Содержание

Тепловые реле — ТПО ТехПромМаш

Тепловые реле — это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле — ТРП, ТРН, РТЛ и РТТ.

Принцип действия тепловых реле

Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. Эта зависимость представлена на рисунке (кривая 1).

При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой продолжительности жизни оборудования.

Чем короче его жизнь, тем большие перегрузки допустимы.

Время-токовые характеристики теплового реле и защищаемого объекта

При идеальной защите объекта зависимость tср (I) для теплового реле должна идти немного ни-же кривой для объекта.

Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной.

Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим. Именно это явление используется в тепловых реле.

Широкое распространение в тепловых реле получили материалы инвар (малое значение a) и немагнитная или хромоникелевая сталь (большое значение a).

Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки.

Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле.

Устройство теплового реле: а — чувствительный элемент, б — прыгающий контакт, 1 — контакты, 2 — пружина, 3 — биметаллическая пластина, 4 — кнопка, 5 — мостик

Время-токовые характеристики теплового реле

Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика). В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластину до температуры qо.

При проверке времятоковых характеристик тепловых реле следует учитывать, из какого состояния (холодного или перегретого) происходит срабатывание реле.

При проверке тепловых реле надо иметь в виду, что нагревательные элементы тепловых реле термически неустойчивы при токах короткого замыкания.

Выбор тепловых реле

Номинальный ток теплового реле выбирают исходя из номинальной нагрузки электродвигателя. Выбранный ток теплового реле составляет (1,2 — 1,3) номинального значения тока электродвигателя (тока нагрузки), т. е.тепловое реле срабатывает при 20- 30% перегрузке в течении 20 минут.

Постоянная времени нагрева электродвигателя зависит от длительности токовой перегрузки. При кратковременной перегрузке в нагреве участвует только обмотка электродвигателя и постоянная нагрева 5 — 10 минут. При длительной перегрузке в нагреве участвует вся масса электродвигателя и постоянна нагрева 40-60 минут. Поэтому применение тепловых реле целесообразно лишь тогда, когда длительность включения больше 30 минут.

Влияние температуры окружающей среды на работу теплового реле

Нагрев биметаллической пластинки теплового реле зависит от температуры окружающей среды, поэтому с ростом температуры окружающей среды ток срабатывания реле уменьшается.

При температуре, сильно отличающейся от номинальной, необходимо либо проводить дополнительную (плавную) регулировку теплового реле, либо подбирать нагревательный элемент с учетом реальной температуры окружающей среды.

Для того чтобы температура окружающей среды меньше влияла на ток срабатывания теплового реле, необходимо, чтобы температура срабатывания выбиралась возможно больше.

Для правильной работы тепловой защиты реле желательно располагать в том же помещении, что и защищаемый объект. Нельзя располагать реле вблизи концентрированных источников тепла — нагревательных печей, систем отопления и т. д. В настоящее время выпускаются реле с температурной компенсацией (серии ТРН).

Конструкция тепловых реле

Прогиб биметаллической пластины происходит медленно. Если с пластиной непосредственно связать подвижный контакт, то малая скорость его движения, не сможет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устройство. Наиболее совершенным является «прыгающий» контакт.

В обесточенном состоянии пружина 1 создает момент относительно точки 0, замыкающий контакты 2. Биметаллическая пластина 3 при нагреве изгибается вправо, положение пружины изменяется. Она создает момент, размыкающий контакты 2 за время, обеспечивающее надежное гашение дуги. Современные контакторы и пускатели комплектуются с тепловыми реле ТРП (одно-фазное) и ТРН (двухфазное).


Тепловые реле ТРП

Тепловые токовые однополюсные реле серии ТРП с номинальными токами тепловых элементов от 1 до 600 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей, работающих от сети с номинальным напряжением до 500 В при частоте 50 и 60 Гц. Тепловые реле ТРП на токи до 150 А применяют в сетях постоянного тока с номинальным напряжением до 440 В.

Устройство теплового реле типа ТРП

Биметаллическая пластина теплового реле ТРП имеет комбинированную систему нагрева.

Пластина нагревается как за счет нагревателя, так и за счет прохождения тока через саму пластину. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик.

Тепловое реле ТРП позволяет иметь плавную регулировку тока срабатывания в пределах (±25% номинального тока уставки). Эта регулировка осуществляется ручкой, меняющей первоначальную деформацию пластины. Такая регулировка позволяет резко снизить число потребных вариантов нагревателя.

Возврат реле ТРП в исходное положение после срабатывания производится кнопкой. Возможно исполнение и с самовозвратом после остывания биметалла.

Высокая температура срабатывания (выше 200°С) уменьшает зависимость работы реле от температуры окружающей среды.

Уставка теплового реле ТРП меняется на 5% при изменении температуры окружающей среды на КУС.

Высокая ударо- и вибростойкость теплового реле ТРП позволяют использовать его в самых тяжелых условиях.


Тепловые реле РТЛ

Реле тепловое РТЛ предназначено для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от не симметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0.1 до 86 А.

Тепловые реле РТЛ могут устанавливаться как непосредственно на пускатели ПМЛ, так и отдельно от пускателей (в последнем случае они должны быть снабжены клеммниками КРЛ). Разработаны и выпускаются реле РТЛ и клеммники КРЛ которые имеют степень защиты ІР20 и могут устанавливаться на стандартную рейку. Номинальный ток контактов равен 10 А.


Тепловые реле РТТ

Реле топловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от несимметрии в фазах.

Реле РТТ предназначены для применения в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660В частотой 50 или 60Гц, в целях постоянного тока напряжением 440В.

 

Проверка, регулировка и настройка тепловых реле типа ТРН, ТРП

Очень часто приходится встречать в электрохозяйствах в качестве максимальной токовой защиты электротепловые реле типов ТРН, ТРП. Подробно об этих реле я уже писал ранее. Однако, в данных реле необходимо периодически проводить настройку и  регулировку уставок срабатывания. Именно об этом сегодня и поговорим.

И так.

Перед проверкой и регулировкой тепловых реле необходимо:

– произвести ревизию тепловых реле;

– создать необходимые температурные условия (не ниже +20оС) в помещении, где они установлены. В случае невозможности создания нормальных температурных условий в помещении, где установлены тепловые реле, проверку данных реле необходимо проводить в лабораторных условиях.

Произвести внешний осмотр тепловых реле. При осмотре проверяют:

1) надежность затяжки контактов, присоединения тепловых элементов;

2) исправное состояние нагревательных элементов, состояние биметаллических пластин;

3) четкость работы механизма, связанного с контактами реле и самих контактов, отсутствие заеданий, задержек;

4) чистоту контактов и биметаллических пластин, условия охлаждения реле;

5) отсутствие вблизи реле реостатов, нагревательных приборов, возможность обдувания от вентиляторов.

При регулировке необходимо учитывать, что тепловые элементы на заводе изготовителе калибруются при температуре 20о ± 5оС для тепловых реле серии ТРН и при температуре 40

оС для тепловых реле серии ТРП, поэтому при испытании реле необходимо скорректировать подаваемый на реле номинальный ток с учетом окружающей температуры.

Реле серии ТРН – двухполюсные с температурной компенсацией, выпускаются на ток 0,32 – 40 А с регулятором тока уставки; для реле типа ТРН-10а в пределах от –20 до +25%, для реле ТРН-10, ТРН-25 – в пределах от –25 до +30%.

Реле имеют только ручной возврат, осуществляемый нажатием на кнопку через 1 – 2 мин. после срабатывания реле. Благодаря температурной компенсации ток уставки практически не зависит от температуры воздуха и может изменяться в пределах +3% на каждые 10оС изменения температуры окружающего воздуха от +20оС.

Реле серии ТРП – однофазные, без температурной компенсации, выпускаются на ток 1-600 А, с регулятором тока уставки. Механизм имеет шкалу, на которой нанесено по пять делений в обе стороны от нуля.

Цена деления 5% для открытого исполнения и 5,5% – для защищенного. При температуре окружающей среды +30оС вносится поправка в пределах шкалы реле: одно  деление шкалы соответствует изменению температуры на 10оС. При отрицательных температурах стабильность защиты нарушается.

Деление шкалы, соответствующее току защищаемого электродвигателя и окружающей температуре, выбирают следующим образом; определяется деление шкалы уставок тока без температурной поправки по выражению:

где: Iэл – номинальный ток электродвигателя, А;

Io – ток нулевой уставки реле, А;

с – цена деления, равная 0,05 для открытых пускателей и 0,055 – для защищенных.

 

Затем, для реле без температурной компенсации вводится поправка на окружающую температуру:

где: tокр – температура окружающей среды, оС.

 

Поправка на температуру вводится только при понижении температуры от номинальной (+40оС) на величину более 10оС.

Результирующее расчетное деление шкалы ±N=(±N1)+(±N2), если оказывается дробным числом, его следует округлить до целого в большую или меньшую сторону, в зависимости от характера нагрузки.

Для реле с температурной компенсацией N2 отсутствует.

Самовозврат реле осуществляется пружиной после остывания биметалла или вручную (ускоренный возврат) рычагом с кнопкой.

 

Согласно требованиям ГОСТов настройка тепловых реле серии ТРН и ТРП производиться следующим образом:

1. Для включения реле в главную цепь должны применяться медные или алюминиевые проводники длиной не менее 1,5 м с сечением, соответствующим номинальному току. Применяемые приборы должны быть классом не ниже 1,0 и подбираются так, чтобы значение измеряемой величины находилось в пределах от 20 до 35о шкалы прибора.

2. Проверяют срабатывание реле при нагреве с холодного состояния при 6-и кратном номинальном токе уставки теплового реле.

Время срабатывания реле при нагреве с холодного состояния 6-и кратным номинальному току несрабатывания реле, при любом положении регулятора уставки и температуре окружающего воздуха, равной 40оС – для реле без температурной компенсации и 20оС – для реле с  температурной компенсацией должно быть в пределах: от 0,5 до 4 секунд – для реле малой инертности, свыше 4 до 25 секунд – для реле большой инерционности.

 

Примечание:

Время срабатывания реле (каждого типа) должно указываться в стандартах или ТУ на данное изделие.

3. Через последовательно включенные полюса реле пропускают ток несрабатывания элементов, равный 1,05*Iном. двигателя в течении 40 минут для реле ТРН, 50 минут – для реле серии ТРП, для приведения реле в установившееся тепловое состояние.

4. Затем, ток повышают до 1,2Iном двигателя и проверяют время срабатывания. Реле должно сработать в течении 20 минут. Если через 20 минут со времени повышения тока реле не сработает, то следует постепенным снижением уставки найти такой положение, при котором реле сработает.

Для контроля полученной уставки испытание рекомендуется повторить.

 

Сдача тепловых реле после проверки.

Данные настройки должны заноситься в протокол с указанием:

–          места установки;

–          технические данные защищаемого оборудования;

–          тип реле;

–          рабочая уставка;

–          кратность тока прогрузки;

–          время срабатывания теплового реле.

На механизме регулировки тока уставки наносится красной краской метка, соответствующая рабочей уставке теплового реле, согласно вышеуказанного протокола.

Тепловое реле магнитного пускателя

Тепловое реле в магнитных пускателях устанавливают для защиты, электродвигателя от перегрузок.
Тепловое реле состоит из четырех основных элементов: нагревателя 1, включаемого последовательно в защищаемую от перегрузки цепь; биметаллической пластинки 2 из двух спрессованных металлических пластинок с различными коэффициентами линейного расширения; системы 3—7 рычагов и пружин; контактов 8 и 9.

Схема теплового реле. 1 — нагреватель; 2 — биметаллическая пластинка; 3 — регулировочный винт; 4 — защелка; 5 — рычаг; 6 — пружина; 7 — кнопка возврата; 8 — подвижный контакт; 9 — неподвижный контакт; 10 — вывод нагревателя

Когда через нагревательный элемент 1 проходит ток, превышающий номинальный ток электродвигателя, выделяется такое количество тепла, что незакрепленный (на рисунке левый) конец биметаллической пластинки 2 изгибается в сторону металла с меньшим коэффициентом линейного расширения (то есть опускается), нажимает на регулировочный винт 3 и выводит защелку 4 из зацепления. В этот момент под действием пружины 6 верхний конец рычага 5 поднимется, разомкнет контакты 8 и 9 и разорвет цепь управления магнитного пускателя. Кнопка 7 служит для ручного возврата рычага 5 в исходное положение после срабатывания реле.
Из вышесказанного следует, что работа теплового реле основана на изгибании биметаллической пластинки под действием тепла выделяемого в нагревательном элементе. Но эта же пластинка будет изгибаться и под действием тепла окружающего воздуха. Таким образом, в жаркие дни реле будет срабатывать быстрее, чем в холодные. Для устранения этого явления в реле применена температурная компенсация, сущность которой заключается в том, что изгибанию биметаллической пластинки от изменения температуры окружающего воздуха соответствует противоположное по направлению изгибание пластинки компенсатора. Пластинка компенсатора тоже представляет собой биметаллическую пластинку, но с обратным по отношению к основной биметаллической пластинке прогибом.
В магнитные пускатели типа ПМЕ-100, ПМЕ-200 и в магнитные пускатели ПАЕ-300 встраивают тепловые реле ТРН. Эти реле двухфазные, с температурной компенсацией, с ручным возвратом. Нагрев биметалла косвенный, нагреватели сменные с номинальным током до 40 А.
Температурный компенсатор выполнен из биметалла с обратным прогибом по отношению к основному термоэлементу. При установившейся температуре между компенсатором и защелкой устанавливается определенный зазор. Изменение величины этого зазора путем поворота эксцентрика (регулятора уставки), т.е. удаление или приближение защелки, изменяет уставку реле. Каждое деление регулятора уставки соответствует 5% величины номинального тока нагревателя. При уставке регулятора в положение «О» ток уставки реле равен номинальному току нагревателя. При уставке регулятора в положение «-5» ток уставки уменьшается на 25%, в положение «+5» — увеличивается на 25% по отношению к величине номинального тока нагревателя.
Время срабатывания реле при температуре окружающего воздуха 20±5°С и нагреве реле из холодного состояния шестикратным номинальным током уставки при любом положении регулятора уставки должно быть в следующих пределах:

Конструкция теплового реле ТРН-10: 1, 2, 3, 4, 6 — винты; 5 — крышка; 7 — нагревательный элемент; 8 — пластмассовая крышка; 9 — шток; 10 — контактный мостик

  1. 3—15 с — для реле ТРН-10 A;
  2. 6—25 с — для реле типов ТРН-10; ТРН-25 и ТРН-40.

Время ручного возврата реле в пределах температуры окружающего воздуха от -40 до +60°С должно быть не более 2 мин.
При установке реле в рабочее положение при температуре окружающего воздуха 20 ±5°С и обтекании обоих полюсов номинальным током реле не должно срабатывать в установившемся тепловом состоянии и должно срабатывать в течение не более 20 мин при токе, равном 1,2 номинального тока уставки. Защитные характеристики реле приведены на рис. 2.16 и 2.17.
Однофазные тепловые реле ТРП-60 и ТРП-150 (рис. 2.18), встраиваемые в пускатели ПАЕ четвертой, пятой и шестой величин, имеют комбинированный нагрев биметаллической пластинки (одна часть тока проходит через нагревательный элемент, другая — через биметаллическую пластинку). При одном нагревателе, рассчитанном на ток нулевой уставки, имеется возможность регулировать ток уставки в пределах ±25%. Реле имеет шкалу, на которой нанесены по пять делений по обе стороны от нуля. Цена деления 5% для открытого исполнения и 5,5% для защищенного.
В тепловом реле ТРП предусмотрены два исполнения по возврату: ручной возврат с гарантированным отсутствием самовозврата контактной группы и самовозврат с ускорением возврата вручную. Реле не срабатывает при длительном обтекании током, равном току уставки; срабатывает в течение 20 мин после увеличения тока по сравнению с током уставки на 20%. Реле нормально работает при токах, не превышающих 15-кратного значения. Реле допускает нагрузку 18-кратным номинальным током теплового элемента в течение 1 с, или до срабатывания реле, если оно произойдет за время меньше 1 с.


Кратность тока срабатывания по отношению к току установки

Защитные характеристики реле ТРН-25 и ТРН-40 1 — зона защитных характеристик при срабатывании реле из холодного состояния; 2 — зона защитных характеристик при срабатывании реле из горячего состояния (после прогрева)

Кратность тока срабатывания по отношению к току установки

Защитные характеристики реле ТРН-10А
1 — зона защитных характеристик при срабатывании реле из холодного состояния; 2 — зона защитных характеристик при срабатывании реле из горячего состояния (после прогрева)


Тепловые реле типа ТРП: 1 — биметаллическая пластинка; 2 — упор самовозврата; 3 — держатель подвижного контакта; 4 — пружина; 5 — подвижный контакт; 6 — неподвижный контакт; 7 — сменный нагреватель; 8 — регулятор тока уставки; 9 — кнопка ручного возврата

Для защиты реле ТРП-60 и ТРП-150 от токов короткого замыкания достаточно, чтобы номинальный ток плавкой вставки предохранителя, включенного последовательно с тепловым элементом защищаемого реле, превышал номинальный ток теплового элемента не более чем в 4—5 раз.

принцип работы, виды, схема подключения + регулировка и маркировка


Долговечность и надежность в эксплуатации любой установки с электрическим двигателем зависит от различных факторов. Однако в значительной мере на срок службы мотора влияют токовые перегрузки. Чтобы их предупредить подключают тепловое реле, защищающее основной рабочий орган электромашины.

Мы расскажем, как подобрать устройство, предсказывающее назревание аварийных ситуаций с превышением максимально допустимых показателей тока. В представленной нами статье описан принцип действия, приведены разновидности и их характеристики. Даны советы по подключению и грамотной настройке.

Содержание статьи:

Зачем нужны защитные аппараты?

Даже если электропривод грамотно спроектирован и используется без нарушения базовых правил эксплуатации, всегда остается вероятность возникновения неисправностей.

К аварийным режимам работы относят однофазные и многофазные КЗ, тепловые перегрузки электрооборудования, заклинивание ротора и разрушение подшипникового узла, обрыв фазы.

Функционируя в режиме повышенных нагрузок, электрический двигатель расходует огромное количество электроэнергии. А при регулярном превышении показателей номинального напряжения оборудование интенсивно нагревается.

В результате быстро изнашивается изоляция, что приводит к значительному снижению эксплуатационного срока электромеханических установок. Чтобы исключить подобные ситуации, в цепи электрического тока подключают реле тепловой защиты. Их основная функция – обеспечить нормальный режим работы потребителей.

Они отключают мотор с определенной выдержкой времени, а в некоторых случаях – мгновенно, чтобы предотвратить разрушение изоляции или повреждение отдельных частей электроустановки.

Токовое реле постоянно защищает электрический двигатель от обрыва фазы и технологических перегрузок, а также торможения ротора. Это главные причины, из-за которых возникают аварийные режимы

С целью не допустить понижение сопротивления изоляции задействуют устройства защитного отключения, ну а если поставлена задача предотвратить нарушение охлаждения, подключают специальные аппараты встроенной тепловой защиты.

Устройство и принцип работы ТР

Конструктивно стандартное электротепловое реле представляет собой небольшой аппарат, который состоит из чувствительной биметаллической пластины, нагревательной спирали, рычажно-пружинной системы и электрических контактов.

Биметаллическую пластину изготовляют из двух разнородных металлов, как правило, инвара и хромоникелевой стали, прочно соединенных вместе в процессе сварки. Один металл обладает большим температурным коэффициентом расширения, чем другой, поэтому нагреваются они с разной скоростью.

При токовой перегрузке незафиксированная часть пластины прогибается к материалу с меньшим значением коэффициента теплового расширения. Это оказывает силовое воздействие на систему контактов в защитном устройстве и активирует отключение электроустановки при перегреве.

В большинстве моделей механических тепловых реле есть две группы контактов. Одна пара – нормально разомкнутые, другая – замкнутые постоянно. Когда срабатывает защитное устройство, в контактах меняется состояние. Первые замыкаются, а вторые становятся разомкнутыми.

В электронных ТР задействуют специальные датчики и чувствительные зонды, реагирующие на повышение тока. В микропроцессоре таких защитных устройств запрограммированы параметры, определяющие ситуации, когда необходимо отключать подачу электропитания

Ток детектирует интегрированный трансформатор, после чего электроника обрабатывает полученные данные. Если значение тока в настоящий момент времени больше, чем уставка, импульс мгновенно передается прямо на выключатель.

Размыкая внешний контактор, реле с электронным механизмом блокирует нагрузку. Само устанавливается на контактор.

Биметаллическая пластина может быть нагрета непосредственно – за счет воздействия пикового тока нагрузки на металлическую полосу или косвенно, при помощи отдельного термоэлемента. Нередко эти принципы объединяют в одном аппарате тепловой защиты. При комбинированном нагреве прибор имеет лучшие рабочие характеристики.

После остывания пластина возвращается в исходное состояние. Коммутирующие контакты автоматически замыкаются либо нужно принудительно приводить их в замкнутое состояние

Базовые характеристики токового реле

Основной характеристикой коммутатора тепловой защиты является выраженная зависимость времени срабатывания от протекающего по нему тока — чем больше величина, тем быстрее он сработает. Это свидетельствует об определенной инерционности релейного элемента.

Направленное перемещение частиц-носителей заряда через любой электроприбор, и электрокотел, генерирует тепло. При номинальном токе его допустимая длительность стремится к бесконечности.

А при значениях, превышающих номинальные показатели, в оборудовании повышается температура, что приводит к преждевременному износу изоляции.

Обрыв цепи мгновенно блокирует дальнейший рост температурных показателей. Это дает возможность предупредить перегрев двигателя и предотвратить аварийный выход из строя электрической установки

Номинальная нагрузка самого мотора – ключевой фактор, определяющий выбор прибора. Показатель в интервале 1,2-1,3 обозначает успешное срабатывание при токовой перегрузке в 30% на временном отрезке в 1200 секунд.

Продолжительность перегрузки может негативно сказаться на состоянии электрооборудования — при кратковременном воздействии в 5-10 минут нагревается только обмотка мотора, которая имеет небольшую массу. А при длительных нагревается весь двигатель, что чревато серьезными поломками. Или вовсе может потребоваться замена сгоревшего оборудования новым.

Чтобы максимально уберечь объект от перегрузки, следует конкретно под него использовать реле тепловой защиты, время срабатывания которого будет соответствовать максимально допустимым показателям перегрузки конкретного электродвигателя.

На практике собирать под каждый тип мотора нецелесообразно. Один релейный элемент задействуют для защиты двигателей различного конструктивного исполнения. При этом гарантировать надежную защиту в полном рабочем интервале, ограниченном минимальной и максимальной нагрузкой, невозможно.

Повышение показателей тока не сразу приводит к опасному аварийному состоянию оборудования. Прежде чем ротор и статор нагреются до предельной температуры, пройдет некоторое время

Поэтому нет крайней необходимости в том, чтобы защитное устройство реагировало на каждое, даже незначительное повышение тока. Реле должно отключать электродвигатель только в тех случаях, когда есть опасность быстрого износа изоляционного слоя.

Виды реле тепловой защиты

Существует несколько видов реле для защиты электрических двигателей от обрыва фаз и токовых перегрузок. Все они отличаются конструкционными особенностями, типом используемых МП и применением в разных моторах.

ТРП. Однополюсный коммутационный аппарат с комбинированной системой нагрева. Предназначен для защиты асинхронных трехфазных электромоторов от токовых перегрузок. Применяется ТРП в электросетях постоянного тока с базисным напряжением в условиях нормальной работы не больше 440 В. Отличается устойчивостью к вибрациям и ударам.

РТЛ. Обеспечивают двигателям защиту в таких случаях:

  • при выпадении одной из трех фаз;
  • асимметрии токов и перегрузок;
  • затянутого пуска;
  • заклинивания исполнительного механизма.

Их можно устанавливать с клеммами КРЛ отдельно от магнитных пускателей или монтировать непосредственно на ПМЛ. Устанавливаются на рейках стандартного типа, класс защиты – IP20.

РТТ. Защищают асинхронные трехфазные машины с короткозамкнутым ротором от затянутого старта механизма, длительных перегрузок и асимметрии, то есть перекоса фаз.

РТТ могут быть использованы в качестве комплектующих частей в различных схемах управления электроприводами, а также для интеграции в пускатели серии ПМА

ТРН. Двухфазные коммутаторы, которые контролируют пуск электроустановки и режим работы мотора. Практически не зависят от температуры внешней среды, имеют только систему ручного возврата контактов в начальное состояние. Их можно использовать в сетях постоянного тока.

РТИ. Электрические переключающие аппараты с постоянным, хоть и небольшим потреблением электроэнергии. Монтируются на контакторах серии КМИ. Работают вместе с предохранителями/.

Твердотельные токовые реле. Представляют собой небольшие электронные устройства на три фазы, в конструкции которых нет подвижных частей.

Функционируют по принципу вычисления средних значений температур двигателя, осуществляя для этого постоянный мониторинг рабочего и пускового тока. Отличаются невосприимчивостью к изменениям в окружающей среде, а потому используются во взрывоопасных зонах.

РТК. Пусковые коммутаторы для контроля температуры в корпусе электрооборудования. Используются в схемах автоматики, где тепловые реле выступают в качестве комплектующих деталей.

Чтобы обеспечить надежную работу электрооборудования, релейный элемент должен обладать такими качествами, как чувствительность и быстродействие, а также селективность

Важно помнить, что ни один вид из выше рассмотренных приборов не является пригодным для защиты цепей от короткого замыкания.

Устройства тепловой защиты лишь предотвращают аварийные режимы, которые возникают при нештатной работе механизма или перегрузке.

Электрооборудование может перегореть еще до начала срабатывания реле. Для комплексной защиты их нужно дополнять предохранителями или компактными автоматическими выключателями модульной конструкции.

Подключение, регулировка и маркировка

Коммутационный прибор перегрузки, в отличие от электрического автомата, не разрывает силовую цепь непосредственно, а лишь подает сигнал на временное отключение объекта при аварийном режиме. Нормально включенный контакт у него работает как кнопка «стоп» контактора и подсоединяется по последовательной схеме.

Схема подключения устройств

В конструкции реле не нужно повторять абсолютно все функции силовых контактов при успешном срабатывании, поскольку оно подключается непосредственно к МП. Такое исполнение позволяет существенно сэкономить материалы для силовых контактов. Намного легче в управляющей цепи подключить малый ток, чем сразу отключать три фазы с большим.

Во многих схемах подключения теплового реле к объекту используют постоянно замкнутый контакт. Его последовательно соединяют с клавишей «стоп» пульта управления и обозначают НЗ – нормально замкнутый, или NC – normal connected.

Разомкнутый контакт при такой схеме может быть использован для инициализации срабатывания тепловой защиты. Схемы подсоединения электромоторов, в которых подключено реле тепловой защиты, могут значительно отличаться в зависимости от наличия дополнительных устройств или технических особенностей.

В стандартной простой схеме ТР подключают к выходу низковольтного пускателя на электрический двигатель. Дополнительные контакты прибора в обязательном порядке соединяют последовательно с катушкой пускателя

Это обеспечит надежную защиту от перегрузок электрооборудования. В случае недопустимого превышения предельных значений тока релейный элемент разомкнет цепь, моментально отключая МП и двигатель от электропитания.

Подключение и установку теплового реле, как правило, производят вместе с магнитным пускателем, предназначенным для коммутации и запуска электрического привода. Однако есть виды, которые монтируют на DIN-рейку или специальную панель.

Тонкости регулировки релейных элементов

Одним из главных требований к устройствам защиты электродвигателей является четкое действие аппаратов при возникновении аварийных режимов работы мотора. Очень важно правильно его подобрать и отрегулировать настройки, поскольку ложные срабатывания абсолютно недопустимы.

Электротепловое реле, которое оптимально подходит к конкретному типу двигателя по всем техническим параметрам, способно обеспечить надежную защиту от перегрузок по каждой фазе, предотвратить затяжной старт установки, не допустить аварийных ситуаций с заклиниванием ротора

Среди преимуществ использования токовых элементов защиты также следует отметить довольно высокую скорость и широкий диапазон срабатывания, удобство монтажа. Чтобы обеспечить своевременное отключение электромотора при перегрузке, реле тепловой защиты необходимо настраивать на специальной платформе/стенде.

В таком случае исключается неточность из-за естественного неравномерного разброса номинальных токов в НЭ. Для проверки защитного устройства на стенде применяется метод фиктивных нагрузок.

Через термоэлемент пропускают электрический ток пониженного напряжения, чтобы смоделировать реальную тепловую нагрузку. После этого по таймеру безошибочно определяют точное время срабатывания.

Настраивая базовые параметры, следует стремиться к таким показателям:

  • при 1,5-кратном токе устройство должно отключать двигатель через 150 с;
  • при 5…6-кратном токе оно должно отключать мотор через 10 с.

Если время срабатывания не соответствует норме, релейный элемент необходимо отрегулировать посредством контрольного винта.

Для корректной работы обязательно нужно настроить прибор на наибольший допустимый электрический ток двигателя и температуру воздуха

Это делают в тех случаях, когда значения номинального тока НЭ и мотора отличаются, а также если температура окружающей среды ниже номинальной (+40 ºC) более, чем на 10 градусов по шкале Цельсия.

Ток срабатывания электротеплового коммутатора уменьшается с повышением температуры вокруг рассматриваемого объекта, так как нагрев биметаллической полосы зависит от этого параметра. При существенных отличиях необходимо дополнительно отрегулировать ТР или подобрать более подходящий термоэлемент.

Резкие колебания температурных показателей сильно влияют на работоспособность токового реле. Поэтому очень важно выбирать НЭ, способный эффективно выполнять основные функции с учетом реальных значений.

ТР рекомендовано размещать в одном помещении с защищаемой электроустановкой. Их нельзя монтировать близко к теплогенераторам, нагревательным печам и другим источникам тепла

К реле с температурной компенсацией эти ограничения не относятся. Токовую уставку защитного аппарата можно регулировать в диапазоне 0,75-1,25х от значений номинального тока термоэлемента. Настройку выполняют поэтапно.

В первую очередь вычисляют поправку E1 без температурной компенсации:

E1=(Iном-Iнэ)/c×Iнэ,

Где

  • Iном – номинальный ток нагрузки двигателя,
  • Iнэ – номинальный ток рабочего нагревательного элемента в реле,
  • c – цена деления шкалы, то есть эксцентрика (c=0,055 для защищенных пускателей, c=0,05 для открытых).

Следующий шаг – определение поправки E2 на температуру окружающего воздуха:

E2=(ta-30)/10,

Где ta (ambient temperature) – температура внешней среды в градусах Цельсия.

Последний этап – нахождение суммарной поправки:

E=E1+E2.

Суммарная поправка E может быть со знаком «+» или «-». Если в результате получается дробная величина, ее обязательно нужно округлить до целого в меньшую/большую по модулю сторону, в зависимости от характера токовой нагрузки.

Чтобы настроить реле, эксцентрик переводят на полученное значение суммарной поправки. Высокая температура срабатывания уменьшает зависимость работы защитного аппарата от внешних показателей.

Реле тепловой защиты допускает ручную плавную регулировку величины тока срабатывания устройства в пределах ±25% от значения номинального тока электромеханической установки

Регулировка этих показателей осуществляется специальным рычагом, перемещение которого изменяет первоначальный изгиб биметаллической пластины. Настройка тока срабатывания в более широком диапазоне осуществляется заменой термоэлементов.

В современных коммутационных аппаратах защиты от перегрузки есть тестовая кнопка, которая позволяет проверить исправность устройства без специального стенда. Также есть клавиша для сброса всех настроек. Обнулить их можно автоматически или вручную. Кроме того, изделие комплектуют индикатором текущего состояния электроприбора.

Маркировка электротепловых реле

Защитные аппараты подбирают в зависимости от величины мощности электрического двигателя. Основная часть ключевых характеристик скрыта в условном обозначении.

Так выглядит маркировка тепловых реле завода КЭАЗ. Важно при выборе обратить внимание на значение номинального тока рассматриваемой модели, чтобы оно было достаточным

Акцентировать внимание следует на отдельных моментах:

  1. Диапазон значений токов уставки (указан в скобках) у разных производителей отличается минимально.
  2. Буквенные обозначения конкретного типа исполнения могут различаться.
  3. Климатическое исполнение нередко подается в виде диапазона. К примеру, УХЛ3О4 нужно читать так: УХЛ3-О4.

Сегодня можно купить самые разные вариации прибора: реле для переменного и постоянного тока, моностабильные и бистабильные, аппараты с замедлением при включении/отключении, реле тепловой защиты с ускоряющими элементами, ТР без удерживающей обмотки, с одной обмоткой или несколькими.

Эти параметры не всегда отображены в маркировке устройств, но обязательно должны быть указаны в техпаспорте электротехнических изделий.

С устройством, разновидностями и маркировкой электромагнитного реле ознакомит , с которой мы рекомендуем ознакомиться.

Выводы и полезное видео по теме

Устройство и принцип функционирования токового реле для эффективной защиты электродвигателя на примере устройства РТТ 32П:

Правильная защита от перегрузки и обрыва фаз – залог длительной безотказной работы электрического мотора. Видео о том, как реагирует релейный элемент в случае нештатной работы механизма:

Как подсоединить устройство тепловой защиты к МП, принципиальные схемы электротеплового реле:

Реле тепловой защиты от перегрузок – обязательный функциональный элемент любой системы управления электроприводом. Оно реагирует на ток, который проходит на двигатель, и активируется, когда температура электромеханической установки достигает предельных значений. Это дает возможность максимально продлить срок эксплуатации экологически безопасных электродвигателей.

Пишите, пожалуйста, комментарии в находящемся ниже блоке. Расскажите, как вы выбирали и настраивали тепловое реле для собственного электромотора. Делитесь полезными сведениями, задавайте вопросы, размещайте фотоснимки по теме статьи.

Реле тепловые

Дорогие покупатели! В нашем интернет-магазине открылся новый раздел “Освещение”-это люстры, бра, торшеры и т.д. по доступным ценам!       

  

 

 

 

Тепловые реле – устройство, принцип действия, технические характеристики

Тепловое реле – электрический аппарат, предназначенный для защиты электродвигателя от токовых перегрузок. Наиболее распространёнными типами тепловых реле являются ТРН, ТРП, РТТ и РТЛ.

Принцип действия теплового реле.

Срок службы электрооборудования в значительной степени напрямую зависит от перегрузок, воздействующих на него при работе оборудования. Для любого оборудования довольно просто найти зависимость времени протекания тока от его величины, при котором достигается длительная и надежная эксплуатация оборудования.

При номинальных токах допустимое время его протекания равно бесконечности. Протекание токов больше номинального приводит к повышению рабочих температур и значительному сокращению срока службы в первую очередь за счет износа изоляции. Вследствие этого, чем больше перегрузки, тем меньше должно быть время их воздействия.

Идеальная защита оборудования – зависимость tср (I) для тепловых реле проходит ниже кривой для защищаемого оборудования.

Наиболее широкое распространение получило тепловое реле с биметаллической пластиной для защиты от перегрузки.

Биметаллическая пластина, используемая в тепловом реле, состоит из пластин имеющих различный температурный коэффициент расширения (одна – больший, другая – меньший). В местах прилегания пластины жестко крепятся друг к другу за счет горячего проката или сварки. При нагревании неподвижной биметаллической пластины происходит изгиб ее в сторону части с меньшим коэффициентом расширения. Именно данное свойство используется при работе теплового реле.

Также широко применяются пластины, состоящие из инвара (меньший коэффициент) и хромоникелевой или немагнитной стали (больший коэффициент).

Нагрев пластины теплового реле происходит за счет выделяемого тепла при протекании тока нагрузки через биметаллическую пластину. Зачастую используется нагревательный элемент, по которому также протекает ток нагрузки. Наилучшие характеристики имеют комбинированные тепловые реле, в которых ток нагрузки протекает и через биметаллическую пластину и через нагревательный элемент.

При нагревании биметаллическая пластина тепловых реле воздействует на контактную систему своей свободной частью.

Времятоковые характеристики тепловых реле

Основной характеристикой для всех тепловых реле является зависимость времени отключения от токов нагрузки (времятоковые характеристики). До начала перегрузки в общем случае через тепловое реле протекает ток Iо, нагревающий биметаллическую пластину до начальной  температуры qо.

При проверке характеристик времени срабатывания теплового реле необходимо учитывать из холодного или горячего состояния происходит срабатывание тепловых реле.

Также необходимо помнить что нагревательный элемент теплового реле является термически неустойчивым при протекании токов короткого замыкания.

Выбор теплового реле.

Номинальный ток выбираемого теплового реле выбирается исходя из номинальных нагрузок защищаемого оборудования (электродвигателя). Ток выбираемого теплового реле должен составлять 1,2 – 1,3 от номинального тока электродвигателя (ток нагрузки), то есть тепловое реле срабатывает при 20 – 30 % перегрузке на протяжении 20 минут.

Значение времени нагрева электродвигателя напрямую зависит от длительности перегрузок. В случае кратковременной перегрузки нагреваются лишь обмотки электродвигателя и время нагрева составляет от 5 до 10 минут. При длительных перегрузках в нагреве участвует вся конструкция двигателя, и время составляет от 40 до 60 минут. Поэтому наиболее целесообразным считается применение теплового реле в схемах, где время включения электродвигателя превышает 30 минут.

Влияние внешних температур на работу теплового реле.

Нагрев биметаллической пластины теплового реле зависит как от воздействующих токов, но и от воздействия температуры окружающей среды. В связи с этим при росте температуры окружающей среды уменьшается значение тока срабатывания.

При сильно отличающейся температуре от номинальной, проводится плановая дополнительная регулировка теплового реле, или подбирается нагревательный элемент в котором учитывается температура окружающей среды.

Для уменьшения воздействия температуры окружающей среды на токи срабатывания тепловых реле, необходимо подбирать наиболее близкую температуру срабатывания.

Для обеспечения правильной работы и обеспечения тепловой защиты тепловое реле необходимо размещать в помещении, что и защищаемый механизм (электродвигатель). Нежелательно располагать тепловое реле в непосредственной близости от источников тепла, таких как нагревательные печи, система отопления и т.п. В настоящее время для обеспечения наилучшей защиты используются реле с температурной компенсацией (серия ТРН).

Конструкция теплового реле.

Изгибание биметаллической пластины происходит достаточно медленно. В случае если с пластиной непосредственно будет связан подвижный контакт, то небольшая скорость движения не обеспечивает гашения дуги, которая возникает при размыкании цепи. Поэтому воздействие на контакт осуществляется через устройство ускорения. Наиболее эффективным является так называемый «прыгающий» контакт.

В момент, когда напряжение не подается, пружина создает момент относительно нулевой точки замыкающего контакта. При нагреве биметаллическая пластина изгибается, что ведет к изменению положения пружины. Пружина создает момент, который способен разомкнуть контакт за время, которое обеспечивает надежное гашение дуги. Пускатели и контакторы комплектуются однофазными тепловыми реле типа ТРП или двухфазными ТРН реле.

Реле тепловые ТРП

Токовые однополюсные тепловые реле ТРП с номинальным током теплового элемента от 1 до 600 А используемые для защиты трехфазных асинхронных электродвигателей от тепловых перегрузок, работающих в сети с напряжением 500 В и частоте 50 или 60 Гц. Тепловое реле ТРП с номинальным током до 150 А применяются в сети постоянного тока и напряжением до 440 В.

Реле тепловые РТЛ

Тепловое реле типа РТЛ используется для обеспечения защиты оборудования от длительных токовых перегрузок. Они также используются для защиты от несимметричности токов в фазах а так же выпадения одной фазы. Рабочий диапазоном тока электротеплового реле РТЛ от 0.1 до 86 А.

Реле тепловые РТЛ устанавливаются как на пускатели типа ПМЛ, так и отдельно, в данном случае реле должно снабжается клеммниками КРЛ. Степень защиты реле РТЛ и клеммников КРЛ могут иметь ІР20 а также могут быть устанавленны на стандартную дин-рейку. Номинальный ток контактора 10 А.

Реле тепловое РТТ

Тепловое реле РТТ предназначено для защиты трехфазного асинхронного электродвигателя с короткозамкнутым ротором от кратковременной перегрузки, в том числе при выпадении фазы и не симметрии.

Реле тепловое РТТ предназначено в качестве комплектующего изделия в схеме управления электроприводами и встройки в магнитный пускатель типа ПМА в цепях переменного тока с напряжением 660 В и частотой 50 или 60 Гц, а цепи постоянного тока с напряжением 440 В.


РТЛ 1001-1022 (0,14-21,5А)196,30р.
РТЛ 2053-2061 (28,5-64А)317,00р.
РТT 5-10 1-10 А197,00р.
РТТ-111 0,8-25 А197,00р.
РТТ-141 1-25 А (на заказ)197,00р.
РТТ-211 16-40А327,00р.
РТТ-211 50А, 63А1 031,00р.
РТТ-321(311,221) 63-160А1 369,00р.

5.1.1.Устройство теплового реле типа трп.

Рис.3. Устройство теплового реле типа ТРП:

1 – Биметаллическая пластина; 2 – регулировочная ручка;3 – прыгающий контактный мостик; 4 – кнопка возврата;5 – нагреватель.

Биметаллическая пластина теплового реле ТРП имеет комбинированную систему нагрева. Пластина 1 нагревается как за счет нагревателя 5, так и за счет прохождения тока через саму пластину. При прогибе конец биметаллической пластины воздействует на прыгающий контактный мостик 3.

Тепловое реле ТРП позволяет иметь плавную регулировку тока срабатывания в пределах (±25% номинального тока уставки). Эта регулировка осуществляется ручкой 2, меняющей первоначальную деформацию пластины. Такая регулировка позволяет резко снизить число потребных вариантов нагревателя.

Возврат реле ТРП в исходное положение после срабатывания производится кнопкой 4. Возможно исполнение и с самовозвратом после остывания биметалла.

Высокая температура срабатывания (выше 200°С) уменьшает зависимость работы реле от температуры окружающей среды.

Установка теплового реле ТРП меняется на 5% при изменении температуры окружающей среды на КУС. Высокая ударо- и вибростойкость теплового реле ТРП позволяют использовать его в самых тяжелых условиях.

5.2.Тепловые реле ртл.

Реле тепловое РТЛ предназначено для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от не симметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0.1 до 86 А. Тепловые реле РТЛ могут устанавливаться как непосредственно на пускатели ПМЛ, так и отдельно от пускателей (в последнем случае они должны быть снабжены клеммниками КРЛ). Разработаны и выпускаются реле РТЛ и клеммники КРЛ которые имеют степень защиты ІР20 и могут устанавливаться на стандартную рейку. Номинальный ток контактов равен 10 А.

5.3.Тепловые реле ртт.

Реле тепловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от несимметрии в фазах. Реле РТТ предназначены для применения в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660В частотой 50 или 60Гц, в целях постоянного тока напряжением 440В.

5.3.1.Выбор теплового реле

Так как пускатель мы выбирали с тепловым реле, то тепловое реле у нас уже выбрано и автоматически выполняются все условия для нормальной работы реле.

Тепловое реле пускателя проверяется по времени tср срабатывания при пусковом токе двигателя, а номинальный ток нагревательного элемента Iн.нагрев теплового реле должен быть не меньше номинального тока двигателя. Для нормального пуска и защиты двигателя 1.5 tп >= tср > tп

6.Реле электротепловые токовые серии ртт

6.1.Общие сведения

Реле электротепловые токовые серии РТТ предназначены для защиты трехфазных электродвигателей с короткозамкнутым ротором от длительных перегрузок, а также от перегрузок, возникающих при обрыве одной из фаз.

Реле имеют исполнение для установки на металлических изоляционных панелях, рейках комплектного устройства и специальное исполнение для установки с пускателями серии ПМА (ТУ16 – 644.005 – 84). Трехполюсное исполнение реле, применение несменных нагревательных элементов и ускоренное срабатывание при обрыве фазы повышают надежность защиты электродвигателей по сравнению с однополюсными и двухполюсными исполнения реле.

Нов-электро, информация для энергетиков-статьи-прогрузка и регулировка ТРН, ТРП

Источник: Информационный сайт для энергетиков

Проверка и регулировка тепловых реле типа ТРН, ТРП.

Перед проверкой и регулировкой тепловых реле необходимо:

–          произвести ревизию тепловых реле;

–          создать необходимые температурные условия (не ниже +20оС) в помещении, где они установлены. В случае невозможности создания нормальных температурных условий в помещении, где установлены тепловые реле, проверку данных реле необходимо проводить в лабораторных условиях.

Произвести внешний осмотр тепловых реле. При осмотре проверяют:

1)       надежность затяжки контактов, присоединения тепловых элементов;

2)       исправное состояние нагревательных элементов, состояние биметаллических пластин;

3)       четкость работы механизма, связанного с контактами реле и самих контактов, отсутствие заеданий, задержек;

4)       чистоту контактов и биметаллических пластин, условия охлаждения реле;

5)       отсутствие вблизи реле реостатов, нагревательных приборов, возможность обдувания от вентиляторов.

При регулировке необходимо учитывать, что тепловые элементы на заводе изготовителе калибруются при температуре 20о ± 5оС для тепловых реле серии ТРН и при температуре 40оС для тепловых реле серии ТРП, поэтому при испытании реле необходимо скорректировать подаваемый на реле номинальный ток с учетом окружающей температуры.

Реле серии ТРН – двухполюсные с температурной компенсацией, выпускаются на ток 0,32 – 40 А с регулятором тока уставки; для реле типа ТРН-10а в пределах от –20 до +25%, для реле ТРН-10, ТРН-25 – в пределах от –25 до +30%.

Реле имеют только ручной возврат, осуществляемый нажатием на кнопку через 1 – 2 мин. после срабатывания реле. Благодаря температурной компенсации ток уставки практически не зависит от температуры воздуха и может изменяться в пределах +3% на каждые 10оС изменения температуры окружающего воздуха от +20оС.

Реле серии ТРП – однофазные, без температурной компенсации, выпускаются на ток 1-600 А, с регулятором тока уставки. Механизм имеет шкалу, на которой нанесено по пять делений в обе стороны от нуля.

Цена деления 5% для открытого исполнения и 5,5% – для защищенного. При температуре окружающей среды +30оС вносится поправка в пределах шкалы реле: одно  деление шкалы соответствует изменению температуры на 10оС. При отрицательных температурах стабильность защиты нарушается.

Деление шкалы, соответствующее току защищаемого электродвигателя и окружающей температуре, выбирают следующим образом; определяется деление шкалы уставок тока без температурной поправки по выражению:

 

,

где: Iэл – номинальный ток электродвигателя, А;

         Io – ток нулевой уставки реле, А;

         с – цена деления, равная 0,05 для открытых пускателей и 0,055 – для защищенных.

 

Затем, для реле без температурной компенсации вводится поправка на окружающую температуру:

 

,

где: tокр – температура окружающей среды, оС.

 

Поправка на температуру вводится только при понижении температуры от номинальной (+40оС) на величину более 10оС.

Результирующее расчетное деление шкалы ±N=(±N1)+(±N2), если оказывается дробным числом, его следует округлить до целого в большую или меньшую сторону, в зависимости от характера нагрузки.

Для реле с температурной компенсацией N2 отсутствует.

Самовозврат реле осуществляется пружиной после остывания биметалла или вручную (ускоренный возврат) рычагом с кнопкой.

 

Согласно требованиям ГОСТов настройка тепловых реле серии ТРН и ТРП производиться следующим образом:

1.              Для включения реле в главную цепь должны применяться медные или алюминиевые проводники длиной не менее 1,5 м с сечением, соответствующим номинальному току. Применяемые приборы должны быть классом не ниже 1,0 и подбираются так, чтобы значение измеряемой величины находилось в пределах от 20 до 35о шкалы прибора.

2.              Проверяют срабатывание реле при нагреве с холодного состояния при 6-и кратном номинальном токе уставки теплового реле.

Время срабатывания реле при нагреве с холодного состояния 6-и кратным номинальному току несрабатывания реле, при любом положении регулятора уставки и температуре окружающего воздуха, равной 40оС – для реле без температурной компенсации и 20оС – для реле с  температурной компенсацией должно быть в пределах: от 0,5 до 4 секунд – для реле малой инертности, свыше 4 до 25 секунд – для реле большой инерционности.

 

Примечание:

Время срабатывания реле (каждого типа) должно указываться в стандартах или ТУ на данное изделие.

3.              Через последовательно включенные полюса реле пропускают ток несрабатывания элементов, равный 1,05*Iном. двигателя в течении 40 минут для реле ТРН, 50 минут – для реле серии ТРП, для приведения реле в установившееся тепловое состояние.

4.              Затем, ток повышают до 1,2Iном двигателя и проверяют время срабатывания. Реле должно сработать в течении 20 минут. Если через 20 минут со времени повышения тока реле не сработает, то следует постепенным снижением уставки найти такой положение, при котором реле сработает.

Для контроля полученной уставки испытание рекомендуется повторить.

 

Сдача тепловых реле после проверки.

Данные настройки должны заноситься в протокол с указанием:

–          места установки;

–          технические данные защищаемого оборудования;

–          тип реле;

–          рабочая уставка;

–          кратность тока прогрузки;

–          время срабатывания теплового реле.

 

На механизме регулировки тока уставки наносится красной краской метка, соответствующая рабочей уставке теплового реле, согласно вышеуказанного протокола.

 

См. также: справочные данные по реле ТРН-10, ТРН-25

 

Что такое тепловые реле перегрузки и какие компоненты они защищают?

Тепло является основным фактором в работе и сроке службы двигателя, и одним из основных источников нагрева двигателя является ток, протекающий через обмотки двигателя. Поскольку нагрев является неизбежным условием работы двигателя, важно защитить двигатель от перегрева или тепловой перегрузки.

В предыдущем посте мы описали несколько типов датчиков, которые могут напрямую измерять температуру обмоток двигателя.Но в некоторых случаях – особенно для асинхронных двигателей переменного тока – нагрев двигателя можно измерить косвенно с помощью тепловых реле перегрузки, которые определяют температуру двигателя, контролируя величину тока, подаваемого на двигатель.


Тепловые реле перегрузки подключаются последовательно с двигателем, поэтому ток, протекающий к двигателю, также проходит через реле перегрузки. Когда ток достигает или превышает заданный предел в течение определенного времени, реле активирует механизм, который размыкает один или несколько контактов, чтобы прервать прохождение тока к двигателю.Реле тепловой перегрузки классифицируются по классу срабатывания, который определяет время, в течение которого может произойти перегрузка, прежде чем реле сработает или отключится. Обычные классы поездки – 5, 10, 20 и 30 секунд.

Учет времени, а также тока важен для асинхронных двигателей переменного тока, потому что они потребляют значительно больше, чем их полный номинальный ток (часто 600 процентов или более) во время запуска. Таким образом, если реле немедленно сработает при превышении тока перегрузки, двигатель будет испытывать трудности с запуском.


Существует три типа тепловых реле перегрузки – биметаллические, эвтектические и электронные.

Биметаллические тепловые реле перегрузки (иногда называемые нагревательными элементами) изготовлены из двух металлов с разными коэффициентами теплового расширения, которые скреплены или соединены вместе. Обмотка, намотанная на биметаллическую полосу или размещенная рядом с ней, проводит ток.

В биметаллическом тепловом реле перегрузки нагрев из-за протекания тока заставляет биметаллическую полосу изгибаться в одну сторону, активируя механизм отключения.
Изображение предоставлено: Siemens

Поскольку ток, протекающий через реле (и, следовательно, через двигатель), нагревает биметаллическую полосу, два металла расширяются с разной скоростью, заставляя полосу изгибаться в сторону с более низким коэффициентом термическое расширение. Когда полоса изгибается, она приводит в действие нормально замкнутый (NC) контактор, заставляя его размыкаться и прекращая прохождение тока к двигателю. Как только биметаллическое реле остынет и металлические полосы вернутся в свое нормальное состояние, цепь автоматически сбрасывается, и двигатель можно перезапустить.

Эвтектические тепловые реле перегрузки используют эвтектический сплав (комбинация металлов, плавящихся и затвердевающих при определенной температуре), помещенные в трубку и подключенные к обмотке нагревателя. Ток питания двигателя протекает через обмотку нагревателя и нагревает сплав. Когда сплав достигает достаточной температуры, он быстро превращается в жидкость.

В эвтектическом реле тепловой перегрузки нагрев из-за протекания тока вызывает быстрое разжижение эвтектического сплава, активируя механическое устройство, которое размыкает реле.
Изображение предоставлено: Rockwell Automation

В твердом состоянии сплав удерживает на месте механическое устройство, например пружину или трещотку. Но когда сплав плавится, механическое устройство срабатывает, размыкая контакты перегрузки. Подобно биметаллической конструкции, эвтектическое реле тепловой перегрузки не может быть сброшено до тех пор, пока сплав не остынет и не вернется в исходное твердое состояние.

Электронные тепловые реле перегрузки более точны и надежны, чем конструкции нагревателей, и могут предоставлять данные для диагностики и профилактического обслуживания.
Изображение предоставлено: ABB

Электронные тепловые реле перегрузки измеряют ток электронным способом, а не полагаются на механизм нагревателя, и поэтому они нечувствительны к изменениям температуры окружающей среды. Они также менее склонны к «неприятным» или ложным срабатываниям. Электронные реле перегрузки могут предоставлять такие данные, как процент использования тепловой мощности (% TCU), процент ампер полной нагрузки (% FLA), время до отключения, текущий среднеквадратичный ток и ток замыкания на землю – информация, которая может помочь операторам проводить диагностику. и предсказать, когда реле может сработать.

Электронные устройства также могут защищать двигатели от потери фазы (также называемой обрывом фазы), которая возникает, когда одна фаза тока равна нулю ампер, часто из-за короткого замыкания или перегорания предохранителя. Это заставляет двигатель потреблять чрезмерный ток на оставшихся двух фазах и приводит к значительному нагреву двигателя.


Тепловые реле перегрузки обычно являются частью пускателя двигателя, который включает реле перегрузки с контактами. Важно отметить, что тепловые реле перегрузки предназначены только для защиты двигателя от перегрева и не срабатывают при коротком замыкании, поэтому для защиты цепи необходимы дополнительные предохранители или автоматические выключатели.


Каков принцип работы теплового реле?

Тепловые реле – это защитные электрические устройства, используемые для защиты двигателей или другого электрического оборудования и электрических цепей от перегрузки. При фактической работе двигателя, например, при перетаскивании производственного оборудования на работу, если машина неисправна или цепь ненормальная, двигатель столкнется с перегрузкой, скорость двигателя уменьшится, ток в обмотке увеличится, и температура обмотки двигателя повысится.Если ток перегрузки небольшой и время перегрузки короткое, а обмотка двигателя не превышает допустимого превышения температуры, перегрузка допустима. Однако, если время перегрузки велико и ток перегрузки велик, повышение температуры обмотки двигателя превысит допустимое значение, что приведет к старению обмотки двигателя, сокращению срока службы двигателя и даже сгоранию обмотки двигателя в серьезных случаях. . Поэтому такую ​​перегрузку мотор не переносит. Тепловое реле использует принцип теплового воздействия тока для отключения цепи двигателя в случае перегрузки, которую двигатель не может выдержать, чтобы обеспечить защиту двигателя от перегрузки.

Тепловые реле Nader

Структура теплового реле

Тепловое реле состоит из нагревательного элемента, биметаллического листа и контакта, среди которых биметаллический лист является ключевым измерительным элементом . Биметаллический лист состоит из двух видов металла с разным коэффициентом теплового расширения. Сторона с большим коэффициентом теплового расширения называется активным слоем, а сторона с малым коэффициентом теплового расширения – пассивным слоем.Тепловое расширение биметаллического листа происходит после нагрева. Однако из-за разных коэффициентов теплового расширения двух слоев металла первые два слоя металла тесно связаны друг с другом, из-за чего биметаллический лист изгибается, как одна сторона пассивного слоя. Механическое усилие, создаваемое изгибом биметаллического листа из-за нагрева, заставит подвижный контакт разорвать цепь.

Структура теплового реле

Принцип работы теплового реле

Когда двигатель работает нормально, тепловой элемент теплового реле не выделяет достаточно тепла, чтобы сработала функция защиты, и его нормально замкнутый контакт будет оставаться замкнутым государственный; когда двигатель перегружен, тепловой элемент теплового реле будет генерировать достаточно тепла, чтобы сработала функция защиты, и его нормально замкнутый контакт будет отключен, чтобы двигатель потерял мощность через цепь управления, чтобы защитить двигатель. После устранения неисправности необходимо сбросить тепловое реле, прежде чем можно будет перезапустить двигатель.

Тепловое реле обычно имеет две формы сброса: ручной сброс и автоматический сброс. Преобразование двух форм сброса может быть выполнено регулировкой винта сброса. Когда тепловое реле поставляется с завода, производитель обычно устанавливает его в состояние автоматического сброса. При использовании, устанавливается ли тепловое реле в состояние ручного или автоматического сброса, зависит от конкретной ситуации в цепи управления. В целом, принцип заключается в том, что даже если тепловое реле автоматически сбрасывается после выполнения защитного действия теплового реле, защищенный двигатель не должен перезапускаться автоматически, в противном случае тепловое реле должно быть установлено в состояние ручного сброса. Это сделано для предотвращения повторного запуска двигателя и повреждения оборудования, если неисправность не устранена. Например, для цепи управления ручным запуском и ручным остановом, управляемым кнопкой, тепловое реле может быть установлено в режим автоматического сброса; для цепи автоматического пуска, управляемой элементом автоматики, тепловое реле должно быть переведено в режим ручного сброса.

Классификация тепловых реле

Биметаллическая пластина: биметаллический лист, изготовленный прокаткой двух видов металлов с разным коэффициентом расширения (обычно никелевый марганец и медная пластина), нагревается и изгибается, чтобы толкать несущий стержень, таким образом, перемещаясь при контакте. Биметаллическая пластина широко используется и часто образует магнитный пускатель с контактором.

Тип термистора: тепловое реле, сопротивление которого изменяется в зависимости от температуры.

Тип плавкого сплава: используя теплоту тока перегрузки, чтобы плавкий сплав достиг определенного значения температуры, сплав плавится и приводит в действие реле.

Руководство по выбору тепловых реле перегрузки: типы, характеристики, применение

Реле тепловой перегрузки являются защитными устройствами. Они предназначены для отключения электроэнергии, если двигатель потребляет слишком большой ток в течение длительного периода времени. Для этого тепловые реле перегрузки содержат нормально замкнутое (NC) реле. Когда через цепь двигателя протекает чрезмерный ток, реле размыкается из-за повышения температуры двигателя, температуры реле или измеренного тока перегрузки, в зависимости от типа реле.

Реле тепловой перегрузки аналогичны автоматическим выключателям по конструкции и использованию, но большинство автоматических выключателей отличаются тем, что они прерывают цепь, если перегрузка возникает даже на мгновение. Реле тепловой перегрузки, наоборот, предназначены для измерения профиля нагрева двигателя; поэтому перегрузка должна произойти в течение длительного периода, прежде чем цепь будет прервана.

Технические характеристики

База данных GlobalSpec SpecSearch содержит информацию о различных технических характеристиках реле тепловой перегрузки, включая тип, электрические характеристики, сведения о переключателе и характеристики.

Тип

Покупатели могут выбирать между несколькими различными типами реле, включая биметаллическое тепловое , твердотельное или типа контроля температуры .

Как следует из названия, биметаллические тепловые реле используют биметаллическую полосу для механического размыкания контактов. Биметаллические полосы состоят из двух соединенных между собой кусков металла, которые расширяются с разной скоростью при нагревании.Эта разница заставляет полосу изгибаться при нагревании. В тепловом реле полоса прикрепляется пружиной к контакту. Когда избыточное тепло от сверхтока заставляет полоску изгибаться и растягивать пружину, контакты размыкаются и цепь разрывается. Когда полоска охлаждается, она возвращается к своей первоначальной форме.

Это видео демонстрирует использование биметаллического переключателя, при этом биметаллическая полоса выделена в середине видео. Когда пламя воздействует на выключатель, полоса изгибается, и выключатель размыкается.Обратите внимание, что когда полоска остывает, полоска возвращается в исходное положение, и переключатель замыкается.

Твердотельные реле – это электронные устройства, не имеющие движущихся или механических частей. Вместо этого реле вычисляет среднюю температуру двигателя, отслеживая его пусковой и рабочий токи. Твердотельные реле, как правило, быстрее электромеханических, а также имеют регулируемые уставки и время срабатывания. Поскольку они не способны генерировать искру, их можно использовать во взрывоопасных средах.

Реле контроля температуры непосредственно измеряют температуру двигателя с помощью термистора или терморезисторного датчика (RTD), встроенного в обмотку двигателя. Когда достигается номинальная температура зонда, его сопротивление быстро увеличивается. Это увеличение затем обнаруживается пороговой схемой, которая размыкает контакты реле.

Реле перегрузки из плавящегося сплава (или эвтектического) состоит из нагревательной катушки, эвтектического сплава и механического механизма для размыкания цепи.Используя катушку нагревателя, реле измеряет температуру двигателя, контролируя величину потребляемого тока.

Электрические характеристики

Электрические характеристики реле

включают диапазон тока, информацию о срабатывании, фазу и управляющее напряжение.

Отключение используется для описания размыкающего действия реле перегрузки и автоматических выключателей. Реле тепловой перегрузки могут включать в себя несколько спецификаций об этом действии.

Диапазон тока полной нагрузки относится к диапазону значений тока, на который устанавливается реле.Паспортная табличка двигателя будет включать номинальный ток полной нагрузки для этого конкретного двигателя. Чтобы реле тепловой перегрузки сработало, точка тока полной нагрузки реле должна быть установлена ​​в соответствии со значением, указанным на паспортной табличке.

Диапазон температурного отключения применяется к реле, которые предназначены для измерения температуры вместо тока, например, твердотельные реле или реле контроля температуры.

Класс отключения означает максимальное время в секундах, в течение которого реле может выдержать 6-кратный номинальный ток до отключения.Например, реле класса 10 может выдерживать 600% своего номинального тока в течение 10 секунд, пока не сработает. Класс отключения является важной характеристикой, поскольку цепь пуска двигателя увеличивает потребляемый ток на короткие периоды времени при каждом запуске двигателя. Реле перегрузки должно выдерживать эти высокие пусковые токи без отключения. Можно сказать, что синхронизация класса отключения позволяет реле «различать» обычно высокие пусковые токи и аномально высокие токи перегрузки.

Термин «полюс» описывает количество отдельных цепей, управляемых переключателем.Количество цепей определяет количество контактов переключателя, которое, в свою очередь, определяет полюса, необходимые для замыкания или размыкания контактов. Выключатели обычно имеют от одного до четырех полюсов.

Управляющее напряжение – важная спецификация, поскольку напряжение цепи управления часто отличается от заданного напряжения двигателя. Это известно как «раздельное управление». Управляющее напряжение обычно меньше напряжения двигателя, и реле перегрузки следует выбирать в соответствии с этой спецификацией.

Характеристики

Покупатели могут выбрать реле с рядом особых атрибутов.

  • Реле с автоматическим сбросом вернется в исходное «замкнутое» положение через заданный период времени. Если после сброса двигатель все еще будет перегружен, реле снова сработает.
  • Реле с компенсацией температуры окружающей среды эффективно работают в широком диапазоне температур окружающей среды.
  • Некоторые реле имеют различные степени контроля фазы .Эти продукты могут проверять обрыв фазы, реверсирование или дисбаланс. При обнаружении каких-либо проблем с фазами реле срабатывает и отключает питание двигателя. В частности, асимметрия фаз может вызвать опасные колебания напряжения или тока двигателя и привести к его повреждению.

  • Обнаружение недогрузки относится к способности реле обнаруживать падение тока в результате разгрузки. Это может произойти, если, например, насос начинает работать всухую. Эти реле предназначены для обнаружения этих различий и срабатывания, как при обнаружении перегрузки.

  • Реле с визуальными индикаторами – это изделия со светодиодами или другими индикаторами состояния.

Стандарты

BS EN 60255-149 – Функциональные требования к тепловым электрическим реле

Список литературы

Качество электроэнергии и приводы – Класс реле перегрузки с выдержкой времени

Изображение кредита:

Eaton Corporation | Benshaw, Inc.| Низковольтная продукция ABB | Enasco | Излишек Skycraft


Реле перегрузки – Принцип действия, типы, подключение

Каждый двигатель должен быть защищен от всех возможных неисправностей, чтобы обеспечить длительную и безопасную работу, а также потерю времени из-за поломки. Почти все отрасли промышленности полагаются на электродвигатель для управления своими процессами и производством. Следовательно, необходимо сделать двигатель отказоустойчивым.

Реле перегрузки

– одно из таких устройств, которое защищает двигатель от повреждений, вызванных перегрузками и токами . Используется с контакторами и может быть найден в центрах управления двигателями и пускателях двигателей.

Изображение: реле перегрузки

Определение реле перегрузки

Реле перегрузки – это устройство, которое защищает электродвигатель от перегрузок и обрыва фазы.

Он определяет перегрузку двигателя и прерывает поток энергии к двигателю, тем самым защищая его от перегрева и повреждения обмотки. Помимо перегрузок, он также может защитить двигатель от обрыва / пропадания фазы и дисбаланса фаз .Они широко известны как OLR .

Что такое перегрузка?

Перегрузка – это состояние, при котором двигатель потребляет ток, превышающий его номинальное значение, в течение длительного периода.

Это наиболее распространенная неисправность, которая может привести к повышению температуры обмотки двигателя. Следовательно, важно быстрое возвращение к нормальной работе.

Принцип операция

Тепловое реле перегрузки работает по принципу электротермических свойств биметаллической ленты.Он размещен в цепи двигателя таким образом, чтобы ток, подаваемый на двигатель, проходил через его полюса. Биметаллическая полоса прямо или косвенно нагревается током и, когда ток превышает установленное значение, изгибается.

Они всегда работают в сочетании с контакторами. Когда биметаллические ленты нагреваются, срабатывает контакт отключения, который, в свою очередь, прерывает подачу питания на катушку контактора, обесточивая ее и прерывая ток, протекающий к двигателю. Это время отключения всегда обратно пропорционально току, протекающему через OLR.Следовательно, чем больше ток, тем быстрее он сработает. Следовательно, тепловые реле перегрузки называются реле , зависящими от тока и с обратной выдержкой времени.

A = Биметаллические ленты с косвенным нагревом
B = Шток переключения
C = Рычаг переключения
D = Контактный рычаг
E = Биметаллическая лента для компенсации
Авторы и права: Rockwell

Виды перегрузки реле

Реле перегрузки можно классифицировать следующим образом:

  1. Биметаллические тепловые реле перегрузки
  2. Электронные реле перегрузки

Принцип работы , описанный выше, немного отличается друг от друга.Давайте обсудим это в следующих разделах.

Как объяснено выше, биметаллическое тепловое реле работает на нагревательные свойства биметаллической полосы. В методе прямого нагрева полный ток двигателя протекает через OLR. Следовательно, он нагревается непосредственно током.

Но в случае косвенного нагрева биметаллическая полоса удерживается в плотном контакте с проводником с током внутри OLR. Чрезмерный ток, протекающий к двигателю, нагревает проводник и, следовательно, биметаллическую полосу.Проводник должен быть изолирован, чтобы ток через ленту не протекал.

Работа электронного реле перегрузки

Электронные реле перегрузки не имеют внутри биметаллической планки. Вместо этого он использует датчики температуры или трансформаторы тока, чтобы определять величину тока, протекающего к двигателю. Для защиты используется микропроцессорная технология. Температура измеряется с помощью PTC, и он используется для отключения цепи в случае сбоев из-за перегрузки.Некоторые электронные реле перегрузки поставляются с трансформаторами тока и датчиками Холла, которые напрямую определяют величину протекающего тока.

Основное преимущество электронного OLR перед тепловым OLR заключается в том, что отсутствие биметаллической полосы приводит к низким тепловым потерям внутри реле. Кроме того, электронные реле более точны, чем тепловые реле. Некоторые производители создают электронные реле с расширенными функциями, такими как защита от замыкания на землю, защита двигателя от опрокидывания и т. Д. Электронные реле перегрузки очень подходят для приложений, требующих частого запуска и остановки двигателей.

Они сконструированы таким образом, чтобы выдерживать пусковой ток (который обычно в 6-10 раз превышает ток полной нагрузки) двигателя в течение ограниченного периода времени (обычно 15-30 секунд в зависимости от порогового значения тока).

Детали теплового реле перегрузки

Помимо биметаллической ленты и контактов, обсуждаемых в раздел принципа работы, есть еще несколько частей в реле перегрузки это необходимо упомянуть.

Терминал

Клеммы L1, L2, L3 являются входными клеммами.Это может быть прямо установлен на контактор. Питание двигателя может быть подключено к клеммам T1, Т2, Т3.

Диапазон ампер

Поворотная ручка присутствует над реле перегрузки. С помощью этой ручки можно установить номинальный ток двигателя. Сила тока может быть установлена ​​между предусмотренными верхним и нижним пределами. В случае электронного реле перегрузки также предусмотрена дополнительная ручка для выбора класса срабатывания.

Кнопка сброса

На реле перегрузки имеется кнопка сброса для сброса реле перегрузки после отключения и устранения неисправности.

Выбор ручного / автоматического сброса

С помощью кнопки выбора ручного / автоматического сброса мы можем выбирать между ручным и автоматическим сбросом этих реле после отключения. Если устройство настроено на автоматический режим, возможен удаленный сброс OLR.

Вспомогательный контакт

Они снабжены двумя вспомогательными контактами – одним нормально разомкнутым (97-98) и другим нормально замкнутым (95-96). НО контакт предназначен для сигнализации срабатывания, а НЗ контакт – для отключения контактора. НЗ-контакты должны обеспечивать прямое переключение катушки контактора.

Тестовая кнопка

Используя кнопку тестирования, можно проверить проводку управления.

Обозначение реле перегрузки Символ теплового OLR

Здесь 1, 2, 3, 4, 5 и 6 – клеммы питания, 95 и 96 – контакты отключения, а 97 и 98 – контакты сигнализации.

Что такое поездка Класс реле перегрузки?

Время, затрачиваемое ими на размыкание контактора при перегрузках, определено классом отключения .Обычно он подразделяется на класс 10, класс 20, класс 30 и класс 5. OLR отключается через 10 секунд, 20 секунд, 30 секунд и 5 секунд соответственно при 600% тока полной нагрузки на двигатель.

Очень часто используются

Class 10 и Class 20. Реле перегрузки класса 30 используются для защиты двигателей, приводящих в движение высокоинерционные нагрузки, а реле класса 5 используются для двигателей, требующих очень быстрого отключения.

Предоставлено: Шнайдер.

Как пользоваться реле перегрузки в цепи?

Они всегда используются в комбинации с контакторами в цепи.Он подключен к двигателю так, что ток, идущий к двигателю, полностью протекает через него. Ниже представлены различные типы соединений для однофазных и трехфазных двигателей.

Где К1 и К1М – реле перегрузки. Первый и второй рисунки показывают подключение однофазного двигателя, а третий показывает подключение трехфазного двигателя.

Что вызывает отключение OLR?

Как обсуждалось выше, имеет три основных условия для отключения по перегрузке :

  1. Перегрузка мотора.
  2. Обрыв входной фазы
  3. Асимметрия фаз.

Помимо этого, может быть доступна дополнительная функция защиты. Это варьируется от одного производителя к другому.

Как реле перегрузки защищает от обрыва фазы?

Во время нормальной работы ток, протекающий через каждый полюс реле перегрузки к двигателю, остается неизменным. Если какая-либо из фаз прерывается, ток через две другие фазы возрастает до 1.73 раза больше нормального значения. Следовательно, реле перегрузки нагревается и срабатывает. Обрыв фазы также известен как обрыв фазы двигателя или обрыв фазы.

Может ли OLR защитить от короткие замыкания?

Реле перегрузки не могут защитить от короткого замыкания. Их всегда следует использовать с устройствами защиты от короткого замыкания. В противном случае короткое замыкание в двигателе может привести к его повреждению. Они могут защитить от перегрузок, потери фазы и дисбаланса фаз, но не от короткого замыкания.

Сводка

Реле перегрузки – это устройство, которое может защитить двигатель от перегрузок, обрыва фазы и дисбаланса фаз. По принципу действия они подразделяются на тепловые и электронные реле перегрузки. Thermal OLR основан на принципе деформации биметаллической ленты при нагревании, а электронное реле перегрузки представляет собой микропроцессорное устройство.

OLR используются в сочетании с контакторами. Он размыкает контактор всякий раз, когда обнаруживает неисправность.Время, затрачиваемое ими на размыкание контактора при перегрузках, определяется его классом отключения. Реле перегрузки не могут защитить от короткого замыкания.

Принцип работы теплового реле защиты двигателя

Принцип работы

Тепловое реле защиты двигателя содержит три биметаллических полосы вместе с механизмом отключения в корпусе из изоляционного материала. Биметаллические полосы нагреваются током двигателя, заставляя их изгибаться и приводя в действие механизм отключения после определенного хода, который зависит от настройки тока реле.

Принцип работы теплового реле защиты двигателя (фото: andrem.pl)

Механизм расцепления включает вспомогательный выключатель, который размыкает цепь катушки контактора двигателя ( Рисунок 1 ). Индикатор положения переключения сигнализирует о состоянии « сработал ».

Рисунок 1 – Принцип действия трехполюсного биметаллического реле защиты двигателя с термической задержкой и температурной компенсацией

A = Биметаллические ленты с косвенным нагревом
B = отключающий ползун
C = отключающий рычаг
D = контактный рычаг
E = компенсационная биметаллическая полоса

Биметаллическая полоса может нагреваться напрямую или косвенно .В первом случае ток протекает непосредственно через биметалл , во втором – через изолированную нагревательную обмотку вокруг полосы. Изоляция вызывает некоторую задержку теплового потока, так что инерция тепловых реле с косвенным нагревом больше при более высоких токах, чем у их аналогов с прямым нагревом. Часто оба принципа сочетаются.

Для номинальных токов двигателя более прибл. 100 A , ток двигателя проходит через трансформаторы тока .Затем тепловое реле перегрузки нагревается вторичным током трансформатора тока.

Это означает, с одной стороны, что рассеиваемая мощность снижается, а с другой – повышается стойкость к короткому замыканию.

Ток срабатывания биметаллических реле может быть установлен по шкале токов – путем смещения механизма срабатывания относительно биметаллических лент – так, чтобы характеристики защиты могли быть согласованы с защищаемым объектом в ключевой области непрерывного режима.

Простая и экономичная конструкция может только приблизительно соответствовать переходной тепловой характеристике двигателя .

Для пуска с последующим продолжительным режимом работы тепловое реле защиты двигателя обеспечивает идеальную защиту двигателя. При частых запусках в прерывистом режиме значительно более низкая постоянная времени нагрева биметаллических лент по сравнению с двигателем приводит к раннему отключению, при котором тепловая мощность двигателя не используется.

Постоянная времени охлаждения тепловых реле короче, чем у обычных двигателей. Это также способствует увеличению разницы между фактической температурой двигателя и температурой, моделируемой тепловым реле при прерывистой работе.

По этим причинам защита двигателей в прерывистом режиме недостаточна .


Температурная компенсация

Принцип действия тепловых реле защиты двигателя основан на повышении температуры .Следовательно, температура окружающей среды устройства влияет на характеристики отключения.

Поскольку место установки и, следовательно, температура окружающей среды защищаемого двигателя обычно отличается от температуры защитного устройства, промышленным стандартом является то, что характеристика срабатывания биметаллического реле является температурной компенсацией, т. Е. В значительной степени не зависит от окружающей среды. температура (см. рисунок 2 ниже).

Рисунок 2 – Допуски срабатывания реле перегрузки с температурной компенсацией для защиты двигателя согласно IEC 60947-4-1

I = Перегрузка, кратная установленному току
δ = Температура окружающей среды

– Предельные значения согласно IEC 60947-4-1

Это достигается с помощью компенсационной биметаллической полосы , которая делает относительное положение механизма отключения независимым от температуры.


Чувствительность к обрыву фазы

Характеристика срабатывания трехполюсных реле защиты двигателя применяется при условии, что все три биметаллические ленты одновременно нагружены одинаковым током.

Если при обрыве одного полюсного проводника нагреваются только две биметаллические полосы, то только эти две полосы должны создавать усилие, необходимое для приведения в действие механизма отключения. Это требует более высокого тока или приводит к более длительному времени отключения (характеристическая кривая c на рисунке ниже ).

Типичные характеристики отключения реле защиты двигателя

I e = Номинальный ток, установленный на шкале
t = Время отключения

Из холодного состояния:
a = 3-полюсная нагрузка, симметричная
b = 2-полюсная нагрузка с дифференциальным расцепителем
c = 2-полюсная нагрузка без дифференциального расцепителя

Из горячего состояния:
d = 3-полюсная нагрузка, симметричная

Если больше двигатели (≥10 кВт) подвергаются этим более высоким токам в течение более длительного времени, следует ожидать повреждения.

Чтобы обеспечить защиту двигателя от тепловой перегрузки в случаях асимметрии питания и обрыва фазы, высококачественные реле защиты двигателя имеют механизмы с чувствительностью к обрыву фазы (дифференциальный расцепитель).

Resource // Распределительное устройство и устройство управления низкого напряжения – Rockwell

Что такое тепловое реле?

Тепловые реле – это тип электрического устройства, используемого для защиты двигателей и электрических цепей от перегрузки, часто используется с контакторами.Тепловые реле имеют функцию автоматического переключения контактов за счет теплового расширения и сжатия металлических стержней.

Применение тепловых реле

Тепловые реле оснащены контактором для защиты электрооборудования, особенно электродвигателей при перегрузке по току, перегрузке во время работы.

Примечание: тепловые реле работают только для изменения состояния контакта, но не для отключения питания, поэтому его необходимо объединить с другим переключателем.

Характерной чертой тепловых реле является то, что для работы требуется определенное количество времени, основанное на механизме теплового расширения, и они не действуют так быстро (мгновенно), как электромагнитные переключатели. Следовательно, тепловые реле используются только для защиты от перегрузки, а не от короткого замыкания. Для защиты от короткого замыкания необходимо использовать аптомат, предохранитель.

Тепловые реле, работающие при переменном напряжении до 500 В, частота 50 Гц, имеют диапазон воздействия от нескольких сотен мА до нескольких сотен А.Термореле Mitsubishi, LS, Schneider имеют диапазон от 0,1А до 800А.

Устройство теплового реле

Примечание:

  1. Рычаг
  2. Контакт нормально закрытый
  3. Нормально открытый контакт
  4. Винт регулировки силы удара
  5. Биметаллический стержень
  6. Нагревательный провод
  7. Рычаг
  8. Кнопка сброса

Можно сказать, что тепловое реле не слишком сложен и очень прост в использовании.

Принцип работы тепловых реле

Верно своему названию, тепловые реле работают по изменению температуры тока. Когда ток перегружен, выделяется огромное количество тепла, которое вызывает нагрев металлической пластины реле, что приводит к расширению. В составе теплового реле двойная металлическая пластина играет чрезвычайно важную роль для эффективной работы устройства. Эта сдвоенная металлическая пластина состоит из двух металлических стержней с разным показателем удлинения.

Обычно первый металлический стержень имеет меньший коэффициент расширения и часто инвар (включая 36% Ni + 64% Fe). Второй металлический стержень обычно изготавливают из латуни или хромоникелевой стали, поскольку его индекс расширения примерно в 20 раз больше, чем у инвара. Две плиты собирают в один лист горячей прокаткой или сваркой.

Когда ток внезапно изменяется, температура воздействует на двойной стальной стержень, так что он изгибается в направлении металлического стержня с меньшим коэффициентом расширения, который теперь можно использовать непосредственно для тока или окружающего провода сопротивления.. Величина изгиба более или менее зависит от длины и толщины металлического стержня.

Классификация тепловых реле

По устройству тепловые реле делятся на два типа: открытого типа и закрытого типа.

– По запросу можно использовать: Одно- и двухполюсного типа.

– По методу нагрева:

+ Прямой нагрев: Электроэнергия протекает напрямую через двойную металлическую пластину.Этот тип имеет простую конструкцию, но при изменении номинального тока пластину необходимо менять. Двойная металлическая, такой тип не удобен.

+ Косвенный нагрев: электрический ток протекает через независимый нагревательный элемент, излучаемое косвенно тепло заставляет металлическую пластину изгибаться. Преимущество этого типа состоит в том, что требуется изменить номинальный ток, нам нужно только заменить нагревательный элемент. Недостатком этого типа является то, что при большой перегрузке нагревательный элемент может достигать довольно высоких температур, но из-за плохой теплопередачи воздуха металлический лист не стал токсичным, и нагревательный элемент сгорел.

+ Комбинированный обогрев: Этот тип относительно хорош, потому что горит прямо и косвенно. Обладает относительно высокой термостойкостью и может работать при многократных перегрузках
больших.

Как выбрать тепловое реле

Тепловые реле используются для защиты двигателя от перегрузки, поэтому при выборе теплового реле необходимо выбрать правильный тип двигателя для защиты. Во многих случаях пользователь выбирает тепловое реле в соответствии с током контактора или аптомата, который является неправильным и приводит к сгоранию двигателя при перегрузке.

Ниже приведена таблица тепловых реле в зависимости от мощности двигателя:

Некоторые примечания при выборе теплового реле:

+ Выбирайте тепловое реле с регулируемым порогом, соответствующим рабочему диапазону двигателя или немного выше. Самый низкий порог срабатывания теплового реле должен быть ниже середины рабочего диапазона двигателя. Максимальный регулируемый порог теплового реле должен быть выше верхнего предела рабочего диапазона двигателя.

+ Некоторые типы тепловых реле имеют контакт для контактора (обычно небольшие тепловые реле). Поэтому он может установить только контактор правильного типа, совместимый с ним.

+ Некоторые тепловые реле высшего класса имеют встроенную защиту от обрыва фазы.

Тепловое реле | Electricalunits.com

Тепловое реле | Electricalunits.com

Другая часть теплового реле показана на рисунке. Названия деталей приведены ниже: –

  1. Нагревательная спираль
  2. Полоса биметаллическая
  3. Изолированный контактный рычаг
  4. Контакт реле

В этом тепловом реле биметаллическая полоса нагревается с помощью нагревательной катушки, питание которой подается через трансформатор тока.Точка срабатывания реле закреплена на изолированном плече, а пружина S подсоединена к концу изолированного плеча. Натяжение этой пружины можно изменять, вращая секторную пластину A, . В нормальных условиях биметаллическая полоса остается прямой, но когда полоса нагревается нагревателем, она изгибается и натяжение пружины ослабляется, поэтому рабочую температуру реле можно изменять, изменяя натяжение пружины. Пл, обратите внимание, что биметаллический элемент состоит из двух стальных полос, легированных никелем и сваренных между собой.Эти полосы обладают высокой термостойкостью и не подвержены вторичным тепловым эффектам.

Последние сообщения

Вопрос с множественным выбором (MCQ) для электроники стр. 17: 241. Какое из следующих утверждений верно? а) Напряжение насыщения V CF кремниевого транзистора больше, чем у германиевого транзистора. б) Напряжение насыщения V CE для германиевого транзистора больше, чем у кремниевого транзистора. c) Напряжение насыщения V CE для кремниевого транзистора такое же, как и для германия.г) Напряжение насыщения V CE для кремниевого транзистора ниже, чем для германиевого транзистора.

Подробнее …

Вопрос с множественным выбором (MCQ) для электроники стр. 16: 226. Какое из следующих утверждений является правильным? а) Внутренние электроны всегда присутствуют в полупроводнике. б) Связанные электроны всегда присутствуют в полупроводнике. в) Свободные электроны всегда присутствуют в полупроводнике. г) Внутренние и связанные электроны всегда присутствуют в полупроводнике.

Подробнее …

Вопрос с множественным выбором (MCQ) для электроники стр.-15: 211. Материалы, электрическая проводимость которых обычно меньше 1 × 10 6 mho / m а) Полупроводники б) Проводники в) Изоляторы d) Сплавы

Подробнее …

Вопрос с множественным выбором (MCQ) электроники стр.-14: 196. В каком из следующих устройств базовые резисторы не добавляются в корпус, а добавляются извне? а) UJT б) CUJT в) PUT г) Ни один из вышеперечисленных

Подробнее…

Вопрос с множественным выбором (MCQ) электроники стр. 13: 181. Проводимость в JEFT всегда определяется а) Основные перевозчики б) Миноритарные перевозчики в) Отверстия г) Электроны д) Дырки и электроны одновременно

Подробнее .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *