие свойства. Например, удельная электрическая проводимость воды не будет иметь большого значения для данный сферы. Здесь приведены значения некоторых веществ с высокими показателями.

Материалы с высоким удельным сопротивлениемρ (Ом·м)
Бакелит1016
Бензол1015…1016
Бумага1015
Вода дистиллированная104
Вода морская0.3
Дерево сухое1012
Земля влажная102
Кварцевое стекло1016
Керосин1011
Мрамор108
Парафин1015
Парафиновое масло1014
Плексиглас1013
Полистирол1016
Полихлорвинил1013
Полиэтилен1012
Силиконовое масло1013
Слюда1014
Стекло1011
Трансформаторное масло1010
Фарфор1014
Шифер1014
Эбонит1016
Янтарь1018

Более активно в электротехнике применяются вещества с низкими показателями. Зачастую это металлы, которые служат проводниками. В них также наблюдается много различий. Чтобы узнать удельное электрическое сопротивление меди или других материалов, стоит посмотреть в справочную таблицу.

Материалы с низким удельным сопротивлениемρ (Ом·м)
Алюминий2.7·10-8
Вольфрам5.5·10-8
Графит8.0·10-6
Железо1.0·10-7
Золото2.2·10-8
Иридий4.74·10-8
Константан5.0·10-7
Литая сталь1.3·10-7
Магний4.4·10-8
Манганин4.3·10-7
Медь1.72·10-8
Молибден5.4·10-8
Нейзильбер3.3·10-7
Никель8.7·10-8
Нихром1.12·10-6
Олово1.2·10-7
Платина1.07·10-7
Ртуть9.6·10-7
Свинец2.08·10-7
Серебро1.6·10-8
Серый чугун1.0·10-6
Угольные щетки4.0·10-5
Цинк5.9·10-8
Никелин0,4·10-6

Удельное объемное электрическое сопротивление

Данный параметр характеризует возможность пропускать ток через объем вещества. Для измерения необходимо приложить потенциал напряжения с разных сторон материала, изделие из которого будет включено в электрическую цепь. На него подается ток с номинальными параметрами. После прохождения измеряются данные на выходе.

Использование в электротехнике

Изменение параметра при разных температурах широко применяется в электротехнике. Наиболее простым примером является лампа накаливания, где используется нихромовая нить. При нагревании она начинает светиться. При прохождении через нее тока она начинает нагреваться. С ростом нагрева возрастает и сопротивление. Соответственно, ограничивается первоначальный ток, который нужен был для получения освещения. Нихромовая спираль, используя тот же принцип, может стать регулятором на различных аппаратах.

Широкое применение коснулось и благородных металлов, которые обладают подходящими характеристиками для электротехники. Для ответственных схем, которым требуется быстродействие, подбираются серебряные контакты. Они обладают высокой стоимостью, но с учетом относительно небольшого количества материалов их применение вполне оправданно. Медь уступает серебру по проводимости, но обладает более доступной ценой, благодаря чему ее чаще используют для создания проводов.

В условиях, где можно использовать предельно низкие температуры, применяются сверхпроводники. Для комнатной температуры и уличной эксплуатации они не всегда уместны, так как при повышении температуры их проводимость начнет падать, поэтому для таких условий лидерами остаются алюминий, медь и серебро.

На практике учитывается много параметров и этот является одним из наиболее важных. Все расчеты проводятся еще на стадии проектирования, для чего и используются справочные материалы.

14.04.2018

В качестве токопроводящих частей в электроустановках применяют проводники из меди, алюминия, их сплавов и железа (стали).

Медь является одним из лучших токопроводящих материалов. Плотность меди при 20°С 8,95 г/см 3 , температура плавления 1083° С. Медь химически мало активна, но легко растворяется в азотной кислоте, а в разбавленной соляной и серной кислотах растворяется только в присутствии окислителей (кислорода). На воздухе медь быстро покрывается тонким слоем окиси темного цвета, но это окисление не проникает в глубь металла и служит защитой от дальнейшей коррозии. Медь хорошо поддается ковке и прокатке без нагрева.

Для изготовления применяется электролитическая медь в слитках, содержащих 99,93% чистой меди.

Электропроводность меди сильно зависит от количества и рода примесей и в меньшей степени от механической и термической обработки. при 20° С составляет 0,0172-0,018 ом х мм2/м.

Для изготовления проводников применяют мягкую, полутвердую или твердую медь с удельным весом соответственно 8,9, 8,95 и 8,96 г/см 3 .

Для изготовления деталей токоведущих частей широко используется медь в сплавах с другими металлами . Наибольшее применение получили следующие сплавы.

Латуни – сплав меди с цинком, с содержанием в сплаве не менее 50% меди, с присадкой других металлов. латуни 0,031 – 0,079 ом х мм2/м. Различают латунь – томпак с содержанием меди более 72% (обладает высокой пластичностью, антикоррозионным и антифрикционными свойствами) и специальные латуни с присадкой алюминия, олова, свинца или марганца.

Контакт из латуни

Бронзы – сплав меди с оловом с присадкой различных металлов. В зависимости от содержания в сплаве главного компонента бронзы называют оловянистыми, алюминиевыми, кремниевыми, фосфористыми, кадмиевыми. Удельное сопротивление бронзы 0,021 – 0,052 ом х мм 2 /м.

Латуни и бронзы отличаются хорошими механическими и физико-химическими свойствами. Они легко обрабатываются литьем и давлением, устойчивы против атмосферной коррозии.

Алюминий – по своим качествам второй после меди токопроводящий материал. Температура плавления 659,8° С. Плотность алюминия при температуре 20° – 2,7 г/см 3 . Алюминий легко отливается и хорошо обрабатывается. При температуре 100 – 150° С алюминий ковок и пластичен (может быть прокатан в листы толщиной до 0,01 мм).

Электропроводность алюминия сильно зависит от примесей и мало от механической и тепловой обработки. Чем чище состав алюминия, тем выше его электропроводность и лучше противодействие химическим воздействиям. Обработка, прокатка и отжиг значительно влияют на механическую прочность алюминия. При холодной обработке алюминия увеличивается его твердость, упругость и прочность на растяжение. Удельное сопротивление алюминия при 20° С 0,026 – 0,029 ом х мм 2 /м.

При замене меди алюминием сечение проводника должно быть увеличено в отношении проводимостей, т. е. в 1,63 раза.

При равной проводимости алюминиевый проводник будет в 2 раза легче медного.

Для изготовления проводников применяют алюминий, содержащий не менее 98% чистого алюминия, кремния не более 0,3%, железа не более 0,2%

Для изготовления деталей токоведущих частей используют алюминиевые сплавы с другими металлами , например: Дюралюмины – сплав алюминия с медью и марганцем.

Силумин – легкий литейный сплав из алюминия с примесью кремния, магния, марганца.

Алюминиевые сплавы обладают хорошими литейными свойствами и высокой механической прочностью.

Наибольшее применение в электротехнике получили следующие алюминиевые сплавы :

Алюминиевый деформируемый сплав марки АД, имеющий алюминия не менее 98,8 и прочих примесей до 1,2.

Алюминиевый деформируемый сплав марки АД1 , имеющий алюминия не менее 99,3 н прочих примесей до 0,7.

Алюминиевый деформируемый сплав марки АД31 , имеющий алюминия 97,35 – 98,15 и прочих примесей 1,85 -2,65.

Сплавы марок АД и АД1 применяются для изготовления корпусов и плашек аппаратных зажимов. Из сплава марки АД31 изготовляют профили и шины, применяемые для электрических токопроводов.

Изделия из алюминиевых сплавов в результате термической обработки приобретают высокие пределы прочности н текучести (ползучести).

Железо – температура плавления 1539°С. Плотность железа – 7,87. Железо растворяется в кислотах, окисляется галогенами и кислородом.

В электротехнике применяют стали различных марок, например:

Углеродистые стали – ковкие сплавы железа с углеродом и с другими металлургическими примесями.

Удельное сопротивление углеродистых сталей 0,103 – 0,204 ом х мм 2 /м.

Легированные стали – сплавы с дополнительно вводимыми в углеродистую сталь присадками хрома, никеля и других элементов.

Стали обладают хорошими.

В качестве добавок в сплавы, а также для изготовления припоев и осуществления токопроводящих металлов широко применяют:

Кадмий – ковкий металл. Температура плавления кадмия 321°С. Удельное сопротивление 0,1 ом х мм 2 /м. В электротехнике кадмий применяется для приготовления легкоплавких припоев и для защитных покрытий (кадмировання) поверхности металлов. По своим антикоррозийным свойствам кадмий близок к цинку, но кадмиевые покрытия менее пористы и наносятся более тонким слоем, чем цинковые.

Никель – температура плавления 1455°С. Удельное сопротивление никеля 0,068 – 0,072 ом х мм 2 /м. При обычной температуре не окисляется кислородом воздуха. Никель применяется в сплавах и для защитного покрытия (никелирования) поверхности металлов.

Олово – температура плавления 231,9°С. Удельное сопротивление олова 0,124 – 0,116 ом х мм 2 /м. Олово применяется для пайки защитного покрытия (лужения) металлов в чистом виде и в виде сплавов с другими металлами.

Свинец – температура плавления 327,4°С. Удельное сопротивление 0,217 – 0,227 ом х мм 2 /м. Свинец применяется в сплавах с другими металлами как кислотоупорный материал. Добавляется в паяльные сплавы (припои).

Серебро – очень ковкий, тягучий металл. Температура плавления серебра 960,5°С. Серебро – лучший проводник тепла и электрического тока . Удельное сопротивление серебра 0,015 – 0,016 ом х мм 2 /м. Серебро применяется для защитного покрытия (серебрения) поверхности металлов.

Сурьма – блестящий хрупкий металл, температура плавления 631°С. Сурьма применяется в виде добавок в паяльные сплавы (припои).

Хром – твердый, блестящий металл. Температура плавления 1830°С. На воздухе при обычной температуре не изменяется. Удельное сопротивление хрома 0,026 ом х мм 2 /м. Хром применяется в сплавах и для защитного покрытия (хромирования) металлических поверхностей.

Цинк – температура плавления 419,4°С. Удельное сопротивление цинка 0,053 – 0,062 ом х мм 2 /м. Во влажном воздухе цинк окисляется, покрываясь слоем окиси, являющимся защитным по отношению к последующим химическим воздействиям. В электротехнике цинк применяется в качестве добавок в сплавы и припои, а также для защитного покрытия (цинкования) поверхностей металлических деталей.

Как только электричество покинуло лаборатории учёных и стало широко внедряться в практику повседневной жизни, встал вопрос о поиске материалов, обладающих определёнными, порой совершенно противоположными, характеристиками по отношению к протеканию через них электрического тока.

Например, при передаче электрической энергии на дальнее расстояние, к материалу проводов предъявлялись требования минимизации потерь из-за джоулева нагрева в сочетании с малыми весовыми характеристиками. Примером тому являются всем знакомые высоковольтные линии электропередач, выполненные из алюминиевых проводов со стальным сердечником.

Или, наоборот, для создания компактных трубчатых электронагревателей требовались материалы с относительно высоким электрическим сопротивлением и высокой термостойкостью. Простейшим примером прибора, в котором применяются материалы с подобными свойствами, может служить конфорка обыкновенной кухонной электроплиты.

От проводников, используемых в биологии и медицине в качестве электродов, зондов и щупов, требуется высокая химическая устойчивость и совместимость с биоматериалами в сочетании с малым контактным сопротивлением.

К разработке такого ныне привычного всем прибора, как лампа накаливания, свои усилия приложила целая плеяда изобретателей из разных стран: Англии, России, Германии, Венгрии и США. Томас Эдисон, проведя более тысячи опытов проверки свойств материалов, подходящих на роль нитей накала, создал лампу с платиновой спиралью. Лампы Эдисона, хотя и имели высокий срок эксплуатации, но не были практичными из-за высокой стоимости исходного материала.

Последующие работы русского изобретателя Лодыгина, предложившего использовать в качестве материалов нити относительно дешёвые тугоплавкие вольфрам и молибден с более высоким удельным сопротивлением, нашли практическое применение. К тому же Лодыгин предложил откачивать из баллонов ламп накаливания воздух, заменяя его инертными или благородными газами, что привело к созданию современных ламп накаливания. Пионером массового производства доступных и долговечных электрических ламп стала компания General Electric, которой Лодыгин переуступил права на свои патенты и далее успешно работал в лабораториях компании долгое время.

Этот перечень можно продолжать, поскольку пытливый человеческий ум настолько изобретателен, что порой для решения определённой технической задачи ему нужны материалы с невиданными доселе свойствами или с невероятными сочетаниями этих свойств. Природа уже не успевает за нашими аппетитами и учёные всех стран мира включились в гонку создания материалов, не имеющих природных аналогов.

Оно представляет собой преднамеренное соединение кожуха или корпуса электроустройств с защитным заземляющим устройством. Обычно заземление выполняется в виде зарытых в землю на глубину более 2,5 метра стальных или медных полос, труб, стержней или уголков, которые в случае аварии обеспечивают протекание тока по контуру устройство – корпус или кожух – земля – нулевой провод источника переменного тока. Сопротивление этого контура должно быть не более 4 Ом. В этом случае напряжение на корпусе аварийного устройства снижается до безопасного для человека величин, а автоматические устройства защиты электрической цепи тем или иным способом производят отключение аварийного устройства.

При расчёте элементов защитного заземления существенную роль играет знание удельного сопротивления грунтов, которое может варьироваться в широких пределах.

Сообразуясь с данными справочных таблиц, выбирается площадь заземляющего устройства, по ней вычисляется количество заземляющих элементов и собственно конструкция всего устройства. Соединение элементов конструкции устройства защитного заземления производится сваркой.

Электротомография

Электроразведка изучает приповерхностную геологическую среду, применяется для поиска рудных и нерудных полезных ископаемых и других объектов на основе исследования различных искусственных электрических и электромагнитных полей. Частным случаем электроразведки является электротомография (Electrical Resistivity Tomography) – метод определения свойств горных пород по их удельному сопротивлению.

Суть метода заключается в том, что при определённом положении источника электрического поля проводятся замеры напряжения на различных зондах, затем источник поля перемещают в другое место или переключают на другой источник и повторяют измерения. Источники поля и зонды-приёмники поля размещают на поверхности и в скважинах.

Затем полученные данные обрабатываются и интерпретируются с помощью современных компьютерных методов обработки, позволяющих визуализировать информацию в виде двухмерных и трёхмерных изображений.

Являясь очень точным методом поиска, электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам.

Определение формы залегания месторождений полезных ископаемых и границ их распространения (оконтуривание) позволяет выявить залегание жильных залежей полезных ископаемых, что существенно снижает затраты на их последующую разработку.

Археологам этот метод поиска даёт ценную информацию о расположении древних захоронений и наличия в них артефактов, тем самым сокращая затраты на раскопки.

Палеозоологи с помощью электротомографии ищут окаменевшие останки древних животных; результаты их работ можно увидеть в музеях естественных наук в виде поражающих воображение реконструкций скелетов доисторической мегафауны.

Кроме того, электротомография применяется при возведении и при последующей эксплуатации инженерных сооружений: высотных зданий, плотин, дамб, насыпей и других.

Определения удельного сопротивления на практике

Порой для решения практических задач перед нами может встать задача определения состава вещества, например, проволоки для резака пенополистирола. Имеем два мотка проволоки подходящего диаметра из различных неизвестных нам материалов. Для решения задачи необходимо найти их удельное электрическое сопротивление и далее по разнице найденных значений или по справочной таблице определить материал проволоки.

Отмерим рулеткой и отрежем по 2 метра проволоки от каждого образца. Определим диаметры проволок d₁ и d₂ микрометром. Включив мультиметр на нижний предел измерения сопротивлений, измеряем сопротивление образца R₁. Повторяем процедуру для другого образца и также измеряем его сопротивление R₂.

Учтём, что площадь поперечного сечения проволок рассчитывается по формуле

S = π ∙ d 2 /4

Теперь формула для расчёта удельного электрического сопротивления будет выглядеть следующим образом

ρ = R ∙ π ∙ d 2 /4 ∙ L

Подставляя полученные значения L, d₁ и R₁ в формулу для расчёта удельного сопротивления, приведенную в статье выше, вычисляем значение ρ₁ для первого образца.

ρ 1 = 0,12 ом мм 2 /м

Подставляя полученные значения L, d₂ и R₂ в формулу, вычисляем значение ρ₂ для второго образца.

ρ 2 = 1,2 ом мм 2 /м

Из сравнения значений ρ₁ и ρ₂ со справочными данными вышеприведенной Таблицы 2, делаем вывод, что материалом первого образца является сталь, а второго – нихром, из которого и изготовим струну резака.

Называют возможность металла пропускать сквозь себя заряженный ток. В свою очередь, сопротивлением называется одна из характеристик материала. Чем больше электрическая резистентность при заданном напряжении, тем меньшей будет Оно характеризует силу противодействия проводника направленному вдоль него движению заряженных электронов. Поскольку свойство пропускания электричества – это величина, обратная сопротивлению, значит выражаться в виде формул оно будет как отношение 1/R.

Удельное сопротивление всегда зависит от качества материала, который используют при изготовлении устройств. Его измеряют, отталкиваясь от параметров проводника, обладающего длиной 1 метр, а также площадью сечения 1 квадратный миллиметр. Например, свойство удельной резистентности для меди всегда равно 0,0175 Ом, для алюминия – 0,029, железа – 0,135, константана – 0,48, нихрома – 1-1,1. Удельное сопротивление стали равно числу 2*10-7 Ом.м

Противодействие току прямо пропорционально длине проводника, по которому он движется. Чем больше длина устройства, тем выше показатель сопротивления. Усвоить эту зависимость будет проще, если представить две воображаемых пары сообщающихся между собой сосудов. У одной пары приборов соединяющая трубка пусть остаётся тоньше, а у другой – толще. При заполнении водой обеих пар переход жидкости в по толстой трубке получится гораздо быстрее, потому что она окажет меньшее сопротивление перетеканию воды. По этой аналогии для ему проще пройти вдоль толстого проводника, чем тонкого.

Удельное сопротивление, как единица СИ, измеряется показателем Ом.м. Проводимость зависит от средней длины свободного пролёта заряженных частиц, которая характеризуется структурой материала. Металлы без примесей, у которых наиболее правильная имеют наименьшие значения противодействия. И наоборот, примеси искажают решётку, чем увеличивают его показатели. Удельное сопротивление металлов расположено в узком диапазоне значений при нормальной температуре: от серебра с 0,016 и до 10 мкОм.м (сплавы железа и хрома с алюминием).

На особенности движения заряженных

электронов в проводнике оказывает влияние температура, поскольку при её увеличении возрастает амплитуда волновых колебаний существующих ионов и атомов. В результате электронам остаётся меньше свободного пространства для нормального хода в кристаллической решётке. А это означает, что препятствие упорядоченному передвижению возрастает. Удельное сопротивление любого проводника по обыкновению линейно возрастает с ростом температуры. А для полупроводников, наоборот, характерно уменьшение с увеличением градусов, так как из-за этого высвобождается много зарядов, создающих непосредственно электрический ток.

Процесс охлаждения некоторых металлических проводников заведомо до нужной температуры доводит их удельное сопротивление до скачкообразного состояния и падает до нуля. Такое явление открыли в 1911 году и назвали сверхпроводимостью.

Для каждого проводника существует понятие удельного сопротивления. Эта величина состоит из Омов, умножаемых на квадратный миллиметр, далее, делимое на один метр. Иными словами, это сопротивление проводника, длина которого составляет 1 метр, а сечение – 1 мм 2 . То же самое представляет собой и удельное сопротивление меди – уникального металла, получившего широкое распространение в электротехнике и энергетике.

Свойства меди

Благодаря своим свойствам этот металл одним из первых начал применяться в области электричества. Прежде всего, медь является ковким и пластичным материалом с отличными свойствами электропроводимости. До сих пор в энергетике нет равноценной замены этому проводнику.

Особенно ценятся свойства специальной электролитической меди, обладающей высокой чистотой. Этот материал позволил выпускать провода с минимальной толщиной в 10 микрон.

Кроме высокой электропроводности, медь очень хорошо поддается лужению и другим видам обработки.

Медь и ее удельное сопротивление

Любой проводник оказывает сопротивление, если через него пропустить электрический ток. Значение зависит от длины проводника и его сечения, а также от действия определенных температур. Поэтому, удельное сопротивление проводников зависит не только от самого материала, но и от его определенной длины и площади поперечного сечения. Чем легче материал пропускает через себя заряд, тем ниже его сопротивление. Для меди, показатель удельного сопротивления составляет 0,0171 Ом х 1 мм 2 /1 м и лишь немного уступает серебру. Однако, использование серебра в промышленных масштабах экономически невыгодно, поэтому, медь является лучшим проводником, используемым в энергетике.

Удельное сопротивление меди связано и с ее высокой проводимостью. Эти величины прямо противоположны между собой. Свойства меди, как проводника, зависят и от температурного коэффициента сопротивления. Особенно, это касается сопротивление, на которое оказывает влияние температура проводника.

Таким образом, благодаря своим свойствам, медь получила широкое распространение не только в качестве проводника . Этот металл используется в большинстве приборов, устройств и агрегатов, функционирование которых связано с электрическим током.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать “Сопротивление проводника равно 15 Ом”, можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 ом сантиметр [Ом·см] = 0,01 ом метр [Ом·м]

Исходная величина

Преобразованная величина

ом метр ом сантиметр ом дюйм микроом сантиметр микроом дюйм абом сантиметр статом на сантиметр круговой мил ом на фут ом кв. миллиметр на метр

Общие сведения

Как только электричество покинуло лаборатории учёных и стало широко внедряться в практику повседневной жизни, встал вопрос о поиске материалов, обладающих определёнными, порой совершенно противоположными, характеристиками по отношению к протеканию через них электрического тока.

Например, при передаче электрической энергии на дальнее расстояние, к материалу проводов предъявлялись требования минимизации потерь из-за джоулева нагрева в сочетании с малыми весовыми характеристиками. Примером тому являются всем знакомые высоковольтные линии электропередач, выполненные из алюминиевых проводов со стальным сердечником.

Или, наоборот, для создания компактных трубчатых электронагревателей требовались материалы с относительно высоким электрическим сопротивлением и высокой термостойкостью. Простейшим примером прибора, в котором применяются материалы с подобными свойствами, может служить конфорка обыкновенной кухонной электроплиты.

От проводников, используемых в биологии и медицине в качестве электродов, зондов и щупов, требуется высокая химическая устойчивость и совместимость с биоматериалами в сочетании с малым контактным сопротивлением.

К разработке такого ныне привычного всем прибора, как лампа накаливания, свои усилия приложила целая плеяда изобретателей из разных стран: Англии, России, Германии, Венгрии и США. Томас Эдисон, проведя более тысячи опытов проверки свойств материалов, подходящих на роль нитей накала, создал лампу с платиновой спиралью. Лампы Эдисона, хотя и имели высокий срок эксплуатации, но не были практичными из-за высокой стоимости исходного материала.

Последующие работы русского изобретателя Лодыгина, предложившего использовать в качестве материалов нити относительно дешёвые тугоплавкие вольфрам и молибден с более высоким удельным сопротивлением, нашли практическое применение. К тому же Лодыгин предложил откачивать из баллонов ламп накаливания воздух, заменяя его инертными или благородными газами, что привело к созданию современных ламп накаливания. Пионером массового производства доступных и долговечных электрических ламп стала компания General Electric, которой Лодыгин переуступил права на свои патенты и далее успешно работал в лабораториях компании долгое время.

Этот перечень можно продолжать, поскольку пытливый человеческий ум настолько изобретателен, что порой для решения определённой технической задачи ему нужны материалы с невиданными доселе свойствами или с невероятными сочетаниями этих свойств. Природа уже не успевает за нашими аппетитами и учёные всех стран мира включились в гонку создания материалов, не имеющих природных аналогов.

Одной из важнейших характеристик как природных, так и синтезированных материалов является удельное электрическое сопротивление. Примером электрического прибора, в котором в чистом виде применяется это свойство, может служить плавкий предохранитель, защищающий нашу электро- и электронную аппаратуру от воздействия тока, превышающего допустимые значения.

При этом надо заметить, что именно самодельные заменители стандартных предохранителей, выполненные без знаний удельного сопротивления материала, порой служат причиной не только выгорания различных элементов электрических схем, но и возникновения пожаров в домах и возгорания проводки в автомобилях.

То же самое относится и к замене предохранителей в силовых сетях, когда вместо предохранителя меньшего номинала устанавливается предохранитель с большим номиналом тока срабатывания. Это приводит к перегреву электропроводки и даже, как следствие, к возникновению пожаров с печальными последствиями. Особенно это присуще каркасным домам.

Историческая справка

Понятие удельного электрического сопротивление появилось благодаря трудам известного немецкого физика Георга Ома, который теоретически обосновал и в ходе многочисленных экспериментов доказал связь между силой тока, электродвижущей силой батареи и сопротивлением всех частей цепи, открыв таким образом закон элементарной электрической цепи, названным затем его именем. Ом исследовал зависимость величины протекающего тока от величины приложенного напряжения, от длины и формы материала проводника, а также от рода материала, используемого в качестве проводящей среды.

При этом надо отдать должное работам сэра Гемфри Дэви, английского химика, физика и геолога, который первым установил зависимости электрического сопротивления проводника от его длины и площади поперечного сечения, а также отметил зависимость электропроводности от температуры.

Исследуя зависимости протекания электрического тока от рода материалов, Ом обнаружил, что каждый доступный ему проводящий материал обладал некоторой присущей только ему характеристикой сопротивления протеканию тока.

Надо заметить, что во времена Ома один из самых обыкновенных ныне проводников – алюминий – имел статус особо драгоценного металла, поэтому Ом ограничился опытами с медью, серебром, золотом, платиной, цинком, оловом, свинцом и железом.

В конечном итоге Ом ввёл понятие удельного электрического сопротивления материала как фундаментальной характеристики, совершенно ничего не зная ни о природе протекания тока в металлах, ни о зависимости их сопротивления от температуры.

Удельное электрическое сопротивление. Определение

Удельное электрическое сопротивление или просто удельное сопротивление – фундаментальная физическая характеристика проводящего материала, которая характеризует способность вещества препятствовать похождению электрического тока. Обозначается греческой буквой ρ (произносится как ро) и рассчитывается исходя из эмпирической формулы для расчёта сопротивления, полученной Георгом Омом.

или, отсюда

где R – сопротивление в Омах, S – площадь в м²/, L – длина в м

Размерность удельного электрического сопротивления в Международной системе единиц СИ выражается в Ом м.

Это сопротивление проводника длиной в 1 м и площадью поперечного сечения в 1 м²/ величиной в 1 Ом.

В электротехнике, для удобства расчётов, принято пользоваться производной величины удельного электрического сопротивления, выражаемой в Ом мм²/м. Значения удельного сопротивления для наиболее распространённых металлов и их сплавов можно найти в соответствующих справочниках.

В таблицах 1 и 2 приведены значения удельных сопротивлений различных наиболее распространённых материалов.

Таблица 1. Удельное сопротивление некоторых металлов

Таблица 2. Удельное сопротивление распространенных сплавов

Удельные электрические сопротивления различных сред. Физика явлений

Удельные электрические сопротивления металлов и их сплавов, полупроводников и диэлектриков

Сегодня, вооружённые знаниями, мы в состоянии заранее просчитать удельное электрическое сопротивление любого, как природного, так и синтезированного материала исходя из его химического состава и предполагаемого физического состояния.

Эти знания помогают нам лучшим образом использовать возможности материалов, порой весьма экзотические и уникальные.

В силу сложившихся представлений, с точки зрения физики твёрдые тела подразделяются на кристаллические, поликристаллические и аморфные вещества.

Проще всего, в смысле технического расчёта удельного сопротивления или его измерения, дело обстоит с аморфными веществами. Они не имеют выраженной кристаллической структуры (хотя и могут иметь микроскопические включения таковых веществ), относительно однородны по химическому составу и проявляют характерные для данного материала свойства.

У поликристаллических веществ, образованных совокупностью относительно мелких кристаллов одного химического состава, поведение свойств не очень отличается от поведения аморфных веществ, поскольку удельное электрическое сопротивление, как правило, определяется как интегральное совокупное свойство данного образца материала.

Сложнее дело обстоит с кристаллическими веществами, особенно с монокристаллами, которые имеют различное удельное электрическое сопротивление и другие электрические характеристики относительно осей симметрии их кристаллов. Это свойство называется анизотропией кристалла и широко используется в технике, в частности, в радиотехнических схемах кварцевых генераторов, где стабильность частоты определяется именно генерацией частот, присущих данному кристаллу кварца.

Каждый из нас, являясь обладателем компьютера, планшета, мобильного телефона или смартфона, включая владельцев наручных электронных часов вплоть до iWatch, одновременно является обладателем кристаллика кварца. По этому можно судить о масштабах использования в электронике кварцевых резонаторов, исчисляемых десятками миллиардов.

Помимо прочего, удельное сопротивление многих материалов, особенно полупроводников, зависит от температуры, поэтому справочные данные обычно приводятся с указанием температуры измерения, обычно равной 20 °С.

Уникальные свойства платины, имеющей постоянную и хорошо изученную зависимость удельного электрического сопротивления от температуры, а также возможность получения металла высокой чистоты послужили предпосылкой создания на её основе датчиков в широком диапазоне температур.

Для металлов разброс справочных значений удельного сопротивления обусловлен способами изготовления образцов и химической чистотой металла данного образца.

Для сплавов более сильный разброс справочных значений удельного сопротивления обусловлен способами изготовления образцов и непостоянством состава сплава.

Удельное электрическое сопротивление жидкостей (электролитов)

В основе понимания удельного сопротивления жидкостей лежат теории термической диссоциации и подвижности катионов и анионов. Например, в самой распространённой жидкости на Земле – обыкновенной воде, некоторая часть её молекул под воздействием температуры распадается на ионы: катионы Н+ и анионы ОН– . При подаче внешнего напряжения на электроды, погружённые в воду при обычных условиях, возникает ток, обусловленный перемещением вышеупомянутых ионов. Как выяснилось, в воде образуются целые ассоциации молекул – кластеры, порой соединяющимися с катионами Н+ или анионами ОН–. Поэтому передача ионов кластерами под воздействием электрического напряжения происходит так: принимая ион в направлении приложенного электрического поля с одной стороны, кластер «сбрасывает» аналогичный ион с другой стороны. Наличие в воде кластеров прекрасно объясняет тот научный факт, что при температуре около 4 °C вода имеет наибольшую плотность. Большая часть молекул воды при этом находится в кластерах из-за действия водородных и ковалентных связей, практически в квазикристаллическом состоянии; термодиссоциация при этом минимальна, а образование кристаллов льда, который имеет более низкую плотность (лёд плавает в воде), ещё не началось.

В целом проявляется более сильная зависимость удельного сопротивления жидкостей от температуры, поэтому эта характеристика всегда измеряется при температуре в 293 K, что соответствует температуре 20 °C.

Помимо воды имеется большое число других растворителей, способных создавать катионы и анионы растворяемых веществ. Знание и измерение удельного сопротивления таких растворов также имеет большое практическое значение.

Для водных растворов солей, кислот и щелочей существенную роль в определении удельного сопротивления раствора играет концентрация растворённого вещества. Примером может служить следующая таблица, в которой приведены значения удельных сопротивлений различных растворённых в воде веществ при температуре 18 °С:

Таблица 3. Значения удельных сопротивлений различных растворённых в воде веществ при температуре 18 °С

Данные таблиц взяты из Краткого физико-технического справочника, Том 1, – М.: 1960

Удельное сопротивление изоляторов

Огромное значение в отраслях электротехники, электроники, радиотехники и робототехники играет целый класс различных веществ, имеющий относительно высокое удельное сопротивление. Вне зависимости от их агрегатного состояния, будь оно твёрдое, жидкое или газообразное, такие вещества называются изоляторами. Такие материалы используются для изолирования отдельных частей электрических схем друг от друга.

Примером твёрдых изоляторов может служить всем знакомая гибкая изолента, благодаря которой мы восстанавливаем изоляцию при соединении различных проводов. Многим знакомы фарфоровые изоляторы подвески воздушных линий электропередач, текстолитовые платы с электронными компонентами, входящими в состав большинства изделий электронной техники, керамика, стекло и многие другие материалы. Современные твёрдые изоляционные материалы на базе пластмасс и эластомеров делают безопасным использование электрического тока различных напряжений в самых разнообразных устройствах и приборах.

Помимо твёрдых изоляторов широкое применение в электротехнике находят жидкие изоляторы с высоким удельным сопротивлением. В силовых трансформаторах электросетей жидкое трансформаторное масло предотвращает межвитковые пробои из-за ЭДС самоиндукции, надёжно изолируя витки обмоток. В масляных выключателях масло используется для гашения электрической дуги, которая возникает при переключении источников тока. Конденсаторное масло используется для создания компактных конденсаторов с высокими электрическими характеристиками; помимо этих масел в качестве жидких изоляторов используются природное касторовое масло и синтетические масла.

При нормальном атмосферном давлении все газы и их смеси являются с точки зрения электротехники отличными изоляторами, но благородные газы (ксенон, аргон, неон, криптон) в силу их инертности обладают более высоким удельным сопротивлением, что широко используется в некоторых областях техники.

Но самым распространённым изолятором служит воздух, в основном состоящий из молекулярного азота (75% по массе), молекулярного кислорода (23,15% по массе), аргона (1,3% по массе), углекислого газа, водорода, воды и некоторой примеси различных благородных газов. Он изолирует протекание тока в обычных бытовых выключателях света, переключателях тока на основе реле, магнитных пускателях и механических рубильниках. Необходимо отметить, что снижение давления газов или их смесей ниже атмосферного приводит к росту их удельного электрического сопротивления. Идеальным изолятором в этом смысле является вакуум.

Удельное электрическое сопротивление различных грунтов

Одним из важнейших способов защиты человека от поражающего действия электрического тока при авариях электроустановок является устройство защитного заземления.

Оно представляет собой преднамеренное соединение кожуха или корпуса электроустройств с защитным заземляющим устройством. Обычно заземление выполняется в виде зарытых в землю на глубину более 2,5 метра стальных или медных полос, труб, стержней или уголков, которые в случае аварии обеспечивают протекание тока по контуру устройство – корпус или кожух – земля – нулевой провод источника переменного тока. Сопротивление этого контура должно быть не более 4 Ом. В этом случае напряжение на корпусе аварийного устройства снижается до безопасного для человека величин, а автоматические устройства защиты электрической цепи тем или иным способом производят отключение аварийного устройства.

При расчёте элементов защитного заземления существенную роль играет знание удельного сопротивления грунтов, которое может варьироваться в широких пределах.

Сообразуясь с данными справочных таблиц, выбирается площадь заземляющего устройства, по ней вычисляется количество заземляющих элементов и собственно конструкция всего устройства. Соединение элементов конструкции устройства защитного заземления производится сваркой.

Электротомография

Электроразведка изучает приповерхностную геологическую среду, применяется для поиска рудных и нерудных полезных ископаемых и других объектов на основе исследования различных искусственных электрических и электромагнитных полей. Частным случаем электроразведки является электротомография (Electrical Resistivity Tomography) – метод определения свойств горных пород по их удельному сопротивлению.

Суть метода заключается в том, что при определённом положении источника электрического поля проводятся замеры напряжения на различных зондах, затем источник поля перемещают в другое место или переключают на другой источник и повторяют измерения. Источники поля и зонды-приёмники поля размещают на поверхности и в скважинах.

Затем полученные данные обрабатываются и интерпретируются с помощью современных компьютерных методов обработки, позволяющих визуализировать информацию в виде двухмерных и трёхмерных изображений.

Являясь очень точным методом поиска, электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам.

Определение формы залегания месторождений полезных ископаемых и границ их распространения (оконтуривание) позволяет выявить залегание жильных залежей полезных ископаемых, что существенно снижает затраты на их последующую разработку.

Археологам этот метод поиска даёт ценную информацию о расположении древних захоронений и наличия в них артефактов, тем самым сокращая затраты на раскопки.

Палеозоологи с помощью электротомографии ищут окаменевшие останки древних животных; результаты их работ можно увидеть в музеях естественных наук в виде поражающих воображение реконструкций скелетов доисторической мегафауны.

Кроме того, электротомография применяется при возведении и при последующей эксплуатации инженерных сооружений: высотных зданий, плотин, дамб, насыпей и других.

Определения удельного сопротивления на практике

Порой для решения практических задач перед нами может встать задача определения состава вещества, например, проволоки для резака пенополистирола. Имеем два мотка проволоки подходящего диаметра из различных неизвестных нам материалов. Для решения задачи необходимо найти их удельное электрическое сопротивление и далее по разнице найденных значений или по справочной таблице определить материал проволоки.

Отмерим рулеткой и отрежем по 2 метра проволоки от каждого образца. Определим диаметры проволок d₁ и d₂ микрометром. Включив мультиметр на нижний предел измерения сопротивлений, измеряем сопротивление образца R₁. Повторяем процедуру для другого образца и также измеряем его сопротивление R₂.

Учтём, что площадь поперечного сечения проволок рассчитывается по формуле

S = π · d 2 /4

Теперь формула для расчёта удельного электрического сопротивления будет выглядеть следующим образом

ρ = R · π · d 2 /4 · L

Подставляя полученные значения L, d₁ и R₁ в формулу для расчёта удельного сопротивления, приведенную в статье выше, вычисляем значение ρ₁ для первого образца.

ρ 1 = 0,12 ом мм 2 /м

Подставляя полученные значения L, d₂ и R₂ в формулу, вычисляем значение ρ₂ для второго образца.

ρ 2 = 1,2 ом мм 2 /м

Из сравнения значений ρ₁ и ρ₂ со справочными данными вышеприведенной Таблицы 2, делаем вывод, что материалом первого образца является сталь, а второго – нихром, из которого и изготовим струну резака.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

АЛЮМИНИЙ Электросопротивление – Энциклопедия по машиностроению XXL

Алюминий Электросопротивление и длина [30] 50 3,9 (0,52 0,04) 0,6 0,22  [c.61]

В качестве проводниковых материалов применяют чистые металлы медь, алюминий, реже — серебро, железо, так как легирование (и наклеп) создает искажения в решетке и повышает электросопротивление  [c.553]

В алюминии, молибдене и вольфраме полигонизация протекает с большой скоростью, и субзерна достигают значительных размеров, что вызывает сильное разупрочнение. Некоторые физические свойства (например, электросопротивление) в процессе возврата восстанавливаются практически полностью. Это связано с уменьшением концентрации вакансий и с перераспределением дислокаций.  [c.55]


Многочисленные результаты различных исследований и собственный опыт автора говорят о том, что в широко распространенных немагнитных сплавах на основе алюминия и титана даже значительные пластические деформации, вызванные растяжением или наклепом, изменяют электросопротивление всего на несколько процентов (не более 6%). Наиболее сильны эти изменения в области низких температур.  [c.128]

Качество композиционного материала оказывало существенное влияние на характер сварки и качество соединения. Основной дефект композиционных материалов — расслоение. Если в материале имеется расслоение вблизи электрода, это вызывает сильный прожог материала, вплоть до сквозных отверстий. Расслоение во внутренних слоях и связанное с этим увеличение электросопротивления вызывает увеличение количества выделяемой теплоты, выжимание жидкого алюминия из сварочного ядра и продавливание и поломку волокон.  [c.194]

Трудности возникали при сварке боралюминия между двумя листами алюминия, В этом случае теплота выделялась в основном в боралюминии, имеющем большее электросопротивление. Эти трудности были преодолены путем накладки с двух сторон на алюминиевые листы тонких алюминиевых лент. В этом случае увеличение переходного сопротивления в слоях А1—А1 вызывало дополнительное тепловыделение и более равномерный прогрев сварной точки по сечению.  [c.194]

Влияние марганца, алюминия, хрома и кобальта на электросопротивление чугуна (72]  [c.11]

Электросопротивление аустенитных немагнитных Чугунов приведено в табл. 16. Особенно значительное повышение электросопротивления наблюдается от прибавления к аустенитному чугуну алюминия (табл. 17).  [c.11]

Влияние алюминия на электросопротивление аустенитного чугуна [65]  [c.12]

Электросопротивление 433, 434 Алюминий жидкий — Свойства тепло-  [c.702]

При легировании Р-стаби-лизаторами в пределах их растворимости в а-фазе титана (в частности, 1,02V 0,6Сг) кривые р = /(Т) идут параллельно кривой для титана или даже с большим, чем у титана, температурным коэффициентом. Однако при переходе к двухфазным а + Р-сплавам (Ti—4Сг или Ti—8,06V) их температурный коэффициент значительно уменьшается, а абсолютная величина электросопротивления при температурах выше 400—500° С становится меньше, чем у нелегированного титана. Перегиб, соответствующий а -[- р —> Р-переходу, при этом размывается на широкую область температур. У сплавов с цирконием электрическое сопротивление при нагреве до 300° С повышается примерно параллельно с ростом р у титана, но при более высоких температурах температурный коэффициент уменьшается в большей мере, чем у титана. Вблизи температуры полиморфного превращения электрическое сопротивление сплавов с цирконием становится меньше, чем у титана. Олово в количествах 4—6% повышает электрическое сопротивление титана во всем интервале температур. Так же как и при легировании алюминием, температурный коэффициент зависимости Ар/АТ по мере увеличения концентрации твердого раствора уменьшается. Особенно значительно уменьшается температурный коэффициент у сплава с 8% олова.  [c.24]


Для чистого железа, обладающего низким электросопротивлением, характерны большие потери на вихревые токи. С целью снижения зтих потерь применяют различные сплавы железа с кремнием, с кремнием и алюминием или другими добавками.  [c.208]

Коэффициент линейного расширения в жидком состоянии в интервале температур до 1300° К равен 1,13 10 . Удельное электросопротивление алюминия 2,65 мком – см.  [c.14]

Интересно отметить, что четыре металла с самой высокой теплопроводностью — серебро, медь, золото и алюминий — располагаются по теплопроводности в такой же последовательности, как и по электросопротивлению, и что первые десять мест в таб.пицах по этим двум свойствам занимают одни и те же элементы. Ртуть, плутоний и редкоземельные металлы по теплопроводности находятся на самом последнем месте.  [c.39]

Значения электросопротивления, теплопроводности, термоэдс и добротности для образцов алюминия и нихрома различной зернистости [8]  [c.72]

Электросопротивление алюминия высокой чистоты (99,99 %) при температуре 20 °С составляет 2,6548-10 Ом-м (0,0265 МКОМ М). В интервале температур 273—300 К температурная зависимость электрического сопротивления чистого алюминия почти линейна при постоянном коэффициенте 1,15-10 Ом-м-К . Электрическая проводимость алюминия в значительной степени зависит от чистоты металла, причем влияние различных примесей на электрическое сопротивление зависит не только от концентрации данной примеси, но и от ее нахождения в твердом растворе или вне его. Наиболее сильно повышают сопротивление алюминия примеси хрома, лития, марганца, магния, титана и ванадия [5]. Удельное электросопротивление р (мкОм м) отожженной алюминиевой проволоки в зависимости от содержания примесей (%) можно приближенно определить по следующей формуле [9]  [c.12]

Горячий ход электролизера возникает тогда, когда приход тепла в ванну превышает ее расход, что характеризуется повышенной температурой электролита (выше 965 °С). Это технологическое нарушение может быть следствием многих причин — повышенной силы тока, возросшего электросопротивления отдельных токоведущих узлов электролизера (анода, подины, электролита). Горячий ход ванны может возникнуть и в результате интенсивного протекания обратной реакции окисления алюминия, во время которой выделяется большое количество тепла. Причинами этого могут быть заниженное значение МПР и малый уровень электролита, резкий  [c.239]

Удельное электросопротивление жидкого алюминия при температуре электролиза в 15 ООО раз меньше удельного электросопротивления промышленного электролита, и поэтому в электрическом балансе не учитывается.  [c.289]

Металлы. Удельное электросопротивление металлов, из которых изготовлены штыри, штанги, блюмсы н т.д., изучены достаточно хорошо и для меди, алюминия и железа составляют (Ом-см)  [c.292]

Применение централизованной раздачи глинозема ЦРГ в сочетании с автоматизированным его вводом в электролизер АПГ позволит резко снизить его расход и, кроме того, стабилизируя концентрацию глинозема в электролите, снизит электросопротивление, расход электроэнергии и, как следствие, себестоимость алюминия.  [c.404]

Прочность соединеиия равна прочности технического алюминия (8—10 кгс/мм ), удельное электросопротивление шва несколько выше (0,037 Ом-мм /м), чем у алюминия (0,0313 Ом-мм /м). Свар-  [c.387]

Проблемы способа монтажа и выбора огнеупорной изоляции для термопар из благородных металлов тесно связаны с вопросами загрязнения, вызываемого материалами изоляции и чехла. В области температур до точки затвердевания золота и в окислительной атмосфере рекристаллизованная окись алюминия (АЬОз) дает очень хорошие результаты. Это вещество ожет быть очень чистым, имеет высокие электросопротивление и ме-  [c.282]

Сплавы системы железо—алюминий. Сплавы этой системы исследовали с целью выяснения возможности использования их для сердечников трансформаторов. Но несмотря на некоторые их преимущества по сравнению с железокремнистыми сталями (более высокие пластичность и электросопротивление) они не нашли промышленного применения, вероятно, из-за технологических недостатков. Диаграмма фазового равновесия системы железоалюми-ний приведена на рис. 107.  [c.149]

А л ю м и н п й. Растворимость алюминия в никеле с понижением температуры падает с 9,7% при 1300 С до “1,0% при 500° С (фиг. 9). Алюминий с никелем образует облагораживаемые сплавы. Алюминий значигельио изменяет термоэлектрические свойства иикеля, повышает электросопротивление и коррозионную стойкость никеля, значительно понижает температуру магнитного пре вращения никеля. Алюминий может быть и раскислителем.  [c.259]


Удельное электросопротивление германия весьма высокой чистоты достигает 0,6 ом Незначительные количества примесей влияют на тип проводимости германия и понижают его электросопротивление. К примесям, создающим электронную проводимость германия, относятся, например, мышьяк, сурьма, фосфор (донорные прпмеси). Примеси бора, алюминия, галлия, индия (акцепторные примеси) обусловливают проводимость дырочного типа. Термическая обработка также сильно влияет на электрические свойства германия, в частности на тип проводимости (фиг. 86).  [c.527]

Содержание дисперсной фазы в композиционных покрытиях №—СеО и N1—2г0а составляет от 10 до 15 об. %, толщина покрытий достигает 6—7 мкм при длительности опыта 4—5 ч. Покрытия Си—А120з содержат 10—30 об.% окиси алюминия при толщине покрытий 1.0—1.5 мкм. Все полученные покрытия характеризуются равномерным распределением частиц второй фазы в металлической матрице. Включение диэлектрических окисных частиц повышает электросопротивление металлических покрытий.  [c.28]

Для получения тонкослойного стеклокерамического покрытия на растворной связке, обладающего высокими диэлектрическими свойствами, в состав вводят тугоплавкие оксиды металлов высокой дисперсности, такие как оксид алюминия и хрома, которые не только повыягают электросопротивление, но и ведут себя как инертные наполнители, что подтверждается рентгенофазовым анализом.  [c.131]

Начальные стадии образования о -фаэы в сплавах с содержанием алюминия менее 6 % трудно выявляются методами рентгеноструктурного и эпектронографи- еского анализа. Поэтому тачное положение равновесных линий, разделяющих о -твердый раствор и область а-ьа,, до сих пор не установлено. Можно считать, что лоложение этих линий определяется лишь точностью принятого метода исследования. Судя по косвенным признакам (изменения прочностных характеристик, электросопротивления, электрохимических потенциалов ювенильных поверхностей сплавов с различным содержанием алюминия), образование а,-фазы или предвы-делений а, происходит практически при любом содержании алюминия, по крайней мере, начиная с 1 % (по массе).  [c.11]

Другие исследователи изучали действие ультрафиолетового и рентгеновского излучения на напряжение ную, коэффициент рассеяния и удельное сопротивление диэлектриков из окиси алюминия [83]. Алокс (99% AI2O3) был облучен рентгеновскими лучами (50 кв) в вакууме 10″ мм рт. ст., при этом изменение свойств для переменного тока не было отмечено, но были обнаружены небольшие изменения удельного электросопротивления на постоянном токе. Окись алюминия приобретала высокую электропроводность во время облучения протонами [98].  [c.151]

Исследование конденсаторов, изготовленных из керамических материалов, подобных тем, из которых делают катушки для точных проволочных сопротивлений [54], показывает, что изменения таких диэлектрических характеристик, как коэффициент рассеяния и сопротивление изоляции, незначительны при потоках тепловых нейтронов 2,7-10 нейтрон I см сек), надтепловых 4-10 нейтронI см” сек) и быстрых 3,9-10 нейтрон I см сек). Общая интегральная доза у-облучения в этом опыте составляла 2,4-10 зргЫ. До облучения средняя величина электросопротивления керамических материалов составляла 10 ом. Во время облучения сопротивление снизилось до 10 ом, а после облучения полностью восстановилось. Результаты показывают, что подобные изменения в окиси алюминия могут нанести ущерб лишь сопротивлениям с номиналами более 1 Мом. Незначительные остаточные нарушения, наблюдаемые в керамических материалах, вероятно, связаны с атомными смещениями.  [c.398]

К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6).  [c.188]

Существенное влияние на электросопротивление титана оказывают примеси и легирующие элементы. По данным Джаффи, один атомный процент кислорода или азота повышает электросопротивление титана р на 8—10 мкОм-см. Общая тенденция к снижению содержания примесей приводит к тому, что р у титана современного производства приближается к значениям р у йодидного титана и у титана марки ВТ1-00 составляет 45,0 мкОм-см, а у ВТ 1-0—47,0 мкОм-см. Значительный-рост электросопротивления наблюдается при легировании алюминием (рис. 9, а). При введении 4% (по массе) алюминия р увеличивается от 42,5 до 140 мкОм-см. При дальнейшем увеличении содержания алюминия прирост электросопротивления уменьшается, и у сплава Ti—9А1 его величина составляет 160 мкОм-см. Олово в количестве 2% приводит к росту электрического сопротивления до 92 мкОм-см, однако последующее увеличение содержания олова приводит к незначи-  [c.22]


В нихромах, легированных алюминием (ХН70Ю, ХН60ЮЗ), при выдержке в области температур 400 – 500°С протекают более сложные структурные процессы, также приводящие к возрастанию удельного электросопротивления. При выдержках в области температур 700 – 850°С происходит образование -у -фазы (NijAl), снижающей электрическое сопротивление и пластичность (табл. 44). Следует отметить, что этот процесс заметно интенсифицируется под действием пластической деформации. При нагреве выше 900°С -у – за растворяется.  [c.120]

Для металлов, которые принято рассматривать как проводники, удельное электрическое сопротивление изменяется в чрезвычайно широких пределах от 1,59 для серебра и 95,8 для ртути до 185 мкпм-см для марганца. Давно известно, что действительно хороших проводников очень мало. Это серебро, медь, золото и алюминий с удельным электросопротивлением, равным соответственно 1,59 1.С92 2,44 н 2,66 мком-см за ними следуют бериллий, натрий, магний, кальций и родий.  [c.39]

Мак-Дональд и Мендельсон [82] определили электросопротивление щелочноземельных металлов (кальция, строиция и бария) до температуры 20 К. При одинаковых геометрических размерах удельное и относительное электросопротивление кальция по сравнению с медью, алюминием и натрием является следующим-.  [c.932]

ЭКМ А1—AI3N1 п А1— uAlj применяются как в качестве конструкционного материала, так и для изготовления высокопрочных электрических проводов и контактов выключателей. благодаря низкому электросопротивлению — близкому к электросопротивлению алюминия.  [c.361]

В действительности состав электролита более сложен. В нем присутствует 2—3 % (мае.) фторида кальция, поступающего в электролизер как примесь в исходных материалах (в глиноземе, криолите, фториде алюминия, анодах и др.). Кроме того, aFj иногда специально вводят в ванну для понижения температуры плавления электролита и уменьшения потерь алюминия. Для этих же целей наряду с фторидом кальция применяются добавки фторида магния. В электролит алюминиевых электролизеров также иногда вводят хлорид натрия и фторид лития (или литиевый криолит), который снижает удельное электросопротивление. Суммарное количество добавок, как правило, не превышает 10 % (мае.).  [c.49]

Вторая примесь (Р2О5), которая присутствует в малых количествах в глиноземе, является одной из вреднейших. Фосфор понижает коррозионную стойкость алюминия и повышает его красноломкость даже при малых концентрациях. Кроме того, наличие в электролите Р2О5 улучшает смачивание расплавом угольных частиц, что приводит к плохому отделению пены, повышению электросопротивления электролита и нарушению технологии.  [c.156]

На современных электролизерах, применяемых в отечественной практике, бортовая футеровка изготавливается из предварительно обожженных плит, выполненных из тех же материалов и по той же технологии, что и подовые блоки. Однако свойства бортовых блоков должны отличаться от свойств подовых блоков, так как они не предназначены для прохождения через них тока. Поэтому бортовые блоки должны обладать высоким электросопротивлением и теплопроводностью (с целью создания надежных бортовых настылей), т.е. взаимоисключающими характеристиками. Кроме того, бортовые блоки должны быть стойки к действию расплава и не окисляться воздухом, нерастворимы в криолите и алюминии и не должны смачиваться этими компонентами, иметь низкую пористость, стоимость, быть просты в изготовлении и технологичны при монтаже. Необходимо также иметь в виду, что бортовая футеровка электролизеров с обожженными анодами и системой автоматического питания глиноземом может быть более тонкой, так как она не подвергается механргческому воздействию инструмента для пробивки корки электролита. Для бортовой футеровки несмотря на их невысокую стойкость к окислению воздухом и воздействию расплава до сих пор предпочтение отдается углеродным блокам из-за их дешевизны.  [c.181]

В технологическом университете г. Шеньян (КНР) изучены свойства углеродистых блоков с покрытием пастой из TiB2 толщиной 5—10 мм. Особенно заслуживает внимания тот факт, что удельное электросопротивление таких блоков при температуре электролиза составило 0,5 Ом-мм /м, в то время как углеродистые катодные блоки имеют удельное сопротивление около 33 Ом-мм /м. На заводе “Лиан Шенг” (КНР) проведены промышленные испытания трех электролизеров на 75 кА с такими блоками. При этом зафиксировано, что выход по току возрос и составил 90,9 %, падение напряжения в подине не превышало 100 мВ, что позволило сэкономить до 200 кВт-ч/т алюминия.  [c.183]


Серебро электрическое сопротивление – Справочник химика 21

    Удельное электрическое сопротивление серебра, меди и алюминия р, нОм см [31] [c.236]

    Термостойкие токопроводящие клеи получают, вводя в термостойкие полимерные клеящие системы токопроводящие наполнители. Наполнители могут быть порошкообразными, а также ткаными— из металлической проволоки [1, 2]. В качестве порошкообразных материалов используют мелкодисперсное серебро, золото, никель, медь, графит и карбонильный никель. Часто наполнителем служат специально приготовленные серебряные порошки, которые вводят в количествах, в 2—3 раза превышающих массу полимера [3]. Удельное объемное электрическое сопротивление таких систем достигает 10 —10- Ом-м. В тех случаях, когда не требуется высокая электропроводность и выбор наполнителя ограничивают требования низкой стоимости, в качестве наполнителей токопроводящих клеев используют карбонильный никель и графит. Удельное объемное электрическое сопротивление таких клеев находится в пределах 5-10- Ом-м. Золото в качестве токопроводящего наполнителя применяют для изготовления клеев, подвергающихся в процессе работы воздействию кислот. Проводимость таких систем несколько выше, чем систем, наполненных серебром. [c.178]


    Электрическое сопротивление – величина, обратная электропроводности. Вещества, пропускающие электрический ток, называются электропроводниками, а имеющие высокое сопротивление – изоляторами. К проводникам относятся серебро, медь, алюминий изоляторы – резина, каучук, керамика, стекло, сухое дерево, пластмассы. [c.64]

    Электропроводные полимерные пленки характеризуются удельным объемным электрическим сопротивлением не более 10 Ом см. Существует два вида электропроводных пленок гомопленки (из одного полимера), обладающие полупроводниковыми свойствами, и гетеропленки (из полимеров с различными токопроводящими наполнителями), содержащие сажу, графит, порошки никеля, меди, серебра и других металлов. [c.77]

    Для получения токопроводящих клеев, не уступающих по электропроводности наполненным серебром, можно применять порошки меди [46, с. 33]. Медь по электропроводности незначительно уступает серебру, однако она легко окисляется. Поэтому поверхность медного порошка рекомендуется предварительно обработать специальными модифицирующими добавками, исключающими непосредственный контакт его поверхности с воздухом. Оптимальное содержание наполнителя — 80% (масс.) от массы связующего Эпоксидные токопроводящие клеи, наполненные медным порошком, имеют удельное объемное электрическое сопротивление ЫО-5—8-10- Ом-м [37, с. 33]. [c.112]

    Высокая степень ориентации и упорядоченность структуры пиро-графита приводят к резко выраженной анизотропии свойств. Так, в кристаллографическом направлении а, параллельном поверхности осаждения, материал обладает очень высокой механической прочностью, теплопроводность его превыщает теплопроводность меди и серебра, электрическое сопротивление очень мало. В направлении с, перпендикулярном поверхности осаждения, прочность значительно меньше, теплопроводность сравнима с теплопроводностью окисных керамических материалов, электропроводность также очень низкая (см. табл. 1). [c.324]

    Удельное электрическое сопротивление р серебра в зависимости от температуры  [c.73]

    Применение. Высокая теплопроводность и малое электрическое сопротивление меди позволяют применять ее в электротехнической промышленности. Разнообразное применение находят такие сплавы, как бронзы, латуни, мельхиор, томпак, нейзильбер, константан, сплав Деварда, сплавы меди с серебром и золотом для изготовления монет и ювелирных изделий, катализаторы на основе меди. [c.83]

    Переходное электрическое сопротивление покрытий сплавом серебро — палладий [c.283]

    Электрическое сопротивление химически осажденного серебра во много раз превышает сопротивление металлургического серебра. При старении пленок серебра их электрическое сопротивление уменьшается, причем этот процесс может быть ускорен различными воздействиями на серебряный слой например, при обработке серебряной пленки 0,0001 моль/л раствором азотной кислоты сопротивление уменьшается максимально. [c.41]

    Температурный коэффициент электрического сопротивления а серебра при 273 К равен 4,10-10 К . При переходе из твердого состояния в жидкое удельное электросопротивление увеличивается почти в два раза и продолжает возрастать при дальнейшем повышении температуры  [c.73]

    Если образовавшийся на аноде слой является ионным проводником, то есть твердым электролитом (как, например, слой хлористого серебра на серебряном электроде), то он, хотя и не задерживает электрического тока, но изменяет анодный процесс. В таких слоях электрический ток переносится ионами. Через границу осажденного слоя, примыкающую к металлу, ионы металла переходят в этот слой, мигрируют в нем и достигают его внешней поверхности. Анионы, находящиеся в растворе, подходят к этой поверхности и соединяются с ионами металла. Конечным результатом такого процесса является образование новых количеств нерастворимого соединения и утолщение осажденного слоя. Электрическое сопротивление слоя увеличивается, вследствие чего сила тока и скорость анодного процесса все сильнее падают. Если осажденный слой до некоторой степени растворим, то рано или поздно устанавливается такое состояние, при котором на стороне слоя, обращенного к раствору, растворится в одну секунду столько же вещества, сколько его образуется в слое со стороны металла. В этом случае металл медленно, но непрерывно переходит в раствор, и осажденный слой перемещается внутрь металлического электрода, оставаясь примерно постоянным по толщине. Однако в большинстве случаев осажденный слой с увеличением толщины становится все более хрупким. Так как кристаллическая структура твердого слоя отличается от структуры металла, то объем окислов (или других нерастворимых веществ), из которых состоит слой, отличается от соответствующего объема металла. В результате возникают механические напряжения, которые с ростом толщины слоя рано или поздно приводят к отслоению всего покрытия, вследствие чего освобождаются участки поверхности металла и процесс начинается сначала. [c.193]


    Превосходным электродно-активным кристаллическим веществом является сульфид серебра, обладающий малой растворимостью, высокой устойчивостью к окислителям и восстановителям, низким электрическим сопротивлением. Мембрану можно изготовить из прессованного поликристаллического сульфида серебра и. из пластинки монокристалла. Низкое электрическое сопротивление позволяет использовать сульфид серебра в качестве инертной токопроводящей матрицы при изготовлении электрода, селективного к ионам меди (на основе гомогенной смеси Си8 и А 28), свинца (на основе смеси А 28 и РЬ8) и других электродов. [c.344]

    Данные рентгеноструктурного анализа подтверждаются измерением электрического сопротивления. Измерения производились над осадками, содержащими до 10,2% РЬ, так как при большем содержании свинца образцы непригодны для измерения в силу их хрупкости. По мере увеличения содержания свинца в серебре удельное сопротивление сильно возрастает. [c.9]

    Переходное электрическое сопротивление серебро — кадмий (в ом) для точечного контакта при силе тока 50 ма [c.275]

    Степень черноты определяется как отношение энергии, излучаемой веществом, к энергии, излучаемой абсолютно черным телом. Характерно, что металлы с наибольшей отражательной способностью обладают и наименьшим электрическим сопротивлением (медь, серебро, алюминий). С понижением температуры загрязнение хорошо отражающих поверхностей или обработка поверхностей, приводящих к уплотнению поверхностного слоя металла, увеличивает степень черноты [8]. [c.46]

    Высокая износостойкость, прочность и теплостойкость фенилона позволили использовать его в качестве связующего при получении материала для контактных щеток с большим сроком службы в широком интервале температур [54]. Путем подбора оптимального состава композиции, состоящей из сажи, карбида бора, графита, окиси серебра и фенилона, достигается необходимое удельное объемное электрическое сопротивление материала, составляющее (0,4—3,9) X Х10 3 Ом-м (сопротивление одной щетки не более 4 Ом). [c.213]

    Изделия из пластических масс покрывают металлом не только для придания им хорошей электропроводности (например, покрытия из серебра, меди, алюминия, кобальта, кадмия), но и для получения на их поверхности участков с заданным электрическим сопротивлением (покрытия из хрома, никеля, черного аморфного серебра, окислов индия, кадмия, свинца, сульфидов серебра, меди, [c.153]

    Кристаллическая решетка металлического лития — объемно-центрированный куб с параметрами = 3,5023 А и а вз = == 3,4762 А. Сжимаемость лития наименьшая по сравнению с другими щелочными металлами. Удельное электрическое сопротивление металлического лития при 0° равно 8,9285-10 ом. Электропроводность лития составляет около 1/5 электропроводности серебра. [c.37]

    В качестве электропроводящих наполнителей используют специальные марки технического углерода, графит, углеродные волокна, порошки никеля, меди, серебра и других металлов. Наиболее распространенными электропроводящими на-полнителлми является ацетиленовый технический углерод и специальные печные марки — П267Э и П355Э. Резкое снижение удельного электрического сопротивления резин наблюдается уже при введений 20—30 мае. ч. технического углерода, на ГОО мае. ч. каучука вследствие образования наполнителем устойчивых токопроводящих структур, пронизывающих каучуковую матрицу. Дальнейшее увеличение концентрации наполнителя приводит к образованию пространственной сетчатой структуры, но электропроводность резин увеличивается медленнее за Счет совершенствования последней. Оптимальное содержание технического углерода составляет 30—60 мае. ч. [c.18]

    В тех случаях, когда клей не должен обладать высокой электропроводностью и выбор наполнителя ограничивают требования низкой стоимости, в качестве наполнителей токопроводящих клеев используют карбонильный никель и графит. Удельное объемное электрическое сопротивление таких клеев составляет я 5-10 Ом-м. Для повышения электропроводности клеев, в состав которых входят такие порошки, на их поверхность, можно напылить тонкий слой серебра. [c.112]

    Клеи с более низкой температурой отверждения — до 100 °С получают на основе фосфатного связующего и мелкодисперсного серебра. После термообработки при 350 °С они становятся негигроскопичными. Разрушающее напряжение при сдвиге клеевых соединений нержавеющей стали на этом клее составляет 3—4,5 МПа, титановых сплавов 3—4 МПа, керамики 4—7 МПа. Удельное объемное электрическое сопротивление клеев в интервале температур 20—500°С на воздухе составляет 10- — б-Ю Ом-м. Максимальная температура, при которой электропроводность клеев не изменяется, составляет 510 °С [19]. [c.183]

    Кислородный электрод готовится аналогичным способом. В отличие от водородного электрода в качестве катализатора здесь применяют серебро Ренея. Исходный сплав для его получения содержит 657о Ад и 35% А1. Кислородные электроды при работе подвергаются заметному коррозионному разрушению. Для повышения стойкости поверхность металла защищают окисной пленкой. Для этой цели электрод пропитывают раствором гидроокиси лития и нагревают на воздухе при 700—800 °С. Происходит поверхностное окисление металла. Ионы лития, внедряясь в кристаллическую решетку окислов никеля, снижают электрическое сопротивление образующегося окисного слоя. [c.53]

    ЗОЛОТА СПЛАВЫ — сплавы на основе золота. Известны с глубокой древности. 3. с. легируют, повышая их прочность, серебром и медью, реже — цинком, кадмием, никелем, палладием и др. металлами. Сплавы, легированные серебром и медью (марок ЗлМ, ЗлСр, ЗлСрМ), сохраняют высокую коррозионную стойкость к органическим и неорганическим реагентам, относительно высокую электропроводность, отличаются широкой гаммой золотой окраски (рис.). Т-ра плавления этих сплавов 960— 1060° С, уд. плотность 11,5 — 18,9 г см , уд. электрическое сопротивление 0,094—0,125 ом. мм м. Сплавы золота с серебром мягки, легко поддаются мех. обработке сплавы с медью обладают большей упругостью и твердостью. Литейные св-ва сплавов повышают небольшими добавками цинка и кадмия. Увеличение содержания меди (за счет золота) [c.462]

    Сплав медь—олово (бронза). Покрытие сплавом медь—олово, или бронзирование, применяют как для защиты от коррозии, так и для декоративной отделки поверхности изделий. Покрытие малооловянистьш сплавом (10—20% олова) золотисто-желтого цвета используют также в качестве подслоя взамен медного и никелевого покрытий перед хромированием. Высоко-оловянистый сплав (40—45 % олова), так называемая белая бронза, в некоторых случаях может служить заменой серебра. Несмотря на то, что значение удельного электрического сопротивления сплава Си—5п значительно выше, чем у серебра, в промышленной атмосфере, где есть примеси сернистых соединений, оно остается стабильным, в то время, как у серебра, возрастает в десятки раз. По этой причине покрытия белой бронзой рекомендуют для нанесения на электрические контакты. [c.60]

    Наименьшим электрическим сопротивлением обладают метаалы, атомы которых имеют в качестве валентных только внешние 5-электроны. (Атомы серебра, меди и золота вследствие проскока з-электронов имеют электронные конфигурации валентных оболочек атомов щелочных элементов пз ). В этих случаях в компактных металлах реализуется, как правило, металлическая связь. Появление неспаренных р- и -электронов приводит к увеличению доли направленных ковалентных связей, электропроводность у.меньшается. Атом железа на предвнешней электронной оболочке имеет неспаренные Зс/-электроны, которые также образуют ковалентные связи. Кроме этого, в кристалле металла, когда энергетические уровни атомов объединяются в энергетические зоны, Зс(-и 45-зоны пересекаются. Поэтому при определенном возбуждении -электроны могут перейти на молек лярные орбитали -зоны н, таким образом, количество носителей заряда может уменьшиться. Поэтому металлы -элементов с частично заполненной электронной -подоболочкой у атомов имеют несколько более высокое электрическое сопротивление, чем металлы непереходных элементов. [c.323]


    Серьезные затруднения в работе серебряно-цинкового аккумулятора вызывает переход в конце заряда небольшого количества окислов серебра в коллоидный раствор (10 —10 г-экв1л). В таком виде окислы серебра диффундируют к цинковому электроду, восстанавливаются там до серебра, образуют игольчатые дендриты и вызывают внутренние короткие замыкания аккумуляторов. Для борьбы с этим явлением предлагают применять сепараторы из ионообменных смол, проводящих ток после набухания в растворах щелочи, но препятствующих диффузии серебра к цинку. Широкого применения подобные сепараторы еще не получили из-за своего относительно высокого электрического сопротивления. [c.544]

    Покрытия алюминия и его сплавов. Алюминий электрохимически покрывают металлами и сплавами. Для придания декоративного вида и увеличения поверхностной твердости его хромируют с целью повышения прочности сцепления резины с алюминием — латунируют, меднят, серебрят, для уменьшения переходного электрического сопротивления или улучшения паяе-мости — оловянируют. Однако непосредственное нанесение гальванических осадков из стандартных электролитов связано с большими трудност ями в связи [c.332]

    Фирма Kulilmann производит также этиленгликоль марки С и -О. Они выкипают в более узких пределах (195—200 °С), содержат не более 0,10% воды и их кислотность не выше 0,005%. Для этил н-гликоля марки С регламентируется электрическое сопротивление (электропроводность) в этиленгликоле марки D должны отсутствовать восстанавливающие вещества, зола, хлорндьт, и он должен давать отрицательную реакцию с нитратом серебра и аммиаком. [c.109]

    Температура плавления серебра равна 960 °С при атмосферном давлении, теплота сублимации равна 68 ккал1люль. Серебро представляет собой сравнительно мягкий металл с высокой теплопроводностью и с минимальным для металлов удельным внутренним электрическим сопротивлением 1,47-10 ом-см при 0° С. [c.262]

    На втором этапе (свыше 520° С) Рс10 частично восстанавливается и образуется твердый раствор Рс1—А в зоне контактирования частиц серебра и палладия благодаря взаимной диффузии. Электрическое сопротивление зависит от соотношения Ад—Рс10, которым управляют путем изменения этого соотношения в пределах от 1 2 до 3 2. Минимальное значение удельного пленочного сопротивления для проводниковых композиций на основе Ад—Рс1 составляет п=20 мОм/П. Высокоомного значения (7 а= 10 кОм/П) достигают при 40% Р(10. [c.61]

    Целлофан задерживает диффузию серебра к цинковому электроду и препятствует прорастанию дендритов к серебряному электроду. Чем больше слоев целлофана, тем дольще служит СЦА (до короткого замыкания), но тем выше его внутреннее электрическое сопротивление. Число слоев пленки обычно составляет [c.424]

    В эти лаки добавляют в качестве проводящего элемента гальванографит или очень мелко раздробленный металл, например серебро или медь. Для достижения электропроводности, достаточной для гальванической обработки, такой лак должен содержать относительно большое количество металла, обычно свыше 200 г/л. Для придания электропроводности пластмассам можно пользоваться только такими лаками, которые сохнут при комнатной или слегка повышенной температуре. При пользовании лаками, содержащими медь, необходимо учитывать, что мелко раздробленная медь очень легко окисляется, особенно при повышенных температурах. Благодаря этому повышается электрическое сопротивление слоя. Для улучшения электропроводности хорошо перед окончательным просушиванием лака протереть деталь графитом. Проводящий лак наносят общеизвестными способами лакирования кистью, пульверизацией, печатанием и т. д. В зависимости от способа нанесения лака выбирают состав и консистенцию препарата. [c.405]

    Наконец, у эвтектических смесей хлоридов рубидия с хлоридами меди, серебра или лития электрическое сопротивление падает с повышением температуры столь резко, что они могут стать весьма удобными термисторами в различных электрических установках, рабо-таюш,их при температуре порядка 150—290° С. [c.170]

    Германий улучшает также свойства сплавов щелочных металлов с серебром, используемых в фотоэлементах. Пленка кремне-германиевого сплава, полученная путем восстановления водородом паров Si l4 и Ge l4, обладает высоким удельным электрическим сопротивлением, которое почти не зависит от температуры. [c.387]

    Повышение электропроводности наблюдается при введении в состав эпоксидных клеев, содержащих мелкодисперсное серебро, 2,5% (масс.) монобутилового эфира диэтиленгликоля или моноэтилового эфира диэтиленгликольацетата. Такие добавки позволяют снизить электрическое сопротивление клеев в [c.111]

    Удельнное объемное электрическое сопротивление, Ом-м немодифицированный порошок серебра, немодифицирован-порошок серебра модифицированный ный порошок сереб СЖК ра, добавка СЖК [c.178]

    Токопроводящий клей получен на основе эпоксидно-кремний-органической смолы Т-111 [12]. В качестве отвердителя используют эламин, наполнителя — никелевый порошок с покрытием из серебра. Удельное объемное электрическое сопротивление клея составляет 5-10 Ом-м. При склеивании этим клеем ковара с керамикой разрушающее напряжение клеевых соединений при сдвиге составляет 5—7,5 МПа. [c.181]

    Токопроводящий клей разработан на основе кремнийорганического каучука ВИКСИНТ ПК-18, наполненного молекулярным серебром. Разрущающее напряжение при сдвиге клеевых соединений при 20 °С составляет 1,5 МПа. Удельное объемное электрическое сопротивление при комнатной температуре составляет 0,02—0,03 Ом-м. Клей применяют для крепления микросхем к основаниям при изготовлении СВЧ-устройств [17, с. 76]. [c.182]


Удельное электрическое сопротивление проводника. Что такое удельное сопротивление проводника

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать “Сопротивление проводника равно 15 Ом”, можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)


    Удельное сопротивление железа, алюминия и других проводников

    Передача электроэнергии на дальние расстояния требует заботиться о минимизации потерь, происходящих от преодоления током сопротивления проводников, составляющих электрическую линию. Разумеется, это не значит, что подобные потери, происходящие уже конкретно в цепях и устройствах потребления, не играют роли.

    Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики – то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

    Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление – это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ). Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации – при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей.

    Виды удельного сопротивления

    Так как сопротивление бывает:

    • активное – или омическое, резистивное, – происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
    • реактивное – емкостное или индуктивное, – которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
  1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
  2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП – активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.


Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin – кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.


Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.


Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса – играющих роль проводов других фаз, нулевых, заземляющих.

Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление -порядка ом *10-6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления – обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

Таблица

Железо как проводник в электротехнике

Железо – самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

, где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.

Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

После этого разрешим формулу относительно S

, будем подставлять значения из таблицы и получать площади сечений для разных металлов.

Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10-6. Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм2.

Как видим, сопротивление железа достаточно большое, проволока получается толстая.


Но существуют материалы, у которых оно еще больше, например, никелин или константан.

Похожие статьи:

domelectrik.ru

Таблица удельного электрического сопротивления металлов и сплавов в электротехнике

Главная > у >


Удельное сопротивление металлов.
Удельное сопротивление сплавов.
Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава. comments powered by HyperComments

tab.wikimassa.org

Удельное электрическое сопротивление | Мир сварки

Удельное электрическое сопротивление материалов

Удельное электрическое сопротивление (удельное сопротивление) – способность вещества препятствовать прохождению электрического тока.

Единица измерения (СИ) – Ом·м; также измеряется в Ом·см и Ом·мм2/м.

Материал Температура, °С Удельное электрическоесопротивление, Ом·м
Металлы
Алюминий200,028·10-6
Бериллий200,036·10-6
Бронза фосфористая200,08·10-6
Ванадий200,196·10-6
Вольфрам200,055·10-6
Гафний200,322·10-6
Дюралюминий200,034·10-6
Железо200,097·10-6
Золото200,024·10-6
Иридий200,063·10-6
Кадмий200,076·10-6
Калий200,066·10-6
Кальций200,046·10-6
Кобальт200,097·10-6
Кремний270,58·10-4
Латунь200,075·10-6
Магний200,045·10-6
Марганец200,050·10-6
Медь200,017·10-6
Магний200,054·10-6
Молибден200,057·10-6
Натрий200,047·10-6
Никель200,073·10-6
Ниобий200,152·10-6
Олово200,113·10-6
Палладий200,107·10-6
Платина200,110·10-6
Родий200,047·10-6
Ртуть200,958·10-6
Свинец200,221·10-6
Серебро200,016·10-6
Сталь200,12·10-6
Тантал200,146·10-6
Титан200,54·10-6
Хром200,131·10-6
Цинк200,061·10-6
Цирконий200,45·10-6
Чугун200,65·10-6
Пластмассы
Гетинакс20109–1012
Капрон201010–1011
Лавсан201014–1016
Органическое стекло201011–1013
Пенопласт201011
Поливинилхлорид201010–1012
Полистирол201013–1015
Полиэтилен201015
Стеклотекстолит201011–1012
Текстолит20107–1010
Целлулоид20109
Эбонит201012–1014
Резины
Резина201011–1012
Жидкости
Масло трансформаторное201010–1013
Газы
Воздух01015–1018
Дерево
Древесина сухая20109–1010
Минералы
Кварц230109
Слюда201011–1015
Различные материалы
Стекло20109–1013
ЛИТЕРАТУРА
  • Альфа и омега. Краткий справочник / Таллин: Принтэст, 1991 – 448 с.
  • Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
  • Справочник по сварке цветных металлов / С.М. Гуревич. Киев.: Наукова думка. 1990. 512 с.

weldworld.ru

Удельное сопротивление металлов, электролитов и веществ (Таблица)

Удельное сопротивление металлов и изоляторов

В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18-20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

Таблица удельное сопротивление металлов

Чистые металлы

104 ρ (ом·см)

Чистые металлы

104 ρ (ом·см)

Алюминий

Дюралюминий

Платинит 2)

Аргентан

Марганец

Манганин

Вольфрам

Константан

Молибден

Сплав Вуда 3)

Сплав Розе 4)

Палладий

Фехраль 6)

Таблица удельное сопротивление изоляторов

Изоляторы

Изоляторы

Дерево сухое

Целлулоид

Канифоль

Гетинакс

Кварц _|_ оси

Стекло натр

Полистирол

Стекло пирекс

Кварц || оси

Кварц плавленый

Удельное сопротивление чистых металлов при низких температурах

В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.

В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

Чистые металлы

Алюминий

Вольфрам

Молибден

Удельное сопротивление электролитов

В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, – М.: 1960.

infotables.ru

Удельное электрическое сопротивление – сталь

Cтраница 1

Удельное электрическое сопротивление стали возрастает с ростом температуры, причем наибольшие изменения наблюдаются при нагреве до температуры точки Кюри. После точки Кюри величина удельного электросопротивления изменяется незначительно и при температурах выше 1000 С практически остается постоянной.  

Ввиду большого удельного электрического сопротивления стали эти iuKii создают НсОольшое замедление в спадании потока. В контакторах на 100 а время отпадания составляет 0 07 сек, а в контакторах 600 а-0 23 сек. В связи с особыми требованиями, предъявляемыми к контакторам серии КМВ, которые предназначены для включения и отключения электромагнитов приводов масляных выключателей, электромагнитный механизм у этих контакторов допускает регулировку напряжения срабатывания и напряжения отпускания за счет регулировки силы возвратной пружины и специальной отрывной пружины. Контакторы типа КМВ должны работать при глубокой посадке напряжения. Поэтому минимальное напряжение срабатывания у этих контакторов может спускаться до 65 % UH. Такое низкое напряжение срабатывания приводит к тому, что при номинальном напряжении через обмотку протекает ток, приводящий к повышенному нагреву катушки.  

Присадка кремния увеличивает удельное электрическое сопротивление стали почти пропорционально содержанию кремния и этим способствует уменьшению потерь на вихревые токи, возникающие в стали при ее работе в переменном магнитном поле.  

Присадка кремния увеличивает удельное электрическое сопротивление стали, что способствует уменьшению потерь на вихревые токи, но одновременно кремний ухудшает механические свойства стали, делает ее хрупкой.  

Ом – мм2 / м – удельное электрическое сопротивление стали.  

Для уменьшения вихревых токов применяются сердечники, выполненные из сортов стали с повышенным удельным электрическим сопротивлением стали, содержащие 0 5 – 4 8 % кремния.  

Для этого на массивный ротор из оптимального сплава СМ-19 был надет тонкий экран из магнитно-мягкой стали. Удельное электрическое сопротивление стали мало отличается от удельного сопротивления сплава, а цг стали примерно на порядок выше. Толщина экрана выбрана по глубине проникновения зубцовых гармоник первого порядка и равна йэ 0 8 мм. Для сравнения приведены добавочные потери, Вт, при базовом короткозамкнутом роторе и двухслойном роторе с массивным цилиндром из сплава СМ-19 и с медными торцевыми кольцами.  

Основным магнитопроводящим материалом является листовая легированная электротехническая сталь, содержащая от 2 до 5 % кремния. Присадка кремния увеличивает удельное электрическое сопротивление стали, в результате чего уменьшаются потери на вихревые токи, сталь становится устойчивой к окислению и старению, но делается более хрупкой. В последние годы широко используется холоднокатаная текстурованная сталь с более высокими магнитными свойствами в направлении проката. Для уменьшения потерь от вихревых токов сердечник магнитопровода выполняется в виде пакета, собранного из листов штампованной стали.  

Электротехническая сталь является низкоуглеродистой сталью. Для улучшения магнитных характеристик в нее вводят кремний, который вызывает повышение удельного электрического сопротивления стали. Это приводит к уменьшению потерь на вихревые токи.  

После механической обработки магнитопровод отжигают. Так как в создании замедления участвуют вихревые токи в стали, следует ориентироваться на величину удельного электрического сопротивления стали порядка Рс (Ю-15) 10 – 6 ом см. В притянутом положении якоря магнитная система достаточно сильно насыщена, поэтому начальная индукция в различных магнитных системах колеблется в очень незначительных пределах и составляет для стали марки Э Вн1 6 – 1 7 гл. Указанное значение индукции поддерживает напряженность поля в стали порядка Ян.  

Для изготовления магнитных систем (магнитопроводов) трансформаторов применяются специальные тонколистовые электротехнические стали, имеющие повышенное (до 5 %) содержание кремния. Кремний способствует обезуглероживанию стали, что приводит к увеличению магнитной проницаемости, снижает потери на гистерезис и увеличивает ее удельное электрическое сопротивление. Увеличение удельного электрического сопротивления стали позволяет уменьшить потери в ней от вихревых токов. Кроме того, кремний ослабляет старение стали (увеличение потерь в стали с течением времени), уменьшает ее магнитострикцию (изменение формы и размеров тела при намагничивании) и, следовательно, шум трансформаторов. В то же время наличие кремния в стали приводит к повышению ее хрупкости и затрудняет ее механическую обработку.  

Страницы:      1    2

www.ngpedia.ru

Удельное сопротивление | Викитроника вики

Удельное сопротивление – характеристика материала, определяющая его способность проводить электрический ток. Определяется как отношение электрического поля к плотности тока. В общем случае является тензором, однако для большинства материалов, не проявляющих анизотропных свойств, принимается скалярной величиной.

Обозначение – ρ

$ \vec E = \rho \vec j, $

$ \vec E $ – напряжённость электрического поля, $ \vec j $ – плотность тока.

Единица измерения СИ – ом-метр (ом·м, Ω·m).

Сопротивление цилиндра или призмы (между торцами) из материала длиной l, и сечением S по удельному сопротивлению определяется следующим образом:

$ R = \frac{\rho l}{S}. $

В технике применяется определение удельного сопротивления, как сопротивление проводника единичного сечения и единичной длины.

Удельное сопротивление некоторых материалов, используемых в электротехнике Править

Материал ρ при 300 К, Ом·м ТКС, К⁻¹
серебро 1,59·10⁻⁸ 4,10·10⁻³
медь 1,67·10⁻⁸ 4,33·10⁻³
золото 2,35·10⁻⁸ 3,98·10⁻³
алюминий 2,65·10⁻⁸ 4,29·10⁻³
вольфрам 5,65·10⁻⁸ 4,83·10⁻³
латунь 6,5·10⁻⁸ 1,5·10⁻³
никель 6,84·10⁻⁸ 6,75·10⁻³
железо (α) 9,7·10⁻⁸ 6,57·10⁻³
олово серое 1,01·10⁻⁷ 4,63·10⁻³
платина 1,06·10⁻⁷ 6,75·10⁻³
олово белое 1,1·10⁻⁷ 4,63·10⁻³
сталь 1,6·10⁻⁷ 3,3·10⁻³
свинец 2,06·10⁻⁷ 4,22·10⁻³
дюралюминий 4,0·10⁻⁷ 2,8·10⁻³
манганин 4,3·10⁻⁷ ±2·10⁻⁵
константан 5,0·10⁻⁷ ±3·10⁻⁵
ртуть 9,84·10⁻⁷ 9,9·10⁻⁴
нихром 80/20 1,05·10⁻⁶ 1,8·10⁻⁴
канталь А1 1,45·10⁻⁶ 3·10⁻⁵
углерод (алмаз, графит) 1,3·10⁻⁵
германий 4,6·10⁻¹
кремний 6,4·10²
этанол 3·10³
вода, дистиллированная 5·10³
эбонит 10⁸
бумага твёрдая 10¹⁰
трансформаторное масло 10¹¹
стекло обычное 5·10¹¹
поливинил 10¹²
фарфор 10¹²
древесина 10¹²
ПТФЭ (тефлон) >10¹³
резина 5·10¹³
стекло кварцевое 10¹⁴
бумага вощёная 10¹⁴
полистирол >10¹⁴
слюда 5·10¹⁴
парафин 10¹⁵
полиэтилен 3·10¹⁵
акриловая смола 10¹⁹

ru.electronics.wikia.com

Удельное электрическое сопротивление | формула, объемное, таблица

Удельное электрическое сопротивление является физической величиной, которая показывает, в какой степени материал может сопротивляться прохождению через него электрического тока. Некоторые люди могут перепутать данную характеристику с обыкновенным электрическим сопротивлением. Несмотря на схожесть понятий, разница между ними заключается в том, что удельное касается веществ, а второй термин относится исключительно к проводникам и зависит от материала их изготовления.

Обратной величиной данного материала является удельная электрическая проводимость. Чем выше этот параметр, тем лучше проходит ток по веществу. Соответственно, чем выше сопротивление, тем больше потерь предвидится на выходе.

Формула расчета и величина измерения

Рассматривая, в чем измеряется удельное электрическое сопротивление, также можно проследить связь с не удельным, так как для обозначения параметра используются единицы Ом·м. Сама величина обозначается как ρ. С таким значением можно определять сопротивление вещества в конкретном случае, исходя из его размеров. Эта единица измерения соответствует системе СИ, но могут встречаться и другие варианты. В технике периодически можно увидеть устаревшее обозначение Ом·мм2/м. Для перевода из этой системы в международного не потребуется использовать сложные формулы, так как 1 Ом·мм2/м равняется 10-6 Ом·м.

Формула удельного электрического сопротивления выглядит следующим образом:

R= (ρ·l)/S, где:

  • R – сопротивление проводника;
  • Ρ – удельное сопротивление материал;
  • l – длина проводника;
  • S – сечение проводника.

Зависимость от температуры

Удельное электрическое сопротивление зависит от температуры. Но все группы веществ проявляют себя по-разному при ее изменении. Это необходимо учитывать при расчете проводов, которые будут работать в определенных условиях. К примеру, на улице, где значения температуры зависят от времени года, необходимые материалы с меньшей подверженностью изменениям в диапазоне от -30 до +30 градусов Цельсия. Если же планируется применение в технике, которая будет работать в одних и тех же условиях, то здесь также нужно оптимизировать проводку под конкретные параметры. Материал всегда подбирается с учетом эксплуатации.

В номинальной таблице удельное электрическое сопротивление берется при температуре 0 градусов Цельсия. Повышение показателей данного параметра при нагреве материала обусловлено тем, что интенсивность передвижения атомов в веществе начинает возрастать. Носители электрических зарядов хаотично рассеиваются во всех направлениях, что приводит к созданию препятствий при передвижении частиц. Величина электрического потока снижается.

При уменьшении температуры условия прохождения тока становятся лучше. При достижении определенной температуры, которая для каждого металла будет отличаться, появляется сверхпроводимость, при которой рассматриваемая характеристика почти достигает нуля.

Отличия в параметрах порой достигают очень больших значений. Те материалы, которые обладают высокими показателями, могут использовать в качестве изоляторов. Они помогают защищать проводку от замыкания и ненамеренного контакта с человеком. Некоторые вещества вообще не применимы для электротехники, если у них высокое значение этого параметра. Этому могут мешать другие свойства. Например, удельная электрическая проводимость воды не будет иметь большого значения для данный сферы. Здесь приведены значения некоторых веществ с высокими показателями.

Материалы с высоким удельным сопротивлениемρ (Ом·м)
Бакелит1016
Бензол1015…1016
Бумага1015
Вода дистиллированная104
Вода морская0.3
Дерево сухое1012
Земля влажная102
Кварцевое стекло1016
Керосин1011
Мрамор108
Парафин1015
Парафиновое масло1014
Плексиглас1013
Полистирол1016
Полихлорвинил1013
Полиэтилен1012
Силиконовое масло1013
Слюда1014
Стекло1011
Трансформаторное масло1010
Фарфор1014
Шифер1014
Эбонит1016
Янтарь1018

Более активно в электротехнике применяются вещества с низкими показателями. Зачастую это металлы, которые служат проводниками. В них также наблюдается много различий. Чтобы узнать удельное электрическое сопротивление меди или других материалов, стоит посмотреть в справочную таблицу.

Материалы с низким удельным сопротивлениемρ (Ом·м)
Алюминий2.7·10-8
Вольфрам5.5·10-8
Графит8.0·10-6
Железо1.0·10-7
Золото2.2·10-8
Иридий4.74·10-8
Константан5.0·10-7
Литая сталь1.3·10-7
Магний4.4·10-8
Манганин4.3·10-7
Медь1.72·10-8
Молибден5.4·10-8
Нейзильбер3.3·10-7
Никель8.7·10-8
Нихром1.12·10-6
Олово1.2·10-7
Платина1.07·10-7
Ртуть9.6·10-7
Свинец2.08·10-7
Серебро1.6·10-8
Серый чугун1.0·10-6
Угольные щетки4.0·10-5
Цинк5.9·10-8
Никелин0,4·10-6

Удельное объемное электрическое сопротивление

Данный параметр характеризует возможность пропускать ток через объем вещества. Для измерения необходимо приложить потенциал напряжения с разных сторон материала, изделие из которого будет включено в электрическую цепь. На него подается ток с номинальными параметрами. После прохождения измеряются данные на выходе.

Использование в электротехнике

Изменение параметра при разных температурах широко применяется в электротехнике. Наиболее простым примером является лампа накаливания, где используется нихромовая нить. При нагревании она начинает светиться. При прохождении через нее тока она начинает нагреваться. С ростом нагрева возрастает и сопротивление. Соответственно, ограничивается первоначальный ток, который нужен был для получения освещения. Нихромовая спираль, используя тот же принцип, может стать регулятором на различных аппаратах.

Широкое применение коснулось и благородных металлов, которые обладают подходящими характеристиками для электротехники. Для ответственных схем, которым требуется быстродействие, подбираются серебряные контакты. Они обладают высокой стоимостью, но с учетом относительно небольшого количества материалов их применение вполне оправданно. Медь уступает серебру по проводимости, но обладает более доступной ценой, благодаря чему ее чаще используют для создания проводов.

В условиях, где можно использовать предельно низкие температуры, применяются сверхпроводники. Для комнатной температуры и уличной эксплуатации они не всегда уместны, так как при повышении температуры их проводимость начнет падать, поэтому для таких условий лидерами остаются алюминий, медь и серебро.

На практике учитывается много параметров и этот является одним из наиболее важных. Все расчеты проводятся еще на стадии проектирования, для чего и используются справочные материалы.

Каждое вещество способно проводить ток в разной степени, на эту величину влияет сопротивление материала. Обозначается удельное сопротивление меди, алюминия, стали и любого другого элемента буквой греческого алфавита ρ. Эта величина не зависит от таких характеристик проводника, как размеры, форма и физическое состояние, обычное же электросопротивление учитывает эти параметры. Измеряется удельное сопротивление в Омах, умноженных на мм² и разделенных на метр.

Категории и их описание

Любой материал способен проявлять два типа сопротивления в зависимости от подаваемого на него электричества. Ток бывает переменным или постоянным, что значительно влияет на технические показатели вещества. Так, существуют такие сопротивления:

  1. Омическое. Проявляется под воздействием постоянного тока. Характеризует трение, которое создается движением электрически заряженных частиц в проводнике.
  2. Активное. Определяется по такому же принципу, но создается уже под действием переменного тока.

В связи с этим определений удельной величины тоже два. Для постоянного тока она равна сопротивлению, которое оказывает единица длины проводящего материала единичной фиксированной площади сечения. Потенциальное электрополе воздействует на все проводники, а также полупроводники и растворы, способные проводить ионы. Эта величина определяет проводящие свойства самого материала. Форма проводника и его размеры не учитываются, поэтому ее можно назвать базовой в электротехнике и материаловедении.

При условии прохождения переменного тока удельная величина рассчитывается с учетом толщины проводящего материала. Здесь уже происходит воздействие не только потенциального, но и вихревого тока, кроме того, принимается во внимание частота электрических полей. Удельное сопротивление этого типа больше, чем при постоянном токе, поскольку здесь идет учет положительной величины сопротивления вихревому полю. Также эта величина зависит от формы и размеров самого проводника. Именно эти параметры и определяют характер вихревого движения заряженных частиц.

Переменный ток вызывает в проводниках определенные электромагнитные явления. Они очень важны для электротехнических характеристик проводящего материала:

  1. Скин-эффект характеризуется ослаблением электромагнитного поля тем больше, чем дальше оно проникает в среду проводника. Это явление также носит название поверхностного эффекта.
  2. Эффект близости снижает плотность тока благодаря близости соседних проводов и их влиянию.

Эти эффекты являются очень важными при расчете оптимальной толщины проводника, так как при использовании провода, у которого радиус больше глубины проникновения тока в материал, остальная его масса останется незадействованной, а следовательно, такой подход будет неэффективным. В соответствии с проведенными расчетами эффективный диаметр проводящего материала в некоторых ситуациях будет следующим:

  • для тока в 50 Гц – 2,8 мм;
  • 400 Гц – 1 мм;
  • 40 кГц – 0,1 мм.

Ввиду этого для высокочастотных токов активно применяется использование плоских многожильных кабелей, состоящих из множества тонких проводов.

Характеристики металлов

Удельные показатели металлических проводников содержатся в специальных таблицах. По этим данным можно производить необходимые дальнейшие расчеты. Пример такой таблицы удельных сопротивлений можно увидеть на изображении.

На таблице видно, что наибольшей проводимостью обладает серебро – это идеальный проводник среди всех существующих металлов и сплавов. Если рассчитать, сколько потребуется провода из этого материала для получения сопротивления в 1 Ом, то выйдет 62,5 м. Проволоки из железа для такой же величины понадобится целых 7,7 м.

Какими бы замечательными свойствами ни обладало серебро, оно является слишком дорогим материалом для массового использования в электросетях, поэтому широкое применение в быту и промышленности нашла медь. По величине удельного показателя она стоит на втором месте после серебра, а по распространенности и простоте добычи намного лучше его. Медь обладает и другими преимуществами, позволившими ей стать самым распространенным проводником. К ним относятся:

Для применения в электротехнике используют рафинированную медь, которая после плавки из сульфидной руды проходит процессы обжигания и дутья, а далее обязательно подвергается электролитической очистке. После такой обработки можно получить материал очень высокого качества (марки М1 и М0), который будет содержать от 0,1 до 0,05% примесей. Важным нюансом является присутствие кислорода в крайне малых количествах, так как он негативно влияет на механические характеристики меди.

Часто этот металл заменяют более дешевыми материалами – алюминием и железом, а также различными бронзами (сплавами с кремнием, бериллием, магнием, оловом, кадмием, хромом и фосфором). Такие составы обладают более высокой прочностью по сравнению с чистой медью, хотя и меньшей проводимостью.

Преимущества алюминия

Хоть алюминий обладает большим сопротивлением и более хрупок, его широкое использование объясняется тем, что он не настолько дефицитен, как медь, а следовательно, стоит дешевле. Удельное сопротивление алюминия составляет 0,028, а его низкая плотность обеспечивает ему вес в 3,5 раза меньше, чем медь.

Для электрических работ применяют очищенный алюминий марки А1, содержащий не более 0,5% примесей. Более высокую марку АВ00 используют для изготовления электролитических конденсаторов, электродов и алюминиевой фольги. Содержание примесей в этом алюминии составляет не более 0,03%. Существует и чистый металл АВ0000 , включающий не более 0,004% добавок. Имеют значение и сами примеси: никель, кремний и цинк незначительно влияют на проводимость алюминия, а содержание в этом металле меди, серебра и магния дает ощутимый эффект. Наиболее сильно уменьшают проводимость таллий и марганец.

Алюминий отличается хорошими антикоррозийными свойствами. При контакте с воздухом он покрывается тонкой пленкой окиси, которая и защищает его от дальнейшего разрушения. Для улучшения механических характеристик металл сплавляют с другими элементами.

Показатели стали и железа

Удельное сопротивление железа по сравнению с медью и алюминием имеет очень высокие показатели, однако благодаря доступности, прочности и устойчивости к деформациям материал широко используют в электротехническом производстве.

Хоть железо и сталь, удельное сопротивление которой еще выше, имеют существенные недостатки, изготовители проводникового материала нашли методы их компенсирования. В частности, низкую стойкость к коррозии преодолевают путем покрытия стальной проволоки цинком или медью.

Свойства натрия

Металлический натрий также очень перспективен в проводниковом производстве. По показателям сопротивления он значительно превышает медь, однако имеет плотность в 9 раз меньше, чем у неё. Это позволяет использовать материал в изготовлении сверхлёгких проводов.

Металлический натрий очень мягкий и совершенно неустойчив к любого рода деформационным воздействиям, что делает его использование проблемным – провод из этого металла должен быть покрыт очень прочной оболочкой с крайне малой гибкостью. Оболочка должна быть герметичной, так как натрий проявляет сильную химическую активность в самых нейтральных условиях. Он моментально окисляется на воздухе и демонстрирует бурную реакцию с водой, в том числе и с содержащейся в воздухе.

Еще одним плюсом использования натрия является его доступность. Его можно получить в процессе электролиза расплавленного хлористого натрия, которого в мире существует неограниченное количество. Другие металлы в этом плане явно проигрывают.

Чтобы рассчитать показатели конкретного проводника, необходимо произведение удельного числа и длины проволоки разделить на площадь ее сечения. В результате получится значение сопротивления в Омах. Например, чтобы определить, чему равно сопротивление 200 м проволоки из железа с номинальным сечением 5 мм², нужно 0,13 умножить на 200 и разделить полученный результат на 5. Ответ – 5,2 Ом.

Правила и особенности вычисления

Для измерения сопротивления металлических сред пользуются микроомметрами. Сегодня их выпускают в цифровом варианте, поэтому проведенные с их помощью измерения отличаются точностью. Объяснить ее можно тем, что металлы обладают высоким уровнем проводимости и имеют крайне маленькое сопротивление. Для примера, нижний порог измерительных приборов имеет значение 10 -7 Ом.

С помощью микроомметров можно быстро определить, насколько качественен контакт и какое сопротивление проявляют обмотки генераторов, электродвигателей и трансформаторов, а также электрические шины. Можно вычислить присутствие включений другого металла в слитке. Например, вольфрамовый кусок, покрытый позолотой, показывает вдвое меньшую проводимость, чем полностью золотой. Тем же способом можно определить внутренние дефекты и полости в проводнике.

Формула удельного сопротивления выглядит следующим образом: ρ = Ом · мм 2 /м . Словами ее можно описать как сопротивление 1 метра проводника , имеющего площадь сечения 1 мм². Температура подразумевается стандартная – 20 °C.

Влияние температуры на измерение

Нагревание или охлаждение некоторых проводников оказывает значительное влияние на показатели измерительных приборов. В качестве примера можно привести следующий опыт: необходимо подключить к аккумулятору спирально намотанную проволоку и подключить в цепь амперметр.

Чем сильнее нагревается проводник, тем меньше становятся показания прибора. Сила тока имеет обратно пропорциональную зависимость от сопротивления. Следовательно, можно сделать вывод, что в результате нагрева проводимость металла уменьшается. В большей или меньшей степени так ведут себя все металлы, однако изменения проводимости у некоторых сплавов практически не наблюдается.

Примечательно, что жидкие проводники и некоторые твердые неметаллы имеют тенденцию уменьшать свое сопротивление с повышением температуры. Но и эту способность металлов ученые обратили себе на пользу. Зная температурный коэффициент сопротивления (α) при нагреве некоторых материалов, можно определять внешнюю температуру. Например, проволоку из платины, размещенную на каркасе из слюды, помещают в печь, после чего проводят измерение сопротивления. В зависимости от того, насколько оно изменилось, делают вывод о температуре в печи. Такая конструкция называется термометром сопротивления.

Если при температуре t 0 сопротивление проводника равно r 0, а при температуре t равно rt , то температурный коэффициент сопротивления равен

Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200 °C).

Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.
В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики – то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление – это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ). Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации – при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей.

Виды удельного сопротивления

Так как сопротивление бывает:

  • активное – или омическое, резистивное, – происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
  • реактивное – емкостное или индуктивное, – которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
  1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
  2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП – активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.

Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin – кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.

Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.

Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса – играющих роль проводов других фаз, нулевых, заземляющих.

Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление -порядка ом *10 -6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления – обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

Таблица

Таблица удельных сопротивлений проводников (металлов и сплавов)

Материал провод-ника

Состав (для сплавов)

Удельное сопротивление ρ мом × мм 2 / м

медь, цинк, олово, никель, свинец, марганец, железо и др.

Алюминий

Вольфрам

Молибден

медь, олово, алюминий, кремний, бериллий, свинец и др. (кроме цинка)

железо, углерод

медь, никель, цинк

Манганин

медь, никель, марганец

Константан

медь, никель, алюминий

никель, хром, железо, марганец

железо, хром, алюминий, кремний, марганец

Железо как проводник в электротехнике

Железо – самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

Где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.

Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

После этого разрешим формулу относительно S

Будем подставлять значения из таблицы и получать площади сечений для разных металлов.

Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм 2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10 -6 . Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм 2 .

Как видим, сопротивление железа достаточно большое, проволока получается толстая.

Но существуют материалы, у которых оно еще больше, например, никелин или константан.

Электрический ток возникает в результате замыкания цепи с разностью потенциалов на зажимах. Силы поля воздействуют на свободные электроны и они перемещаются по проводнику. В процессе этого путешествия, электроны встречаются с атомами и передают им часть своей накопившейся энергии. В результате этого их скорость уменьшается. Но, из-за воздействия электрического поля, она снова набирает обороты. Таким образом, электроны постоянно испытывают на себе сопротивление, именно поэтому электрический ток нагревается.

Свойство вещества, превращать электроэнергию в тепло во время воздействия тока, и является электрическим сопротивлением и обозначается, как R, его измерительной единицей является Ом. Величина сопротивления зависит, главным образом от способности различных материалов проводить ток.
Впервые, о сопротивляемости заявил немецкий исследователь Г. Ом.

Для того, чтобы узнать зависимость силы тока от сопротивления, известный физик провел множество экспериментов. Для опытов он использовал различные проводники и получал различные показатели.
Первое, что определил Г. Ом — это то, что удельное сопротивление зависит от длинны проводника. То есть, если увеличивалась длинна проводника, сопротивление тоже увеличивалось. В результате, эта связь была определена, как прямо пропорциональная.

Вторая зависимость — это площадь поперечного сечения. Её можно было определить путем поперечного среза проводника. Площадь той фигуры, что образовалась на срезе и есть площадь поперечного сечения. Здесь связь получилась обратно пропорциональная. То есть чем больше была площадь поперечного сечения, тем меньше становилось сопротивление проводника.

И третья, важная величина, от которой зависит сопротивление, это материал. В результате того, что Ом использовал в опытах различные материалы, он обнаружил различные свойства сопротивляемости. Все эти опыты и показатели были сведены в таблицу из которой видно, различное значение удельной сопротивляемости у различных веществ.

Известно, что самые лучшие проводники — металлы. А какие из металлов лучшие проводники? В таблице показано, что наименьшей сопротивляемостью обладают медь и серебро. Медь используется чаще из-за меньшей стоимости, а серебро применяют в наиболее важных и ответственных приборах.

Вещества с высоким удельным сопротивлением в таблице, плохо проводят электрический ток, а значит могут быть прекрасными изоляционными материалами. Вещества обладающие этим свойством в наибольшей степени, это фарфор и эбонит.

Вообще, удельное электрическое сопротивление является очень важным фактором, ведь, определив его показатель, мы можем узнать из какого вещества сделан проводник. Для этого необходимо измерить площадь сечения, узнать силу тока с помощью вольтметра и амперметра, а также измерить напряжение. Таким образом мы узнаем значение удельного сопротивления и, с помощью таблицы легко выйдем на вещество. Получается, что удельное сопротивление — это в роде отпечатков пальцев вещества. Кроме этого, удельное сопротивление важно при планировании длинных электрических цепей: нам необходимо знать этот показатель, чтобы соблюдать баланс между длинной и площадью.

Есть формула, определяющая, что сопротивление равно 1 ОМ, если при напряжении 1В, его сила тока равняется 1А. То есть, сопротивление единичной площади и единичной длинны, сделанного из определенного вещества и есть удельное сопротивление.

Надо отметить также, что показатель удельного сопротивления напрямую зависит от частоты вещества. То есть от того имеет ли он примеси. Та, добавление всего одного процента марганца увеличивает сопротивляемость самого проводящего вещества — меди, в три раза.

Эта таблица демонстрирует величину удельного электрического сопротивления некоторых веществ.



Материалы с высокой проводимостью

Медь
Как мы уже говорили медь чаще всего применяется в качестве проводника. Это объясняется не только её низкой сопротивляемостью. Медь имеет такие преимущества, как высокая прочность, стойкость к коррозии, легкость в использовании и хорошая обрабатываемость. Хорошими марками меди считается М0 и М1. В них количество примесей не превышает 0,1%.

Высокая стоимость металла и его преобладающая в последнее время дефицитность побуждает производителей применять в качестве проводника алюминий. Также, используются сплавы меди с различными металлами.
Алюминий
Этот металл значительно легче меди, но алюминий обладает большими значениями теплоемкости и температуры плавления. В связи с этим для того, что довести его до расплавленного состояния требуется больше энергии, чем меди. Тем не менее нужно учитывать факт дефицитности меди.
В производстве электротехнических изделий применяется, как правило, алюминий марки А1. Он содержит не более 0,5% примесей. А металл наивысшей частоты — это алюминий марки АВ0000.
Железо
Дешевизна и доступность железа омрачается его высокой удельной сопротивляемостью. Кроме того, она быстро подвергается коррозии. По этой причине стальные проводники часто покрывают цинком. Широко используется так называемый биметалл — это сталь покрытая для защиты медью.
Натрий
Натрий, тоже доступный и перспективный материал, но его сопротивляемость почти в три раза больше меди. Кроме того, металлический натрий обладает высокой химической активностью, что обязывает покрывать такой проводник герметичной защитой. Она же должна защищать проводник от механических повреждений, так как натрий очень мягкий и достаточно непрочный материал.

Сверхпроводимость
В таблице ниже, указано удельное сопротивление веществ при температуре 20 градусов. Указание температуры неслучайно, ведь удельное сопротивление напрямую зависит от этого показателя. Это объясняется тем, что при нагревании, повышается и скорость атомов, а значит вероятность встречи их с электронами тоже увеличится.


Интересно, что происходит с сопротивляемостью в условиях охлаждения. Впервые поведение атомов при очень низких температурах заметил Г. Камерлинг-Оннес в 1911 году. Он охладил ртутную проволоку до 4К и обнаружил падение её сопротивляемости до нуля. Изменение показателя удельной сопротивляемости у некоторых сплавов и металлов в условиях низкой температуры, физик назвал сверхпроводимостью.

Сверхпроводники переходят в состояние сверхпроводимости при охлаждении, и, при этом их оптические и структурные характеристики не меняются. Главное открытие состоит в том, что электрические и магнитные свойства металлов в сверхпроводящем состоянии сильно отличаются от их же свойств в обычном состоянии, а также от свойств других металлов, которые при понижении температуры не могут переходить в это состояние.
Применение сверхпроводников осуществляется, главным образом, в получении сверхсильного магнитного поля, сила которого достигает 107 А/м. Также разрабатываются системы сверхпроводящих линий электропередач.

Похожие материалы.

Рекомендуем также

Таблица удельного сопротивления

000000 48,2 9007
Материал Удельное сопротивление ρ
(Ом · м)
Температура
Коэффициент α
на градус C
Электропроводность σ
x 10 7 / Ом · м
Ref
Серебро

07

73 1,59 x -8

.0038 6,29 3
Медь 1,68 x10 -8 .00386 5.95 3
Медь, отожженная 1,72 x10 -8 .00393 5,81 2
.00429 3.77 1
Вольфрам 5.6 x10 -8 .0045 1.79 1
Железо71 x10 -8 .00651 1,03 1
Платина 10,6 x10 -8 .003927 x10 -8 .000002 0,207 1
Свинец 22 x10 -8 0,45 0,45 98 x10 -8 .0009 0,10 1
Нихром
(сплав Ni, Fe, Cr)
100 x10 -8 .0004 0,10 12000000 x10 -8 0,20 1
Углерод *
(графит)
3-60 x10 -5 -.0005 1
Германий * 1-500 x10 -3 -.05 1
Кремний * 0,1-60 -.07 1
Стекло 1-10000 x10 9 1
Кварц
(плавленый)
7,5 x10 17 1
Твердая резина 1-100 x10 13 1

* Удельное сопротивление полупроводников сильно зависит от наличия примесей в материале, что делает их полезными в твердотельной электронике.

Ссылки:

1. Джанколи, Дуглас К., Физика, 4-е изд., Прентис Холл, (1995).

2. Справочник CRC по химии и физике, 64-е изд.

3. Википедия, Удельное электрическое сопротивление и проводимость.

Индекс

Таблицы

Ссылка
Giancoli

Сопротивление vs.Удельное сопротивление

Электрическое сопротивление электрического проводника зависит от

  • длины проводника
  • материала проводника
  • температуры материала
  • площади поперечного сечения проводника

и может быть выражено как

R = ρ L / A (1)

где

R = сопротивление проводника (Ом, Ом)

ρ = удельное сопротивление материала проводника (Омметр, Ом м)

L = длина проводника (м)

A = площадь поперечного сечения проводника (м 2 )

Удельное сопротивление некоторых общих проводников

  • Алюминий: 2.65 x 10 -8 Ом м (0,0265 мкОм м)
  • Углерод: 10 x 10 -8 Ом м (0,10 мкОм м)
  • Медь: 1,724 x 10 -8 Ом · м (0,0174 мкОм · м)
  • Железо: 10 x 10 -8 Ом · м (0,1 мкОм · м)
  • Серебро: 900 17350 1,6 -8 Ом · м (0,0265 мкОм · м)

Обратите внимание, что сопротивление зависит от температуры .Вышеуказанные значения относятся к температурам 20 o C .

Удельное сопротивление некоторых обычных изоляторов

  • бакелит: 1 x 10 12 Ом м
  • стекло: 1 x 10 10 1 x 10 11 Ом м
  • мрамор: 1 x 10 8 Ом м
  • слюда: 0,9 x 10 13 Ом м
  • парафиновое масло: 1 x 10 16 Ом м
  • парафиновый воск (чистый ) : 1 x 10 16 Ом м
  • оргстекло: 1 x 10 13 Ом м
  • полистирол: 1 x 10 14 Ом м
  • фарфор: 1 x 10 12 Ом м
  • прессованный янтарь: 1 x 10 16 Ом м
  • вулканит: 1 x 10 14 Ом м
  • вода, дистиллированная: 1 x 10 10 Ом м

Обратите внимание, что хороший кон проводники электричества имеют низкое удельное сопротивление, а хорошие изоляторы имеют высокое удельное сопротивление.

Пример – сопротивление проводника

Сопротивление 10 метров калибр 17 медный провод с площадью поперечного сечения 1,04 мм 2 можно рассчитать как

R = (1,7 x 10 – 8 Ом м) (10 м) / ((1,04 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,16 Ом

Пример – Перекрестный- площадь сечения и сопротивление

Медный провод выше уменьшен до калибра 24 и площади поперечного сечения 0.205 мм 2 . Увеличение сопротивления можно рассчитать как

R = (1,7 x 10 -8 Ом м) (10 м) / ((0,205 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,83 Ом

Удельное сопротивление и проводимость – температурные коэффициенты Обычные материалы

Удельное сопротивление составляет

  • электрическое сопротивление единичного куба материала, измеренное между противоположными гранями куба

Калькулятор сопротивления электрического проводника

Этот калькулятор можно использовать для расчета электрического сопротивления проводника.

Коэффициент удельного сопротивления (Ом · м) (значение по умолчанию для меди)

Площадь поперечного сечения проводника (мм 2 ) – Калибр провода AWG

22 В) Кобальт -8 9022 9022 3.35K)8 9022) 1 x 10 13 8 и хрома 9000 Pallium 9000.01 x 10 -8 906 10 6 900 x 10 -8
Алюминий 2.000 x 10 -8 3,8 x 10 -3 3,77 x 10 7
Алюминиевый сплав 3003, прокат 3,7 x 10 -8
Алюминиевый сплав 2014 , отожженная 3.4 x 10 -8
Алюминиевый сплав 360 7,5 x 10 -8
Алюминиевая бронза 12 x 10 -8
Животный жир5 14 x 10 -2
Мышцы животных 0,35
Сурьма 41,8 x 10 -8 30.2 x 10 -8
Бериллий 4,0 x 10 -8
Медь бериллий 25 7 x 10 -82 9022uth
115 x 10 -8
Латунь – 58% Cu 5,9 x 10 -8 1,5 x 10 -3
Латунь – 63% Cu 7.1 x 10 -8 1,5 x 10 -3
Кадмий 7,4 x 10 -8
Цезий (0 o C) 9,80007 x 10 -8
Кальций (0 o C) 3,11 x 10 -8
Углерод (графит) 1) 3-60 x 10 -5 -4.8 x 10 -4
Чугун 100 x 10 -8
Церий (0 o C) 73 x 10 -8
Хромель (сплав хрома и алюминия) 0,58 x 10 -3
Хром 13 x 10 -8

73

Константин 49 x 10 -8 3 x 10 -5 0.20 x 10 7
Медь 1,724 x 10 -8 4,29 x 10 -3 5,95 x 10 7
Мельхиор 55-45 (константан) 43 x 10 -8
Диспрозий (0 o C) 89 x 10 -8
Эрбий (0 o C) 81 x 10 -8
Эврика 0.1 x 10 -3
Европий (0 o C) 89 x 10 -8
Гадолий 126 x 10 -818
Галлий (1,1K) 13,6 x 10 -8
Германий 1) 1 – 500 x 10 -3 -50 x 10 -3
Стекло 1 – 10000 x 10 9 10 -12
Золото 2.24 x 10 -8
Графит 800 x 10 -8 -2,0 x 10 -4
Гафний (0,35K) 30,4 x 10 – 8
Hastelloy C 125 x 10 -8
Гольмий (0 o C) 90 x 10 -8 2
8 x 10 -8
Инконель 103 x 10 -8
Иридий 5,3 x 10 -8 9000 Железо 9,71 x 10 -8 6,41 x 10 -3 1,03 x 10 7
Лантан (4,71K) 54 x 10 -8
Свинец 20.6 x 10 -8 0,45 x 10 7
Литий 9,28 x 10 -8
Лютеций 54 x 10-8
Магний 4,45 x 10 -8
Магниевый сплав AZ31B 9 x 10 -8
Марганец 185 x 900 1.0 x 10 -5
Mercury 98,4 x 10 -8 8,9 x 10 -3 0,10 x 10 7
Mica (
Низкоуглеродистая сталь 15 x 10 -8 6,6 x 10 -3
Молибден 5,2 x 10000 -8
Монель 58 x 10 -8
Неодим 61 x 10 -8
Нихром (сплав никеля) х 10 -8 0.40 x 10 -3
Никель 6,85 x 10 -8 6,41 x 10 -3
Никелин 50 x 10 -8 10 -4
Ниобий (Columbium) 13 x 10 -8
Осмий 9 x 10 -8 10.5 x 10 -8
Фосфор 1 x 10 12
Платина 10,5 x 10 -8 3,93 x 10 7 3,93 x 10 7 x 10 7
Плутоний 141,4 x 10 -8
Полоний 40 x 10 -8
Празеодим 65 x 10 -8
Прометий 50 x 10 -8 K) 17,7 x 10 -8
Кварц (плавленый) 7,5 x 10 17
Рений (1,7 K) 17.2 x 10 -8
Родий 4,6 x 10 -8
Твердая резина 1 – 100 x 10 13 Рубидий 11,5 x 10 -8
Рутений (0,49K) 11,5 x 10 -8
Самарий 91,4 x 10 -8
Скандий 50.5 x 10 -8
Селен 12,0 x 10 -8
Кремний 1) 0,1-60-70 x 10
Серебро 1,59 x 10 -8 6,1 x 10 -3 6,29 x 10 7
Натрий 4,2 x 10 -8
Грунт, типичный грунт 10 -2 -10 -4
Припой 15 x 10 -8
43 Нержавеющая сталь
Стронций 12.3 x 10 -8
Сера 1 x 10 17
Тантал 12,4 x 10 -8
Таллий (2.37K) 15 x 10 -8
Торий 18 x 10 -8 Тулий 67 x 10 -8
Олово 11.0 x 10 -8 4,2 x 10 -3
Титан 43 x 10 -8
Вольфрам 5.65 x 1018 4,5 x 10 -3 1,79 x 10 7
Уран 30 x 10 -8
Ванадий 2518
Вода дистиллированная 10 -4
Вода пресная 10 -2
Вода соленая2 Иттербий 27.7 x 10 -8
Иттрий 55 x 10 -8
Цинк 5,92 x 10 -8 3,7 x 10 7
Цирконий (0,55K) 38,8 x 10 -8

1) Примечание! – удельное сопротивление сильно зависит от наличия примесей в материале.

2 ) Примечание! – удельное сопротивление сильно зависит от температуры материала.Приведенная выше таблица основана на эталоне 20 o C.

Электрическое сопротивление в проводе

Электрическое сопротивление провода больше для более длинного провода и меньше для провода с большей площадью поперечного сечения. Сопротивление зависит от материала, из которого оно изготовлено, и может быть выражено как:

R = ρ L / A (1)

, где

R = сопротивление (Ом, ). Ом )

ρ = коэффициент удельного сопротивления (Ом · м, Ом · м)

L = длина провода (м)

A = площадь поперечного сечения провода (м 2 )

Фактором сопротивления, учитывающим природу материала, является удельное сопротивление.Поскольку он зависит от температуры, его можно использовать для расчета сопротивления проволоки заданной геометрии при различных температурах.

Обратное сопротивление называется проводимостью и может быть выражено как:

σ = 1 / ρ (2)

где

σ = проводимость (1 / Ом м)

Пример – сопротивление алюминиевого провода

Сопротивление алюминиевого кабеля длиной 10 м и площадью поперечного сечения 3 мм 2 можно рассчитать как

R = (2.65 10 -8 Ом м) (10 м) / ((3 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,09 Ом

Сопротивление

Электрическое сопротивление компонента схемы или устройства определяется как отношение приложенного напряжения к протекающему через него электрическому току:

R = U / I (3)

где

R = сопротивление (Ом)

U = напряжение (В)

I = ток (A)

Закон Ома

Если сопротивление постоянно диапазон напряжения, затем закон Ома,

I = U / R (4)

можно использовать для прогнозирования поведения материала.

Зависимость удельного сопротивления от температуры

Изменение удельного сопротивления от температуры можно рассчитать как

= ρ α dt (5)

, где

dρ350 (изменение удельного сопротивления 90 Ом м 2 / м)

α = температурный коэффициент (1/ o C)

dt = изменение температуры ( C)

Пример – изменение удельного сопротивления

Алюминий с удельным сопротивлением 2.65 x 10 -8 Ом · м 2 / м нагревается от 20 o C до 100 o C . Температурный коэффициент для алюминия составляет 3,8 x 10 -3 1/ o C . Изменение удельного сопротивления можно рассчитать как

dρ = (2,65 10 -8 Ом · м 2 / м) (3,8 10 -3 1/ o C) ((100 o C) – (20 o C))

= 0.8 10 -8 Ом м 2 / м

Окончательное удельное сопротивление можно рассчитать как

ρ = (2,65 10 -8 Ом м 2 / м) + (0,8 10 -8 Ом · м 2 / м)

= 3,45 10 -8 Ом · м 2 / м

Зависимость коэффициента удельного сопротивления от температуры

использоваться для расчета удельного сопротивления материала проводника в зависимости оттемпература.

ρ – Коэффициент удельного сопротивления (10 -8 Ом м 2 / м)

α температурный коэффициент (10 -3 1 / o C)

dt изменение температуры ( o C)

Сопротивление и температура

Для большинства материалов электрическое сопротивление увеличивается с температурой.Изменение сопротивления можно выразить как

dR / R s = α dT (6)

, где

dR = изменение сопротивления (Ом)

с = стандартное сопротивление согласно справочным таблицам (Ом)

α = температурный коэффициент сопротивления ( o C -1 )

dT = изменение температура от эталонной температуры ( o C, K)

(5) может быть изменена на:

dR = α dT R s (6b)

«Температурный коэффициент сопротивления» – α – материала – это увеличение сопротивления резистора 1 Ом из этого материала при повышении температуры 9 0433 1 o С .

Пример – сопротивление медной проволоки в жаркую погоду

Медная проволока с сопротивлением 0,5 кОм при нормальной рабочей температуре 20 o C в жаркую солнечную погоду нагревается до 80 o C . Температурный коэффициент для меди составляет 4,29 x 10 -3 (1/ o C) , а изменение сопротивления можно рассчитать как

dR = ( 4,29 x 10 -3 1/ o C) ((80 o C) – (20 o C) ) (0.5 кОм)

= 0,13 (кОм)

Результирующее сопротивление медного провода в жаркую погоду будет

R = (0,5 кОм) + (0,13 кОм)

= 0,63 ( кОм)

= 630 (Ом)

Пример – сопротивление угольного резистора при изменении температуры

Угольный резистор с сопротивлением 1 кОм при температуре 20 o C нагревается до 120 o С .Температурный коэффициент для углерода отрицательный. -4,8 x 10 -4 (1/ o C) – сопротивление уменьшается с повышением температуры.

Изменение сопротивления можно рассчитать как

dR = ( -4,8 x 10 -4 1/ o C) ((120 o C) – (20 o C) ) (1 кОм)

= – 0,048 (кОм)

Результирующее сопротивление резистора будет

R = (1 кОм) – (0.048 кОм)

= 0,952 (кОм)

= 952 (Ом)

Калькулятор зависимости сопротивления от температуры

Этот счетчик можно использовать для расчета сопротивления проводника в зависимости от температуры.

R с сопротивление (10 3 (Ом)

α температурный коэффициент (10 -3 1/ o)

dt изменение температуры ( o C)

Температурные поправочные коэффициенты для сопротивления проводника

9000
Температура проводника
  • 36 (° C) Преобразовать в 20 ° C
  • Обратно в преобразовать из 20 ° C
    5 1.064 0,940
    6 1,059 0,944
    7 1,055 0,948
    8 1,050
    10 1.042 0.960
    11 1.037 0.964
    12 1.033 0.968
    13 1.029 0.972
    14 1.025 0,976
    15 1.020 0.980
    1,012 0,988
    18 1,008 0,992
    19 1,004 0,996
    20 1.000 1.000
    21 0,996 1.004
    22 0,992 1.008
    23 0.988 1.012 1.012 1.012
    25 0,980 1,020
    26 0,977 1,024
    27 0,973 1.028
    28 0,969 1,032
    29 0,965 1,036
    30 0,962 1,040
    0,954 1,048
    33 0,951 1,052

    Электрическое сопротивление – гипертекст по физике

    Обсуждение

    введение

    Йех! Что за беспорядок.

    Проводимость: С. Грей, 1729 – Сопротивление: Георг Симон Ом, 1827.

    Обычная версия…

    I V

    ..
    Я = В В = ИК р = В
    р Я

    Вариабельность…

    • количество: сопротивление R
      единица: Ом [Ом] Георг Ом (1787–1854) Германия

    Причудливая версия (магнитогидродинамическая версия?)…

    J E

    .
    J = σ E E = ρ J

    Добро пожаловать в символ ада…

    Электрические характеристики
    количество символ единица СИ символ собственности…
    сопротивление р Ом Ом объект
    проводимость г siemens S
    удельное сопротивление ρ Омметр Ом · м материалов
    проводимость σ сименса на метр См / м

    Закон Ома не является серьезным законом.Это непростая физика. Разумные материалы и устройства подчиняются ему, но есть множество мошенников, которые этого не делают.

    резисторы

    Плохая выпивка портит наши молодые кишки, но водка идет хорошо.

    Лучше постройте крышу над гаражом, пока фургон не намок.

    Коды маркировки резисторов и конденсаторов
    цвет цифра множитель допуск tcr (10 −6 / К)
    нет ± 20%
    розовый 10 −3
    серебро 10 -2 ± 10%
    золото 10 -1 ± 5%
    черный 0 10 0+ ± 250
    коричневый 1 10 1+ ± 1% ± 100
    красный 2 10 2+ ± 2% ± 50
    оранжевый 3 10 3+ ± 0.05% ± 15
    желтый 4 10 4+ ± 0,02% ± 25
    зеленый 5 10 5+ ± 0,50% ± 20
    синий 6 10 6+ ± 0,25% ± 10
    фиолетовый 7 ± 0.10% ± 5
    серый 8 ± 0,01% ± 1
    белый 9

    материалы

    Сопротивление и удельное сопротивление. Факторы, влияющие на сопротивление в проводящем проводе.

    Проводники и изоляторы

    Лучшие электрические проводники: серебро, медь, золото, алюминий, кальций, бериллий, вольфрам

    Сопротивление и проводимость взаимны.

    Электропроводность металлов – это статистическая / термодинамическая величина.

    Сопротивление определяется рассеянием электронов. Чем больше рассеяние, тем выше сопротивление.

    где…

    σ = Электропроводность [См / м]
    n = плотность свободных электронов [э / м 3 ]
    e = заряд электрона (1.60 × 10 −19 Кл)
    м e = масса электрона (9.11 × 10 −31 кг)
    v среднеквадратичное значение = Среднеквадратичная скорость электронов [м / с]
    ℓ = средняя длина свободного пробега [м]

    Графит

    Кому принадлежит эта идея? Нихром был изобретен в 1906 году, что сделало возможным электрические тостеры.

    Полимеры электропроводящие.

    Удельное сопротивление выбранных материалов (~ 300 K)
    (Обратите внимание на разницу в единицах измерения между металлами и неметаллами.)

    металлы ρ (нОм м)
    алюминий 26,5
    латунь 64
    хром 126
    медь 17,1
    золото 22,1
    утюг 96,1
    свинец 208
    литий 92.8
    ртуть (0 ° C) 941
    марганец 1440
    нихром 1500
    никель 69,3
    палладий 105,4
    платина 105
    плутоний 1414
    серебро 15,9
    припой 150
    сталь, гладкая 180
    сталь, нержавеющая 720
    тантал 131
    банка (0 ° C) 115
    титан (0 ° C) 390
    вольфрам 52.8
    уран (0 ° C) 280
    цинк 59
    неметаллы ρ (Ом · м)
    оксид алюминия (14 ° C) 1 × 10 14
    оксид алюминия (300 ° C) 3 × 10 11
    оксид алюминия (800 ° C) 4 × 10 6
    углерод аморфный 0.35
    карбон, алмаз 2,7
    углерод, графит 650 × 10 −9
    Оксид индия и олова, тонкая пленка 2000 × 10 −9
    германий 0,46
    пирекс 7740 40 000
    кварцевый 75 × 10 16
    кремний 640
    диоксид кремния (20 ° C) 1 × 10 13
    диоксид кремния (600 ° C) 70 000
    диоксид кремния (1300 ° C) 0.004
    вода, жидкость (0 ° C) 861 900
    вода, жидкость (25 ° C) 181 800
    вода, жидкость (100 ° C) 12,740

    температура

    Общее правило – удельное сопротивление увеличивается с увеличением температуры в проводниках и уменьшается с увеличением температуры в изоляторах. К сожалению, для описания этих отношений не существует простой математической функции.

    Температурную зависимость удельного сопротивления (или обратной проводимости) можно понять только с помощью квантовой механики. Точно так же, как материя представляет собой совокупность микроскопических частиц, называемых атомами, а луч света – это поток микроскопических частиц, называемых фотонами, тепловые колебания в твердом теле представляют собой рой микроскопических частиц, называемых фононами . Электроны пытаются дрейфовать к положительному полюсу батареи, но фононы продолжают врезаться в них.Случайное направление этих столкновений нарушает попытку организованного движения электронов против электрического поля. Отклонение или рассеяние электронов на фононах – один из источников сопротивления. С повышением температуры количество фононов увеличивается, а вместе с ним и вероятность столкновения электронов и фононов. Таким образом, когда температура повышается, сопротивление повышается.

    Для некоторых материалов удельное сопротивление линейно зависит от температуры.

    ρ = ρ 0 (1 + α ( T T 0 ))

    Удельное сопротивление проводника увеличивается с температурой.В случае меди зависимость между удельным сопротивлением и температурой примерно линейна в широком диапазоне температур.

    Для других материалов лучше работает соотношение сил.

    ρ = ρ 0 ( T / T 0 ) μ

    Удельное сопротивление проводника увеличивается с температурой. В случае вольфрама зависимость между удельным сопротивлением и температурой лучше всего описывается соотношением мощности.

    см. Также: сверхпроводимость

    разное

    магнитосопротивление

    фотопроводимость

    жидкости

    электролиты

    газы

    пробой диэлектрика

    плазма

    микрофоны

    Угольный микрофон – ничто задом наперед

    Микрофоны и принцип их работы
    тип звуков производят
    изменений в…
    , что вызывает
    изменений в…
    , что приводит к
    изменений…
    углерод Плотность гранул сопротивление напряжение
    конденсатор сепаратор пластин емкость напряжение
    динамический Расположение змеевика флюс напряжение
    пьезоэлектрический компрессия поляризация напряжение

    Электропроводность металлов, отсортированная по удельному сопротивлению

     Исходный код:
     1 - CSNDT
     2 - Руководство по вихретоковым испытаниям методом вихретокового контроля
     3 - Журнал NDT, сентябрь / октябрь 1955 г., статья Косгроува
    
    ОКАЗЫВАТЬ СОПРОТИВЛЕНИЕ.КОНД. ИСТОЧНИК
    Ом-м SIEMENS / м% КОД IACS МАТЕРИАЛ
    -------------------------------------------------- --------------------------------
    1.591E-08 6.287E + 07 108.40 1 Серебро, чистое
    1.642E-08 6.090E + 07 105.00 2 Серебро, чистое
    1.664E-08 6.009E + 07103.60 1 Медь, чистая
    1.707E-08 5.858E + 07 101.00 1 Медь, электролитический вязкий пек (отожженный)
    1.724E-08 5.800E + 07 100.00 2 Медь, чистая
    2.028E-08 4.930E + 07 85.00 1 Медь раскисленная (отожженная)
    2.349E-08 4.257E + 07 73.40 1 Золото
    2.463E-08 4.060E + 07 70.00 2 Золото, чистое
    2.655E-08 3.767E + 07 64.94 1 Алюминий, 99,99%
    2.826E-08 3.538E + 07 61.00 2 Алюминий чистый
    2.871E-08 3.483E + 07 60.00 - 60.10 3 Алюминиевый сплав, 7072
    2.903E-08 3.445E + 07 57.00 - 61.80 3 Алюминиевый сплав, 1100
    2.922E-08 3.422E + 07 59.00 1 Алюминий, 2S Конд. «0»
    3.025E-08 3.306E + 07 57.00 1 Алюминий, 2S Конд. h28
    3.073E-08 3.254E + 07 55.70 - 56.50 3 Алюминиевый сплав, 6951-0
    3.079E-08 3.248E + 07 56.00 1 Позолоченный металл (отожженный)
    3.135E-08 3.190E + 07 55.00 1 Алюминий, A51S Cond. «0»
    3.184E-08 3.141E + 07 53.30 - 55.00 3 Алюминиевый сплав, 6151-0
    3.235E-08 3.091E + 07 52.30 - 54.30 3 Алюминиевый сплав, 4043-F
    3.250E-08 3.077E + 07 53.00 - 53.10 3 Алюминиевый сплав, 6951-F
    3.281E-08 3.048E + 07 52.30 - 52.80 3 Алюминиевый сплав, 5005
    3.435E-08 2.912E + 07 50.10 - 50.30 3 Алюминиевый сплав, X3005-0
    3.448E-08 2.900E + 07 50.00 1 Алюминий, 24S Конд. «0»
    3.448E-08 2.900E + 07 50.00 1 Алюминий, 3S Cond. «0»
    3.448E-08 2.900E + 07 50.00 1 Алюминий, 18S Конд. «0»
    3.448E-08 2.900E + 07 50.00 1 Алюминий, 14S Конд. «0»
    3.473E-08 2.880E + 07 48,60 - 50,70 3 Алюминиевый сплав, 2014-F и -0
    3.490E-08 2.865E + 07 49.30 - 49.50 3 Алюминиевый сплав, 2017-F
    3.515E-08 2.845E + 07 48.30 - 49.80 3 Алюминиевый сплав, 5050
    3.519E-08 2.842E + 07 47.00 - 51.00 3 Алюминиевый сплав, 6062-F
    3.540E-08 2.825E + 07 48.70 1 Кальций
    3.592E-08 2.784E + 07 48.00 1 Bronze Phos., 1,25% Phos. Оценка E
    3.592E-08 2.784E + 07 48.00 1 Phos.Бронза, 1,25% Phos. Оценка E
    3.618E-08 2.764E + 07 46.80 - 48.50 3 Алюминиевый сплав, 2024-F
    3.649E-08 2.741E + 07 44.70 - 49.80 3 Алюминиевый сплав, 3003-0
    3.661E-08 2.732E + 07 44.70 - 49.50 3 Алюминиевый сплав, 6062-T6
    3.736E-08 2.677E + 07 44.50 - 47.80 3 Алюминиевый сплав, 7075-F
    3.769E-08 2.654E + 07 45.50 - 46.00 3 Алюминиевый сплав, X7178-F и -0
    3.798E-08 2.633E + 07 42.30 - 48.50 3 Алюминиевый сплав, 6061-F и -0
    3.831E-08 2.610E + 07 45.00 1 Алюминий, 17S Конд. «0»
    3.831E-08 2.610E + 07 45.00 1 Алюминий, 53S Конд. «0»
    3.831E-08 2.610E + 07 45.00 1 Алюминий, 61S Конд. «0»
    3.831E-08 2.610E + 07 45.00 1 Алюминий, A51S Cond. Т4 и Т6
    3.831E-08 2.610E + 07 45.00 1 Алюминиевый сплав, 750
    3.861E-08 2.590E + 07 42.30 - 47.00 3 Алюминиевый сплав, 5357
    3.861E-08 2.590E + 07 37.80 - 51.50 3 Алюминиевый сплав, 3003-h24 и -h22
    3.879E-08 2.578E + 07 43.90 - 45.00 3 Алюминиевый сплав, 6151-T6
    3.918E-08 2.552E + 07 44.00 1 бронза, коммерческая (отожженная)
    3.918E-08 2.552E + 07 44.00 1 Алюминиевый сплав, 142 Sand Cond. T21
    3.941E-08 2.538E + 07 43.50 - 44.00 3 Алюминиевый сплав, 6062-T4
    3.950E-08 2.532E + 07 39.30 - 48.00 3 Алюминиевый сплав, 6053
    4.000E-08 2.500E + 07 43.10 1 Бериллий
    4.010E-08 2.494E + 07 43.00 1 Алюминиевый сплав, 355 Sand Cond.T51
    4.010E-08 2.494E + 07 43.00 1 Алюминиевый сплав, 356 Sand Cond. T51
    4.043E-08 2.474E + 07 37.80 - 47.50 3 Алюминиевый сплав, 3003-h34 и -h38
    4.066E-08 2.459E + 07 40.00 - 44.80 3 Алюминиевый сплав, 6061-T6 и -T9
    4.066E-08 2.459E + 07 41.50 - 43.30 3 Алюминиевый сплав, 6151-T4
    4.081E-08 2.451E + 07 42.10 - 42.40 3 Алюминиевый сплав, 2127-T4
    4.105E-08 2.436E + 07 42.00 1 Алюминиевый сплав, 355 Sand Cond.T7
    4.105E-08 2.436E + 07 42.00 1 Алюминиевый сплав, 43 (отожженный)
    4.105E-08 2.436E + 07 42.00 1 Алюминий, 3S Cond. H 12
    4.105E-08 2.436E + 07 42.00 1 Бронза, коммерческий свинец
    4.105E-08 2.436E + 07 42.00 1 Коммерческая бронза с содержанием свинца
    4.160E-08 2.404E + 07 39.40 - 43.50 3 Алюминиевый сплав, 3004
    4.205E-08 2.378E + 07 41.00 1 Алюминий, 3S Cond. H 14
    4.205E-08 2.378E + 07 41.00 1 Алюминиевый сплав, 122 Sand Cond.Т2
    4.289E-08 2.332E + 07 40.20 3 Алюминиевый сплав, 2618
    4.310E-08 2.320E + 07 40.00 1 Алюминий, 24S Конд. T6
    4.310E-08 2.320E + 07 40.00 1 Алюминий, 18S Конд. T61
    4.310E-08 2.320E + 07 40.00 1 Алюминий, 11S Конд. Т3
    4.310E-08 2.320E + 07 40.00 1 Алюминий, 14S Конд. T6
    4.310E-08 2.320E + 07 40.00 1 Алюминий, 3S Cond. H 18
    4.310E-08 2.320E + 07 40.00 1 Алюминий, 32S Конд. «0»
    4.310E-08 2.320E + 07 40.00 1 Алюминий, 53S Конд. Т4 и Т6
    4.310E-08 2.320E + 07 40.00 1 Алюминий, 61S Cond. Т4 и Т6
    4.415E-08 2.265E + 07 37.60 - 40.50 3 Алюминиевый сплав, 6061-T4
    4.421E-08 2.262E + 07 39.00 1 Алюминиевый сплав, 356 Sand Cond. T6
    4.421E-08 2.262E + 07 39.00 1 Алюминиевый сплав, 355 Пермь. Mold Cond. T6
    4.421E-08 2.262E + 07 39.00 1 Алюминиевый сплав, 13
    4.432E-08 2.256E + 07 38.90 1 Бериллий
    4.438E-08 2.253E + 07 38.00 - 39.70 3 Алюминиевый сплав, 2014-T6
    4.467E-08 2.239E + 07 38.60 1 Магний, чистый
    4.490E-08 2.227E + 07 38.40 1 Родий
    4.610E-08 2.169E + 07 37.40 3 Алюминиевый сплав, 2218-T61
    4.660E-08 2.146E + 07 37.00 1 Алюминиевый сплав, 142 Sand Cond. T77
    4.660E-08 2.146E + 07 37.00 1 Алюминиевый сплав, 195 конд. T62
    4.660E-08 2.146E + 07 37.00 2 Магний
    4.660E-08 2.146E + 07 37.00 1 Алюминиевый сплав, 360
    4.660E-08 2.146E + 07 37.00 1 Алюминиевый сплав, 355 Sand Cond. T61
    4.660E-08 2.146E + 07 37.00 1 Алюминиевый сплав, 43 литой
    4.660E-08 2.146E + 07 37.00 1 Алюминиевый сплав, A 108
    4.660E-08 2.146E + 07 37.00 1 Латунь, красная (отожженная)
    4.756E-08 2.103E + 07 36.00 - 36.50 3 Алюминиевый сплав, 2011-T3
    4.789E-08 2.088E + 07 36.00 1 Алюминиевый сплав, B 195 Cond.T6
    4.789E-08 2.088E + 07 36.00 1 Цельнолитой алюминий, конд. Sol. H.T. И стресс
    4.789E-08 2.088E + 07 36.00 1 Алюминиевый сплав, 355 Sand Cond. T6
    4.816E-08 2.076E + 07 35.30 - 36.30 3 Алюминиевый сплав, 4032-T6
    4.843E-08 2.065E + 07 33.60 - 37.60 3 Алюминиевый сплав, 5052
    4.926E-08 2.030E + 07 35.00 1 Алюминиевый сплав, 195 конд. Т4
    4.926E-08 2.030E + 07 35.00 1 Алюминиевый сплав, 214
    4.926E-08 2.030E + 07 35.00 1 Алюминиевый сплав, 40E
    4.926E-08 2.030E + 07 35.00 1 Алюминий, 52S Конд. «0» и H 38
    4.926E-08 2.030E + 07 35.00 1 Алюминий, 32S Конд. T6
    4.926E-08 2.030E + 07 35.00 1 Алюминиевый сплав, B 195 Cond. Т4
    4.998E-08 2.001E + 07 34.50 1 Магний (деформируемые сплавы)
    5.071E-08 1.972E + 07 34.00 1 Алюминиевый сплав, 142 Sand Cond. T571
    5.071E-08 1.972E + 07 34.00 1 Алюминиевый сплав, 122 Пермь.Форма как литая
    5.124E-08 1.952E + 07 32.50 - 34.80 3 Алюминиевый сплав, 2014-T3 и -T4
    5.209E-08 1.920E + 07 31.40 - 34.80 3 Алюминиевый сплав, 7075-T6
    5.225E-08 1.914E + 07 33.00 1 Молибден
    5.225E-08 1.914E + 07 33.00 1 Алюминиевый сплав, 122 Sand Cond. T61
    5.225E-08 1.914E + 07 33.00 1 Алюминиевый сплав, A214
    5.289E-08 1.891E + 07 32.60 1 Иридий
    5.330E-08 1.876E + 07 28.60 - 36.10 3 Алюминиевый сплав, 2024-T3
    5.388E-08 1.856E + 07 32.00 1 Латунь, низкая (отожженная)
    5.388E-08 1.856E + 07 32.00 1 Алюминиевый сплав, 142 Пермь. Mold Cond. T61
    5.388E-08 1.856E + 07 27.00 - 37.00 3 Алюминиевый сплав, 7075-W
    5.388E-08 1.856E + 07 32.00 2 Алюминиевый сплав, 7075-T6
    5.448E-08 1.836E + 07 30.50 - 32.80 3 Алюминиевый сплав, 5154
    5.491E-08 1.821E + 07 31.40 1 Вольфрам
    5.562E-08 1.798E + 07 31.00 1 Алюминиевый сплав, 108
    5.747E-08 1.740E + 07 30.00 1 Алюминий, 24S Конд. Т4
    5.747E-08 1.740E + 07 30.00 1 Алюминий Allcast, Sol H.T. и в возрасте
    5.747E-08 1.740E + 07 30.00 1 Алюминий, 17S Конд. Т4
    5.747E-08 1.740E + 07 30.00 1 Алюминиевый сплав, 113
    5.747E-08 1.740E + 07 30.00 1 Алюминиевый сплав, R 317
    5.747E-08 1.740E + 07 30.00 1 Алюминий, 75S Конд. T6
    5.747E-08 1.740E + 07 30.00 1 Цельнолитой алюминий со снятым напряжением
    5.766E-08 1.734E + 07 28.80 - 31.00 3 Алюминиевый сплав, 2024-T4
    5.805E-08 1.723E + 07 26.80 - 32.60 3 Алюминиевый сплав, X7178-W и T6
    5.884E-08 1.699E + 07 29.10 - 29.50 3 Алюминиевый сплав, 2024-T36
    5.945E-08 1.682E + 07 29.00 1 Алюминиевый сплав, A 132 Cond. T551
    5.945E-08 1.682E + 07 29.00 1 Алюминий, красный X-8 Cond. Снятие стресса
    5.945E-08 1.682E + 07 29.00 1 Алюминий, 56S Конд. «0»
    5.945E-08 1.682E + 07 29.00 2 Цинк
    5.956E-08 1.679E + 07 28.10 - 29.80 3 Алюминиевый сплав, 5056
    6.158E-08 1.624E + 07 28.00 1 Цинк, товарный прокат
    6.158E-08 1.624E + 07 28.00 1 Алюминиевый сплав, 319 Пермь. Форма
    6.158E-08 1.624E + 07 28.00 1 Патрон латунный (отожженный)
    6.158E-08 1.624E + 07 28.00 1 Muntz Metal (отожженный)
    6.158E-08 1.624E + 07 28.00 1 Алюминиевый сплав, 85
    6.158E-08 1.624E + 07 28.00 1 Латунь, картридж (отожженный)
    6.247E-08 1.601E + 07 27.60 1 Кобальт
    6.386E-08 1.566E + 07 27.00 1 Алюминиевый сплав, C113
    6.386E-08 1.566E + 07 27.00 1 Цинк, литье под давлением
    6.386E-08 1.566E + 07 27.00 1 Алюминий, 56S Конд. H 38
    6.386E-08 1.566E + 07 27.00 1 Алюминий Allcast, литой
    6.386E-08 1.566E + 07 27.00 1 Алюминиевый сплав, 319 Песок
    6.386E-08 1.566E + 07 27.00 1 Латунь, желтая (отожженная)
    6.386E-08 1.566E + 07 27.00 1 алюминиевый сплав, 380
    6.631E-08 1.508E + 07 26.00 1 Латунь с низким содержанием свинца (отожженная)
    6.631E-08 1.508E + 07 26.00 1 Латунь, свинцовая морская (отожженная)
    6.631E-08 1.508E + 07 26.00 1 Латунь, военно-морская (отожженная)
    6.631E-08 1.508E + 07 26.00 1 Алюминиевый сплав, красный X-8 в литом виде
    6.842E-08 1.462E + 07 25.20 1 Кадмий
    6.842E-08 1.462E + 07 25.20 1 Никель, чистый (электролитический)
    6.897E-08 1.450E + 07 25.00 1 свинцовая желтая латунь
    6.897E-08 1.450E + 07 25.00 1 Цинк, литье под давлением
    6.897E-08 1.450E + 07 25.00 1 Латунь, желтый свинец
    7.009E-08 1.427E + 07 24.60 1 Admiralty Metal (отожженный)
    7.184E-08 1.392E + 07 24.00 2 Латунь, Адмиралтейство
    7.184E-08 1.392E + 07 24.00 1 Алюминиевый сплав, 218
    7.184E-08 1.392E + 07 24.00 1 Марганцевая бронза (отожженная)
    7.184E-08 1.392E + 07 24.00 2 Адмиралтейство Латунь
    7.184E-08 1.392E + 07 24.00 1 Марганцевая бронза (отожженная)
    7.496E-08 1.334E + 07 23.00 1 Латунь, алюминий (отожженный)
    7.496E-08 1.334E + 07 23.00 1 Алюминиевая латунь (отожженная)
    7.595E-08 1.317E + 07 22.70 1 Рутений
    8.210E-08 1.218E + 07 21.00 1 Алюминиевый сплав, 220
    8.210E-08 1.218E + 07 21.00 1 Бериллиевая медь, конд. В
    8.210E-08 1.218E + 07 21.00 1 Медь бериллий, конд. В
    8.535E-08 1.172E + 07 20.20 1 Литий
    9.473E-08 1.056E + 07 18.20 1 Осмий
    9.579E-08 1.044E + 07 18.00 1 Никель "А"
    9.579E-08 1.044E + 07 18.00 1 Phos. Бронза, 5% Phos. Оценка отлично
    9.579E-08 1.044E + 07 18.00 2 Утюг
    9.579E-08 1.044E + 07 18.00 1 Латунь, полукрасный свинец
    9.579E-08 1.044E + 07 18.00 1 Полукрасная латунь с содержанием свинца
    9.579E-08 1.044E + 07 18.00 1 Bronze Phos., 5% Phos.Оценка отлично
    9.852E-08 1.015E + 07 17.50 1 бронзовый алюминий, 5% алюминия (отожженный)
    9.852E-08 1.015E + 07 17.50 1 Алюминий - бронза, 5% алюминия (отожженный)
    1.002E-07 9.976E + 06 17.20 1 Магний, A231
    1.014E-07 9.860E + 06 17.00 1 Бериллиевая медь, конд. А
    1.014E-07 9.860E + 06 17.00 1 Медь бериллий, конд. "А"
    1.039E-07 9.628E + 06 16.60 1 Серебро, оловянный припой
    1.039E-07 9.628E + 06 16.60 1 олово, серебряный припой
    1.039E-07 9.628E + 06 16.60 1 Припой, олово серебро
    1.059E-07 9.442E + 06 16.28 1 Платина
    1.078E-07 9.280E + 06 16.00 1 Палладий
    1.105E-07 9.048E + 06 15.60 1 Игнот железа (99,9% Fe)
    1.105E-07 9.048E + 06 15.60 1 Слиток железа (99,9% Fe)
    1.149E-07 8.700E + 06 15.00 1 Олово, чистое
    1.149E-07 8.700E + 06 15.00 1 Магниевые сплавы (литые)
    1.181E-07 8.468E + 06 14.60 1 Магний, A2 80
    1.197E-07 8.352E + 06 14.40 1 Селен
    1.232E-07 8.120E + 06 14.00 1 Бронза, свинцовое олово
    1.232E-07 8.120E + 06 14.00 1 Оловянная бронза с содержанием свинца
    1.232E-07 8.120E + 06 14.00 1 Олово (свинец), бронза
    1.232E-07 8.120E + 06 14.00 1 Алюминий - бронза
    1.232E-07 8.120E + 06 14.00 1 Бронза Алюминий
    1.240E-07 8.062E + 06 13.90 1 Тантал
    1.268E-07 7.888E + 06 13.60 1 Никель-платиновые сплавы
    1.268E-07 7.888E + 06 13.60 1 Платина - никелевые сплавы
    1.306E-07 7.656E + 06 13.20 1 Columbium
    1.326E-07 7.540E + 06 13.00 1 Phos. Бронза, 8% Phos. Оценка C
    1.326E-07 7.540E + 06 13.00 1 Bronze Phos., 8% Phos. Оценка C
    1.347E-07 7.424E + 06 12.80 1 Магний, A251
    1.368E-07 7.308E + 06 12.60 1 Алюминий - бронза, 10% алюминия (отожженный)
    1.368E-07 7.308E + 06 12.60 1 бронзовый алюминий, 10% алюминия (отожженный)
    1.379E-07 7.250E + 06 12.50 1 Магний, T454
    1.402E-07 7.134E + 06 12.30 1 Магний, A261
    1.437E-07 6.960E + 06 12.00 1 Бронза, кремний типа B (отожженный)
    1.437E-07 6.960E + 06 12.00 1 Кремниевая бронза, тип B (отожженная)
    1.437E-07 6.960E + 06 12.00 1 Латунь, высокопрочная желтая
    1.449E-07 6.902E + 06 11.90 1 оловянный припой на основе сурьмы
    1.449E-07 6.902E + 06 11.90 1 оловянный припой (сурьма)
    1.449E-07 6.902E + 06 11.90 1 Припой, сурьмяное олово
    1.486E-07 6.728E + 06 11.60 1 Платина, коммерческая
    1.553E-07 6.438E + 06 11.10 1 Белый металл
    1.567E-07 6.380E + 06 11.00 1 Phos. Бронза, 10% Phos. Оценка D
    1.567E-07 6.380E + 06 11.00 1 Подшипник из олова из бронзы и свинца
    1.567E-07 6.380E + 06 11.00 2 Бронза, Phos.
    1.567E-07 6.380E + 06 11.00 1 Bronze Phos., 10% Phos. Оценка D
    1.567E-07 6.380E + 06 11.00 2 Phos. Бронза
    1.567E-07 6.380E + 06 11.00 1 Оловянный подшипник с содержанием свинца, бронза
    1.567E-07 6.380E + 06 11.00 1 припой, 50-50 мягкий
    1.596E-07 6.264E + 06 10.80 1 Магний, AZ80BTA
    1.611E-07 6.206E + 06 10.70 1 Сталь, литая
    1.759E-07 5.684E + 06 9.80 1 припой, 20-80 мягкий
    1.771E-07 5.647E + 06 9.74 4 Медь 90%, никель 10%
    1.895E-07 5.278E + 06 9.10 1 Платино-иридиевые сплавы
    1.895E-07 5.278E + 06 9.10 1 Иридий-платиновые сплавы
    1.916E-07 5.220E + 06 9.00 1 Магниевые литейные сплавы
    1.959E-07 5.104E + 06 8.80 1 припой, 5-95 мягкий
    1.959E-07 5.104E + 06 8.80 1 Хром
    2.053E-07 4.872E + 06 8.40 2 свинца
    2.077E-07 4.814E + 06 8.30 1 Свинец, Корродин
    2.077E-07 4.814E + 06 8.30 1 Корродин Свинец
    2.188E-07 4.570E + 06 7.88 1 Свинец, 1% сурьмы (закаленная и выдержанная)
    2.188E-07 4.570E + 06 7.88 1 Сурьма Свинец, 1% (закаленная и выдержанная)
    2.239E-07 4.466E + 06 7.70 1 Свинец, твердый (закаленный и выдержанный)
    2.330E-07 4.292E + 06 7.40 1 Никель-платиновые сплавы
    2.330E-07 4.292E + 06 7.40 1 Платина - никелевые сплавы
    2.463E-07 4.060E + 06 7.00 1 Кремниевая бронза, тип A (отожженная)
    2.463E-07 4.060E + 06 7.00 1 Бронза, кремний типа A (отожженный)
    2,612E-07 3,828E + 06 6,60 1 Ванадий
    2.874E-07 3.480E + 06 6.00 1 Серебро, 18% никель, сплав A
    2.874E-07 3.480E + 06 6.00 1 Уран
    2.874E-07 3.480E + 06 6.00 1 Никель, 18% никель Sil
    2.874E-07 3.480E + 06 6.00 1 Баббит, свинцовая база
    3.135E-07 3.190E + 06 5.50 1 Платина - рутений (ювелирный сорт)
    3.135E-07 3.190E + 06 5.50 1 Рутений - Платина (ювелирного качества)
    3.316E-07 3.016E + 06 5.20 1 Сплавы платины и иридия, 18% никеля
    3.316E-07 3.016E + 06 5.20 1 Иридий-платиновые сплавы, 18% никелевого серебра
    3,748E-07 2,668E + 06 4,60 1 Никель 30% - Купро
    3,748E-07 2,668E + 06 4,60 1 Купро-никель 30%
    3.831E-07 2.610E + 06 4.50 2 Никель 30%, медь 70%
    3.831E-07 2.610E + 06 4.50 2 Медь 70%, никель 30%
    3.918E-07 2.552E + 06 4.40 1 Сурьма
    4.105E-07 2.436E + 06 4.20 1 Олово, фольга
    4.105E-07 2.436E + 06 4.20 1 Цирконий
    4.310E-07 2.320E + 06 4.00 1 Рутений-платина (контактный сорт)
    4.310E-07 2.320E + 06 4.00 1 Платина - рутений (контактный сорт)
    4.789E-07 2.088E + 06 3.60 2 Монель
    4.816E-07 2.076E + 06 3.58 1 Монель
    4.898E-07 2.042E + 06 3.52 1 Константан
    5.071E-07 1.972E + 06 3.40 2 Цирконий
    5.562E-07 1.798E + 06 3.10 2 Титан
    5.945E-07 1.682E + 06 2.90 1 Сталь высоколегированная
    6.897E-07 1.450E + 06 2.50 1 Сталь, нержавеющая сталь 304
    6.897E-07 1.450E + 06 2.50 2 Сталь, нержавеющая сталь 304
    7.184E-07 1.392E + 06 2.40 1 Сталь, 347 Нержавеющая сталь
    7.184E-07 1.392E + 06 2.40 2 Циркалой - 2
    7.496E-07 1.334E + 06 2.30 1 Сталь, нержавеющая сталь 316
    7.837E-07 1.276E + 06 2.20 1 Титан
    9.579E-07 1.044E + 06 1.80 1 Меркурий
    9.796E-07 1.021E + 06 1.76 1 Инконель
    1.014E-06 9.860E + 05 1.70 2 Инконель 600
    1.149E-06 8.700E + 05 1.50 1 Хастеллой "D"
    1.149E-06 8.700E + 05 1.50 2 Хастеллой "X"
    1.232E-06 8.120E + 05 1.40 2 Васпалой
    1.232E-06 8.120E + 05 1.40 1 Хастеллой "A"
    1.326E-06 7.540E + 05 1.30 1 Хастеллой "B" и "C"
    1.724E-06 5.800E + 05 1.00 2 Титан, 6АЛ-4В
    7.837E-06 1.276E + 05 0.22 1 Графит 

    6.8A: Электропроводность и удельное сопротивление

    Удельное электрическое сопротивление и проводимость являются важными характеристиками материалов. Разные материалы обладают разной проводимостью и удельным сопротивлением. Электропроводность основана на свойствах электрического переноса. Их можно измерить несколькими методами, используя различные инструменты. Если электричество легко проходит через материал, этот материал имеет высокую проводимость.Некоторые материалы с высокой проводимостью включают медь и алюминий. Электропроводность – это мера того, насколько легко электричество проходит через материал.

    Электропроводность от удельного сопротивления

    Электропроводность и удельное сопротивление обратно пропорциональны друг другу. Когда проводимость низкая, сопротивление высокое. Когда удельное сопротивление низкое, проводимость высокая. Уравнение выглядит следующим образом:

    \ [\ rho = \ dfrac {1} {\ sigma} \]

    где

    • Удельное сопротивление обозначается как \ (\ rho \) и измеряется в Ом-метрах (\ (Ом · м \)),
    • Электропроводность обозначается как \ (\ sigma \) и измеряется в Siemens (\ (1 / Ом · м \)).

    Поскольку проводимость является мерой того, насколько легко течет электричество, удельное электрическое сопротивление измеряет, насколько материал сопротивляется потоку электричества.

    Свойства электротранспорта

    Проще говоря, электричество – это движение электронов в материале. Когда электроны движутся через материал, он вступает в контакт с атомами в материале. Столкновения замедляют электроны. Каждое столкновение увеличивает удельное сопротивление материала. Чем легче электроны проходят через материал, тем меньше происходит столкновений и тем выше проводимость.

    При повышении температуры проводимость металлов обычно уменьшается, а проводимость полупроводников увеличивается. Это, конечно, предполагает, что материал однороден, что не всегда так. Вы можете рассчитать удельное сопротивление, используя следующее уравнение

    \ [\ dfrac {E} {J} = ρ \]

    Как вы уже читали, ρ – это символ удельного сопротивления. \ (E \) представляет собой электрическое поле и измеряется в вольтах на метр (В / м). J – плотность тока, выраженная в амперах на квадратный метр (А / м2).Электрическое поле рассчитывается путем деления напряжения на длину l, к которой приложено это напряжение.

    \ [E = \ dfrac {V} {l} \]

    Плотность тока рассчитывается по формуле ниже

    \ [J = \ dfrac {I} {A} \]

    I – это ток, деленный на площадь поперечного сечения A, по которой течет ток.

    Сопротивление против сопротивления

    Удельное сопротивление и сопротивление – это разные вещи. Удельное сопротивление не зависит от размера или формы.Однако сопротивление есть. Вы можете рассчитать сопротивление с помощью приведенного ниже уравнения.

    \ [R = \ dfrac {V} {I} \]

    R относится к сопротивлению и измеряется в Ом. \ (V \) – напряжение, измеряемое в вольтах. Я измеряю ток, и его единица измерения – амперы (А).

    Список литературы

    1. Электропроводность и удельное сопротивление, Хини, Майкл, Электрические измерения, обработка сигналов и дисплеи. Июл 2003 г.

    2. Леви, Питер М., и Шуфэн Чжан. «Электропроводность магнитных многослойных структур». Physical Review Letters 65.13 (1990): 1643-646. Распечатать.

    Проблемы

    1. Какова плотность тока материала с удельным сопротивлением 12 Ом · м и электрическим полем 64 В / м?
    2. Если напряжение 6 В проходит через вещество радиусом 2 м и длиной 3 м, что такое электрическое поле?
    3. Каково электрическое поле материала, когда ток равен 25 А, измеренное сопротивление составляет 78 Ом, плотность тока равна 24 А / м2, а длина протекает ток 100 м?
    4. Материал имеет напряжение 150 В и ширину 24 м.Материал также имеет ток 62 А и проходит расстояние 5 м. Какая проводимость?
    5. Металл изначально имеет электрон, сталкивающийся с каждым пятым атомом, и температура повышается с 6K до 100K. Полупроводник изначально имеет электрон, сталкивающийся с каждым пятым атомом, и температура повышается с 6K до 100K. Какой материал будет иметь большее удельное сопротивление? Почему?

    Ответов на проблемы:

    1. E / J = ρ —> J = E / ρ = 64 В / м / 12 Ом · м = 5.33А / м 2

    2. E = V / l = 6V / 3m = 2V / m

    3. E = V / l

    В = ИК —> E = ИК / l = 25 А x 78 Ом / 100 м = 19,5 В / м

    4. E / J = ρ

    E = об / л

    J = I / A —> ρ = (В / л) / (I / A) = (150 В / 5 м) / (62 A / (24 м x 5 м) = 58 Ом · м

    ρ = 1 / σ —> 1 / ρ = σ = 1/58 Ом · м

    5. Материал, имеющий наибольшее удельное сопротивление, – это металл, потому что с повышением температуры у металлов более вероятно увеличение удельного сопротивления, а у полупроводников обычно уменьшается удельное сопротивление при повышении температуры.

    Авторы и авторство

    • Майкл Форд (UCD) и Александра Кристман (UCD)

    Общие сведения об измерениях объемного удельного сопротивления

    Расчет Ом-см, Ом на квадрат или толщины образца, когда известны два из трех значений
    & Что представляет собой тонкая пленка по сравнению с объемным материалом?

    Термин Ом-см («Ом-сантиметр») относится к измерению «объемного» удельного сопротивления (также известного как «объемное» удельное сопротивление) полупроводникового материала.Значение в Ом-см – это внутреннее сопротивление данного материала независимо от формы или размера.

    Многие материалы, которые являются толстыми или относительно большими, такие как кремниевые слитки (в отличие от тонкой пленки или слоя), могут быть измерены с помощью четырехточечного зонда для определения объемного удельного сопротивления. Сопротивление листа выражается как «Ом на квадрат» и используется при измерении слоя или тонкой пленки полупроводящего материала.

    Определение того, что составляет тонкую пленку, основано на соотношении между расстоянием между концами одного из четырех точечных зондов и толщиной слоя.Сопротивление листа данного материала будет меняться в зависимости от толщины слоя. Ниже кратко объясняется, как рассчитать сопротивление листа, объемное сопротивление и толщину тонкой пленки, если известны только два из этих трех свойств.

    Сопротивление листа (Ом на квадрат), умноженное на толщину материала в сантиметрах, равно объемному удельному сопротивлению (Ом-см).

    Ответы на вопросы Джона Кларка, К. Энга, М.I.Mech.E., F.B.H.I., основатель Jandel Engineering Ltd.

    В. Какой толщины может быть образец и можно ли его измерять как тонкую пленку, выраженную в омах на квадрат? Другими словами, в какой момент образец становится настолько толстым, что его больше нельзя измерять как тонкую пленку?

    A. Когда толщина превышает 5/8 (62,5%) расстояния между двумя иглами, после чего сопротивление листа требует корректировки более чем на 1%. Итак, 0,625 мм (625 мкм) для головки зонда с шагом иглы 1 мм.

    В. Если я измеряю толстый материал для определения объемного удельного сопротивления, выраженного в Ом-см, какой толщины должен быть образец, чтобы его можно было рассматривать как полубесконечный объем, для которого мне не нужно применять поправочный коэффициент?

    A. Если толщина равна или превышает пятикратное расстояние между зондами, поправочный коэффициент, применяемый к формуле удельного сопротивления (rho) = 2 x pi x s x V / I, меньше 0,1%

    В. Я слышал, что расчеты сопротивления листов все еще применимы при толщине образца до 40% от расстояния между кончиками двух штырей, однако эта информация говорит, что это нормально до 62.5%, что означает, что пластины толщиной до 625 микрон можно измерить с помощью расчетов сопротивления листов. Разве большинство компаний не используют измерения объемного сопротивления при измерении неизолированных кремниевых пластин, большинство из которых имеют толщину около 550 микрон?

    A. Вопрос в том, что вы считаете нормальным. Из графика на http://www.fourpointprobes.com/page16.pdf мы видим, что при t / s = 0,625 поправка составляет 0,9898 – фактически 0,99 и в пределах 1%. Расстояние между наконечниками менее 40% и измерения не нуждаются в корректировке.Я думаю, что большинство компаний измеряют объемное сопротивление своих пластин, но не с помощью уравнения объемного сопротивления – вот почему необходимо знать толщину пластин – если бы они использовали уравнение объемного сопротивления, им не нужно было бы знать пластину. толщина.

    Если у кого-то есть прибор, который предполагает толщину пластины 550 микрон, он может измерить сопротивление листа и умножить результат на 0,055, чтобы получить объемное сопротивление. Из графика на http://www.fourpointprobes.com/page14.pdf может показаться, что если вы измеряете объемную массу на пластине 550 микрон с головкой зонда 1,591 мм, тогда t / s = 0,34 и потребуется поправка 0,25.

    Расчеты
    Заказчик сообщил, что его танталовая пленка была поставлена ​​ему со значением поверхностного сопротивления 8,0389 Ом на квадрат, толщиной пленки 2500 ангстрем и объемным сопротивлением 201,94 мкОм-см. Обычно вы не знали бы все три из них, и поэтому вы могли бы использовать четырехточечный зонд для определения толщины, если было указано объемное удельное сопротивление, или вы могли бы определить объемное удельное сопротивление, если была указана толщина.Если бы у вас не было четырехточечного зонда, но вы знали толщину пленки и объемное удельное сопротивление, вы могли бы рассчитать сопротивление листа образца. Связь между этими значениями следующая:

    Расчет объемного сопротивления на основе сопротивления и толщины листа:
    Толщина слоя в сантиметрах, умноженная на значение сопротивления листа, выраженное в омах на квадрат, равна объемному удельному сопротивлению в Ом-см. Для вышеупомянутого тантала это дает: 0.000025 (толщина в см) x 8,0389 (значение Ом на квадрат) = 0,0002009725, что равно 200,9725 мкОм-см (что отклоняется менее чем на 0,5% от предоставленного значения 201,94 мкОм-см).

    Расчет толщины на основе объемного удельного сопротивления и сопротивления листа:
    Для расчета толщины слоя с использованием предоставленного значения объемного удельного сопротивления и (измеренного) значения сопротивления листа следует разделить объемное сопротивление на значение сопротивления листа. Итак, снова для вышеупомянутого образца тантала 0.00020194 (201,94 мкОм-см) / 8,0389 (Ом на квадрат) = 2,51203522870044404117354364e-5, что составляет 0,00002512035228700 сантиметров, или 2512,0352287 ангстрем (что соответствует ожидаемым 2500 ангстремам).

    Расчет сопротивления листа по толщине пленки и объемному сопротивлению:
    Объемное сопротивление, деленное на толщину слоя в сантиметрах, равняется сопротивлению листа. Итак, для слоя алюминия толщиной 200 микрон (или 0,02 см), поскольку объемное удельное сопротивление алюминия равно 0.-4. Это предполагает, что алюминиевая пленка чистая, поскольку значение объемного удельного сопротивления было взято из периодической таблицы элементов.

    Эти веб-страницы могут быть полезны при выполнении этих расчетов:

    http://onlineconversion.com/length_all.htm (открывается в новом окне)

    http://www.csgnetwork.com/sntodeccalc.html (открывается в новом окне)

    Дополнительные вопросы с ответами Джона Кларка, К. Энга, M.I.Mech.E., F.B.H.I., основателя Jandel Engineering Ltd.

    В. «Каков диапазон объемного удельного сопротивления (Ом-см), который может измерять испытательная установка Jandel RM2 в Ом-см?»

    A. Это регулярно возникает, и на него трудно ответить – позвольте мне привести вам пример, чтобы показать проблему. [Обновление: обратите внимание, что тестовый модуль RM2 был заменен несколько лет назад более новыми версиями тестового модуля Jandel. Текущая версия испытательной установки и все версии, следующие за RM2, , испытательными установками серии RM Jandel, , включают программное обеспечение для ПК , которое упрощает задачу расчета объемного удельного сопротивления пластин и объемных материалов, таких как слитки.7 Ом на квадрат. Объемное удельное сопротивление было бы численно равно сопротивлению листа, если бы образец имел толщину 1 см и был изготовлен из того же материала, из которого был получен показатель сопротивления листа. Трудно определить пределы объемного удельного сопротивления, которые может измерить испытательный блок RM2 – например, мы не смогли измерить объемное удельное сопротивление блока платины толщиной 1 см, потому что он слишком высокопроводящий, чтобы испытательный блок RM2 мог получить показания. . Если бы это была платиновая пленка толщиной 200 ангстрем, мы могли бы легко измерить сопротивление листа, и оно было бы примерно 100 Ом на квадрат.

    Рассмотрим конкретный образец пластины:

    Предположим, что пластина имеет толщину 0,5 мм и ее удельное сопротивление 0,005 Ом-см. Нажав кнопку Ом / кв., Мы можем настроить RM3-AR на выдачу 4,5324 мА, чтобы отображаемое мВ численно было равно сопротивлению листа в Ом / кв. В этой ситуации можно сказать, что:

    объемное удельное сопротивление = сопротивление листа x толщина в см.

    т.е. 0,005 = 4.5324 x 0,05 см x (мВ)
    —————————————
    4.5324
    = 0,005
    _____

    0,05
    = 0,10 мВ


    Это будет отображаемое значение.

    Конечно, если бы это была тонкая пленка, толщина была бы намного меньше 0.5 мм и сопротивление листа, соответственно, больше, чтобы можно было более точно рассчитать объемное удельное сопротивление. Это вечная проблема материалов с низким удельным сопротивлением, когда желателен дополнительный вольтметр, способный показывать микровольт или меньше. Такой вольтметр был бы полезен для материала 0,005 Ом-см, особенно если он был толще 0,5 мм.

    Если мы предположим, что мы говорим об объемном удельном сопротивлении кремниевых пластин, то, используя формулу rest = 2 x pi x s x V / I, мы рассчитаем это при расстоянии между наконечниками зонда, равным 1.6 Ом-см. Точность системы в пределах 0,3%

    Уравнение для расчета Ом-см без преобразования из сопротивления листа:

    2 x s x Pi (π) x V / I

    Где s – расстояние между каждым из четырех точечных наконечников щупа в см. Если использовать головку зонда с расстоянием между наконечниками 1,591 мм (62,6 мил), поскольку 1,591 мм составляет 1 / (2 x pi) см, он компенсируется до V / I.

    В. Я понимаю, что тестовый блок RM3 может считывать данные непосредственно в омах на квадрат для использования при измерении тонких пленок (сопротивление листа), но как мне измерять толстые материалы, которые измеряются в омах-см (объемное удельное сопротивление) ? Какой текущий уровень выбрать для конкретного материала?

    А . [Обновление: испытательный образец RM3 был заменен испытательным устройством серии RM , который включает программное обеспечение для ПК , которое позволяет рассчитывать и сохранять в формате CSV объемное удельное сопротивление как толстых материалов, так и тонких пленок. Новые испытательные блоки серии RM могут считывать непосредственно на экране в Ом-см (объемное удельное сопротивление), если вводится толщина образца или если указывается, что измеряется объемный материал, в дополнение к считыванию сопротивления листа, выраженного в Ом на квадрат или в милливольтах.Испытательные блоки серии RM также имеют кнопку, которую можно нажать для автоматического выбора диапазона, чтобы определить лучший выбор входного тока для измеряемого материала. При расчете удельного объемного сопротивления тонких пленок необходимо знать толщину слоя. Если кто-то предпочитает рассчитывать объемное удельное сопротивление без использования программного обеспечения серии RM или при использовании измерительной электроники, которая не будет считывать значения в Ом-см, есть относительно простой способ: переключиться из режима Ом-на-квадрат, чтобы электроника считывается в милливольтах и ​​следуйте этим инструкциям:]

    В идеале при измерении Ом-см вам понадобится ток, который упростит математические вычисления.

    Формула: 2 x pi x s x V / I, где s – расстояние между каждой иглой в см. Если вы используете датчик с расстоянием между наконечниками 1,591 мм (~ то же, что и 62,6 мил), это упрощает математические вычисления, поскольку 0,1591 равно 1 / (2 x пи). Следовательно, у нас будет:

    Удельное сопротивление = V / I

    Это означает, что если используется ток 1 мА, то измеренное значение напряжения (в милливольтах) = удельное сопротивление образца в Ом-см.

    Если вы хотите проводить измерения в диапазоне «Высокий», возможно, напряжение будет слишком высоким для измерения.В этом случае вы можете попробовать 100 мкА, и результат в мВ нужно будет умножить на 10. Если значение напряжения достаточно низкое (возможно, 9 мВ или около того), вы можете увеличить ток до 10 мА, а затем результат в мВ можно разделить на 10, чтобы получить удельное сопротивление (более высокие токи иногда могут дать более стабильные результаты). [Подробнее об измерении объемного удельного сопротивления без использования программного обеспечения можно прочитать здесь: http://www.fourpointprobes.com/hm21-srm-hand-held-meter-with-srm-probe-head/. Та же процедура, которая описана в отношении ручного измерителя HM21, применима и к испытательным установкам серии RM, однако более поздние версии испытательного прибора серии RM будут считываться на дисплее в Ом-см, если ввести толщину пленки или если один указывает, что измеряется объемное удельное сопротивление материала.По сравнению с HM21, испытательные блоки серии RM имеют больший диапазон измерения на обоих концах шкалы, и они автоматически выбирают диапазон, тогда как HM21 не выполняет автоматический выбор диапазона. И испытательный стенд серии RM, и HM21 включают программное обеспечение, которое можно использовать для расчета объемного удельного сопротивления.]

    Некоторую информацию о выборе наилучшего выбора входного тока при использовании электроники с четырехточечным датчиком, которая не поддерживает автоматический выбор диапазона, можно найти здесь: http://www.fourpointprobes.com/reversing_current.pdf

    В. Что, если я хочу измерить объемное удельное сопротивление с помощью зонда с шагом наконечника 1 мм вместо 1,59 мм? Могу ли я установить входной ток так, чтобы значение в милливольтах по-прежнему соответствовало объемному удельному сопротивлению в Ом-см?

    A. Это можно сделать, однако математика в этом случае будет выполняться путем регулировки тока, а не регулировки промежутка. Следовательно:

    R (b) = 2 x pi x s x V / I

    R (б) = 0.62832 х V / I

    Мы умножаем на расстояние (1 / 0,62832 дает 0,1591 мм), но мы делим на ток, поэтому ток должен быть 628,32 мкА (0,62832 мА)

    Этот ток может быть увеличен / уменьшен в 10 раз, если этого требует образец. (см. следующую ссылку для получения информации о выборе наилучшего выбора входного тока при использовании электроники с четырехточечным датчиком без автоматического выбора диапазона: http://www.fourpointprobes.com/reversing_current.pdf

    Такие измерения необходимо проводить с помощью программируемого источника тока, такого как испытательный блок серии RM, который позволяет использовать такой входной ток.-3 = 1,05 МОм / квадрат

    Итак, для слоя меди толщиной 16 микрон или меньше можно использовать серию RM. Если бы вы попытались измерить кусок меди толщиной, скажем, 1 мм, то его нельзя было бы измерить с помощью метода четырехточечного зонда. Четырехточечный зонд можно использовать для расчета сопротивления листа очень проводящих материалов, и, если известна толщина слоя, можно рассчитать объемное сопротивление. Или, если известно объемное удельное сопротивление материала, можно измерить тонкую пленку, чтобы вычислить толщину слоя.


    Четырехточечные зонды – это подразделение компании Bridge Technology. Чтобы запросить дополнительную информацию, позвоните в Bridge Technology по телефону (480) 988-2256 или отправьте электронное письмо Ларри Бриджу по адресу: [email protected]

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *