Содержание

Твердотельное реле своими руками

В последнее время набрали популярность твёрдотельные реле. Для очень многих устройств силовой электроники твёрдотельные реле стали просто необходимы. Их преимущество в несоизмеримо большем количестве срабатываний, по сравнению с электромагнитными реле и большой скоростью переключений. С возможностью подключения нагрузки в момент перехода напряжения через ноль, тем самым избегая тяжёлых пусковых токов. В некоторых случаях их герметичность тоже играет свою положительную роль, но одновременно лишая владельца такого реле преимущества в возможности ремонта с заменой некоторых деталей. Твёрдотельное реле, в случае выхода из строя, не ремонтируется и подлежит замене целиком, это его отрицательное качество. Цены на такие реле несколько кусаются, и получается расточительно.
Попробуем вместе сделать твёрдотельное реле своими руками с сохранением всех положительных качеств, но, не заливая схему смолой или герметиком, чтобы иметь возможность ремонта, в случае выхода из строя.


Схема


Посмотрим схему этого очень полезного и нужного устройства.

Основу схемы составляют силовой симистор Т1 – BT138-800 на 16 Ампер и управляющий им оптрон МОС3063. На схеме выделены чёрным цветом проводники, которые нужно проложить медным проводом повышенного сечения, в зависимости от планируемой нагрузки.
Управление светодиодом оптрона мне удобнее запитать от 220 Вольт, а можно от 12 или 5 Вольт, кому как нужно.

Для управления от 5 Вольт, нужно гасящий резистор 630 Ом поменять на 360 Ом, остальное всё одинаково.
Номиналы деталей рассчитаны на МОС3063, если примените другой оптрон, то номиналы нужно пересчитать.
Варистор R7 защищает схему от бросков напряжения.
Цепочку индикаторного светодиода можно совсем убрать, но с ней получается нагляднее, что аппарат работает.
Резисторы R4, R5 и конденсаторы C3, C4 служат для предотвращения выхода из строя симистора, их номиналы рассчитаны на ток не выше 10 Ампер. Если потребуется реле на большую нагрузку, то номиналы нужно пересчитывать.
Радиатор охлаждения для симистора впрямую зависит от нагрузки на него. При мощности триста Ватт, радиатор не нужен вовсе, и соответственно – чем больше нагрузка, тем больше площадь радиатора. Чем меньше будет симистор перегреваться, тем дольше проработает и поэтому даже кулер охлаждения не будет лишним.
Если вы планируете управлять повышенной мощностью, то наилучшим выходом будет поставить симистор большей мощности, например, ВТА41, который рассчитан на 40 Ампер, или подобный ему. Номиналы деталей подойдут без пересчёта.

Детали и корпус




Нам потребуется:
  • F1 – предохранитель на 100 мА.
  • S1 – любой маломощный переключатель.
  • C1 – конденсатор 0.063 мкФ 630 Вольт.
  • C2 – 10 – 100 мкФ 25 Вольт.
  • C3 – 2.7 нФ 50 Вольт.
  • C4 – 0.047 мкФ 630 Вольт.
  • R1 – 470 кОм 0.25 Ватт.
  • R2 – 100 Ом 0.25 Ватт.
  • R3 – 330 Ом 0.5 Ватт.
  • R4 – 470 Ом 2 Ватта.
  • R5 – 47 Ом 5 Ватт.
  • R6 – 470 кОм 0.25 Ватт.
  • R7 – варистор TVR12471, или подобный.
  • R8 – нагрузка.
  • D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например – 1N4007.
  • D2 – стабилитрон на 6.2 Вольта.
  • D3 – диод 1N4007.
  • T1 – симистор ВТ138-800.
  • LED1 – любой сигнальный светодиод.

Изготовление твердотельного реле


Сначала намечаем размещение радиатора, макетной платы и прочих деталей в корпусе и закрепляем их на места.



Симистор нужно изолировать от радиатора охлаждения специальной теплопроводной пластиной с применением теплопроводной пасты. Паста должна слегка вылезти из-под симистора при закручивании крепёжного винта.

Далее размещаем следующие детали в соответствии со схемой и припаиваем их.






Припаиваем провода для подключения питания и нагрузки.


Помещаем устройство в корпус, предварительно испытав его при минимальной нагрузке.




Испытание прошло успешно.

Смотрите видео


Смотрите видео испытания устройства совместно с цифровым регулятором температуры.

Твердотельное реле: схема, принцип работы, подключение

Чтобы обеспечить бесконтактную коммуникацию различных устройств без использования электромагнитов применяют твердотельное реле. Об особенностях, принципе действия и схеме подключения данного устройства поговорим далее.

Оглавление:

  1. Твердотельное реле – принцип работы
  2. Преимущества и сфера использования твердотельного реле
  3. Разновидности твердотельных реле
  4. Выбор и покупка твердотельного реле
  5. Особенности подключения твердотельного реле

Твердотельное реле – принцип работы

Твердотельное реле – это устройство, обеспечивающее контакт между низковольтными и высоковольтными электрическими цепями.

Рассматривая структуру данного прибора, большинство моделей схожи между собой, имеют незначительные отличия, которые никак не влияют на принцип их работы.

Структура твердотельного реле включает наличие:

  • входа,
  • оптической развязки,
  • триггерной цепи,
  • цепи переключателя,
  • цепи защиты.

Входом является первичная цепь, которая характеризуется наличием резистора на постоянном изоляторе, который имеет последовательное подключение. Основная функция цепи входа состоит в принятии сигнала и передаче команды устройству твердотельного реле, которое коммутирует нагрузку.

В качестве изоляции входной и выходной сети с переменным током используется устройство оптической развязки. От типа данного компонента, зависит вид реле и его принцип работы.

Для обработки входного сигнала и переключения выхода используется конструкция триггерной цепи. Она выступает, как отдельный элемент, а в некоторых моделях входит в состав оптической развязки.

Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор.

Чтобы защитить твердотельное реле от сбоев в работе или возникновения ошибок, используется отдельная защитная цепь. Это устройство бывает двух видов: внутреннего и внешнего.

Твердотельное реле схема состоит из:

  • системы контроля,
  • устройства твердотельного реле,
  • двигателя, насоса, сварочного аппарата, трансформатора или нагревателя.

Чтобы коммутировать индуктивную нагрузку с помощью твердотельного реле следует увеличить запас тока в 6-8 раз.

Принцип работы твердотельного реле состоит в замыкании или размыкании контактов, которые передают напряжение непосредственно на реле. Чтобы привести в действие контакты необходимо наличие активатора. Его роль в твердотельном реле выполняет полупроводник или твердотельный прибор. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током – транзистор.

Прибор, который характеризуется наличием ключевого транзистора, является твердотельным реле. Это, например, датчик движения или света, который с помощью транзистора осуществляет передачу напряжения.

Между напряжением в катушке и силовых контактах появляется действие гальванической развязки, которое исчезает в следствие наличия оптической цепи.

Преимущества и сфера использования твердотельного реле

Твердотельное реле часто заменяет обычные контактеры из-за большого количества преимуществ перед ними. Рассмотрим основные достоинства твердотельного реле:

1. Небольшое потребление энергии – из-за отсутствия электромагнитного разнесения, электромагнитное реле потребляет много электроэнергии, так как в твердотельном реле используется полупроводник, количество электроэнергии для его работы меньше на 90%.

2. Твердотельное реле малогабаритное устройство, это качество позволяет его легко транспортировать и устанавливать.

3. Данное устройство характеризуется высоким уровнем быстродействия и не требует ожидания для запуска.

4. Низкая шумопроизводительность – еще одно преимущество твердотельного реле перед контактерами.

5. Такие приборы отличаются более длительным сроком эксплуатации и не требуют дополнительного технического обслуживания.

6. Имеют большую сферу использования и подходят для разных приборов.

7. Твердотельное реле позволяет включать цепь не допуская помех электромагнитного характера.

8. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства.

9. Твердотельное реле позволяет осуществить более миллиарда срабатываний.

10. Наличие надежной изоляции между цепями входа и коммутации повышает производительность прибора.

11. Реле отличается наличием компактной герметичной конструкции и стойкой вибрацией перед ударами.

Сфера использования твердотельного реле достаточно широкая. Их используют в том случае, если возникает необходимость в коммутации индуктивной нагрузки. Рассмотрим основные области применения данного устройства:

  • система, в которой производится регулировка температуры при помощи тэна;
  • чтобы поддержать постоянную температуру в технологическом процессе;
  • для коммутирования цепи управления;
  • при выполнении замены пускателей бесконтактного реверсного типа;
  • управление электрическими двигателями;
  • контроль нагрева, трансформаторов и других технических приборов;
  • регулирование уровня освещения.

Разновидности твердотельных реле

Есть несколько разновидностей твердотельного реле, которые отличаются особенностями контролирующего и коммутируемого напряжения:

1. Твердотельные реле постоянного тока – используется при действии постоянного электричества в диапазоне от 3 до 32-х Вт. Характеризуется высокими удельными характеристиками, светодиодной индикацией, высокой надежностью. Большинство моделей имеют широкий диапазон рабочих температур от -30 до +70 градусов.

2. Твердотельные реле переменного тока отличается низким уровнем электромагнитных помех, отсутствием шума во время работы, низким потреблением электроэнергии и высокой скоростью работы. Рабочий интервал составляет 90-250 Вт.

3. Твердотельные реле с ручным управление, позволяют настраивать тип работы.

В соотношении с типом нагрузки выделяют:

  • однофазное твердотельное реле,
  • трехфазное твердотельное реле.

Однофазное реле позволяет коммутировать электричество в диапазоне 10-120 А, или в диапазоне 100-500 А. Фазовое управление осуществляется при помощи аналогового сигнала и переменного резистора. Трехфазные реле применяют для коммутации тока сразу на трех фазах одновременно. Они имеют рабочий интервал от 10 до 120 А. Среди трехфазных реле выделяют устройства реверсивного типа, которые отличаются маркировкой и бесконтактной коммукацией. Их функция состоит в надежной коммутации каждой цепи отдельно. Специальные устройства способны надежно защищать реле от ложных включений.

Они используются во время запуска и работы асинхронного двигателя, который производит их реверс. При выборе данного устройства необходимо соблюдать большой запас мощности тока, который безопасно и эффективно эксплуатирует устройство.

Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия.

Трехфазные реле отличаются более длительным сроком эксплуатации, чем однофазные. Коммукация происходит в следствие перехода тока через ноль и светодиодную индикацию.

В соотношении с методом коммукации выделяют:

  • устройства, выполняющие нагрузки емкостного типа, редуктивного типа, слабой индукции;
  • реле со случайным или мгновенным включением, используются в том случае, когда требуется мгновенное срабатывание;
  • реле с наличием фазового управления, позволяют производить настройку нагревательных элементов, ламп накаливания.

В соотношении с конструкцией твердотельные реле бывают:

  • монтируемые на Д И Н рейки,
  • универсальные, устанавливаемые на планки переходного типа.

Выбор и покупка твердотельного реле

Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью.

Твердотельное реле цена определяется такими характеристиками:

  • тип устройства,
  • наличие крепежных элементов,
  • материал, из которого изготовлен корпус,
  • мгновенное или постепенное включение,
  • наличие дополнительных функций,
  • производитель,
  • мощность,
  • потребление электроэнергии,
  • габариты прибора.

Во время покупки твердотельного реле, следует учесть один очень важный момент. Данные устройства должны работать с запасом мощности, который превышает мощность устройства в несколько раз. Если не придерживаться этого правила, при небольшом повышении мощности, прибор мгновенно выйдет из строя.

Рекомендуется использование специальных предохранителей, которые помогут избежать поломки реле.

Есть несколько разновидностей предохранителей:

  • g R – используются во широком диапазоне мощностей, отличаются быстрым действием;
  • g S – используются во всем диапазоне тока, защищаю элементы полупроводников от повышенных нагрузок электросети;
  • a R – защищают элементы полупроводникового типа от возникновения коротких замыканий.

Такие устройства имеют достаточно высокую стоимость, которая приравнивается к стоимости самого реле, но они обеспечивают высокоэффективную защиту устройства от поломки.

Существуют другие предохранители, которые относятся к классу В, С и D. Они отличаются меньшим спектром защиты и более дешевой стоимостью.

Во время эксплуатации твердотельного реле, следует учесть, что данный прибор очень быстро нагревается. Если корпус устройства очень сильно нагрелся, то оно не способно коммутировать ток в обычном режиме, количество тока очень сильно снижается. Если температура нагрева достигнет 65 градусов, то прибор сгорит.

Поэтому во время использования реле обязательно требуется установка охлаждающего радиатора. И запас тока должен быть в три, четыре раза выше. Если производится регулировка двигателей асинхронного типа, то запас тока увеличивается в восемь-десять раз.

Особенности подключения твердотельного реле

Рекомендации по самостоятельному подключению твердотельного реле:

1. Соединения не требуют использования пайки, а осуществляются винтовым способом.

2. Чтобы избежать повреждения прибора нельзя допускать попадания в него пыли или элементов металлического происхождения.

3. Не разрешается прилагать недопустимые внешние воздействия на корпус устройства.

4. Не размещайте твердотельное реле рядом с легко воспламеняющимися предметами, а также не прикасайтесь к прибору, в то время когда он работает, чтобы избежать получения ожогов.

5. Перед включением реле следует убедиться в правильной коммутации соединений.

6. В случае нагрева корпусы выше 60 градусов, рекомендуется установка реле на радиатор охлаждения.

7. Чтобы избежать повреждения прибора нельзя допускать возникновения короткого замыкания на выходе.

 

Твердотельное реле сделать самому своими руками: схема

Изготовить твердотельное реле своими руками под силу даже начинающему радиолюбителю. Ничего сложного в конструкции этого устройства нет, но разобраться со схемотехникой, особенностями применения и подключения, все же нужно. Твердотельное реле – это элемент, изготовленный на основе полупроводников. В его конструкции имеются силовые ключи на симисторах, тиристорах или транзисторах. Эти реле, работающие бесшумно, являются хорошей заменой контакторам и пускателям. С их помощью устройства подключаются более надежно и безопасно.

Простая схема реле

В силовой электронике часто возникает необходимость использовать одно- или 3 х-фазное твердотельное реле. Своими руками изготовить это устройство можно по одной из схем, представленных в статье.

Преимущество твердотельного реле перед механическими контакторами очевидно – у них ресурс намного выше. И это из-за того, что в них нет ни одного механического компонента, а именно они являются наиболее уязвимыми.

Для изготовления твердотельного реле можно использовать цепочки, состоящие из схемы управления и симистора. Гальваническую развязку осуществляет симисторная оптопара. В схеме используются такие элементы:

  1. Оптопара типа МОС3083.
  2. Симистор марки ВТ139-800 16А с изолированным анодом.
  3. Ограничивающий резистор, который снижает ток, проходящий через светодиод.
  4. Светодиод для индикации работы устройства.
  5. К управляющему электроду симистора подключается резистор 160 Ом.

А теперь давайте рассмотрим более детально процесс изготовления устройства.

Особенности процесса изготовления

Рекомендуется заключать все элементы схемы в металлический корпус, чтобы охлаждение происходило намного лучше. Для надежности нужно заливать короб при помощи клеевого пистолета. Главное при работе – это правильно подобрать металлическую подложку, чтобы обеспечить наилучшее отведение тепла. Для изготовления используется опалубка, в которую заключается твердотельное реле постоянного тока. Своими руками ее изготовить можно из любого материала.

Идеально подойдет пластиковая коробка или отрезок трубы. Все зависит от того, какой размер у изделия. Металлическая подложка должна размещаться в этой опалубке. Тщательно нужно залить клеем все элементы схемы, отверстия в корпусе, чтобы обеспечить качественную изоляцию. Обратите внимание на то, что у симисторов выводы обычно неоднозначно определяются, поэтому их нужно заранее проверить. Для проверки открытия симистора необходимо использовать мегомметр. Как только симистор откроется, сопротивление изменится от нескольких десятков мегаом до 1-2 кОм.

Особенности устройства твердотельного реле

Независимо от того, какой производитель твердотельного реле, элементная база у него постоянна – в редких случаях можно найти незначительные различия. На входе обычно устанавливается резистор, соединяется он последовательно с оптическим устройством. Иногда сопротивление изготавливается по сложной конструкции, в которую включается защита от обратной полярности и регулятор тока. Нужно выделить такие свойства твердотельных реле:

  1. При помощи оптической развязки обеспечивается изоляция различных цепей электронного устройства.
  2. При помощи переключающей цепи удается осуществить подачу на нагрузку питающего напряжения.
  3. С помощью триггерной цепи обрабатывается входной сигнал и происходит его переключение на выход.

Промышленный образец Siemens V23103-S2232-B302

Схема твердотельного приведена на рисунке:

По этой схеме своими руками твердотельное реле можно довольно быстро изготовить, трудностей при этом не возникнет. Главное – это найти необходимые компоненты или аналоги. Защита может находиться как внутри корпуса реле, так и отдельно. Теперь нужно рассмотреть дополнительные устройства, которые необходимо использовать совместно с реле.

Особенности защитной цепи

Как видите, трудностей при изготовлении нет никаких. Если сомневаетесь в своих силах, то лучше, конечно, приобрести промышленный образец устройства. Можно выделить ключевые особенности самодельных реле:

  1. Управляющее напряжение – 3..30 В, ток постоянный.
  2. К выходу допускается подключать источники напряжением 115..280 В.
  3. Выходная мощность порядка 400 Вт.
  4. Минимальный ток, при котором работает устройство, составляет около 50 мА.

Если устройство используется для коммутации низких токов (до 2 А), то нет необходимости устанавливать радиатор. Но если токи высокие, будет происходить сильный нагрев элементов. Поэтому об охлаждении нужно позаботиться – установите дополнительный радиатор и кулер (если имеется возможность организовать питание для него).

Обратите внимание на то, что при управлении асинхронными моторами нужно увеличивать примерно в 10 раз запас по току. При запуске двигатель «тянет» из сети ток, который в несколько раз превышает рабочее значение. Именно по этой причине нужно использовать силовые элементы со значительным запасом по току.

Особенности работы и схемы включения реле

При изготовлении своими руками твердотельного реле на полевом транзисторе важно учитывать параметры схемы, в которой оно будет использоваться. Но давайте, чтобы разобраться в особенностях работы твердотельных элементов, рассмотрим обычные электромагнитные реле. В них, когда на обмотку подается напряжение, генерируется магнитное поле. С его помощью происходит притягивание контактов.

При этом цепь либо размыкается, либо замыкается. Есть один недостаток у такого механизма – имеется в конструкции немало подвижных элементов. У твердотельных их нет, а это является основным преимуществом. Также можно выделить следующие особенности:

  1. Включение и отключение нагрузки происходит только в том случае, когда напряжение проходит через нуль.
  2. При работе не происходит появление помех электрического типа.
  3. Достаточно большой диапазон напряжений, при котором работает устройство.
  4. Между цепями управления и нагрузкой качественная изоляция.
  5. Высокая механическая прочность изделия.

А еще при работе не издается ни единого звука – просто открывается и закрывается переход полупроводника.

Пример подключения твердотельного реле

Вы знаете, как изготовить твердотельное реле своими руками. Аналоги такого устройства встречаются в продаже достаточно часто. Можно использовать как любительские схемы, так и промышленные – зависит от того, какие возможности нужно получить от устройства. С помощью такого устройства обеспечивается контакт высоковольтной и низковольтной цепей.

Большая часть промышленных устройств и самоделок имеет схожую структуру. Отличия несущественные, на работу не влияют никак. Убедиться в этом несложно. На рисунке приведена простейшая схема включения реле:

Структура устройства:

  1. Оптическая развязка цепей.
  2. Триггерная цепь (может быть несколько).
  3. Защитные устройства и переключатели.
  4. Входы.

Вход – это первичная цепь, в которой устанавливается постоянное сопротивление. Функция входа заключается в приеме сигнала и передаче нужной команды на устройство, которое производит коммутацию нагрузки.

Развязка оптического типа

Оптическая развязка – это прибор, который осуществляет изоляцию входов и выходов. Когда происходит обработка сигнала, поступающего на вход, обязательно нужно использовать триггерную цепь. Это отдельный компонент, но иногда он включен в конструкцию оптической развязки. Цепь переключения используется в том случае, когда нужно подать напряжение к нагрузке.

Твердотельные реле принцип работы, разновидности, достоинства и недостатки

Обычные промежуточные реле – это электромеханическое устройство. На его катушку подается напряжение, она притягивает к себе подвижную планку с контактами, которые замыкаются или переключаются.

Само наличие движущихся деталей в этом устройстве снижает его надежность. Контакты не только подгорают и окисляются. Со временем они теряют способность прижиматься друг к другу с подпружиниванием, что приводит к появлению переходного сопротивления или полному исчезновению контакта.

Электромеханические реле чувствительны к пыли и влаге. Существуют герметичные модели, но у них нет возможности для ревизии контактов. Это значит, что при их ухудшении реле придется выбросить.

Ресурс любого из современных реле, хоть и исчисляется в десятках тысяч включений, все же ограничен. А если реле должно срабатывать по сотне раз в сутки? Его ресурс быстро выработается, и устройство превратится в расходный материал, требуя постоянной замены. А если сбои в работе недопустимы?

Вот тут на помощь и приходит реле, называемое твердотельным.

Устройство твердотельного реле

Название «твердотельное реле» на русском языке может быть сокращено до аббревиатуры ТТР. По-английски же это звучит Solid State Relay или SSR.

Это – полностью полупроводниковое устройство, из механики имеющее только контактную систему для подключения внешних проводников. Пайку ТТР не переносят, так как при работе нагреваются, поэтому все присоединения проводов выполняются на винтовых клеммах.

Все элементы ТТР расположены внутри герметически закрытого и не разборного корпуса. Поэтому оно и носит такое название, поскольку представляет собой единое «твердое тело», и не предполагает выполнения ремонта или обслуживания.

Функционально само реле можно разделить на несколько подряд расположенных блоков или цепей.


Первая цепь: входная. Она преобразует входное управляющее напряжение к величине, приемлемой для выполнения переключений. Попутно она дополнительно может выполнять функцию защиты от импульсных помех, защиты от изменения полярности (при выпрямленном управляющем сигнале).

Минимально входная цепь содержит резистор для подавления лишнего напряжения постоянного тока, плюс – выпрямительный мост для выпрямления переменного тока.

Вторая цепь: оптическая развязка. У электромеханического реле входная и выходная цепь разделены конструктивно, так как катушка управления никак не связана с контактной системой. Для гальванического развязывания цепей управления с коммутируемыми цепями, которые могут питаться от разных источников, используется электронный прибор – оптрон. В нем этот процесс происходит за счет использования света для передачи команды управления.

Третья цепь, принимая сигнал от оптрона, запоминает его. Она представляет собой электронный ключ – триггер.

И, наконец, последняя – переключающая цепь. Она подает напряжение на выход реле, для чего рассчитывается на номинальное напряжение нагрузки.

Для разного характера нагрузки используются принципиально разные электронные компоненты для передачи напряжения управления. Для цепей постоянного тока достаточно транзисторного ключа. Но на переменном токе он работать не будет, для этих цепей применяют симисторы.

Поскольку выходной элемент переключающей цепи при работе реле пропускает ток нагрузки и от этого греется, он установлен на теплоотводе, являющемся частью корпуса реле.

Разновидности твердотельных реле

 В первую очередь, эти реле, как и электромеханические, различаются по величине напряжения управления. А также, переменное (АС) оно или постоянное (DC). Величина напряжения, в отличие от электромеханики, может изменяться в некоторых пределах, а не иметь фиксированное значение.

От этих же реле оно унаследовало и другой параметр: величина выходного тока. Род тока зависит от того, что используется в реле в качестве ключевого элемента: транзистор или симистор. В этом их отличие от электромеханики, контакты которой могут быть всеядными. В качестве рабочего напряжения для выхода, управляющего нагрузкой, также указывается его диапазон.

Твердотельные реле могут управлять как однофазной, так и трехфазной нагрузками. То есть, манипулировать работой электродвигателей. Конечно, до коммутации токов мощных моторов им далеко, но маломощных электродвигатель задвижки вполне по силам. А чтобы иметь возможность эту задвижку как открывать, так и закрывать, используется твердотельное реле с реверсом. При этом одна фаза проходит всегда напрямую, а две другие меняются местами в зависимости от того, на каком из двух входов появился сигнал управления.

Достоинства и недостатки твердотельных реле

Основным недостатком ТТР можно назвать их стоимость, превышающую цену электромеханических аналогов. А также – обеспечение соответствующего теплового режима. Перегрев приводит к выходу из строя.

Достоинств больше:

— Повышение надежности работы (поставил и забыл).

— В десятки раз больший срок службы.

— Способность без вреда для себя переносить перегрузки до 200% по номинальному току. То, что у электромеханического реле приводит к подгоранию или выходу из строя контактов, у твердотельного вызывает срабатывание защиты от перегрузки.

— Возможность массового применения в бытовой аппаратуре.

— Способность работать в любом положении в пространстве, что для некоторых реле нежелательно или даже недопустимо.

— Встроенная защита от импульсных помех, которых с каждым днем становится все больше. Само же реле создает меньше помех при коммутации, так как искрение между контактами отсутствует по принципу работы.

— Высокое быстродействие, что позволят выполнять цикл включение/отключение на очень короткий период.

И, самое главное, учитывая темпы развития промышленной электроники: за этими реле – будущее. Поэтому не за горами тот день, когда все электромеханические реле станут твердотельными.

Подключение твердотельного реле – принцип работы и назначение

Для обеспечения бесконтактной коммуникации самых разнообразных устройств без использования электромагнитов пользуются твердотельными реле тока. В этой статье мы расскажем об особенностях таких приборов, принципе их работы, а также рассмотрим схему подключения.

Твердотельное реле – принцип работы

Твердотельные реле тока – это приборы, которые обеспечивают контакт между низковольтными и высоковольтными электрическими цепями.
При детальном рассмотрении структуры этого устройства, можно заметить, что большая часть моделей очень похожи между собой. Конечно, имеются определенные отличия, однако они совершенно не влияют на принцип их работы.
В конструкции твердотельного реле присутствует:

  • вход
  • оптическая развязка
  • триггерная цепь
  • цепь переключателя
  • цепь защиты.

Фактически вход – это первичная цепь, характеризующаяся присутствием резистора на постоянном изоляторе, в условиях последовательного подключения. Главная задача цепи входа заключается в принятии сигнала и передаче команды прибору твердотельного реле, коммутирующего нагрузку.
Изоляцией входной и выходной сети с переменным током является прибор оптической развязки. От вида данного компонента зависит и тип реле, и принцип его функционирования.
Чтобы осуществить обработку входного сигнала и переключить выход необходимо наличие в конструкции триггерной цепи. Эта цепь является отдельным элементом, а в ряде моделей она находится в составе оптической развязки.
Для подачи силы напряжения на нагрузку применяют цепь переключающего типа, включающая транзистор, кремниевый диод, а также симистор.
В качестве защиты твердотельного реле от сбоев при функционировании или возникновении ошибок, применяют отдельную защитную цепь. Данный прибор бывает двух типов: внутреннего и внешнего.
Принцип работы твердотельного реле заключается в замыкании или размыкании контактов, передающих напряжение прямо на реле. Для приведения контактов в действие требуется наличие активатора. Активатором в схеме твердотельного реле выступает полупроводник или твердотельный прибор. В устройствах, функционирующих в условиях переменного тока, активатором является тиристор или симистор, а в условиях постоянного тока – транзистор.
Устройство, в котором присутствует ключевой транзистор, является твердотельным реле. К примеру, это может быть датчик движения или света, передающий напряжение при помощи транзистора.
Между напряжением в катушке и в силовых контактах формируется гальваническая развязка, исчезающая в результате присутствия оптической цепи.

Плюсы использования реле

Твердотельными реле довольно часто заменяют стандартные контактеры вследствие большого числа достоинств перед ними. Перечислим главные плюсы:

  • потребляет мало энергии. В результате отсутствия электромагнитного разнесения, электромагнитному полю необходимо большое количество электроэнергии, а поскольку в твердотельном реле применяется полупроводник, количество электроэнергии для его работы меньше на 90%
  • небольшие размеры. Благодаря компактным размерам реле без проблем транспортируется и устанавливается
  • этот прибор отличается высоким коэффициентом быстродействия, ему не нужно ожидание для запуска
  • низкий уровень шумопроизводительности, чем твердотельное реле выгодно отличается от контактеров
  • твердотельное реле характеризуется довольно длительным пеиродом эксплуатации и не нуждается в дополнительном техническом обслуживании
  • широко применяются в разных сферах жизнедеятельности, поскольку их можно использовать в разных приборах и механизмах
  • благодаря наличию твердотельного реле включение цепи не сопровождается помехами электромагнитного характера
  • повышенный уровень быстродействия предотвращается дребезжание контактов в процессе работы устройства
  • число срабатываний превышает миллиард
  • уровень производительности прибора повышается за счет присутствия надежной изоляции между цепями входа и коммутации
  • реле имеет компактную герметичную конструкцию и стойкую вибрацию перед ударами.

Область использования

Твердотельные реле тока достаточно широко применяются в различных сферах жизнедеятельности. Они применяются при необходимости коммутировать индуктивную нагрузку. К основным сферам применения таких реле можно отнести:

  • систему, в которой осуществляется регулировка температуры с помощью тэна
  • для поддержки постоянной температуры в технологическом процессе
  • для коммутирования цепи управления
  • в процессе смены пускателей бесконтактного реверсного типа
  • управление электродвигателями
  • контроль за нагревом, трансформаторами и другими техническими приборами
  • регулировка освещения.

Виды твердотельных реле

Существует несколько видов твердотельных реле, отличающихся особенностями контролирующего и коммутируемого напряжения:

  • реле постоянного тока – применяется в условиях действия постоянного электричества в диапазоне от 3 до 32-х Вт. Такие реле отличаются высокими удельными показателями, светодиодной индикацией, а также высоким уровнем надежности. Большая часть моделей обладают широким спектром рабочих температур от -30 до +70 градусов
  • реле переменного тока имеет низкий уровень электромагнитных помех, и не создает шума в процессе работы. Такие реле потребляют мало электроэнергии и работают с высокой скоростью. Рабочий интервал – от 90 до 250 Вт
  • реле с ручным управлением дают возможность настраивать тип работы.

Согласно типу нагрузки существуют такие виды:

  • однофазное твердотельное реле
  • трехфазное твердотельное реле.

Наличие однофазного реле дает возможность коммутировать электричество в диапазоне от 10 до 120 А, или в диапазоне от 100 до 500 А. Фазовое управление происходит с помощью аналогового сигнала и переменного резистора.
Трехфазные реле используют для коммутации тока одновременно на трех фазах. Они работают в интервале от 10 до 120 А. Среди трехфазных реле стоит выделить механизмы реверсивного типа, отличающиеся маркировкой и бесконтактной коммутацией. Их функция заключается в надежной коммутации каждой цепи по отдельности. Особые устройства могут надежно защищать реле от ложных включений.
Их применяют в процессе запуска и работы асинхронного силового агрегата, который производит их реверс. Во время выбора этого прибора нужно соблюдать большой запас мощности тока, который безопасно и эффективно использует устройство.
Во избежание формирования перенапряжений во время использования реле, нужно обязательно купить варистор или предохранитель быстрого действия.
Трехфазные реле имеют более длительный период эксплуатации, чем однофазные. Коммутация осуществляется в результате перехода тока через ноль и светодиодную индикацию.
По методу коммутации существуют:

  • механизмы, которые выполняют нагрузки емкостного типа, редуктивного типа, слабой индукции
  • реле со случайным или моментальным срабатыванием. Они необходимы лишь тогда, когда нужно мгновенное срабатывание
  • реле с наличием фазового управления дает возможность настраивать нагревательные элементы, лампы накаливания.

Как выбрать твердотельное реле

Для покупки твердотельного реле вам нужно отправиться в специализированный магазин электроники, где опытные консультанты помогут выбрать устройство, согласно вашим требованиям.
Стоимость твердотельного реле определяется следующими параметрами:

  • вид устройства
  • присутствуют или нет крепежные элементы
  • из какого материала создан корпус
  • тип включения – мгновенный или постепенный
  • есть ли дополнительные функции
  • страна производитель
  • показатель мощности
  • количество потребляемой электроэнергии
  • размеры устройства. 

Также помните, что такие приборы работают исключительно с запасом мощности, который должен быть больше мощности устройства в несколько раз. Если не соблюдать данное правило, то даже при незначительном повышении мощности, прибор моментально сломается.
Существует несколько разновидностей предохранителей, которые вы можете использовать:

  • g R – применяются в обширном диапазоне мощностей, характеризуются быстрым действием
  • g S – можно применять во всем диапазоне тока. Такие предохранители способны защитить элементы полупроводников от повышенных нагрузок электросети
  • a R – выступают защитниками элементов полупроводникового типа от возникновения коротких замыканий.

Стоимость предохранителей практически равна стоимости самого реле, однако они гарантируют надежную защиту устройства от поломки.
На прилавках магазина вы можете встретить и предохранители классов В, С и D. Но они обладают меньшим спектром защиты и более низкой ценой.
В процессе использования твердотельного реле, нужно учитывать, что такое устройство довольно быстро греется. Когда корпус устройства сильно нагревается, то оно уже не может коммутировать ток в обычном режиме, и количество тока сильно падает. Когда температура нагрева составляет 65 градусов, то прибор сгорает.
По этой причине в обязательном порядке нужен монтаж охлаждающего радиатора.

Как подключить твердотельное реле?

Теперь рассмотрим, как подключить твердотельное реле своими руками. Подключение твердотельного реле вы должны выполнять, придерживаясь следующих правил:

  • для формирования соединений вам не потребуется ничего паять. Все соединения осуществляются винтовым способом
  • во избежание повреждения прибора, не допускайте проникновения в него пыли или металлических предметов
  • нельзя прилагать недопустимые внешние действия к корпусу прибора 
  • не стоит размещать твердотельное реле рядом с легко воспламеняющимися предметами
  • нельзя прикасаться к прибору, во время его работы. Вы можете получить ожог
  • прежде чем включать реле, убедитесь в правильной коммутации соединений
  • во избежание повреждения прибора не допускайте формирования короткого замыкания на выходе.

коммутация мощных нагрузок / Блог компании Unwired Devices LLC / Хабр

Привет, Geektimes!

Управление мощными нагрузками — достаточно популярная тема среди людей, так или иначе касающихся автоматизации дома, причём в общем-то независимо от платформы: будь то Arduino, Rapsberry Pi, Unwired One или иная платформа, включать-выключать ей какой-нибудь обогреватель, котёл или канальный вентилятор рано или поздно приходится.

Традиционная дилемма здесь — чем, собственно, коммутировать. Как убедились многие на своём печальном опыте, китайские реле не обладают должной надёжностью — при коммутации мощной индуктивной нагрузки контакты сильно искрят, и в один прекрасный момент могут попросту залипнуть. Приходится ставить два реле — второе для подстраховки на размыкание.

Вместо реле можно поставить симистор или твердотельное реле (по сути, тот же тиристор или полевик со схемой управления логическим сигналом и опторазвязкой в одном корпусе), но у них другой минус — они греются. Соответственно, нужен радиатор, что увеличивает габариты конструкции.

Я же хочу рассказать про простую и довольно очевидную, но при этом редко встречающуюся схему, умеющую вот такое:

  • Гальваническая развязка входа и нагрузки
  • Коммутация индуктивных нагрузок без выбросов тока и напряжения
  • Отсутствие значимого тепловыделения даже на максимальной мощности

Но сначала — чуть-чуть иллюстраций. Во всех случаях использовались реле TTI серий TRJ и TRIL, а в качестве нагрузки — пылесос мощностью 650 Вт.

Классическая схема — подключаем пылесос через обычное реле. Потом подключаем к пылесосу осциллограф (Осторожно! Либо осциллограф, либо пылесос — а лучше оба — должны быть гальванически развязаны от земли! Пальцами и яйцами в солонку не лазить! С 220 В не шутят!) и смотрим.

Включаем:

Пришлось почти на максимум сетевого напряжения (пытаться привязать электромагнитное реле к переходу через ноль — задача гиблая: оно слишком медленное). В обе стороны бабахнуло коротким выбросом с почти вертикальными фронтами, во все стороны полетели помехи. Ожидаемо.

Выключаем:

Резкое пропадание напряжения на индуктивной нагрузке не сулит ничего хорошего — ввысь полетел выброс. Кроме того, видите вот эти помехи на синусоиде за миллисекунды до собственно отключения? Это искрение начавших размыкаться контактов реле, из-за которого они однажды и прикипят.

Итак, «голым» реле коммутировать индуктивную нагрузку плохо. Что сделаем? Попробуем добавить снаббер — RC-цепочку из резистора 120 Ом и конденсатора 0,15 мкФ.

Включаем:

Лучше, но не сильно. Выброс сбавил в высоте, но в целом сохранился.

Выключаем:

Та же картина. Мусор остался, более того, осталось искрение контактов реле, хоть и сильно уменьшившееся.

Вывод: со снаббером лучше, чем без снаббера, но глобально проблемы он не решает. Тем не менее, если вы желаете коммутировать индуктивные нагрузки обычным реле — ставьте снаббер. Номиналы надо подбирать по конкретной нагрузке, но 1-Вт резистор на 100-120 Ом и конденсатор на 0,1 мкФ выглядят разумным вариантом для данного случая.

Литература по теме: Agilent — Application Note 1399, «Maximizing the Life Span of Your Relays». При работе реле на худший тип нагрузки — мотор, который, помимо индуктивности, при старте имеет ещё и очень низкое сопротивление — добрые авторы рекомендуют уменьшить паспортный ресурс реле в пять раз.

А теперь сделаем ход конём — объединим симистор, симисторный драйвер с детектированием нуля и реле в одну схему.

Что есть на этой схеме? Слева — вход. При подаче на него «1» конденсатор C2 практически мгновенно заряжается через R1 и нижнюю половину D1; оптореле VO1 включается, дожидается ближайшего перехода через ноль (MOC3063 — со встроенной схемой детектора нуля) и включает симистор D4. Нагрузка запускается.

Конденсатор C1 заряжается через цепочку из R1 и R2, на что уходит примерно t=RC ~ 100 мс. Это несколько периодов сетевого напряжения, то есть, за это время симистор успеет включиться гарантированно. Далее открывается Q1 — и включается реле K1 (а также светодиод D2, светящий приятным изумрудным светом). Контакты реле шунтируют симистор, поэтому далее — до самого выключения — он в работе участия не принимает. И не греется.

Выключение — в обратном порядке. Как только на входе появляется «0», C1 быстро разряжается через верхнее плечо D1 и R1, реле выключается. А вот симистор остаётся включённым примерно 100 мс, так как C2 разряжается через 100-килоомный R3. Более того, так как симистор удерживается в открытом состоянии током, то даже после отключения VO1 он останется открытым, пока ток нагрузки не упадёт в очередном полупериоде ниже тока удержания симистора.

Включение:

Выключение:

Красиво, не правда ли? Причём при использовании современных симисторов, устойчивых к быстрым изменениям тока и напряжения (такие модели есть у всех основных производителей — NXP, ST, Onsemi, etc., наименования начинаются с «BTA»), снаббер не нужен вообще, ни в каком виде.

Более того, если вспомнить умных людей из Agilent и посмотреть, как меняется потребляемый мотором ток, получится вот такая картинка:

Стартовый ток превышает рабочий более чем в четыре раза. За первые пять периодов — то время, на которое симистор опережает реле в нашей схеме — ток падает примерно вдвое, что также существенно смягчает требования к реле и продлевает его жизнь.

Да, схема сложнее и дороже, чем обычное реле или обычный симистор. Но часто она того стоит.

Схема твердотельного реле – РАДИОСХЕМЫ

Современная электротехника и радиоэлектроника всё больше отказывается от механических узлов, имеющих значительные размеры и подверженных быстрому износу. Одной из областей, где это проявляется сильнее всего, являются электромагнитные реле. Все прекрасно понимают, что даже самое дорогое реле, с платиновыми контактами, рано или поздно выйдет из строя. Да и щелчки при переключении могут напрягать. Поэтому промышленность наладила активный выпуск специальных твердотельных реле.

 

Такие твердотельные реле могут использоваться практически везде, однако в настоящее время они пока ещё остаются очень дорогими. Поэтому имеет смысл собрать его самому. Тем более их схемы просты и понятны. Твердотельное реле работает как стандартное механическое реле – вы можете использовать низкое напряжение для переключения более высокого напряжения.

Схема твердотельного реле


Пока на входе не присутствует напряжение постоянного тока (в левой части схемы), фототранзистор TIL111 открыт. Чтобы повысить защищённость от ложных срабатываний, база TIL111 подается эмиттер через 1М резистор. На базе транзистора BC547B будет высокий потенциал и, таким образом, он остается открытым. Коллектор замыкает управляющий электрод тиристора TIC106M на минус, и он остается в закрытом положении. Через выпрямительный диодный мост ток не проходит и нагрузка отключена.

При определенном входном напряжении, скажем, 5 вольт, диод внутри TIL111 загорается и активирует фототранзистор. Происходит закрытие транзистора BC547B и отпирание тиристора. Это создает достаточно большое падение напряжения на резисторе 330 Ом для переключения симистора TIC226 во включенное положение. Падение напряжение на симисторе в тот момент всего несколько вольт, так что практически всё напряжение переменного тока течёт через нагрузку. 

Симистор защищен от импульсов через 100 нФ конденсатор и 47 ом резистор. Чтобы создать возможность устойчивого переключения твердотельного реле с различными управляющими напряжениями, был добавлен полевой транзистор BF256A. Он действует как источник тока. Диод 1N4148 установлен, чтобы защитить цепь в случае неправильной полярности. Эта схема может быть использована в различных устройствах, с мощностью до 1,5 КВт, конечно если вы установите тиристор на большой радиатор.

DIY твердотельное реле – Hackster.io

Вы когда-нибудь хотели избавиться от звука тик-так, производимого электромагнитными реле? Электромагнитным реле требуется бесшумное питание для включения / выключения электромагнита, и для этого нужна схема драйвера, о! ждать! Кроме того, им нужен обратный диод, чтобы избежать риска индуктивных всплесков, которые могут не подходить для проектов, работающих от батареи, или проектов, которые вы хотите обеспечить энергоэффективностью.

Если вы хотите избавиться от всех этих вещей, оказавшись в нужном месте, здесь я покажу вам, как сделать твердотельное реле, используя всего пару компонентов.

ВНИМАНИЕ: – ДАННЫЙ ПРОЕКТ ПРЕДНАЗНАЧЕН ДЛЯ ВЫСОКОГО НАПРЯЖЕНИЯ (СЕТЬ ПЕРЕМЕННОГО ТОКА). ИСПОЛЬЗУЙТЕ ПОЛНЫЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ. Я НЕ БУДУ ОТВЕЧАТЬ ЗА ЛЮБОЙ ВИД УЩЕРБА, ПРИЧИНЕННЫЙ ВАМ.

НАЧАТЬ !!

ЗДЕСЬ ПОЛНОЕ ВИДЕОУЧЕБНИК ДЛЯ ТОГО ЖЕ.

Шаг 1: ЧТО НАМ НУЖНО

(https://www.utsource.net/ – это онлайн-платформа для технических специалистов, производителей, энтузиастов и детей, которые могут покупать электронные компоненты

  • Симистор – BT136
  • Оптопара – MOC3021 (используется для изоляции высокого напряжения от входа низкого напряжения)
  • Резисторы – 220 Ом и 470 Ом
  • Светодиод – Только для индикации состояния
  • Макетная плата – Для изготовления прототипа
  • Перемычки
  • Источник питания 5 В (для этого я буду использовать свою ардуино)

Наконец, схема.

Шаг 2: OPTOCOUPLER

Добавьте его на макет.

Шаг 3: Добавьте положительный вывод светодиода к выводу 1 оптопары.

Шаг 4: Добавьте резистор 220 Ом к выводу -ve светодиода.

Шаг 5: Добавьте перемычку к контакту 2 оптопары, которая будет подключаться к источнику питания + ve.

Шаг 6: Подключите источник симистора к 4-му выводу оптопары.

Шаг 7: Добавьте резистор 470 Ом между стоком и 6-м контактом оптопары.

Шаг 8: Добавьте две перемычки, одну для слива, а другую – для затвора.

Шаг 9: БИНГО! время проверить

Шаг 10: Добавьте блок питания

Я использовал свою Arduino Mega с эскизом мигания.

Шаг 11: Распечатайте окончательную печатную плату

Не знаете, как печатать печатные платы? Смотри.

Здесь вы можете скачать файл печатной платы с расширением .pcb.

Не знаете, как печатать печатные платы?

ОБРАТИТЕ ВНИМАНИЕ – вам нужно сделать дорожки толстыми, потому что это высоковольтный проект, чтобы узнать, как оловить печатную плату, см. Это руководство.

Чтобы увидеть работу, посмотрите видео, которое я связал во Введении.

Спасибо мастеру DIY за вдохновение для этого проекта.

Спасибо, что пришли сюда!

Увидимся снова,

Tanishq Jaiswal

Цепь твердотельного реле, использующая симисторы и переключение через ноль

Твердотельное реле сети переменного тока или SSR – это устройство, которое используется для переключения тяжелых нагрузок переменного тока на уровне сети через изолированный минимальный Триггеры постоянного напряжения без механических подвижных контактов.

В этом посте мы узнаем, как построить простое твердотельное реле с питанием от сети или цепь SSR с использованием симистора, BJT, оптопары с переходом через нуль.

Преимущество твердотельных реле SSR перед механическими реле

Реле механического типа могут быть довольно неэффективными в приложениях, требующих очень плавного, очень быстрого и чистого переключения.

Предложенная схема SSR может быть построена дома и использоваться в местах, где требуется действительно сложное управление нагрузкой.

В данной статье описана схема твердотельного реле сетевого 220 В со встроенным детектором перехода через ноль.

Схема очень проста в понимании и построении, но при этом имеет такие полезные функции, как чистое переключение, отсутствие радиочастотных помех и способность выдерживать нагрузки до 500 Вт. Мы много узнали о реле и о том, как они работают.

Мы знаем, что эти устройства используются для переключения тяжелых электрических нагрузок через внешнюю изолированную пару контактов в ответ на небольшой электрический импульс, полученный с выхода электронной схемы.

Обычно триггерный вход находится вблизи напряжения обмотки реле, которое может составлять 6, 12 или 24 В постоянного тока, в то время как нагрузка и ток, коммутируемые контактами реле, в основном находятся на уровнях потенциалов сети переменного тока.

В основном реле полезны, потому что они могут переключать тяжелые, подключенные к их контактам, не приводя опасные потенциалы в контакт с уязвимой электронной схемой, через которую они переключаются.

Однако преимущества сопровождаются несколькими критическими недостатками, которые нельзя игнорировать.Поскольку контакты связаны с механическими операциями, иногда они совершенно не подходят для сложных схем, требующих высокоточного, быстрого и эффективного переключения.

Механические реле также имеют плохую репутацию из-за того, что они создают радиопомехи и шум во время переключения, что также приводит к ухудшению характеристик его контактов со временем.


Для SSR на основе MOSFET, пожалуйста, обратитесь к этому сообщению. Проблемы генерации радиочастотных помех во время работы.

Также тиристоры и симисторы при интеграции непосредственно в электронные схемы требуют, чтобы линия заземления схемы была соединена с катодом, что означает, что секция схемы больше не изолирована от смертоносных напряжений переменного тока от устройства – серьезный недостаток с точки зрения безопасности. к пользователю обеспокоен.

Однако симистор может быть очень эффективно реализован, если полностью устранить вышеупомянутую пару недостатков. Следовательно, две вещи, которые должны быть устранены с помощью симисторов, если они должны быть эффективно заменены на реле, – это радиочастотные помехи при переключении и попадание опасной сети в цепь.

Твердотельные реле

спроектированы в точном соответствии с указанными выше спецификациями, что исключает влияние РЧ-сигналов, а также позволяет полностью отделить две ступени друг от друга.

Коммерческие SSR могут быть очень дорогими и не подлежат ремонту, если что-то пойдет не так. Однако изготовление твердотельного реле полностью вами и его использование для необходимого приложения может быть именно тем, что «доктор прописал». Поскольку он может быть построен с использованием дискретных электронных компонентов, он становится полностью ремонтируемым, модифицируемым и, более того, дает вам четкое представление о внутренних операциях системы.

Здесь мы рассмотрим создание простого твердотельного реле 220 В.

Как это работает

Как обсуждалось в предыдущем разделе, в предлагаемой схеме SSR или твердотельного реле радиочастотные помехи проверяются путем принудительного переключения симистора только вокруг нулевой отметки синусоидальной фазы переменного тока и использования Оптопара гарантирует, что вход находится вдали от сетевых потенциалов переменного тока, присутствующих в цепи симистора.

Давайте попробуем понять, как работает схема:

Как показано на схеме, оптрон становится порталом между триггером и схемой переключения.Триггер входа применяется к светодиоду оптопара, который загорается и заставляет фототранзистор проводить.
Напряжение от фототранзистора проходит через коллектор к эмиттеру и, наконец, достигает затвора симистора, чтобы управлять им.

Вышеупомянутая операция довольно обычна и обычно связана с триггером всех симисторов и тиристоров. Однако этого может быть недостаточно для устранения радиочастотного шума.

Секция, состоящая из трех транзисторов и некоторых резисторов, специально вводится с целью проверки генерации ВЧ, гарантируя, что симистор проводит только в окрестности нулевых пороговых значений синусоидального сигнала переменного тока.

Когда сеть переменного тока подключена к цепи, выпрямленный постоянный ток становится доступным на коллекторе оптранзистора, и он проводит, как объяснено выше, однако напряжение на переходе резисторов, подключенных к базе T1, регулируется так, чтобы оно сразу после того, как сигнал переменного тока поднимется выше отметки 7 вольт. Пока форма сигнала остается выше этого уровня, T1 остается включенным.

Это заземляет напряжение коллектора оптранзистора, препятствуя току симистора, но в тот момент, когда напряжение достигает 7 вольт и приближается к нулю, транзисторы перестают проводить, позволяя симистору переключаться.

Процесс повторяется в течение отрицательного полупериода, когда T2, T3 проводят в ответ на напряжения выше минус 7 вольт, снова заставляя симистор срабатывать только тогда, когда фазовый потенциал приближается к нулю, что эффективно устраняет индукцию РЧ-помех при переходе через нуль.

Принципиальная схема твердотельного реле на основе симистора

Список деталей

  • R1 = 120 K,
  • R2 = 680K,
  • R3 = 1 K,
  • R4 = 330 K,
  • R5 = 1 M,
  • R6 = 100 Ом 1 Вт,
  • C1 = 220 мкФ / 25 В,
  • C2 = 474/400 В Металлизированный полиэстер
  • C3 = 0.22 мкФ / 400 В PPC
  • Z1 = 30 В, 1 Вт,
  • T1, T2 = BC547B,
  • T3 = BC557B,
  • TR1 = BT 36,
  • OP1 = MCT2E или аналогичный.

Схема расположения печатной платы

Использование оптопары SCR 4N40

Сегодня, с появлением современных оптопар, создание высококачественного твердотельного реле (SSR) стало действительно простым. 4N40 – одно из таких устройств, в котором используется фотоэлектрический тиристор для требуемого изолированного запуска нагрузки переменного тока.

Этот оптрон можно легко настроить для создания высоконадежной и эффективной цепи SSR.Эту схему можно использовать для запуска нагрузки 220 В через полностью изолированное логическое управление 5 В, как показано ниже:

SSR с использованием ИС оптрона MOC3020 и симистора

ИС MOC3040 или MOC3041 аналогичны обычному оптрону, где Типичный фототранзистор заменен фототриаком (100 мА / 400 В при 25 ° C). Основная особенность этой ИС заключается в том, что она практически позволяет использовать в схеме все формы кремниевых выпрямителей (SCR) и симисторов, что обычно невозможно с оптопарами на основе фототранзисторов.Определение типа симистора для создания твердотельного реле с напряжением 220 В возможно в зависимости от типа нагрузки, с которой должно работать реле.

Учитывая, что нагрузка SSR резистивная, симистор TIC 226D / 400 V можно использовать удовлетворительно. В случае, если для нагрузки указана индуктивная нагрузка, может потребоваться симистор на 630 В, например, может потребоваться тип TIC 226M. Помните, что рабочее напряжение конденсатора C1 должно соответствовать характеристикам используемого симистора.

Резистор R1 на стороне входа может быть определен в зависимости от уровня входного напряжения, V в .Его значение можно оценить по следующей формуле:

R1 = 1000 (V в – 1,3) / I oc .

В этом уравнении V в будет в вольтах, R1 в омах, а I oc будет в мА, что указывает на ток через светодиод в оптроне MOC.

Если мы рассматриваем вход оптопары со стороны светодиода, равный V при = 12 В, а ток I oc = 30 мА (которые являются стандартными характеристиками оптопары MOC 3040), то полученный результат значение R1 будет равно 356 Ом, и мы можем округлить его до практически достижимого значения 330 Ом.

В MOC 3041 спецификация тока светодиода Ioc составляет всего 15 мА, что означает, что на практике можно допустить, чтобы значение ограничивающего сопротивления R1 составляло около 680 Ом. Максимальный ток, с которым может работать это твердотельное реле 220 В, составляет приблизительно 8 А, для более высокой мощности вы можете соответственно заменить симистор

Изображение предоставлено: Farnel

12-вольтное твердотельное реле постоянного тока с использованием BUZ71A

Полупроводниковое реле предназначено для переключения нагрузки постоянного или переменного тока, некоторые из них могут переключать нагрузки как переменного, так и постоянного тока.Их выход (переменный, постоянный или переменный / постоянный ток) зависит от типа коммутационного устройства, используемого в их схемах, например, транзистора (МОП или биполярный), симистора или тиристора.

В этом проекте мы создаем твердотельное реле 12 В постоянного тока с использованием оптрона и полевого МОП-транзистора. Твердотельные реле используются вместо механических реле. В механических реле много движущихся частей. Как следует из названия, это реле находится в твердотельном корпусе и не имеет движущихся частей, оно обеспечивает все функции, аналогичные механическому реле, и может включаться и выключаться намного быстрее, чем они.

Компоненты оборудования

902 902 902 902 902
S.no Компонент Кол-во
1. 5-12 В входной источник питания 1
2. Оптопара PC819 МОП-транзистор BUZ71A 1
4. Резисторы (470 Ом, 10 кОм) 1,1
Принципиальная схема

рабочий

Работа этой схемы довольно проста и понятна.Входной сигнал 5-12 В подается на схему, которая подается на оптрон PC817. Внутренний фототранзистор оптопары активируется и отправляет выходной сигнал, который становится входом полевого МОП-транзистора BUZ71A. МОП-транзистор начинает проводить, и нагрузка постоянного тока, подключенная к транзистору, активируется.

Эта схема может легко управлять нагрузкой постоянного тока 10 ампер. Чтобы управлять более высокой нагрузкой постоянного тока, вы можете использовать высокоамперный MOSFET-транзистор. Например, МОП-транзистор IRFZ44N может управлять нагрузкой 40 ампер.Вы должны использовать радиатор с любым MOSFET-транзистором, который вы используете.

Приложения и использует

  • Если вы управляете двигателями и т. Д., Эту схему можно использовать в качестве изолятора для ваших микроконтроллеров или проектов Arduino.
  • Его можно использовать как схему фиксации.
  • Если вам требуется переключение с высокой нагрузкой, вы можете использовать эту схему.

Photo Voltaic Tutorial MOSFET Output Solid State Relays


Рис. 1

Льюис Лофлин

Здесь мы рассмотрим использование оптопар с фотодиодно-гальваническим выходом для включения-выключения силовых полевых МОП-транзисторов.МОП-транзисторы – это устройства с напряжением , управляемые напряжением , поэтому требования к приводам очень малы.

Посмотрим на обе коммерческие единицы.

На рис. 1 показано типичное твердотельное реле переменного тока, использующее фотомистор и светодиодный эмиттер. Проблема в том, что они не работают на постоянном токе, потому что после включения остаются включенными до тех пор, пока не отключится питание.


Рис. 2

Рис. 2 иллюстрирует, как фотодиод генерирует небольшое напряжение при воздействии света. Дополнительные сведения об основных операциях см. В разделе «Работа и использование фотодиодных схем

».
Фиг.3

На рис. 3 представлена ​​оптопара с фотоэлектрическим выходом VOM1271. Он использует группу фотодиодов, включенных последовательно, чтобы генерировать полезное выходное напряжение. При включении светодиода генерируется 7–10 вольт – VOM1271 также включает в себя схему отключения (резистор сброса напряжения) для включения полевого МОП-транзистора при выключении светодиода.

Доступно несколько таких устройств. См. Раздел «Реле постоянного тока на полевых МОП-транзисторах с использованием фотоэлектрических драйверов».

Причина, по которой мы обычно используем оптопары, состоит в том, чтобы обеспечить интерфейс с разными уровнями напряжения, изоляцию по напряжению между датчиками высокого напряжения и микроконтроллерами низкого напряжения, а также помехозащищенность.В этих примерах мы изолируем высокое напряжение от микроконтроллера, такого как Arduino.


Рис. 4

На Рис. 4 показаны соединения между фотоэлектрическим оптопарой и N-канальным силовым МОП-транзистором IRF630. Микроконтроллер, такой как Arduino, будет обращаться со светодиодом так же, как и с любым другим светодиодом. Когда светодиод включен, матрица фотодиодов вырабатывает около 7 вольт, включая затвор IRF630.

Только для постоянного тока – соблюдайте полярность! Номинальное напряжение и ток определяется полевым МОП-транзистором – диод является внутренним по отношению к полевому МОП-транзистору.Можно использовать любое количество полевых МОП-транзисторов.

См. Также раздел «Подключение выходных твердотельных реле Crydom MOSFET».


Рис. 5

На Рис. 5 показано твердотельное реле TIP3123, коммерческое устройство. Здесь отличается использование двух полевых МОП-транзисторов в дополнение к схеме фотоэлектрического оптопара. Два выходных контакта подключены к стокам полевого МОП-транзистора.

Подробнее о полевых МОП-транзисторах см .:


Рис. 6

Внутренние подключения к TIP3123 показаны на Рис.6. У нас есть светодиод эмиттера и матрица напряжения фотодиода, затворы на полевых МОП-транзисторах связаны вместе, как и соединения источников. Два открытых дренажных соединения образуют выходные соединения. Матрица фотодиодов подключается между соединениями затвор-исток – оба полевых МОП-транзистора включаются одновременно светодиодом.


Рис.7

LBA110 представляет собой двойной SSR с поворотом: соединения на выводах 5 и 6 такие же, как и выше, с N-канальными MOSFET, являются Н.О., а выводы 7 и 8 образуют нормально закрытый (N.C.) реле. То есть реле работает, когда светодиоды на контактах 1 и 2 выключены.


Рис. 8

На рис. 8 показан SSR LCA715, рассчитанный на 60 В при 2 А. Как и две мои схемы SSR выше, соединение с общим источником выведено на контакт 5, что позволяет использовать два разных способа подключения устройства.

В верхней половине рис. 8 показаны соединения переменного или постоянного тока – оставьте контакт 5 отключенным .

Нижняя половина иллюстрирует конфигурацию только постоянного тока с открытыми стоками (контакты 4 и 6), соединенными вместе, и нагрузкой, подключенной между ними и контактом 5. Соблюдайте полярность! Это Н.О. только режим.


Рис. 9

На Рис. 9 показан G3VM-81PR, рассчитанный на 80 В постоянного / переменного тока при 120 мА. Это Н.О. только и является устройством для монтажа на печатной плате.


Рис. 10

На Рис. 10 показан Lh2540, который выводит общий источник на контакт 5. Он рассчитан на 360 В переменного / постоянного тока при 120 мА. Он может быть подключен только для переменного / постоянного тока или только для постоянного тока, как показано на рис. 10. Это монтаж на печатной плате либо для поверхностного монтажа, либо для сквозного монтажа.


Фиг.11

На рис. 11 показан TLP172, рассчитанный на 60 В переменного / постоянного тока при 400 мА. Это только поверхностный монтаж.

Существует множество твердотельных реле. Их более низкая стоимость и более высокая надежность будут по-прежнему заменять старые магнитные реле.

Ардуино

Другие схемы

Твердотельное реле

Как насчет подключения цифровой логики к мерзкому миру от 115 до 230 вольт и более? Всегда есть решение использовать электромеханическое реле.Тем не менее, твердотельный накопитель – это текущая тенденция. Твердотельное реле может позволить источнику питания с батарейным питанием включать лампочки, электродвигатели, радио или почти все, что вы можете себе представить.

Твердотельные реле могут обеспечивать изоляцию от высокого напряжения и выдерживать десятки ампер. Они продаются в пластиковых корпусах с радиатором на дне и винтами для крепления проводов. Обычно они стоят дорого и в случае повреждения не подлежат ремонту. Большинство SSR (твердотельных реле) производятся в больших количествах и обычно рассчитаны на ток около 10 ампер или более.Обычно не стоит платить за реле на десять ампер, когда все, что вам нужно, – это реле на два ампера. Кроме того, чем больше SSR, тем больше токи утечки.

Однако, используя несколько деталей, вы можете построить твердотельное реле за небольшую часть цены, чем коммерческое реле. И самое лучшее, что это конкретное реле можно отремонтировать, если что-то пойдет не так.


Как это работает

Твердотельное реле очень похоже на переключатель, который управляется входным напряжением или током.Этот переключатель можно использовать только для переменного напряжения. Попытка переключить линию постоянного тока приведет к срабатыванию реле, которое замыкается, но никогда не размыкается. Это связано с тем, что он использует симистор, который можно отключить, только если ток упадет до нуля.

Наша схема SSR показана ниже. Диод D1 используется для защиты от обратного напряжения. R1 ограничивает входной ток. Q1 используется как приемник тока, чтобы поддерживать ток через светодиод (светодиод внутри U1) на почти стабильном значении. Когда напряжение на R2 достигает примерно 0.65V, Q1 начинает проводить, шунтируя ток от светодиода. В результате, хотя ток R1 увеличивается по мере увеличения входного напряжения, ток через светодиод перестает увеличиваться до определенного значения; Минимальный ток светодиода, при котором будет работать TRIAC. Это значение устанавливается R2.

Схема твердотельного реле

Выбор TRIAC

Убедитесь, что ваш TRIAC сможет выдерживать необходимое напряжение. Для переключения линии переменного тока напряжением 115 В требуется симистор 250 В.Для линии 220 В требуется симистор на 400 В. Далее следует учитывать максимальный ток. Любой TRIAC выдержит свой номинальный ток, если он должным образом отведен под теплоотвод. Помните, что многие нагрузки (например, двигатели) потребляют намного больше тока при запуске, чем при нормальной работе.

Есть еще одно требование; Ток затвора. Использование оптоизолятора, обеспечивающего около 100 мА, должно быть достаточно для любого TRIAC, который вы можете найти в корпусе T-220. Помните также, что из соображений безопасности следует выбирать изолированный TRIAC.Изолированные TRIAC обеспечивают гальваническую развязку электрических соединений с корпусом. Это избавляет от необходимости использовать слюдяные шайбы для изоляции радиатора от корпуса. Однако, если вы не знаете, изолирован ли ваш TRIAC, просто измерьте сопротивление от каждого вывода к корпусу. Изолированный TRIAC будет измерять обрыв на всех трех выводах.

Выбор оптоизолятора

Многие компании производят оптоизоляторы. Убедитесь, что вы используете тот, который имеет выход TRIAC и совместимую распиновку для вашего дизайна.Например, MOC3010 будет достаточно. В таблице 1 показаны некоторые типичные оптоизоляторы с триакомным выходом, совместимые с нашей конструкцией.

Вместо простого оптоизолятора вы также можете использовать оптический изолятор с переходом через ноль (например, MOC3031). SSR с переходом через ноль допускает запуск в любое время, но откладывает включение нагрузки переменного тока до следующего раза, когда напряжение переменного тока пройдет через ноль вольт. Это полезно для устранения RFI (радиочастотных помех) и для предотвращения почти мгновенного протекания большого тока в нагрузку.

Таблица 1. Типовые оптоизоляторы TRIAC

Конструкция и безопасность

Хотя SSR, безусловно, можно построить без PCB (печатной платы), использование предоставленного нами шаблона PCB упростит задачу. Некоторые линии печатной платы будут иметь напряжение 110 или 220 вольт. С точки зрения электричества это совершенно безопасно. Однако, вероятно, будет хорошей идеей покрыть все линии печатных схем силиконовым герметиком. Кроме того, лучше использовать изолирующие TRIACS и всегда заземлять их радиатор на предохранительный провод переменного тока (зеленый или желтый, или заземление).ТТР может срабатывать от 4 до 10 В (входное напряжение). Превышение 10 В может повредить светодиод оптоизолятора.


Список деталей

R1 = 100 Ом 1W
R2 = 39 Ом, см. Таблицу 1
R3 = 180 Ом
R4 = 2K2
R5 = 10K
C1 = 10nF, 450V
U1 = см. Таблицу 1
Q1 = 2N3904
D1 = 1N4002
TR1 = Q4006L4 или аналогичный

Все резисторы – 1/4 Вт, 5%, если не указано иное.


Вложения

Проект твердотельного реле – детали печатной платы

Цепь твердотельного реле | Электросхема.com

Вот простая схема твердотельного реле. Зачем это нужно? Представьте, что вам нужно управлять нагрузкой с помощью сети переменного тока. Часто для включения-выключения нагрузки используется силовое реле. Но в некоторых случаях реле использовать нельзя. Например, в местах, чувствительных к искрам. Во время работы реле может возникнуть искра.

Как это работает

Представьте себе схему твердотельного реле, которая обычно используется для управления входным напряжением от 3 до 24 В.

Однако в реальной эксплуатации.Мы обнаружили это при низком входном напряжении. Производительность схемы снижена. Потому что большинство входных цепей будут использовать резистор для управления током, протекающим через светодиодный передатчик.

При низком напряжении ток очень мал, так что выходные цепи, управляющие током затвора симистора, уменьшаются, ток, протекающий через нагрузку, уменьшается. Если лампа является нагрузкой, очевидно, что лампа не горит или слабый свет.

Возможны модификации путем уменьшения резисторов.При использовании высокого входного напряжения. Ток, протекающий через светодиодный передатчик, будет слишком большим, пока он не будет поврежден.

Чтобы решить эту проблему. Мы разработали новые входные цепи, поэтому питание светодиодного передатчика является постоянным током на всех уровнях входного напряжения.

Работа схем

Из схем видно, что транзистор Q1 действует как постоянный ток на светодиодный передатчик в IC1-OPTO ISOLATOR.

Когда мы присоединяем R1 к светодиоду, базовое напряжение Q1 будет постоянным около 2 вольт, а на выводе эмиттера Q1 также будет около 1.5 вольт.

Исходя из значения резистора R2 в этой схеме, мы получим постоянный ток, протекающий через транзистор Q1 и светодиод около 30 мА на выходе, а также постоянный ток на выводе 4 IC1 для управления затвором симистора.

Итак, ток, протекающий через нагрузку, – это определенная величина, необходимая в любое время.

Как собрать

Для начала вам нужно сделать макетную плату печатной платы. Во-вторых, вы должны разместить все компоненты, как показано на Рисунке 3, сначала мы припаяем нижние части, а затем припаяем более высокие компоненты.Симистор Q2 должен быть установлен с соответствующим радиатором.


Рисунок 2 Схема печатной платы и компонентов этого проекта Профессиональные проекты твердотельных реле

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ

Я всегда стараюсь сделать Electronics Learning Easy .

Цепь твердотельных реле с TIL111

В наши дни твердотельные реле есть почти везде, но они очень дороги. Итак, ваши усилия по созданию собственной зарплаты.Тем более, что в нем всего несколько деталей, а схема проста и понятна. Твердотельное реле – это совсем не реле. «Реле» нет, есть только с электроникой, подключение работает. Он хорошо работает как реле, вы можете использовать низкое напряжение выше и лучше. «Реле» между 115 / 220В проводами переменного тока на месте, хотя было принято, нулевой провод и оставьте неизменными фазы и нейтраль.

Пока нет напряжения (слева на рисунке), фототранзистор TIL111 блокирует энергию и, следовательно, недоступен.Чтобы гарантировать, что база TIL111 запитана на передатчик (ы) через резистор 1M. Этот метод предотвращает то, что база транзистора BC547B будет иметь низкий уровень и останется смещенным «включено». Коллектор низкий, а затвор (g) тиристора TIC106M, который все еще находится в стране, «выключен». Схема 4-диодного мостового выпрямителя не имеет мощности, кроме небольшого тока базы и коллектора BC547B, которого недостаточно для включения 330-омного резистора симистора TIC226M. Текущая «нагрузка» очень мала.

Схема:


При входном напряжении, скажем, 5 вольт, диод в TIL111 загорается и активирует фототранзистор.Резистор падения напряжения 1 МОм, включенный последовательно с сопротивлением 22 кОм, увеличивает потребность, которая блокирует транзистор BC547B. Коллекторный ток из-за того, что напряжение переменного тока падает ниже определенного значения, которое составляет ВА. Это обеспечивает достаточно большое падение напряжения на резисторе 330 Ом, который переключает симистор в состояние «включено». Напряжение на симисторе в настоящее время составляет всего несколько вольт, так что практически все 115/220 переменного напряжения на «загрузке».

Симистор представляет собой конденсатор емкостью 100 нФ и импеданс 47 Ом, конденсатор 100 нФ для резистора 330 Ом предназначен для защиты симистора от нежелательных искажений, вызванных небольшими пиками.Чтобы создать возможность переключения этой схемы с разными напряжениями, добавлен полевой транзистор BF256A. Полевой транзистор действует как источник тока от источника (ов) с затвором (g). Это означает, что этот полевой транзистор определяет ток TIL111 независимо от входного напряжения (конечно, до определенного допуска). Диод 1N4148 предназначен для защиты схемы от обратной полярности.
(Тони: TIL111 – это так называемая «оптическая связь» с выходом NPN и может быть заменена на NTE3042)

Хорошая точечная линия, как и разделение переменного и постоянного напряжения, поэтому эта схема используется во многих приложениях, примерно 1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *