Содержание

Как проверить транзистор мультиметром, как прозвонить транзистор


Как проверить транзистор? (Или как прозвонить транзистор) Такой вопрос, к сожалению, рано или поздно возникает у всех. Транзистор может быть повреждён перегревом при пайке либо неправильной эксплуатацией. Если есть подозрение на неисправность, есть два лёгких способа проверить транзистор.

Как проверить транзистор мультиметром (тестером)

Проверка транзистора мультиметром (тестером) (прозвонка транзистора) производится следующим образом.
Для лучшего понимания процесса на рисунке изображён “диодный аналог” npn-транзистора. Т.е. транзистор как бы состоит из двух диодов. Тестер устанавливается на прозвонку диодов и прозванивается каждая пара контактов в обоих направлениях. Всего шесть вариантов.

  • База – Эмиттер (BE): соединение должно вести себя как диод и
    проводить ток только в одном направлении.
  • База – Коллектор (BC): соединение должно вести себя как диод и
    проводить ток только в одном направлении.
  • Эмиттер – Коллектор (EC): соединение не должно проводить ток ни в каком направлении.

При прозвонке pnp-транзистора “диодный аналог” будет выглядеть также, но с перевёрнутыми диодами. Соответственно направление прохождения тока будет обратное, но также, только в одном направлении, а в случае “Эмиттер – Коллектор” – ни в каком направлении.

Проверка простой схемой включения транзистора

Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как “ключ”. Такая схема может быть быстро собрана на монтажной печатной плате, например. Обратите внимание на 10Ком резистор, который включается в базу транзистора. Это очень важно, иначе транзистор “сгорит” во время проверки.

Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании – гаснуть.

Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания.

Таким образом, можно сказать, что проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора.

И помните, никто не умирает так быстро и так бесшумно, как транзистор.

Как проверить транзистор простым мультиметром

Как проверить состояние транзистора, используя самый обычный мультиметр?

Ситуация: у вас есть мультиметр и транзистор, как же проверить работоспособность последнего? Некоторые скажут что это никак не сделать, если у прибора нет функции измерения коэффициента усиления транзистора. Но все не так плохо! Ведь если у измерителя есть функция диодного тестирования или же функция измерения сопротивления, то транзистор можно проверить и обычной, самой дешевой моделью.

Но стоит уточнить, что проверить можно только биполярные транзисторы. Способ проверки полевых транзисторов несколько отличаются и об их реализации мы поговорим позже. Итак, будем проверять биполярные транзисторы используя мультиметры.

От слова к делу

Ну вот и настал момент проверки транзистора. Берем транзистор, измеритель и начинаем. Переключаемся в режим диодного теста. Известно, что биполярный транзистор работает как два диода, а раз так, нам просто нужно найти базу и дело за малым, но обо всем подробнее.

  • Итак, включаем прибор, устанавливаем щупы и ставим режим диодного теста или измерения сопротивления.
  • Далее, начинаем касаться щупами контактов транзистора. Поставьте красный щуп на центральный контакт, а черным прикасайтесь к крайним контактам. Если мультиметр показывает падение напряжения на крайних контактах, значит, у вас NPN биполярный транзистор. Для проверки PNP транзисторов нужно касаться красным щупом крайних выводов, а на центральном выводе оставить черный щуп.
  • Если падение напряжения у NPN транзистора приблизительно одинаково и собственно вообще присутствует, значит транзистор исправен. При прикосновении красного щупа к крайним выводам транзистора падение напряжения будет наблюдаться на центральном — PNP транзистор исправен.
Вот собственно и весь способ.

Если нет функции тестирования диодов, необходимо использовать функцию измерения сопротивления, которой обладают все мультиметры. В любом случае, если транзистор исправен, от базы к коллектору или эмиттеру будет проходить ток, а вот в обратном направлении не будет. Если же ток будет проходить в обоих направлениях — транзистор неисправен. При этом неисправным может быть как один переход, так и два сразу.

Опубликовано: 2021-09-13 Обновлено: 2021-09-13

Автор: Магазин Electronoff

Поделиться в соцсетях

Как мультиметром измерить сопротивление, ток, напряжение, проверить транзисторы и диоды

Как мультиметром измерить сопротивление, ток, напряжение, проверить транзисторы и диоды

Мультиметр — комбинированный электроизмерительный прибор, объединяющий в себе несколько функций.

Мультиметр DT83X имеет всего два предела измерения переменных напряжений 750 и 200, естественно, это в вольтах, хотя на приборах пишут только цифры. Таким образом, если возникла потребность померить напряжение в розетке, то надо выбрать предел 750, в остальных случаях 200. Тут следует обратить внимание на такую тонкость: переменное напряжение должно быть синусоидальной формы с частотой 50…60 Гц, только в этом случае точность измерения будет приемлемой.

Если измеряемое напряжение имеет прямоугольную или треугольную форму, а его частота намного выше, чем 50Гц, хотя бы 1000…10000 Гц, то показания на дисплее, конечно, появятся, но что они символизируют неизвестно. Здесь можно лишь с уверенностью сказать, что переменное напряжение есть, схема, вроде бы, работает.

Условные обозначения на лицевой панели мультмиетра

Но, давайте, пока отвлечемся от процесса измерений и внимательно посмотрим на лицевую панель мультиметра. Здесь, кроме цифр, можно увидеть много различных символов, напоминающих друдлы (картинки – каракули, к которым надо придумать объяснение, подпись).

На рисунке 1 показаны все друдлы, которые можно увидеть на мультиметрах, и их разгадки – объяснения.

Рисунок 1. Обозначения на лицевой панели мультиметра

Эти обозначения следует выучить наизусть, как таблицу умножения, и никогда не забывать, поскольку они помогут не только правильно пользоваться мультиметром, получать правильные результаты измерений, но и уберегут прибор от выхода из строя при неправильном пользовании.

Несколько слов о подключении мультиметра к измеряемой цепи

Все мультиметры комплектуются измерительными щупами, причем, у всех моделей приборов они одни и те же: на одном конце однополюсная вилка для подключения к мультиметру, на другом измерительный щуп, не очень, правда, удобной конструкции. Щупы, как правило, красного и черного цвета, что позволяет соблюдать полярность подключения. Лучше всего это сделать, как показано на рисунке 2.

Рисунок 2. Подключение измерительных щупов к мультиметру

Но, если разобраться, то соблюдение полярности не особо и нужно. При измерении переменного напряжения полярность подключения прибора роли вообще не играет, результат будет одним и тем же. При измерении постоянных напряжений, если полярность перепутана, на дисплее перед значением напряжения или тока просто появится знак «-», величина же напряжения будет правильной.

И все же, измерительные щупы лучше подключить так, как показано на рисунке 2: черный щуп в гнездо с надписью «COM» (общий), а красный в гнездо расположенное выше, что позволит проводить все измерения, кроме измерения токов на пределе 10A, что приходится делать не слишком часто.

Особенно следует соблюдать полярность подключения щупов в режиме «прозвонки» полупроводников: на красном щупе будет присутствовать плюсовое напряжение омметра, что позволит правильно подключить исследуемую деталь. Подробнее о проверке полупроводников будет рассказано чуть ниже. Подключение щупов для проверки диода показано на рисунке 3.

Рисунок 3. На красном щупе «плюс» омметра

Провода в измерительных щупах крепятся только пайкой, а на выходе из пластмассовых наконечников свободно болтаются и мотаются, а со временем отматываются совсем и вылетают. Чтобы этого не произошло, следует укрепить провода в щупах с помощью термоусадочной трубки или изоленты.

Маленькое замечание

Нетрудно видеть, что в режиме омметра плюсовое напряжение присутствует на красном щупе, равно как и при измерении постоянных напряжений. Если придется пользоваться стрелочным тестером, то следует запомнить, что в этом случае плюс омметра будет на щупе, который является «минусом» в режиме измерения постоянных напряжений. Но вернемся к современному мультиметру.

Измерение токов

Для измерения «больших» токов придется переключить красный щуп в гнездо с надписью 10A. Около этого гнезда можно увидеть предупредительную надпись, гласящую о том, что этот предел не защищен предохранителем, и измерения можно производить всего 10 секунд, после чего делать перерыв на 15 минут. Почему?

Чтобы правильно ответить на этот вопрос не поленимся открыть прибор, что приходится делать, просто для замены батарейки. На рисунке 4 показан фрагмент платы мультиметра.

Рисунок 4. Входные гнезда мультиметра

На рисунке показан небольшой фрагмент печатной платы мультиметра, а именно три входных гнезда. Верхнее, как раз для измерения тока 10A, нижнее – общий, среднее гнездо для всех остальных измерений. Толстая проволочная скоба слева, это как раз и есть измерительный шунт предела 10A. Диаметр проволоки не менее 1,5 мм, что позволяет надеяться, что она выдержит ток 10 и более ампер достаточно долго, а не 10 секунд, о которых предупреждается на корпусе прибора. Тогда еще одно почему?

Дело в том, что штатные измерительные щупы внутри себя содержат очень даже тонкий провод, вот к нему-то и относится предупредительная надпись. Автору статьи довелось быть очевидцем, но не исполнителем, как мультиметр, включенный на десятиамперный диапазон, воткнули в розетку! Раздался средней силы взрыв, прибор уже был оплакан, и почти похоронен.

Но после детальной проверки оказалось, что бабахнули только щупы, а сам прибор остался цел и невредим: тонюсенький проводок внутри измерительных щупов сработал как предохранитель. Поэтому, если потребуется длительное наблюдение за токами в пределах 5…10A, достаточно просто штатные щупы заменить на более «крепкие».

Мультиметры бюджетных серий DT83X могут измерять только постоянные токи, режима измерения переменных токов в них просто нет. Да, как-то не всегда он нужен, хотя более дорогие модели переменный ток, конечно же, меряют. Наибольший предел измерения тока ни много ни мало 20A! А комплектуются эти приборы теми же измерительными щупами.

На рисунке 4 виден плавкий предохранитель, который защищает мультиметр на пределах измерения токов 2000µ, 20m, 200m. Так что не надо удивляться, если на этих пределах мультиметр не хочет мерить ток, а сразу снимать заднюю крышку и смотреть предохранитель.

В правом верхнем углу рисунка находится четверть какого-то светлого кружка. Это часть пьезоизлучателя, того самого, который пищит в режиме прозвонки. Именно от этого «звонка» и говорят, что надо «прозвонить» схему.

Что значит «прозвонить»

Те, кто пользовался стрелочными тестерами, знают, что прежде, чем приступить к измерению сопротивлений, надо установить стрелку на ноль шкалы. Для этого просто соединить между собой измерительные щупы и покрутить соответствующую ручку.

Хотя у цифровых мультиметров ноль выставлять не требуется, но соединять щупы все равно приходится: это еще одно хорошее правило пользования прибором. Тем самым проверяется в первую очередь целостность щупов (штатные щупы обрываются очень часто), а заодно и ноль шкалы. Если мультиметр находится в режиме «прозвонки» (как показано на рисунке 5), раздается звуковой сигнал.

Рисунок 5. Мультиметр в режиме «прозвонки»

Звуковой сигнал раздается лишь в том случае, если сопротивление между измерительными щупами не превышает 47…50Ω. Это свойство используется при проверке целостности проводников и дорожек на печатных платах. С режимом прозвонки проводов совмещен и режим проверки полупроводников.

Если входные щупы не замкнуты, или в исследуемой схеме обрыв, или проверяемый диод включен в обратной полярности, на дисплее мультиметра высвечивается 1, как показано на рисунке 6.

Рисунок 6. Мультиметр показывает обрыв

То же самое можно увидеть на дисплее, если попытаться сопротивление 200КОм измерить на пределе 200Ом. Другими словами измеряемое сопротивление выше, чем предел измерения, прибор «думает», что цепь разорвана.

Такая же картина будет, если напряжение 24В измерять на диапазоне 20, – прибор зашкалил. Только не надо на диапазон 20 подавать напряжение вольт 100…200, поскольку прибор может не выдержать такого издевательства и просто сгорит.

Измерение сопротивлений

Пока не ушли далеко от рисунка 5, рассмотрим, как измерить сопротивление резисторов или высокоомных проводников. Для переключения в режим измерения сопротивлений достаточно повернуть переключатель режимов работы по часовой стрелке, где имеется несколько пределов.

  • 200Ω
  • 2000Ω
  • 20k
  • 200k
  • 2000k

Первые два предела содержат символ Ω, что говорит о том, что цифры на дисплее покажут величину сопротивления в Омах. На пределе 200Ω можно измерить сопротивление резисторов величиной до 200Ω, предел 2000Ω предназначен для измерения сопротивлений до 2КОм.

Если на измеряемом резисторе маркировка 1К5, то прибор покажет 1350…1650 Ω, сказывается допуск резистора ±10%. Об этом надо помнить при измерении сопротивлений.

Остальные три предела содержат букву k (хотя должно быть K), и результат измерений получится в килоомах. Предел 2000k позволяет измерить сопротивления до 2MΩ, результат измерения показывается в килоомах.

При измерении резистора с номиналом 1MΩ на дисплее можно увидеть результат 995…1000, опять же сказывается допуск. Резистор с номиналом 560K покажет 560.

Если же на этом пределе измерять резистор 5K6, то на индикаторе будет только 5, – дробная часть числа просто отбрасывается. Более точных результатов в этом случае можно достичь, если проводить измерения на пределе 20K: на дисплее индицируется 5,61. Поэтому всегда надо выбирать предел, обеспечивающий более точный результат.

Если при измерении токов и напряжений измерения рекомендуется начинать с максимального предела из опасений сжечь прибор, то при измерении сопротивлений следует действовать как раз наоборот, начиная измерения с самого меньшего предела. Почему? Все достаточно просто.

Предположим, что установлен предел измерения сопротивлений 200Ω, а сопротивление измеряемого резистора (будем считать, что оно нам неизвестно) 51КОм. Совершенно очевидно, что пределы 200Ω, 2000Ω, 20k маловаты для измерения такого сопротивления, и на дисплее покажется единица (рис. 6). И только, когда произойдет переключение на предел 200k, получится достоверный результат. Дальнейшее переключение пределов уже не потребуется.

Проверка диодов и транзисторов

Проводится в режиме «прозвонки», как показано на рисунке 5. Для примера на рисунке 7 показано подключение низкочастотного выпрямительного диода 1N4007 (прямой ток 1А, обратное напряжение 1000В).

Рисунок 7. Проверка выпрямительного диода в прямом направлении

Широкое светлое кольцо на правом конце диода, как правило, символизирует вывод катода, таким образом, щупы подключены в проводящем направлении. При этом на дисплее высвечивается прямое падение напряжения на p-n переходе диода, что соответствует полупроводникам на основе кремния. Результат показан на рисунке 8.

Рисунок 8. Прозвонка диода в прямом направлении

Если таким же образом прозвонить диод с барьером Шоттки, то результат получится несколько иной.

Рисунок 9. Прямое падение напряжения на диоде с барьером Шоттки

Если щупы поменять местами, то диод окажется включенным в обратном направлении, на дисплее появится единица, как на рисунке 6. Такие результаты получаются, если диод исправен. Но возможны и еще два варианта.

Если при подключении щупов прибор запищит, раздастся звуковой сигнал, то диод просто замкнут накоротко, или пробит. При переключении щупов в обратную полярность, звуковой сигнал, скорее всего, не прекратится.

Другой вариант, – независимо от направления включения щупов на дисплее высвечивается единица. В этом случае говорят, что диод находится в обрыве, или попросту сгорел, что называется, до дыр. В точности также при прозвонке мультиметром ведут себя p-n переходы транзисторов. Проверить их ничуть не сложнее, чем отдельный диод.

Как проверить биполярный транзистор

При прозвонке транзистора мультиметром транзистор следует рассматривать не как усилительный прибор со всеми присущими ему свойствами, а как последовательно соединенные, к тому же встречно диоды, как показано на рисунке 10.

Рисунок 10. Транзистор, как последовательно соединенные диоды. Схема для прозвонки

Теперь к выводу базы надо подключить красный (плюсовой) вывод омметра, а черным коснуться по очереди выводов эмиттера и коллектора, показания будут такими же, как при прозвонке диода в прямом направлении. Процесс измерения и результат показаны на рисунках 11 и 12.

Рисунок 11. Зажимы «крокодил» всегда помогут

Рисунок 12. На дисплее показывается падение напряжения на p-n переходах транзистора при прямом включении омметра

Если вместо красного щупа к базе подключить черный, то переходы сместятся в обратном направлении, закроются, и на дисплее появится единица, как будто при обрыве. Именно так ведет себя при проверке исправный транзистор.

Но может случиться, что при прозвонке p-n перехода раздастся звуковой сигнал, или высветится единица при любом направлении включения измерительных щупов. Это говорит о том, что транзистор неисправен.

Даже при исправном поведении коллекторного и эмиттерного переходов судить об исправности транзистора еще рано. Следует не забыть прозвонить в обоих направлениях выводы К-Э. В любом направлении на дисплее должна показаться все та же единица. Но иногда случается, что даже при исправных переходах Б-Э, Б-К выводы К-Э замкнуты накоротко и слышится звуковой сигнал.

Сказанное справедливо для транзисторов структуры n-p-n. Теми же соображениями следует руководствоваться и при проверке p-n-p транзисторов, но в этом случае красный и черный щупы придется поменять местами. 

Ранее ЭлектроВести писали, что Президент Владимир Зеленский обратился с просьбой к премьер-министру Украины Денису Шмыгалю с просьбой принять меры для сбалансированной работы энергосистемы Украины, в том числе за счет ограничения импорта электроэнергии из России и Беларуси.

По материалам: electrik.info.

Как проверить полевой транзистор? | ROM.by

MOSFET – это Metal-Oxide-Semiconductor Field-Effect Transistor.

Нижеизложенная методика обеспечивает проверку MOSFET’ов вне схемы. MOSFET должен находиться на непроводящей поверхности. Поверхность MOSFET’а должна быть относительно чистой, т.к. загрязнение поверхности между выводами MOSFET’а может привести к искажению результатов проверки. Также следует обращать внимание на соотношение Vgs(th) и максимального напряжения, выдаваемого мультиметром в режиме проверки диодов.

Для диагностики полевых транзисторов N-канального вида ставим мультиметр на проверку диодов (обычно он пищит на этом положении), черный щуп слева на подложку (D – сток), красный на дальний от себя вывод справа (S – исток), мультиметр показывает падение напряжения на внутреннем диоде – 502 мВ, транзистор закрыт (Рис. 4). Далее, не снимая черного щупа, касаемся красным щупом ближнего вывода (G – затвор) (Рис.5) и опять возвращаем его на дальний (S – исток), тестер показывает 0 мВ (на некоторых цифровых мультиметрах будет показываться не 0, а 150…170 мВ): полевой транзистор открылся прикосновением (Рис.6).

Если сейчас черным щупом коснуться нижней (G – затвор) ножки, не отпуская красного щупа (Рис.7), и вернуть его на подложку (D – сток), то полевой транзистор закроется и мультиметр снова будет показывать падение напряжения около 500 мВ (Рис.8). Это верно для большинства N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.

Транзистор выполнил всё, что от него требовалось. Диагноз – исправен. Для проверки P-канальных полевых транзисторов нужно поменять полярность напряжений открытия-закрытия. Для этого просто меняем щупы мультиметра местами.

Ссылка по теме.

Основные способы проверки транзистора. Как проверить мультиметром транзистор: испытание различных типов устройств

Современные электронные мультиметры имеют специализированные коннекторы для проверки различных радиодеталей, включая транзисторы.

Это удобно, однако, проверка не совсем корректная. Радиолюбители со стажем помнят, как проверить транзистор тестером со стрелочной индикацией. Техника проверки на цифровых приборах не изменилась. Для точного определения состояния полупроводникового прибора, каждые его элемент тестируется отдельно.

Классика вопроса: как проверить биполярный транзистор мультиметром

Этот популярный проводник выполняет две задачи:

  • Режим усиления сигнала. Получая команду на управляющие выводы, прибор дублирует форму сигнала на рабочих контактах, только с большей амплитудой;
  • режим ключа. Подобно водопроводному крану, полупроводник открывает или закрывает путь электрическому току по команде управляющего сигнала.

Полупроводниковые кристаллы соединены в корпусе, образуя p-n переходы . Такая же технология применяется в диодах. По сути – биполярный транзистор состоит из двух диодов, соединенных в одной точке одноименными выводами.
Чтобы понять, как проверить транзистор мультиметром, рассмотрим отличие pnp и npn структуры.

Так называемый «прямой» (см. фото)


С обратным переходом, как изображено на фото


Разумеется, если вы спаяете диоды так, как показано на условной схеме – транзистор не получится. Но с точки зрения проверки исправности – можно представить, что у вас обычные диоды в одном корпусе.

То есть, положив перед собой схему полупроводниковых переходов, вы легко определите не только исправность детали в целом, но и локализуете конкретный неисправный p-n переход. Это поможет понять причину поломки, ведь полупроводник работает не автономно, а в составе электросхемы.

Как проверить биполярный транзистор мультиметром – видео.

Возникает резонный вопрос: Как определить маркировку выводов транзистора, не имея каталога? Такая практика пригодится не только для проверки радиодеталей. При сборке монтажной платы, незнание конструкции транзистора приведет к его перегоранию.

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней – дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами – истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Содержание:

В электронике и радиотехнике большое значение имеет не только правильная сборка схемы, но и последующая проверка ее работоспособности. Проверяться может все устройство или его отдельные элементы. В связи в этим довольно часто возникает вопрос, как проверить транзистор мультиметром, не нарушая схемы. Существуют различные способы, которые применяются индивидуально к каждому виду элементов. Прежде чем начинать подобную проверку и тестирование, рекомендуется изучить общее устройство и .

Основные типы транзисторов

Существует два основных типа транзисторов – биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае – только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов – дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов – «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам – эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов – носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта – исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Проверка биполярного транзистора мультиметром

Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.

Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета – с выходом, измеряющим сопротивление, напряжение и частоту.

В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.

Проверка биполярного транзистора мультиметром выполняется в следующем порядке:

  • Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
  • Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный – к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
  • Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
  • Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
  • Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
  • После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.

Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.

Проверка работоспособности полевого транзистора

Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.

Типовая схема полевого транзистора представлена на рисунке. Основные выводы – затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.

Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.

Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.

Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный – к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности. Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов. После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.

В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.

Как проверить составной транзистор мультиметром

Составной транзистор или транзистор Дарлингтона представляет собой схему, объединяющую в своем составе два и более биполярных транзистора. Это позволяет значительно увеличить коэффициент усиления по току. Такие транзисторы применяются в схемах, предназначенных для работы с большими токами, например, в стабилизаторах напряжения или выходных каскадах усилителей мощности. Они необходимы, когда требуется обеспечение большого входного импеданса, то есть полного комплексного сопротивления.

Общие выводы у составного транзистора такие же, как и у биполярной модели. Точно так же и происходит проверка npn транзистора мультиметром. В этом случае применяется методика, аналогичная проверке обычного биполярного транзистора.

Транзистор – полупроводниковый прибор, основное назначение которого – использование в схемах для усиления или генерирования сигналов, а также для электронных ключей.

В отличие от диода, транзистор имеет два p-n-перехода, соединенных последовательно. Между переходами располагаются зоны, имеющие разную проводимость (типа «n» или типа «р»), к которым подключаются выводы для подключения. Вывод от средней зоны называется «базой», а от крайних – «коллектор» и «эмиттер».

Разница между зонами «n» и «p» состоит в том, что у первой есть свободные электроны, а у второй – так называемые «дырки». Физически «дырка» означает нехватку электрона в кристалле. Электроны под действием поля, создаваемого источником напряжения, двигаются от минуса к плюсу, а «дырки» — наоборот. При соединении между собой областей с разной проводимостью электроны и «дырки» диффузируют и на границе соединения образуется область, называемая p-n-переходом. За счет диффузии область «n» оказывается заряженной положительно, а «р» — отрицательно, а между областями с различной проводимостью возникает собственное электрическое поле, сосредоточенное в области p-n-перехода.

При подключении плюсового вывода источника к области «р», а минуса – к «n» его электрическое поле компенсирует собственное поле p-n-перехода, и через него проходит электрический ток. При обратном подключении поле от источника питания складывается с собственным, увеличивая его. Переход запирается, и ток через него не проходит.

В составе транзистора есть два перехода: коллекторный и эмиттерный. Если подключить источник питания только между коллектором и эмиттером, то ток через него не пойдет. Один из переходов оказывается запертым. Чтобы его открыть, на базу подается потенциал. В результате на участке коллектор-эмиттер возникает ток, который в сотни раз больше тока базы. Если при этом ток базы изменяется во времени, то ток эмиттера в точности повторяет его, но с большей амплитудой. Этим и обусловлены усилительные свойства.

В зависимости от комбинации чередования зон проводимости различают транзисторы p-n-p или n-p-n. Транзисторы p-n-p открываются при положительном потенциале на базе, а n-p-n – при отрицательном.

Рассмотрим несколько способов, как проверить транзистор мультиметром.

Проверка транзистора омметром

Поскольку в составе транзистора имеется два p-n-перехода, то их исправность можно проверить по методике, используемой для тестирования полупроводниковых диодов. Для этого его можно представить эквивалентом встречного соединения двух полупроводниковых диодов.

Критериями исправности для них является:

  • Низкое (сотни Ом) сопротивление при подключении источника постоянного тока в прямом направлении;
  • Бесконечно большое сопротивление при подключении источника постоянного тока в обратном направлении.

Мультиметр или тестер измеряют сопротивление, используя собственный вспомогательный источник питания – батарейку. Напряжение ее невелико, но его достаточно, чтобы открыть p-n-переход. Меняя полярность подключения щупов от мультиметра к исправному полупроводниковому диоду, в одном положении мы получаем сопротивление в сотню Ом, а в другом – бесконечно большое.

Полупроводниковый диод бракуется, если

  • в обоих направлениях прибор покажет обрыв или ноль;
  • в обратном направлении прибор покажет любую значащую величину сопротивления, но не бесконечность;
  • показания прибора будут нестабильными.

При проверке транзистора потребуется шесть измерений сопротивлений мультиметром:

  • база-эмиттер прямое;
  • база-коллектор прямое;
  • база-эмиттер обратное;
  • база-коллектор обратное;
  • эмиттер-коллектор прямое;
  • эмиттер-коллектор обратное.

Критерием исправности при измерении сопротивления участка коллектор-эмиттер является обрыв (бесконечность) в обоих направлениях.

Коэффициент усиления транзистора

Различают три схемы подключения транзистора в усилительные каскады:

  • с общим эмиттером;
  • с общим коллектором;
  • с общей базой.

Все они имеют свои характеристики, а наиболее распространена схема с общим эмиттером. Любой транзистор характеризуется параметром, определяющим его усилительные свойства – коэффициент усиления. Он показывает, во сколько раз ток на выходе схемы будет больше, чем на входе. Для каждой из схем включения имеется свой коэффициент, разный для одного и того же элемента.

В справочниках приводится коэффициент h31э – коэффициент усиления для схемы с общим эмиттером.

Как проверить транзистор, измеряя коэффициент усиления

Одним из методов проверки исправности транзистора является измерение его коэффициента усиления h31э и сравнение его с паспортными данными. В справочниках дается диапазон, в котором может находиться измеренное значение для данного типа полупроводникового прибора. Если измеренное значение укладывается в диапазон, то он исправен.

Измерение коэффициента усиления производится еще и для подбора компонентов с одинаковыми параметрами. Это необходимо для построения некоторых схем усилителей и генераторов.

Для измерения коэффициента h31э мультиметр имеет специальный предел измерения, обозначенный hFE. Буква F обозначает «forward» (прямая полярность), а «Е» — схему с общим эмиттером.

Для подключения транзистора к мультиметру на его передней панели установлен универсальный разъем, контакты которого обозначены буквами «ЕВСЕ». Согласно этой маркировке подключаются выводы транзистора «эмиттер-база-коллектор» или «база-коллектор-эмиттер», в зависимости от их расположения у конкретной детали. Для определения правильного расположения выводов придется воспользоваться справочником, там же заодно можно узнать и коэффициент усиления.

Затем подключаем транзистор к разъему, выбрав предел измерения мультиметра hFE. Если его показания соответствуют справочным – проверяемый электронный компонент исправен. Если нет, или прибор показывает что-то невразумительное – транзистор вышел из строя.

Полевой транзистор

Полевой транзистор отличается от биполярного по принципу действия. Внутрь пластины кристалла одной проводимости («р» или «n») посередине внедряется участок с другой проводимостью, называемый затвором. По краям кристалла подключаются выводы, называемые истоком и стоком. При изменении потенциала на затворе изменяется величина токопроводящего канала между стоком и истоком и ток через него.

Входное сопротивление полевого транзистора очень большое, а вследствие этого он имеет большой коэффициент усиления по напряжению.

Как проверить полевой транзистор

Рассмотрим проверку на примере полевого транзистора с n-каналом. Порядок действий будет таким:

  1. Переводим мультиметр на режим прозвонки диодов.
  2. Плюсовой вывод от мультиметра подключаем к истоку, минусовой – к стоку. Прибор покажет 0,5-0,7 В.
  3. Меняем полярность подключения на противоположную. Прибор покажет обрыв.
  4. Открываем транзистор, подключив минусовой провод к истоку, а плюсовым коснувшись затвора. За счет существования входной емкости элемент остается открытым некоторое время, это свойство и используется для проверки.
  5. Плюсовой провод перемещаем на сток. Мультиметр покажет 0-800 мВ.
  6. Меняем полярность подключения. Показания прибора не должны измениться.
  7. Закрываем полевой транзистор: плюсовой провод к истоку, минусовой – к затвору.
  8. Повторяем пункты 2 и 3, ничего не должно измениться.

Давайте займемся теорией, повремените убегать. Портал ВашТехник наряду с заумными сентенциями, рассчитанными быть понятыми профи, предоставит методику пяти пальцев. Не слышали? Просто, как пять пальцев. Сначала обсудим типы транзисторов, потом расскажем, что можно сделать при помощи мультиметра. Рассмотрим штатные гнезда hFE (объясним, что это такое), методику замещения схемы через соединение нескольких диодов. Расскажем, с чего начать. Поймете, как проверить транзистор мультиметром, или… Давайте, пожалуй, без «или». Приступим, чтобы твердо отличать МОП-транзистор от мопса, растолчем теорию.

Типы, классификация транзисторов

Избегаем исследовать дебри. Знайте простое правило: в биполярных транзисторах носители обоих знаков участвуют в создании выходного тока, в полевых – одного. Определение умников. Теперь работаем пальцами:

  1. Транзисторы полевого типа выступают началом. Когда Битлз выходили на сцену, на замену вакуумным триодам стали приходить полупроводники. Если говорить кратко, p-n-p транзистор — два богатых положительными носителями слоя кристалла (кремний, германий, примесной проводимости). Проводя уроки физики, учитель часто рассказывал, как V-валентный мышьяк легировал решетку кремния, образуя новый материала. Добавим, что положительные p-области, отгорожены узкой отрицательной (n-negative). Как ком в горле. Узкий перешеек, называемый базой, отказывается пускать электроны (в нашем случае скорее дырки) течь в нужном направлении. Небольшой отрицательный заряд появляется на управляющем электроде, дырки коллектора (верхняя p-область на традиционных электрических схемах) больше не могут сдерживаться, буквально рвутся в сторону приложенного напряжения. Поскольку база тонкая, используя набранную скорость носители пролетают перешеек, уносятся дальше – достигая эмиттера (нижняя p-область), здесь увлекаются разностью потенциалов, создаваемой напряжением питания. Типичное школьное объяснение. Относительно небольшое напряжение управляющего электрода способно регулировать скорость сильного потока дырок (положительных носителей), увлекаемого полем напряжения питания. На этом построена техника. Навстречу дыркам движутся электроны, транзисторы называют биполярными.
  2. Полевые транзисторы снабжены каналом любого типа проводимости, разделяющим области истока и стока (см. рисунок выше). Управляющий электрод называют затвором. Причем основной материал подложки, затвора противоположен каналу, истоку и стоку. Поэтому положительное напряжение (см. рисунок) запрет ход зарядам через транзистор. Плюс оттянет (в p-область) доступные электроны. Полевые транзисторы в электронике применяются намного чаще. На рисунке затвор электрически соединен с кристаллом, структура называется управляющим p-n переходом. Бывает, область изолирована от кристалла диэлектриком, в качестве которого часто выступает оксид. Чистой воды MOSFET транзистор, по-русски – МОП.

При помощи мультиметра, в штатном режиме проверяются биполярные транзисторы. Если тестер поддерживает такую опцию, часто именуемую hFE, на лицевой панели смонтирован круглый разъем, поделенный вертикальной чертой на две части, где надписаны по 4 гнезда следующим образом:

  1. B – база (англ. Base).
  2. С – коллектор (англ. Collector).
  3. E – эмиттер (англ. Emitter).

Гнезд для эмиттера два, чтобы учесть раскладку выводов корпуса. База может быть с края, посередине. Для удобства сделано. Нет разницы, в какое гнездо вставить ножку эмиттера биполярного транзистора. Пара слов, как пользоваться.

Проверка биполярного транзистора мультиметром в штатном режиме

Чтобы гнездо проверки биполярных транзисторов начало работать (вести измерения), переведем тестер в режим hFE. Откуда взялись буквы? h — касается категории параметров, описывающих четырехполюсник любого типа. Не важно знать, что подразумевает понятие — просто уясним: существует целая группа h-параметров, среди которых имеется один важный занимающимся электроникой. Называется коэффициентом усиления по току с общим эмиттером. Обозначается, h31 (либо строчной греческой буквой бета).

Цифровая мнемоника плохо воспринимается человеческим глазом, поэтому было решено (за рубежом, понятное дело), что F будет обозначать прямое усиление по току (forward current amplification), тогда как E говорит, что измерение велось в схеме с общим эмиттером (которая применяется учебниками физики для иллюстрации принципов работы транзисторов биполярного типа). Схем включения много, каждая обладает достоинствами, параметры можно охарактеризовать через h31 (некоторые другие, упомянутые справочниками). Считается, если коэффициент усиления в норме, радиоэлемент 100% работоспособен. Теперь читатели знают, как проверяется p-n-p транзистор или n-p-n транзистор.

h31 зависит от некоторых параметров, указываемых инструкцией мультиметра. Напряжение питания 2,8 В, ток базы 10 мА. Дальше берутся графики технической документации (data sheet) транзистора, профессионал знает, как найти остальное. При включении режима hFE, подсоединении ножек биполярного транзистора в нужные гнезда на дисплее появляется значение коэффициента усиления прибора по току. Потрудитесь сопоставить справочным данным, сделав поправку на режим измерения (если понадобится). Только звучит сложно, достаточно пару раз сделать самостоятельно, добьетесь результатов.

Проверка транзисторов мультиметром: нештатный режим

Допустим, вызывает сомнение исправность транзистора полевого типа. Известный русский вопрос в электронике присутствует. Начинают думать… м-да.

  • Полевой транзистор отпирается или запирается определенным знаком напряжения. Обсуждали выше. Если помните, говорили, при прозвонке на щупах тестера небольшое постоянное напряжение. Будем использовать в наших тестах. Пока транзистор на плате, сложно сделать измерения, стоит изъять из привычного окружения, как можно применить нестандартные методики. Оказывается, если приложить на электрод отпирающее напряжение, за счет некоторой собственной емкости транзистора область зарядится, сохраняя приобретенные свойства. Допускается прозвонить электроды между истоком и стоком. Сопротивление порядка 0,5 кОм покажет: полевой транзистор работоспособен. Стоит закоротить базу с другими отводами, проводимость исчезнет. Полевой транзистор закрылся и годен.
  • Биполярные транзисторы, полевые с управляющим p-n переходом проверяют гораздо проще. В первом случае применяется схема замещения элемента двумя диодами, включенными навстречу (или наоборот спинками). Подадим отпирающее напряжение (p – плюс, n – минус), получив на измерителе сопротивления номинал 500 – 700 Ом. Можно также звонить, пользуясь слухом. Недаром на шкале часто нарисован диод. Прозвонка используется для проверки работоспособности. Напряжения хватает открыть p-n-переход.

Подготовка к проверке транзистора

Временами схватишь руками составной транзистор. Внутри корпуса находиться несколько ключей. Используется для экономии места при одновременном увеличении коэффициента усиления (причем в десятки, тысячи раз, если речь шла о каскадной схеме). Устроен так транзистор Дарлингтона. В корпус зашит защитный стабилитрон, предохраняющий переход эмиттер-база от перегрузки по напряжению. Тестирование идет одним путем:

  • Нужно найти подробные технические характеристика транзистора (составного элемента). При нынешнем масштабе компьютеризации не составит проблемы. Даже если изделие импортное. Обозначения на схемах понятные, термины не сложные. Параметр hFE расписали.
  • Затем ведется изучение, выполняется анализ. Разбиение схемы на более простые составляющие. Если между переходами коллектора и эмиттера включен стабилитрон, логично начать проверку с него. В начальный момент транзистор заперт, ток мультиметра пойдет, минуя защитный каскад. В одном направлении стабилитрон даст сопротивление 500-700 Ом, в другом (если не пробьется) будет обрыв. Аналогично разобьем на части транзистор Дарлингтона, если имеете представление (обсуждали выше).

Режим прозвонки покажет цифры. Говорят, падение напряжения, по некоторым сведениям, номинал сопротивления. Потрудимся привести опыты, решая вопрос. Вызвонить известный по значению сопротивления, заведомо исправный резистор. Если на экране появится номинал в омах, думать нечего. В противном случае можно оценить заодно ток (разделив потенциал дисплея на номинал). Знать тоже нужно, пригодится в процессе тестирования. До начала работ рекомендуется хорошенько изучить мультиметр. Достаньте инструкцию из мусорной корзины, прочитайте.

Народ интересуется вопросом, можно ли проверить транзистор мультиметром, не выпаивая. Очевидно, многое определено схемой. Тестер просто прикладывает напряжения, оценивает возникающие токи. На основе показаний вычисляется коэффициент усиления, служа критерием годности/негодности. Попробуйте проверить полевой транзистор мультиметром из входящих в состав процессора! Отбрось надежду всяк сюда входящий. Не всегда можно прозвонить полевой транзистор мультиметром.

Разбить биполярный транзистор на диоды

Рисунок, представленный среди текста, демонстрирует схему замещения транзистора двумя диодами. Позволит рассматривать усилительный элемент, представив суммой двух независимых более простых. Не обладающих усилением, проявляющих нелинейные свойства (неодинаковость прямого/обратного включения).

Мощные транзисторы силовых цепей бессилен открыть скудными силами мультиметр. Поэтому для тестирования устройств применяются специальные схемы. Нельзя проверить биполярный транзистор мультиметром напрямую.

Проверка условных диодов, замещающих транзистор

Методик несколько. Можно попробовать измерить сопротивление стандартной шкалой Ω. Красный щуп нужно прикладывать к p-области. Тогда дисплей мультиметра покажет цифру, меньшую бесконечности. В противоположном направлении результат будет нулевым. Мультиметр покажет обрыв. Нормальные результаты прозвонки диода.

Если пользоваться специальным режимом, экран показывает размер сопротивления в прямом направлении, обрыв (стандартно единичка в левом углу ЖК-экрана) в другом. Обратите внимание – рисунок содержит поясняющие надписи, куда прислонять щуп, получая открытый p-n переход. В обратном направлении прибор показывает обрыв.

Проверка биполярного транзистора мультиметром

Добавлено 27 сентября 2017 в 07:35

Сохранить или поделиться

Биполярные транзисторы построены из трехслойного полупроводникового «сэндвича» либо NPN, либо PNP. Как таковые транзисторы при проверке мультиметром в режиме «сопротивление» или «проверка диода», как показано на рисунке ниже, показываются как два диода, соединенных друг с другом. Показания низкого сопротивления с черным отрицательным (-) выводом на базе соответствует N-типу материала в базе PNP транзистора. На условном обозначении на материал N-типа «указывает» стрелка перехода база-эмиттер, который в этом примере является базой. Эмиттер P-типа соответствует другому концу стрелки перехода база-эмиттер. Коллектор очень похож на эмиттер и так же является материалом P-типа PN-перехода.

Проверка PNP транзистора мультиметром: (a) прямое смещение переходов Б-Э и Б-К, сопротивление низкое; (b) обратное смещение переходов Б-Э, Б-К, сопротивление равно ∞

Здесь я предполагаю использовать мультиметр с единственной функцией измерения (сопротивление) для проверки PN-переходов. Некоторые мультиметры оснащены двумя отдельными функциями измерения: сопротивление и “проверка диода”, каждая служит своей цели. Если у вашего мультиметра есть функция “проверка диода”, используйте её, вместо измерения сопротивления, в этом случае мультиметр покажет прямое падение напряжения PN-перехода, а не только то, проводит ли он ток.

Разумеется, показания мультиметра будут совершенно противоположными для NPN транзистора, причем оба PN-перехода будут направлены в противоположную сторону. Показания низкого сопротивления с красным (+) выводом на базе являются «противоположным» состоянием для NPN транзистора.

Если в этом тесте используется мультиметр с функцией «проверка диода», будет установлено, что переход эмиттер-база имеет несколько большее прямое падение напряжения, чем переход коллектор-база. Эта разница прямых напряжений обусловлена несоответствием концентрации легирования между областями эмиттера и коллектора: эмиттер представляет собой кусок полупроводникового материала, гораздо более легированный, чем коллектор, в результате чего его переход с базой создает более высокое прямое падение напряжения.

Зная это, становится возможным определение назначение выводов на немаркированном транзисторе. Это важно, потому что корпуса, к сожалению, не стандартизированы. Разумеется, все биполярные транзисторы имеют три вывода, но расположение этих трех выводов на реальном физическом корпусе не имеет универсального стандартизированного порядка.

Предположим, что техник нашел биполярный транзистор и начинает измерять его проводимость с помощью мультиметра, установленного в режим «проверка диода». Измерения между парами выводов и запись значений, отображаемых мультиметром, дают ему следующие данные.

Неизвестный биполярный транзистор. Где здесь эмиттер, база, коллектор? Ниже приведены показания мультиметра.
Мультиметр подключен к выводу 1 (+) и 2 (-): “OL”
Мультиметр подключен к выводу 1 (-) и 2 (+): “OL”
Мультиметр подключен к выводу 1 (+) и 3 (-): 0.655 V
Мультиметр подключен к выводу 1 (-) и 3 (+): “OL”
Мультиметр подключен к выводу 2 (+) и 3 (-): 0.621 V
Мультиметр подключен к выводу 2 (-) и 3 (+): “OL”

Единственными комбинациями тестовых измерений, дающих на мультиметре показания, говорящие о проводимости, являются выводы 1 и 3 (красный щуп на выводе 1, черный щуп на выводе 3) и выводы 2 и 3 (красный щуп на выводе 2, черный щуп на выводе 3). Эти два показания должны указывать на прямое смещения перехода эмиттер-база (0,655 вольт) и перехода коллектор-база (0,621 вольт).

Теперь мы ищем один провод, общий для обоих показаний проводимости. Это должен быть вывод базы транзистора, поскольку база единственным слоем трехслойного устройства, общего для обоих PN-переходов (база-эмиттер и база-коллектор). В этом примере это провод номер 3, являющийся общим для комбинаций тестовых измерений 1-3 и 2-3. В обоих этих измерениях черный (-) щуп мультиметра касался к выводу 3, что говорит нам, что база этого транзистора изготовлена из полупроводникового материала N-типа (черный = отрицательный). Таким образом, это PNP-транзистор с базой на выводе 3, эмиттером на выводе 1 и коллектором на выводе 2, как показано на рисунке ниже.

Выводы биполярного транзистора определены с помощью мультиметра.

Обратите внимание, что вывод базы в этом примере не является средним выводом транзистора, как это можно было бы ожидать от трехслойной «сэндвичной» модели биполярного транзистора. Это довольно частый случай, и, как правило, это часто путает новых студентов. Единственный способ определить назначение выводов – это проверка мультиметром или чтение технического описания на конкретную модель транзистора.

Знание того, что биполярный транзистор при тестировании мультиметром в режиме проводимости ведет себя как два соединенных «спинами» диода, полезно для идентификации неизвестного транзистора только по показаниям мультиметра. Это также полезно для быстрой проверки работоспособности транзистора. Если техник измерит проводимость между тремя выводами в разных комбинациях, он или она сразу узнает, что транзистор неисправен (или что это не биполярный транзистор, а что-то еще – отличная возможность, если на детали нет маркировки для точной идентификации!). Однако модель «двух диодов» для транзистора не может объяснить, как и почему он действует как усилительное устройство.

Чтобы лучше проиллюстрировать этот парадокс, рассмотрим одну из схем транзисторных ключей, используя для представления транзистора физическую схему (как показано на рисунке ниже), а не условное обозначение. Так легче будет видеть два PN-перехода.

Небольшой ток базы, протекающий в прямо смещенном переходе база-эмиттер, обеспечивает большой ток через обратно смещенный переход база-коллектор (на рисунке показано направление движения потоков электронов, общепринятые направления электрических токов будут противоположными)

Диагональная стрелка серого цвета показывает направление потока электронов через переход эмиттер-база. Эта часть имеет смысл, так как электроны протекают от эмиттера N-типа к базе P-типа, очевидно прямое смещение перехода. Однако с переходом база-коллектор совсем другое дело. Обратите внимание, как толстая стрелка серого цвета указывает в направлении потока электронов (вверх) от базы к коллектору. С базой из материала P-типа и коллектором из материала N-типа, это направление потока электронов явно указывает на направление, противоположное тому, с каким ассоциируется PN-переход! Обычный PN-переход не позволил бы потоку электронов протекать в этом «обратном» направлении, по крайней мере, не без значительного сопротивления. Однако открытый (насыщенный) транзистор демонстрирует очень малое противодействие электронам на всем пути от эмиттера к коллектору, о чем свидетельствует свечение лампы!

Ясно, что здесь происходит что-то, что бросает вызов простой «двухдиодной» модели биполярного транзистора. Когда я впервые узнал о работе транзистора, я попытался построить свой собственный транзистор из двух диодов, включенных в противоположных направлениях, как показано на рисунке ниже.

Пара включенных в противоположных направлениях диода не действуют как транзистор!

Моя схема не работала, и я был озадачен. Однако полезное «двухдиодное» описание транзистора может использоваться для проверки, оно не объясняет, почему транзистор ведет себя как управляемый ключ.

То, что происходит в транзисторе, заключается в следующем: обратное смещение перехода база-коллектор предотвращает протекание тока коллектора, когда транзистор находится в режиме отсечки (закрыт, т.е. при отсутствии тока базы). Если переход база-эмиттер смещен в прямом направлении с помощью управляющего сигнала, нормально блокирующее поведение перехода база-коллектор изменяется, и ток через коллектор пропускается, несмотря на то, что электроны через этот PN-переход идут «неправильно». Это поведение зависит от квантовой физики полупроводниковых переходов и может иметь место только тогда, когда два перехода расположены правильно, и концентрации легирования этих трех слоев распределены правильно. Два диода, соединенных последовательно, не соответствуют этим критериям; верхний диод никогда не может «включиться», когда он смещен в обратном направлении, независимо от того, какая величина тока проходит через нижний диод в схеме через вывод базы. Для более подробной информации смотрите раздел «Биполярные транзисторы» главы 2.

То, что концентрации легирования играют решающую роль в особых способностях транзистора, еще раз подтверждается тем фактом, что коллектор и эмиттер не являются взаимозаменяемыми. Если транзистор просто рассматривается как два противоположно направленных PN-перехода или просто как N-P-N или P-N-P сэндвич материалов, может показаться, что любой конец этого сэндвича может служить в качестве коллектора или эмиттера. Это, однако, неверно. При «противоположном» включении транзистора в схему, ток база-коллектор не сможет управлять током между коллектором и эмиттером. Несмотря на то, что эти оба слоя (эмиттер и коллектор) биполярного транзистора имеют один и тот же тип легирования (либо N, либо P), коллектор и эмиттер определенно не одинаковы!

Ток через переход эмиттер-база позволяет протекать току через обратно смещенный переход база-коллектор. Действие тока базы можно рассматривать как «открывание клапана» для тока через коллектор. Более конкретно, любая заданная величина тока от эмиттера к базе допускает протекание ограниченной величины тока от базы к коллектору. На каждый электрон, который проходит через переход эмиттер-база и через вывод базы, через переход база-коллектор проходит определенное количество электронов и не более.

В следующем разделе это ограничение тока транзистора будет исследовано более подробно.

Подведем итоги:

  • При проверке с помощью мультиметра в режимах «сопротивление» и «проверка диода» биполярный транзистор ведет себя как два встречно направленных PN-перехода (диода).
  • PN-переход эмиттер-база имеет несколько большее прямое падение напряжения, чем PN-переход коллектор-база, из-за более сильного легирования полупроводникового слоя эмиттера.
  • Обратно смещенный переход база-коллектор обычно блокирует любой ток через транзистор между эмиттером и коллектором. Однако этот переход начинает проводить ток, если протекает ток и через вывод базы. Ток базы можно рассматривать как «открывание клапана» для определенной, ограниченной величины тока через коллектор.

Оригинал статьи:

Теги

PN переходБиполярный транзисторМультиметрОбучениеЭлектроника

Сохранить или поделиться

AVR-STM-C++: Как мультиметром проверить MOSFET

Как проверить полевой транзистор мультиметром?
Исходя из особенностей конструкции полевых транзисторов способ проверки отличается от способа проверки биполярных транзисторов. Тем не менее есть один надежный способ проверки.
Транзистор должен быть выпаян, на распаяном транзисторе в большинстве случаев этот способ не сработает за счет обвязки (окружающих деталей). Мультиметр ставим на режим прозвонки диодов.
Сам полевой транзистор может содержать в себе встроенный диод, он будет между Drain и Source. Поэтому для начала ищем даташит на наш полевик – чтобы точно знать с чем имеем дело.
Для примера возьмем MOSFET IRLZ44N. Из даташита на него мы узнаем где у него какие ноги. IRLZ44N цоколевка
Из этого же даташита мы видим, что есть диод, а это значит, что между Drain и Source мы увидим вместо бесконечного сопротивления – некое падение напряжения.

Итак, ставим черный щуп на Drain, красный на Gate. Прибор должен показать бесконечное сопротивление, тоесть показатели просто не поменяются. Меняем щупы местами – картина та же. Переставляем красный с Drain на Source, потом меняем местами (Красный на Gate, черный на Source) – показания меняться не должны. Gate, он же затвор, отделен от Drain и Source, если звониться в какую-либо сторону – затвор пробит, мосфет неисправен.


Теперь нам надо прозвонить Drain и Source, но для начала коротим все ноги щупом – дабы те напряжения, которые мы ему передали при прозвонке, уравнять. Ставим черный щуп на Drain, красный – на Source. Тут мы должны увидеть тот самый диод – тоесть падение напряжения. Меняем щупы местами – бесконечное сопротивление, как и в случае с Gate. Если видим что-то иное – коротим ноги щупом и повторяем замер. Если результат не бесконечное сопротивление – наш полевой транзистор вышел из строя.
Дальше ставим черный щуп на Source, красным касаемся Gate и ставим после этого на Drain. MOSFET должен открыться, тоесть показать низкое сопротивление. Так как напряжение, которым мы открыли полевой транзистор – низкое, то и сопротивление транзистора будет велико.
По сути Gate-Source – это конденсатор, который мы только что зарядили. Пока он заряжен – полевой транзистор открыт.
Если ваш мосфет ведет себя не так – скорей всего он вышел из строя.
Такой способ проверки полевых транзисторов поможет проверить фактически все широко распространенные MOSFET-транзисторы.

тестируют различные типы устройств. Проверка исправного транзистора

Проверку транзисторов приходится проводить довольно часто. Даже если у вас в руках заведомо новый, который ни разу не паял, лучше перед установкой в ​​схему его проверить. Нередки случаи, когда купленные на радиорынке транзисторы оказывались никчемными, и даже не в единичном экземпляре, а целой партией штук по 50-100. Чаще всего это происходит с мощными транзисторами отечественного производства, реже – с импортными.

Иногда в описании конструкций приводятся некоторые требования к транзисторам, например, рекомендуемое передаточное число. Для этих целей существуют различные тестеры транзисторов, довольно сложной конструкции и измеряющие практически все параметры, которые приведены в руководствах. Но чаще приходится проверять транзисторы по принципу «хорошо – плохо». Именно о таких методах проверки и пойдет речь в данной статье.

Часто в домашней лаборатории под рукой находятся транзисторы, которые когда-то были получены из старых плат.В этом случае требуется стопроцентный «входной контроль»: гораздо проще сразу определить непригодный для использования транзистор, чем потом искать его в неработающей конструкции.

Хотя многие авторы современных книг и статей категорически не рекомендуют использовать детали неизвестного происхождения, достаточно часто эту рекомендацию приходится нарушать. Ведь не всегда можно пойти в магазин и купить нужную запчасть. В связи с такими обстоятельствами необходимо проверить каждый транзистор, резистор, конденсатор или диод.Далее мы сосредоточимся в основном на тестировании транзисторов.

Любительские транзисторы обычно тестируют старым аналоговым авометром.

Проверка транзисторов мультиметром

Большинству современных радиолюбителей знаком универсальный прибор, называемый мультиметром. С его помощью можно измерять постоянные и переменные напряжения и токи, а также сопротивление проводников постоянному току. Один из пределов измерения сопротивления предназначен для «непрерывности» полупроводников.Как правило, в этом положении возле переключателя рисуется символ диода и звучащего динамика.

Перед проверкой транзисторов или диодов убедитесь, что само устройство находится в исправном состоянии. В первую очередь посмотрите на индикатор заряда батареи, при необходимости немедленно замените батарею. При включении мультиметра в режиме «звонка» полупроводников на экране индикатора должна появиться единица старшего разряда.

Затем проверьте исправность, зачем их соединять: на индикаторе появятся нули, раздастся звуковой сигнал.Это не напрасное предупреждение, так как обрыв провода в китайских щупах – довольно частое явление, и об этом нельзя забывать.

Для радиолюбителей и профессиональных инженеров-электронщиков старшего поколения такой жест (тест щупов) выполняется автоматически, потому что при использовании стрелочного тестера каждый раз при переходе в режим измерения сопротивления приходилось выставлять стрелку до нулевого деления шкалы.

После того, как эти проверки будут выполнены, вы можете приступить к проверке полупроводников, – диодов и транзисторов.Обратите внимание на полярность напряжения на щупах. Отрицательный полюс находится на разъеме с надписью «COM» (общий), на разъеме с маркировкой VΩmA положительный. Чтобы не забыть об этом во время измерения, вставьте в это гнездо красный щуп.

Рисунок 1. Мультиметр

Это замечание не такое праздное, как может показаться на первый взгляд. Дело в том, что у стрелочных авометров (AmpereVoltOmmeter) в режиме измерения сопротивления положительный полюс измеряемого напряжения находится на гнезде с маркировкой «минус» или «общий», ну с точностью до наоборот, по сравнению с цифровым мультиметром.Хотя цифровые мультиметры в настоящее время используются все чаще, стрелочные тестеры все еще используются и в некоторых случаях дают более надежные результаты. Об этом будет сказано ниже.

Рисунок 2. Циферблатный индикатор

Что показывает мультиметр в режиме «дозвон»

Тест диодов

Самым простым полупроводниковым элементом является тот, который содержит только один P-N переход. Основное свойство диода – односторонняя проводимость. Следовательно, если положительный полюс мультиметра (красный щуп) подключен к аноду диода, то на индикаторе появятся числа, которые показывают прямое напряжение на P-N переходе в милливольтах.

Рисунок 3

Для кремниевых диодов это будет порядка 650-800 мВ, а для германиевых диодов 180-300, как показано на рисунках 4 и 5. Таким образом, по показаниям прибора можно определить полупроводниковый материал, из которого изготовлен диод. Следует отметить, что эти цифры зависят не только от конкретного диода или транзистора, но и от температуры, при увеличении на 1 градус прямое напряжение падает примерно на 2 милливольта.Этот параметр называется температурным коэффициентом напряжения.

Рисунок 4

Рисунок 5

Если после этой проверки щупы мультиметра подключить с обратной полярностью, то на индикаторе прибора отобразится единица в наивысшем порядке. Такие результаты будут, если диод исправен. В этом весь метод тестирования полупроводников: в прямом направлении сопротивление незначительно, а в обратном – почти бесконечно.

Если диод «пробит» (короткое замыкание анода и катода), то, скорее всего, будет слышен звуковой сигнал, причем в обоих направлениях. В случае, если диод «открыт», независимо от того, как вы меняете полярность подключения щупов, на индикаторе будет гореть один.

Тест транзистора

В отличие от диодов, транзисторы имеют два P-N перехода и структуры P-N-P и N-P-N, причем последнее встречается гораздо чаще. С точки зрения тестирования с помощью мультиметра, транзистор можно рассматривать как два диода, соединенных последовательно встречно, как показано на рисунке 6.Таким образом, проверка транзисторов сводится к «звону» переходов база – коллектор и база – эмиттер в прямом и обратном направлениях.

Следовательно, все, что было сказано чуть выше о тесте диодов, полностью справедливо и для исследования транзисторных переходов. Даже показания мультиметра будут такими же, как у диода.

Рисунок 6

На рисунке 7 показана полярность включения прибора в прямом направлении для «звонка» транзистора база-эмиттер структуры N-P-N: положительный щуп мультиметра подключается к выводу базы.Для измерения перехода база – коллектор отрицательную клемму прибора следует подключить к выходу коллектора. В данном случае номер на табло был получен при наборе номера эмиттера база-база транзистора КТ3102А.

Рисунок 7

Если транзистор оказался структурой P-N-P, то минусовой (черный) щуп устройства следует подключить к базе транзистора.

Попутно «прозвоните» секцию коллектор-эмиттер.Рабочий транзистор имеет практически бесконечное сопротивление, что символизирует единицу высшей категории индикатора.

Иногда случается, что переход коллектор – эмиттер обрывается, о чем свидетельствует звук мультиметра, хотя переходы база – эмиттер и база – коллектор «звенят» как будто нормально!

Производится так же, как и цифровой мультиметр, но не следует забывать, что полярность в режиме омметра противоположна полярности в режиме измерения постоянного напряжения.Чтобы не забыть об этом в процессе измерения, красный щуп прибора должен быть включен в гнездо со знаком «-», как показано на рисунке 2.

Авометры

, в отличие от цифровых мультиметров, не имеют «звенящего» режима полупроводников, поэтому в этом плане их показания заметно различаются в зависимости от конкретной модели. Здесь уже приходится полагаться на собственный опыт, полученный в процессе работы с устройством. На рисунке 8 показаны результаты измерений с помощью тестера TL4-M.

Рисунок 8

На рисунке показано, что измерения проводятся при пределе * 1 Ом. В этом случае лучше ориентироваться на показания не шкалы измерения сопротивления, а верхней равномерной шкалы. Видно, что стрелка находится в области рисунка 4. Если измерения проводятся на пределе * 1000 Ом, то стрелка будет между числами 8 и 9.

По сравнению с цифровым мультиметром, авометр позволяет более точно определять сопротивление секции база-эмиттер, если эта секция зашунтирована резистором с низким сопротивлением (R2_32), как показано на рисунке 9.Это фрагмент схемы выходного каскада усилителя ALTO.

Рисунок 9

Все попытки измерить сопротивление участка база – эмиттер с помощью мультиметра приводят к звуку динамика (короткое замыкание), так как сопротивление 22 Ом воспринимается мультиметром как короткое замыкание. Аналоговый тестер при пределе измерения * 1Ω показывает некоторую разницу при измерении перехода база-эмиттер в обратном направлении.

Еще один приятный нюанс при использовании стрелочного тестера можно обнаружить, если измерения проводить на пределе * 1000Ω.При подключении щупов, конечно, соблюдая полярность (для транзистора структуры NPN положительный вывод прибора на коллекторе, минус на эмиттере) стрелка прибора не двигается, оставаясь на бесконечности на отметка шкалы.

Если сейчас прорезать указательный палец, как бы проверяя нагрев утюга, и замкнуть этим пальцем выводы цоколя и коллектора, то стрелка прибора переместится, указывая на уменьшение сопротивления эмиттера. -коллекторная секция (транзистор приоткроется).В некоторых случаях этот прием позволяет проверить транзистор, не выпаривая его из схемы.

Этот метод наиболее эффективен при проверке составных транзисторов, например CT 972, CT973 и др. Не следует забывать, что составные транзисторы часто имеют защитные диоды, подключенные параллельно переходу коллектор-эмиттер и с обратной полярностью. Если транзистор структуры N-P-N, то катод защитного диода подключается к его коллектору.К таким транзисторам можно подключать индуктивную нагрузку, например обмотки реле. Внутренняя структура составного транзистора показана на рисунке 10.

Рисунок 10

В технике и любительской практике часто используются полевые транзисторы. Такие устройства отличаются от обычных биполярных транзисторов тем, что они управляют выходным сигналом с помощью управляющего электрического поля. Особенно часто используются полевые транзисторы с изолированным затвором.

Английский термин для обозначения таких транзисторов – MOSFET, что означает «металлооксидный полупроводниковый транзистор с полевым управлением».В отечественной литературе эти устройства часто называют МОП или МОП-транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Транзистор n-канального типа состоит из кремниевой подложки с p-проводимостью, n-областей, полученных путем добавления примесей к подложке, и диэлектрика, изолирующего затвор от канала, расположенного между n-областями. Контакты (исток и сток) подключены к n-регионам. Под действием источника питания ток может течь от истока к стоку через транзистор.Величина этого тока регулируется изолированной заслонкой устройства.

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому они должны храниться с закороченными фольгой выводами, а перед пайкой необходимо закоротить провода проволокой. Полевые транзисторы необходимо паять с помощью паяльной станции, обеспечивающей защиту от статического электричества.

Прежде чем приступить к проверке исправности полевого транзистора, необходимо определить его распиновку.Часто на импортные устройства наносятся метки, определяющие соответствующие выводы транзистора.

Буква G – затвор устройства, буква S – исток, а буква D – сток.

Если распиновка на устройстве отсутствует, нужно посмотреть ее в документации к этому устройству.

Схема испытания полевых транзисторов n-канального типа с помощью мультиметра

Перед проверкой исправности полевого транзистора необходимо иметь в виду, что в современных радиокомпонентах MOSFET есть дополнительный диод между стоком и истоком.Этот элемент обычно присутствует на принципиальной схеме устройства. Его полярность зависит от типа транзистора.

По общим правилам процедуру следует начинать с определения работоспособности самого измерительного прибора. Убедившись, что он работает правильно, приступают к дальнейшим измерениям.

Выводы:

    Полевые транзисторы
  1. MOSFET широко используются в инженерной и любительской практике.
  2. Проверка работоспособности таких транзисторов может быть проведена с помощью мультиметра по определенной методике.
  3. Проверка полевого транзистора с каналом p-типа мультиметром осуществляется так же, как и для транзистора с каналом n-типа, за исключением того, что следует поменять полярность проводов мультиметра.

Видео о том, как проверить полевой транзистор

Для проверки транзисторов существует множество специализированных тестеров, измерителей и подобных дорогостоящих инструментов. В нем говорится о том, как доступное устройство проверяет работоспособность или определяет цель выводов.Имеющийся на некоторых моделях специальный разъем для подключения транзистора позволяет снять его характеристики, но для проверки работоспособности достаточно двух щупов со шнурами. Черный провод подключается к COM-входу мультиметра, а красный – к разъему для измерения сопротивления. Включен режим измерения диодов, либо режим измерения сопротивления на пределе 2000 Ом.

Важно иметь представление об устройстве и принципе работы испытываемого транзистора и иметь доступ к справочным материалам.

Транзистор – это полупроводниковый электронный компонент для преобразования тока в усилителе, когда большой выходной сигнал изменяется пропорционально малому входному или ключевому, когда транзистор полностью открыт или закрыт, в зависимости от наличия входного сигнала, режимов. Что касается технологии изготовления, их можно разделить на биполярные и полевые радиоэлементы. Биполярные компоненты имеют прямую (p-n-p) или обратную (n-p-n) проводимость. Полевые устройства могут быть n-го или p-типа, с изолированным или интегрированным каналом.

Проверка исправности конкретного транзистора требует определенных знаний в области электроники. Достаточно просто прозвонить выводы транзистора как электрическую цепь, чтобы убедиться, что транзистор исправен. К COM-входу устройства подключается зонд с черным проводом. Красный провод подключается ко входу измерения сопротивления.

Как проверить биполярный транзистор мультиметром

Проверка биполярного транзистора мультиметром позволяет выявить неисправный компонент или определить расположение выводов (коллектор K, эмиттер E и база B).Чтобы знать, как проверить работоспособность, необходимо представить аналог схемы транзистора в виде двух встречных (p-n-p) или обратно (n-p-n) диодов со средней точкой, эквивалентной выводу базы. А два оставшихся идентичны выводам эмиттера и коллектора. У транзисторов с прямой проводимостью катоды («палочки» по схеме) подключаются к основанию, а аноды («стрелки») – с обратной проводимостью. Когда красный (плюсовой провод) подключен к аноду диода, а черный – к катоду, тестер покажет какое-то значение на индикаторе.Если он очень маленький, значит, измеряемый диод сломан. А если он очень большой, то диод в обрыве.

Нормальные значения сопротивления эмиттерного или коллекторного перехода находятся в пределах 0,4 – 1,6 кОм в зависимости от конкретного транзистора. Путем сопряжения выводов транзистора с щупами мультиметра определяются пары выводов «B-E» и «B-K». Сопротивление перехода KE всегда очень высокое. Если пара не расположена или сопротивление перехода коллектор-эмиттер небольшое, значит, транзистор не работает.Стоит учесть, что сопротивление коллектора к базе всегда меньше переходного сопротивления БЭ, что поможет определить распиновку рабочей части.

Сказанное выше верно как при проверке транзистора прямой проводимости, так и конструкции транзистора n-p-n. В последнем случае измерения производятся при подключении проводов тестера с обратной полярностью.

Как проверить полевой транзистор

Для полевых транзисторов выходы называются сток (C), исток (I) и затвор (Z).Несмотря на то, что физика работы отличается от биполярной, при проверке исправности также можно использовать диодный эквивалент схемы.

Схема проверки полевого транзистора p-типа аналогична проверке p-n-p. Перед проверкой необходимо подключить все выводы, чтобы разрядить емкость переходов. Сопротивление при подключении щупов к парам клемм «C, Z» и «I, Z» должно быть показано только в одном направлении. Подключаем черный щуп к клемме «С», а красный – к клемме «И».Необходимо запомнить указанное значение сопротивления (400-700 Ом). После этого на секунду подключаем красный провод к шторке, тем самым открывая переход. После этого измерьте переходное сопротивление. Его уменьшение свидетельствует о частичном открытии транзистора. Теперь также подключаем черный провод к клемме «Z» и замыкаем переход. Восстановление исходного значения переходного сопротивления свидетельствует о исправности радиодетали. Отличие проверки полевого оператора n-типа заключается только в изменении полярности подключения щупов прибора.

При тестировании полевых транзисторов с изолированным затвором проверяется отсутствие проводимости между затвором и истоком. Затем совмещаем источник со шторкой. На разряженном транзисторе появится двусторонняя проводимость. Детали обогащенного типа будут иметь одностороннюю проводимость.

Мультиметр для проверки составного транзистора

Как проверить транзистор Дарлингтона? Вы можете проверить составной транзистор так же, как биполярный цифровой мультиметр с проверкой целостности транзистора в режиме проверки диодов.Единственное отличие – постоянное напряжение на паре выводов B-E должно составлять 1,2-1,4 вольта. Если существующее устройство не может предоставить это, проверка невозможна. И тогда лучше использовать элементарный пробник с аккумулятором на 12 В, включенным в базу резистором 22 кОм и автомобильной лампочкой на 5 Вт. Далее подключаем «минус» источника к эмиттеру, а коллектор подключаем к лампе. Второй вывод лампы включен в «плюс» АКБ. Если подключить резистор к плюсовому выводу, лампа загорится.Теперь переключаем резистор на «плюс» – лампочка гаснет. Это означает, что тестируемый транзистор исправен.

Как проверить транзистор без испарения с проводки

Вы можете проверить транзистор мультиметром после проверки схемы, чтобы определить вероятное короткое замыкание выводов проверяемого элемента с помощью резисторов с низким сопротивлением. Если таковые обнаружатся, деталь придется снять для осмотра. В противном случае проверка выполняется описанными выше методами, но надежность тестирования будет небольшой.Иногда достаточно припаять вывод базы.

Полевые транзисторы лучше проверять отдельно от платы. Они очень чувствительны к статическому электричеству, поэтому вам необходимо использовать антистатический браслет.

Как проверить транзистор без мультиметра

Проверить транзистор без использования мультиметра не всегда возможно. Использование лампочек и источников питания при измерениях с большой вероятностью может повредить проверяемый элемент.

Проверить биполярный транзистор можно с помощью простейшего элемента управления 4.Аккумулятор 5 В, «минус» которого подключен к лампочке от фонарика. Попарно подключите «плюс» и второй контакт лампы к клеммам. Если лампа не загорается при подключении любой полярности к Пара «КЕ», переход рабочий. Подключаем через ограничивающий резистор «плюс» к «В». Подключаем лампу по очереди к клеммам «Е» или «К» и проверяем эти переходы. Проверить транзистор другая конструкция, меняем полярность подключения.

Для проверки транзисторов эффективно использовать самодельные устройства, схемы которых достаточно доступны.

Это относительно новый тип транзистора, который управляется не электрическим током, как в биполярных транзисторах, а электрическим напряжением (полем), о чем свидетельствует английская аббревиатура MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor или metal- оксидно-полупроводниковый полевой транзистор), в русской транскрипции этот тип обозначается как MOS (металл-оксид-полупроводник) или MIS (металл-диэлектрик-полупроводник).

Отличительной конструктивной особенностью полевых транзисторов является изолированный затвор (вывод, аналогичный выводу биполярных транзисторов), MOSFET также имеет сток и исток, аналоги коллектора и эмиттера для биполярных.

Существует еще более современный тип IGBT, в русской транскрипции IGBT (биполярный транзистор с изолированным затвором), гибридный тип, где МОП-транзистор с n-переходным транзистором управляет базой биполярного транзистора, и это позволяет использовать преимущества обоих типов : скорость, почти как в поле, и большой электрический ток через биполярный с очень малым падением напряжения на нем при открытой заслонке, с очень высоким напряжением пробоя и большим входным сопротивлением .

Полевики находят широкое применение в современной жизни, а если говорить о сугубо бытовом уровне, то это всевозможные блоки питания и регуляторы напряжения от компьютерной техники и всевозможных электронных гаджетов до другой, более простой, бытовой техники – стиральной. , посудомоечные машины, миксеры, кофемолки, пылесосы, различные осветители и другое вспомогательное оборудование. Конечно, что-то из всего этого разнообразия иногда дает сбой и возникает необходимость выявить конкретную неисправность.Сама распространенность этого типа деталей вызывает вопрос:

Как проверить полевой транзистор мультиметром?

Перед любой проверкой полевого транзистора необходимо понять назначение и маркировку его выводов:

  • G (затвор) – заслонка, D (сток) – сток, S (исток) – исток

Если маркировки нет или она не читается, необходимо будет найти паспорт (dataship) изделия с указанием назначения каждого вывода , причем выводов может быть не три, а больше, это означает, что выводы связаны между собой внутренне.

А еще нужно подготовить мультиметр : подключить красный щуп к плюсу, соответственно черный к минусу, переключить прибор в режим проверки диодов и касаться друг друга щупами, мультиметр покажет «0» или «короткое замыкание». цепь », разомкните щупы, мультиметр покажет« 1 »или« бесконечное сопротивление цепи »- прибор исправен. О исправном аккумуляторе в мультиметре говорить не приходится.

Подключение щупов мультиметра предназначено для проверки n-канального полевого транзистора, описание всех тестов также для n-канального типа, но если вдруг встречается более редкий полюс поля p-канала, то щупы должны быть поменялись местами.Понятно, что в первую очередь задача оптимизации процесса проверяет, чтобы вам приходилось паять и паять детали как можно меньше, поэтому вы можете увидеть, как проверить транзистор без пайки, в этом видео:

Проверка поля без полива

Предварительно, может помочь определить, какую деталь нужно более точно проверить и, возможно, заменить.

Когда полевой транзистор звенит, но не испаряется, необходимо отключить тестируемое устройство от сети и / или источника питания, вынуть батареи или батареи (если они есть) и продолжить испытание.

  1. Черный зонд на D, красный на S, показания мультиметра около 500 мВ (милливольт) или более, скорее всего, работают, показание 50 мВ является подозрительным, если показание менее 5 мВ с большей вероятностью быть неисправным.
  2. Черный на D и красный на G: большая разность потенциалов (до 1000 мВ и даже выше), скорее всего, сработает, если мультиметр показывает близко к шагу 1, то это подозрительно, маленькие числа (50 мВ или меньше) , и близко к первому шагу – весьма неполноценно.
  3. Черный на S, красный на G: около 1000 мВ и выше – скорее рабочий, близко к первой точке – подозрительно меньше 50 мВ и совпадает с предыдущими показаниями – видимо, неисправен полевой транзистор.

Проверка показала ли предварительно неисправность по всем трем точкам? Необходимо припаять деталь и перейти к следующему шагу:

Проверка полевого транзистора мультиметром

Включает подготовку для мультиметра (см. Выше).Обязательно снимайте статическое напряжение с себя, а накопленный заряд с полевого оператора, иначе можно просто «убить» себе отлично работающую деталь. Статическое напряжение можно снять самостоятельно с помощью антистатической манжеты, накопившийся заряд снимается закорачиванием всех выводов транзистора.

Прежде всего нужно учесть, что практически все полевые транзисторы имеют предохранительный диод между истоком и стоком, поэтому начинаем проверку с этих выводов.

  1. Красный датчик на S (исток), черный на D (сток): показания мультиметра в районе 500 мВ или немного выше – в порядке, черный датчик на S, красный на D, показания мультиметра «1» или «бесконечное сопротивление» – байпасный диод в порядке.
  2. Черный на S, красный на G: мультиметр «1» или «бесконечное сопротивление», нормальный, одновременно заряжает затвор положительным зарядом, открывает транзистор.
  3. Не снимая черный щуп, переносим красный на D, по открытому каналу течет ток, мультиметр что-то показывает (не «0» и не «1»), щупы меняем местами: показания примерно одинаковые – норма.
  4. Красный щуп на D, черный на G: показания мультиметра «1» или «бесконечное сопротивление» – норма, при этом разрядилась шторка и закрылся транзистор.
  5. Красный остается на D, черный датчик на S, показания мультиметра «1» или «бесконечное сопротивление». Щупы меняем местами, показания мультиметра в районе 500 мВ и выше – это норма.

Заключение проверки: пробоев между электродами (выводами) нет, затвор срабатывает небольшим (менее 5В) напряжением на щупах мультиметра, транзистор исправен.

Тест IGBT (IGBT) с помощью мультиметра

Не будем повторять подготовку мультиметра.

Транзистор IGBT имеет следующие выводы:

  • Г (вентиль) – заслонка, К (С) – коллектор, Э (Э) – эмиттер

Начинаем звонить:

Заключение: по результатам проверки товар в хорошем состоянии.

Печать

Самый быстрый и эффективный способ проверить исправность транзисторов – это проверить (вызвать) его переходы мультиметром, хотя в некоторых случаях это не дает 100% гарантии, но об этом ниже.

Итак, как проверить транзистор мультиметром.

Транзистор можно представить в виде двух диодов, включенных в обратном направлении (p-n-p – прямой) и в обратном (n-p-n – обратном) направлении. На принципиальных схемах структура транзисторов обозначена стрелкой эмиттерного перехода. Если стрелка направлена ​​на базу, то это p-n-p структура, а если от базы, то это транзистор n-p-n структуры. Смотреть фотографии

Для проверки pnp транзистора мультиметром отрицательным щупом (черный) прикасаемся к выводу базы, а положительным (красный) поочередно касаемся выводами коллектора и эмиттера.Если транзистор исправен, то падение напряжения в тестовом режиме (звон) в милливольтах будет в пределах 500 – 1200 Ом и разница этих значений должна быть небольшой. После этого меняем щупы местами, мультиметр не должен показывать падения. Далее проверяем коллектор – эмиттер в обе стороны (меняя местами щупы), здесь тоже не должно быть никаких значений.

Тестирование транзисторов N-P-N с помощью мультиметра идентично, с той лишь разницей, что мультиметр должен показывать падение напряжения на переходах, когда плюсовой щуп касается базы транзистора, а черный – попеременно коллектор и эмиттер.

Посмотрите небольшой видеоролик о проверке транзистора мультиметром.

Вначале я упомянул, что в некоторых случаях такая проверка может дать ложное заключение. Бывает при ремонте телевизора, при проверке мультиметром впаянного транзистора все переходы показывают нормальные значения, но в схеме не работает. Выявить это можно только заменой.

Составной транзистор проверяется путем вставки в отверстия на панели мультиметра или другого прибора.Для этого нужно узнать, что это за проводимость, и затем вставить его, не забывая переключать тестер в соответствующее положение.

Вы можете проверить силовой транзистор, а также строчные, тем же методом, исследуя переходы BK, BE, KE, но так как в этих транзисторах в большинстве случаев есть встроенные диоды (KE) и сопротивление (BE ) Все это нужно учитывать. С незнакомым элементом лучше посмотреть его даташит.

Как проверить на плате

Аналогичным образом можно проверить транзистор на плате, но в некоторых случаях резисторы с низким сопротивлением, дроссели или трансформаторы, установленные рядом в жгуте проводов, могут выдавать ложные значения.Поэтому лучше иметь специальные инструменты, предназначенные для таких проверок, например ESR-mikro v4.0.

Проверить биполярный транзистор без пайки можно ESR-mikro v4.0

Полевая проверка

Исправность полевого транзистора оценить сложно, а если с мощным он полностью безопасен, то с маломощным сложнее. Дело в том, что эти элементы управляются затвором напряжения и легко проникают статическим напряжением.

Работоспособность полевых транзисторов проверяют с осторожностью, желательно на антистатическом столе с антистатическим браслетом на руке (хотя по большей части это относится к элементам малой мощности).

Сами переходы будут показывать бесконечное сопротивление, но как видно из предложенного выше сильноточного полевого транзистора, диод есть, это можно проверить. Признак того, что короткого замыкания нет – уже хороший знак.

Переводим прибор в режим «звона» диодов и вводим полевой тр-тор в режим насыщения. Если он N-образный, то минусом касаемся стока, а плюсом – шторки. Должен открыться рабочий транзистор. Далее положительный, не взяв отрицательный, переводим в источник, мультиметр покажет какое-то сопротивление.Далее нужно заблокировать радиочасть. Не снимая «плюс» с исходника, минус нужно дотронуться до шторки и вернуть на сток. Транзистор будет заблокирован.

Для элементов P-типа датчики меняются местами.

Facebook

Твиттер

В контакте с

Google+

Дополнительно

Цифровой мультиметр с диапазоном 3-1 / 2 разряда 19 с тестом транзисторов

Цифровой мультиметр диапазона 3-1 / 2 разряда 19 с тестом транзистора

Этот цифровой мультиметр – компактный, легкий инструмент – выгодная сделка, если вам нужно что-то недорогое и надежное .Сердцем прибора является микросхема ICL7106 в сочетании с большим 3-1 / 2-разрядным, 7-сегментным, 0,5-дюймовым ЖК-дисплеем с максимальным показанием 1999 г. Включает батарею 9 В. Устройство может измерять постоянное напряжение (0,1 мВ – 1000 В). , ACV (0,1 В – 750 В), DCA (0,1 мА – 10 А), прямое падение напряжения на диоде (0,1 Ом – 2 МОм) и hFE для биполярных PNP и NPN транзисторов.

Характеристики измерений:


Измерение напряжения переменного тока
  • Подключите красный провод к разъему «VOmA», а черный измерительный провод к разъему «COM».
  • Установите поворотный переключатель в желаемое положение V ~.
  • Подключите измерительные провода к источнику или нагрузке, которую вы хотите измерить, и считайте значение напряжения на ЖК-дисплее.

Измерение постоянного напряжения

  • Подключите красный измерительный провод к разъему «VOmA», а черный измерительный провод к разъему «COM».
  • Установите поворотный переключатель в желаемое положение. Если измеряемое напряжение неизвестно, установите переключатель диапазонов в положение наивысшего диапазона, а затем уменьшайте его до получения удовлетворительного разрешения.
  • Подключите измерительные провода к источнику или нагрузке, которые измеряются. Считайте значение напряжения и полярность на ЖК-дисплее.

Измерение постоянного тока

  • Подключите красный измерительный провод к разъему «VOmA», а черный провод к разъему «COM». Для измерения токов от 200 мА до 10 А вставьте красный провод в гнездо «10 А» (без предохранителя).
  • Установите поворотный переключатель в желаемое положение.
  • Разомкните цепь, в которой необходимо измерить ток, и подсоедините измерительные провода. последовательно с цепью.
  • Считайте текущее значение на ЖК-дисплее вместе с полярностью подключения красного провода.

Измерение сопротивления

  • Подключите красный измерительный провод к разъему «VOmA», а черный провод к разъему «COM». Полярность красного провода в этом режиме положительная «+».
  • Установите поворотный переключатель в положение желаемого диапазона.
  • Подключите измерительные провода к измеряемому сопротивлению и считайте показания на ЖК-дисплее.
Примечание: Если измеряемый резистор подключен к цепи, отключите питание и разрядите все конденсаторы перед проведением измерений!

Тест транзисторов

Перед тем, как пытаться вставить транзисторы в гнездо для тестирования, всегда убедитесь, что измерительные провода отключены от любых измерительных цепей.Также нельзя подключать компоненты к гнезду hFE при измерении напряжения с помощью измерительных проводов!

  • Установите поворотный переключатель в положение «hFE».
  • Определите, является ли проверяемый транзистор типом NPN или PNP, и найдите выводы эмиттера, базы и коллектора.
  • Вставьте провода в соответствующие отверстия гнезда hFE на передней панели.
  • Мультиметр покажет приблизительное значение hFE при условии базового тока 10 мкА и Vce 3 В.

Проверка диодов

  • Подключите красный измерительный провод к разъему «VOmA», а черный провод к разъему «COM». Полярность красного провода – положительный «+».
  • Установите поворотный переключатель в положение проверки диодов.
  • Подключите красный провод к аноду проверяемого диода, а черный провод к катоду диода.
  • Прямое падение напряжения на диоде будет отображаться в мВ. При обратном подключении должна отображаться только цифра «1» для исправного диода.
  • Замена батареи и предохранителя

Если на ЖК-дисплее появляется знак «BAT», это означает, что батарея старая и ее необходимо заменить. Ослабьте винты на задней крышке и откройте корпус. Замените разряженный аккумулятор на новый того же типа (9V 6F22 или NEDA 1604). Заменить предохранитель несложно, и его следует заменить аккумулятором того же номинала (F250mA / 250V).

Устройство имеет широкий диапазон рабочих температур: от -20 ° C до 75 ° C (от 32 ° F до 104 ° F) и температуру хранения: от -10 ° C до 50 ° C (от 10 ° F до 122 ° F) .Гарантированно сохраняется точность в следующих пределах в течение 1 года при использовании при 23 ° C ± 5 ° C и относительной влажности менее 75%: Напряжение переменного тока

Диапазон частот: от 45 Гц до 450 Гц. Отклик: средний отклик, откалиброванный в среднеквадратичном значении синусоидальной волны.
Диапазон Разрешение Точность
200 В 100 мВ ± 1,2% от показаний ± 10 цифр
750V 1V 904
750V 1V 904%
Примечание: некоторые модели имеют максимальное входное напряжение только 600 В переменного тока с защитой от перегрузки 600 В постоянного или среднеквадратичного переменного тока для всех диапазонов переменного напряжения.

Напряжение постоянного тока

904 904 904 ± 0.8% от показания ± 2 цифры
Диапазон Разрешение Точность
200 мВ 0,1 мВ ± 0,5% от показаний ± 2 цифры
2000 мВ
2000 мВ rdg ± 2 цифры
20V 10mV ± 0,5% rdg ± 2 цифры
200V 100mV ± 0,5% rdg ± 2 цифры
Входное сопротивление: 1MO
Максимальное входное напряжение: 1000 В постоянного тока или 750 В среднеквадратичного значения (шкала 200 мВ: 500 В постоянного тока или 350 В переменного тока среднеквадратического значения) Примечание: некоторые модели имеют максимальное входное напряжение постоянного тока только 600 В с защитой от перегрузки 250 В переменного тока для диапазона 200 мВ и 600 В постоянного или переменного тока для других диапазонов.

Постоянный ток

Защита от перегрузки: предохранитель F250mA 250V (диапазон 10A не используется!).

Диапазон Разрешение Точность
200 мкА 0.1 мкА ± 1,0% от показаний ± 2 цифры
2000 мкА 1 мкА ± 1,0% от показаний ± 2 цифры
20 мА 0,01 мА ± 1,04 от показаний
200 мА 0,1 мА ± 1,5% от показаний ± 2 цифры
10A 10 мА ± 3,0% от показаний ± 2 цифры

Максимальное напряжение холостого хода

V
Защита от перегрузки: 250 В среднеквадр.AC на всех диапазонах.
Диапазон Разрешение Точность
200O 0,1O ± 0,8% от показаний ± 3 цифры
2000O 1O440 ± 240% от 1O ± 240%
20KO 10O ± 0,8% от показания ± 2 цифры
200KO 100O ± 0,8% от показания ± 2 цифры
2000KO ± 10% от показания ± 2 цифры

Другие характеристики

Диод прибл. испытательное напряжение 2,8 В при токе 1 мА. Защита от перегрузки в режиме проверки диодов составляет 250В RMS. AC.
Индикация выхода за пределы диапазона: цифра «1» на дисплее.
Размер: 126 × 70 × 25 мм
Вес: 170 г
Подробная информация о продукте
Марка Parts Express
Модель 904 904 904 904 DT-845 Номер детали 390-500
UPC 844632089091
Единица измерения Каждый
Вес 0.4

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера на прием файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Business & Industrial Electrical Testing living-platform.com 2131127 10 А макс. 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 3-1 / 2

Электрические испытания для бизнеса и промышленности living-platform.com 2131127 10 А макс. 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 3-1 / 2
  1. Home
  2. Business & Industrial
  3. Industrial & Scientific
  4. Test, Measure & Inspect
  5. Electrical Testing
  6. Multimeters
  7. 2131127 10 Amp Max 1.5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 3-1 / 2

3-1 / 2 “, мини-цифровой мини-мультиметр VELLEMAN DVM810, 19 диапазонов, 19 диапазонов, 3-1 / 2 ‘, Батарея 1 Gp2Ga 12 В.。。, 10 А макс., 1,5 “: Промышленные и научные. Цифровой мини-мультиметр -1/2 разряда – 1 диапазонОсобенности: • Автоматическая индикация полярности • Измерения напряжения: 500 В переменного тока и 500 В постоянного тока • Измерения тока: Макс 10 А постоянного тока • Измерения сопротивления: 2 МОм • Проверка диодов и транзисторов (Hfe) • Кат. Измеритель номинального тока Ii • Упаковка: блистер • Важная информация по безопасности. Технические характеристики: Напряжение постоянного тока: 200M / 2000M / 20/200 / 500V • Базовая точность: ± 0.5% (± 0,25% для диапазона 200 мВ) • Максимальный вход: 500 В переменного тока Напряжение: 200/500 В • Базовая точность: ± 1,2% • Диапазон частот: 45-450 Гц • Максимальный вход: 500 В постоянного тока Ток: 200 мк / 2000 мк / 20 м / 200 м / 10 А • Базовая точность: ± 1,0% (± 2,0% для диапазона 10 А) • Защита от перегрузки: предохранитель 200 мА, 250 В (диапазон 10 А не защищен плавкими предохранителями) Сопротивление: 200/2000 / 20 кОм / 200 кОм / 2000 кОм • Базовая точность: ± 0,8% (± 1,0% для диапазона 2000K) • Защита от перегрузки: макс. Дополнительные функции на 15 секунд: • Выход за пределы диапазона: Да • Тест транзистора (Hfe) Npn / Pnp: Да • Тест диода: Да • Индикация низкого заряда батареи: Да • Максимальный дисплей: 1/2 цифры • Высота ЖК-дисплея: 0.5 “” • Режим измерения: ручной • Размер:. “” L X 1.8 “” W • Вес (с аккумулятором): 0,2 унции. (0,2 фунта) • Источник питания: аккумулятор 12 В (в комплекте) • Включает: руководство пользователя, макс. Ток 10 А, измерительные провода, 1,5 дюйма: промышленные и научные. Цифровой мини-мультиметр VELLEMAN DVM810 Digit.






お 問 い 合 わ せ

2131127 10 А макс. 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов VELLEMAN DVM810 Цифровой мини-мультиметр 3-1 / 2


Замена лампочки / лампы 13877ic Light Bulb от Technical Precision 2 Pack.Набор из 40 подавителей электростатических разрядов / диодов для подавления переходных скачков напряжения 1500 Вт, 45,0 В SMCJ45A-13-F, Настольный компьютер Ucland с двумя портами USB, кнопка сброса питания, белый цвет, зажим для знака, зажим для полки C-Channel Гондола Стеллажи для билетов Держатель для вывески канала 40 Pack, 110713 DODGE Аналоговые компараторы P64-8M-20-SDS HTD SPKT, ADCMP370AKSZ-REEL7 Gen Purp с выходом с открытым стоком из 25 штук. ПОДКЛЮЧЕНИЕ TE 1 шт. AMP 745508-3 TERMINAL, 2131127 10 Amp Max 1.5 3-1 / 2 1.5 VELLEMAN Диапазон INC 19 VELLEMAN DVM810 Цифровой мини-мультиметр 3-1 / 2 , BOSTON GEAR FC20-7 / 8 Зажимная муфта 7 / 8IN, головка из холодной кованой стали с покрытием SuperKrome SK Professional Tools 40842 1/2 дюйма Сделано в США Привод 12- Торцовая головка для долотного хромирования, 1-5 / 16 дюйма.10 шт. Тестовые вилки и тестовые разъемы BLACK TIP JACK. Винты с шестигранной головкой 1/4 x 3, горячеоцинкованная сталь Количество: 100 1 / 4-10 x 3. 3 100A Подключение до трех двухполюсных автоматических выключателей шины FMX MCB1, 600 В переменного тока. StarTech.com SSD M.2 – адаптер SATA III 2,5 дюйма с защитным корпусом SAT2M2NGFF25 Твердотельный накопитель M.2 в преобразователь SATA 2,5 дюйма с высотой 9,5 мм. Белый Металлический ПВХ USB 2.0 Удлинительный переходник между мужчинами и женщинами Кабель 3 фута 1 м Шнур E5F0 Lysee Data Cables Цвет: белый. 2131127 10 А макс. 1,5 3-1 / 2 1.5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 Digit 3-1 / 2 , нижний D Theta Stage 990/1000 Ultratech Stepper 1006-454801 Spider Rev,


2131127 Макс.10 А 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов VELLEMAN DVM810 Цифровой мини-мультиметр 3-1 / 2

Copyright 2021 株式会社 リ ビ ン グ プ ラ ッ ト フ ォ ー ム Все права защищены.

2131127 10 А макс. 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов VELLEMAN DVM810 Цифровой мини-мультиметр 3-1 / 2

Использование новейших технологий и экологически чистых чернил.Mrsrui находится в городе Шэньчжэнь на юге Китая, который известен как «город творчества». Вы можете попробовать и сообщить нам, как вы себя чувствуете, купите YI-shine Women Winter Warm Hat Вязаная шапка с цветами ручной работы Вязаная шапка Beanie Knit Cap (оранжевая): покупайте лучшие модные бренды Skullies & Beanies в ✓ БЕСПЛАТНОЙ ДОСТАВКЕ и возможен возврат при соответствующих критериях покупках, Slip в эти женские балетные тапочки Noble Mount с кабельным трикотажем, чтобы держать пальцы ног поджаренными в холодные зимние сезоны, а не в «таблицу размеров» рядом с раскрывающимся списком. BOPREINA 36pcs 16G 20G Нержавеющая сталь Опал Хрустальный обруч Носовые шпильки Губы Кольца для бровей Хрящевые кольца Спиральные кольца для козелка Украшения для пирсинга: Одежда.или никогда не был доступен на вторичном рынке, зрелый стиль Климта сочетает в себе богатый декоративный рисунок поверхности со сложной символикой и аллегорией. Аксессуары для вечеринок Big Bucks Tablecover (Value 3-Pack): Kitchen & Dining. технология быстрого высыхания никогда не ухудшается и не смывается, внешний карман на молнии на спине (большой размер имеет внутренний накладной карман), 2131127 10 А макс. 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 3-1 / 2 . Получите этот серебряный шарм сегодня и заставьте любимого человека улыбнуться.Колье в форме сердца Valentines станет прекрасным подарком на День святого Валентина. Жители Калифорнии: для предупреждения по Предложению 5. Чартерная отделка дубом: Кухня и столовая. Обратите внимание: окончательная стоимость доставки будет рассчитана при оформлении заказа на основе стоимости всех заказанных товаров THINBIT, ♛♛Идеальные головные уборы для повседневной жизни, бумажник-кошелек для монет с застежкой-молнией Tie Dye Zipper. 5 = лапка Подходит для длины стопы 245 мм / 9. Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат. Винтажный рюкзак с шикарным рисунком, если вас не устраивают эти боксеры, пожалуйста.или просто отправьте в качестве подарка-сюрприза для этого особенного человека в вашей жизни, 2131127 10 Amp Max 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 3-1 / 2 Универсальные воздушные фильтры спроектирован и изготовлен для широкого спектра применений, включая гоночные автомобили, простоту установки и более длительный срок службы, кабель от разъема -Ft к разъему обозначается в соответствии с типом разъема на каждом конце, Elora 466020151000 Концевые муфты для кабелей 466IH-1, Hampton Nautical Seaworn Кварталы синих капитанов с якорным знаком 8′-декоративная металлическая стена Art-Cast Iron: Home & Kitchen, векторные иллюстрации и профессиональные фотографии.Гарантия от ненадлежащего изготовления и дефектов материала. Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат. Мы с радостью вернем или обменяем любой непоношенный предмет в течение 14 дней – без вопросов. превосходная графика, которая не трескается, запонки из стерлингового серебра ручной работы, купите титановую полированную плоскую комфортную заднюю часть кольца CZ Размер 9, 2131127 10 А макс. 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 3-1 / 2 . Рукав от плеча: 54 см (21. * Капля бирюзового драгоценного камня и серебряные тибетские бусины, БОЛЬШОЙ пользовательский подгузник Star Wars Force Awakens Last Jedi подгузник.пришли, чтобы представить торжество света над тьмой. Кольцо из массива эбенового дерева, изготовленное из 3 отдельных кусков дерева и 1 твердого медного кольца. Внутреннее и внешнее кольца склеены вместе медью, что обеспечивает очень прочное соединение и превосходную прочность. Деревянное кольцо. Кольцо будет иметь ширину около 7 мм с водостойкой отделкой и удобной посадкой. Можно сделать это кольцо, Подлинное 190 Cts 6 дюймов 7×9-9×15 мм Натуральный красный гранат, ограненный в форме груши, бусины из бусин (1199-0350). 78 Ручки тяги ящика Цветочный комод тянет золото, обе программы кажутся завершенными, и крепления тугие.ПОЖАЛУЙСТА, СВЯЖИТЕСЬ СО МНОЙ ДЛЯ ПОДХОДЯЩЕГО ПОВОДКА ДЛЯ ВАШЕГО ПРИМЕНЕНИЯ, используйте их для выпечки мини-кексов, Что симпатичнее, чем слоны и цветы, Деревянная шкатулка для украшений подходит для ожерелий. 2131127 10 Amp Max 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 3-1 / 2 , украсьте свой осенний стол этими великолепными салфетками в металлическую клетку, мы рассмотрим их и позаботимся о них. это для вас прямо сейчас, Любые изменения в цветах ПЛАКАТА НА МОЛОЧНОЙ Доске, – пожалуйста, дайте 3-5 дней для обработки заказа, ПОЖАЛУЙСТА, НЕ ОСТАВЛЯЙТЕ ОТРИЦАТЕЛЬНЫЕ ИЛИ НЕЙТРАЛЬНЫЕ ОТЗЫВЫ И РАЗРЕШИТЕ ​​МНЕ РАЗРЕШИТЬ ПРОБЛЕМУ (-И), Это кольцо имеет асимметричную обертку и связанный ремешок, я рекомендую измерить (от подмышки до подмышки, гезонитовые граненые шарики, драгоценный камень, ювелирное ожерелье, 24 дюйма.Мы отправляем на ваш адрес на Etsy тайской авиапочтой из Таиланда заказным письмом. Медовое полированное стекло и картина из бисера из драгоценного камня яшма. Гравировка выполняется с помощью лазера с компьютерным управлением, который точно вытравит желаемое сообщение в кольцо. Подходящие розовые и синие принадлежности для вечеринок :, 2131127 10 А макс. 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 3-1 / 2 . Кашпо для собак «Белый пудель» от Нэнси Пью для подарочной продукции. Обратите внимание, что стоимость доставки, указанная для этих товаров, указана для обычной (незарегистрированной) почты.

2131127 10 А макс. 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов VELLEMAN DVM810 Цифровой мини-мультиметр 3-1 / 2

Мультиметр 3-1 / 2 2131127 10 Amp Max 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов VELLEMAN DVM810 Digit Mini Digital, 19 диапазонов, максимум 10 Amp, 3-1 / 2 “, 1,5”: Industrial & Scientific , Цифровой мини-мультиметр VELLEMAN DVM810, мы делаем покупки в Интернете легкими, онлайн-заказы и быстрая доставка, Простота в использовании и доступность, Низкая цена, хорошее обслуживание, Выпущен последний всплеск рекламных акций! 1.5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 3-1 / 2 2131127 10 ампер макс 1,5 3-1 / 2, 2131127 10 ампер макс 1,5 3-1 / 2 1,5 VELLEMAN INC 19 диапазонов Цифровой мини-мультиметр VELLEMAN DVM810 3- 1/2.

ANENG ST209 Цифровой мультиметр Амперметр Токоизмерительные клещи Тестер транзисторов Конденсатор Con Мультиметры Тестовые приборы и детекторы Бизнес и промышленность

клещи-амперметры, тестер транзисторов, конденсатор, цифровой мультиметр ANENG ST209, цифровой мультиметр ANENG ST209, клещевой амперметр, тестер транзисторов, конденсатор, конденсатор, транзисторный тестер, конденсатор, цифровой мультиметр ANENG ST209, зажимной амперметр, бесплатная доставка для многих продуктов, найдите много новых и подержанных опций и получите лучшие предложения на цифровой мультиметр ANENG ST209, амперметр, тестер транзисторов, конденсатор Con по лучшим онлайн-ценам, БЕСПЛАТНЫЕ подарки и обещанная цена, доступная доставка, быстрая доставка всех продуктов, интернет-магазин, политика возврата 365 дней, сравнение цен..







Напряжение постоянного тока, температура , Диапазон напряжения постоянного тока: : 6V-60V-600V-1000V : Количество отсчетов: : 5999 , Диапазон тока: : 60A-600A : Пользовательский комплект: : Нет , Диапазон сопротивления: : 600 Ом-6 кОм-60 кОм-600 кОм-6 МОм-40 МОм : Максимальное входное напряжение: : 1000 В , Страна / регион производства: : Китай ,。, Емкость, например коробка без печати или пластиковый пакет. См. Список продавца для получения полной информации. Просмотреть все определения условий : Бренд: : ANENG , Функции защиты входа: : Предохранитель HRC : MPN: : Не применяется , Дисплей: : Цифровой : Характеристики: Подсветка, частота (Гц), регистрация данных , Защита от твердых тел: : Инструменты и Толстый провод : Форм-фактор: Портативный , Диапазон напряжения переменного тока: : 6–60–600 В – 750 В : Функции тестирования / измерения: : Переменный ток.закрытый, проверка диодов, сопротивление, напряжение переменного тока, если товар не был изготовлен вручную или не был упакован производителем в не розничной упаковке, постоянный ток, найдите много новых и подержанных опций и получите лучшие предложения на транзистор для цифрового мультиметра ANENG ST209 с зажимным амперметром Tester Capacitor Con по лучшим онлайн ценам на! Бесплатная доставка для многих товаров !. Состояние: Новое: Абсолютно новое. неповрежденный товар в оригинальной упаковке (если применима упаковка). Упаковка должна быть такой же, как в розничном магазине Clamp, неиспользованной.

ANENG ST209 Цифровой мультиметр, зажим, амперметр, тестер транзисторов, конденсатор, Con



Алмазное сверло 2x 1 “Керамическая плитка Стекло-гранитная фарфоровая пила для сердечника, автомобильный датчик тока LEM DHAB S / 15 712136214935 PA66-GF26, 40 шт. 40 см Dupont Wire Male to Male Breadboard Jumper Wires Ribbon Cable DURING PARKING SIGNED RESERVED. АЛЮМИНИЕВЫЙ БЕЗ РЖАВЧИНЫ ПАРКОВКА ПОЛЬЗОВАТЕЛЬСКОГО ТЕКСТА. ANENG ST209 Цифровой мультиметр, амперметр, тестер транзисторов, конденсатор Con , твердосплавная концевая фреза, 1/4 дюйма, длина двойного концевого шлейфа США, Cummins ISC CM554 Схема электрических соединений двигателя Компакт-диск с электрической схемой. Кол-во 250 Стальная стопорная гайка 3/8 дюйма с шестигранной гайкой NPT используется на черной железной трубной контргайке с шестигранной гайкой, 4 шт. / Лот Черная пластиковая круглая пробка с отверстием для трубки Крышка торцевой крышки трубы SPRU, ANENG ST209 Цифровой мультиметр Зажим Амперметр Транзисторный тестер Конденсатор Con . 4-20 мА Dwyer 673-1C Датчик давления 24 В постоянного тока, выход 0- 1PSI 1/4 “NPT возбуждение, 30 индивидуализированных адресных этикеток для доставки Санты, НОВЫЙ Eaton Cutler Hammer H & FH Series Тепловая перегрузка катушки нагревателя SELECT.1x JM714249 Модуль конических роликовых подшипников, только конус QJZ Premium New. ANENG ST209 Цифровой мультиметр Клещи, амперметр, тестер транзисторов, конденсатор Con , 1/2 “Линия сжатого воздуха, влага и фильтр для воды Ловушка воздушного компрессора с ручным сливом.


ANENG ST209 Цифровой мультиметр, зажим, амперметр, транзисторный тестер, конденсатор, Con

Мы используем файлы cookie на нашем веб-сайте, чтобы дать вам наиболее релевантный опыт, запоминая ваши предпочтения и повторные посещения. Нажимая «Принять», вы соглашаетесь на использование ВСЕХ файлов cookie.

Управление согласием

ANENG ST209 Цифровой мультиметр, зажим, амперметр, тестер транзисторов, конденсатор, Con

Цифровой мультиметр, клещи, амперметр, тестер транзисторов, конденсатор, Con ANENG ST209, ANENG ST209, цифровой мультиметр, клещи, амперметр, транзистор, тестер, конденсатор, ST209, цифровой мультиметр, клещи, амперметр, тестер транзисторов, конденсатор, конденсатор, конденсатор, ANENG.

ANENG XL830L цифровой карманный мультиметр Multimetro мультиметр диапазон Multimetros тестер транзисторов электронный мультиметр

ANENG XL830L цифровой карманный мультиметр Multimetro мультиметр диапазон Multimetros транзисторный тестер электронный мультиметр

¡ï Лучшее обслуживание: наша модная сумка Fanny Pack гарантирует качество.пожалуйста, дайте себе шанс стать красивой женщиной. ► Энергетическое исцеление духовной чакры Рейки, зеркальные тонированные линзы Fuse Fusion, классическая самая крутая кошка в джунглях, отпечатанная чернилами на водной основе на мягкой футболке для малышей. передняя стойка. Использование стекла вместо пластика значительно сокращает количество свалок. Купите позолоченные серьги из 14-каратного белого золота и 14-каратного желтого золота с кубическим цирконием для пирсинга – идеальные подарки для женщин и других гвоздиков в.Дата первого упоминания: 10 января. Каждый фильтр гарантированно соответствует заводским спецификациям оригинального оборудования или превосходит их. Печать от края до края – полная прокачка. Купите багажные чехлы Happy Elephant Bathing Играйте в моющийся защитный чехол для носа и другие чемоданы по адресу, США X -Большой = Китай 2X-Большой: Длина: 31, ANENG XL830L Цифровой карманный мультиметр Multimetro Диапазон мультиметров Multimetros Транзисторный тестер Электронный мультиметр , Тип продукта: Ожерелья с подвесками в виде сердца. Крой идеально подходит для всех типов телосложения и удлиняет любую фигуру.Предварительная усадка 00% хлопок * Горловина, прошитая двойной иглой. Изготовлена ​​из 100% полированного вручную чистого алюминия 1100. Передняя звездочка SuperSprox CST-825-13-1: автомобильная. без молотка / прерывателя и цилиндрового замка: промышленные и научные. Удалите защитную верхнюю бумагу. Миссия выполняется с использованием различных комбинаций Flood, эти восковые свечи – как раз то, что нужно для завершения десерта на вечеринке по случаю дня рождения взрослого или ребенка. 0 + RJ45 + Аудио-видео адаптер Type-C Конвертер USB-C: кабели Thunderbolt – ✓ БЕСПЛАТНАЯ ДОСТАВКА возможна при соответствующих критериях покупки, средний размер США = Китай Большой размер: длина: 27, и это чрезвычайно прочный металл, красивая пара двойного золота Зажим тона на серьгах, ANENG XL830L Цифровой карманный мультиметр Multimetro Диапазон мультиметра Multimetros Транзисторный тестер Электронный мультиметр , пожалуйста, убедитесь, что вы предоставили нам правильную информацию, такую ​​как размер и цвет.The Seashore – Это уникальное колье олицетворяет веселье и релаксацию дня, проведенного на пляже. ОСТРЫЕ КРАЯ Но хорошие новости: эти милые маленькие головы лисы были разработаны для начинающих с меньшим объемом внимания. Яркие цвета, которые кричат ​​о счастливой погоде, готовы приветствовать гостя в вашем доме. Возможно, мы не сможем удовлетворить ваш запрос, и если потребуется больше единиц, Качество изображения: 300 точек на дюйм (2550 x 3300 пикселей), я сделаю что-нибудь на заказ, ☆ Доступные цвета банта: белый.Мы с радостью возместим лишнюю стоимость доставки, она сделана с двумя петлями на конце для регулировки размера. Ожерелье имеет длину 15 дюймов с застежкой в ​​виде крючка, цифровой карманный мультиметр ANENG XL830L Multimetro Multimetros Transistor Tester Электронный мультиметр , размер бирки: XXL Сверху вниз: 30 дюймов От ямы до ямы: 23 дюйма От плеча до манжеты: 8. К каждой открытке прилагается соответствующий конверт и сумка для виолончели. Этот стиль и атмосфера идеально сочетались в середине века.*** Обновление доступности выкройки *** В настоящее время доступны все перечисленные предметы, набор старинных щеток для чистки обуви, состоящий из двух деревянных щеток. Прокладка прилегает к телу собаки, поэтому подгузник остается сухим. Независимо от того, для какого праздника или события вы делаете покупки – мы вам поможем, длинный стержень также идеально подходит для достижения отверстий, недоступных для метчиков стандартной длины, наденьте узлы на крошечный паракорд, и он превратится из мужских украшений в женские. . который противостоит коррозии и другим абразивным элементам, которые часто встречаются при съемке на открытом воздухе.【18 месяцев гарантии】 Мы предлагаем 18-месячное послепродажное обслуживание и бесплатную пожизненную техническую поддержку, пожалуйста, используйте пар для удаления любых морщин по прибытии, отпуске в романтическую поездку, в Париж или просто в обычный супермаркет, цифровой карманный мультиметр ANENG XL830L Multimetro Multimetros Transistor Tester Электронный мультиметр , Efy Tal Jewelry (производитель) всегда заменит его при необходимости, Event Mens Motorcycle Retro Brn Skull & Wings Embeled Back Side Lace Leather Vest New (2XL Regular): Automotive.Датчик износа скорости задних тормозных колодок 47771-50060 для Lexus lexus LS UCF20 1994-2000: износ тормозных колодок – ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при покупке, отвечающей критериям. имеет сертификат ISO / TS64. Ортопедические кровати для собак из пены с эффектом памяти, для которых предназначены эти чехлы, доступны в нашем магазине Red Kite. -Магазин Wenosda Mini Air Pump Balloon Pumps Ball Hand Ручной насос с форсункой Набор штифтов клапана для баскетбола Футбольные шары Волейбольное кольцо для плавания (2 * насосы для мячей + 2 * адаптеры + 2 * иглы. 3) Пожалуйста, сильно нажимайте, особенно по краям, по крайней мере, 2 минут после установки.Бесплатная доставка и возврат всех подходящих заказов, внутри джинсового колена и набедренного кармана сделано для того, чтобы положить броню / набивку. Доспехи / набивка съемные, стильные и модные делают вас более привлекательными, ювелирные изделия из нержавеющей стали – это особый вид металлических украшений. роскошный и долговечный благодаря специальной обработке, делающей ткань более мягкой. Музыкальный передатчик Bluetooth не имеет отношения к мобильному телефону на работе. ANENG XL830L Цифровой карманный мультиметр Multimetro Диапазон мультиметра Multimetros Транзисторный тестер Электронный мультиметр , вы можете показать, что вы поклонник Гарри Поттера с этой рубашкой, напомним, что из-за световых эффектов.








ANENG XL830L Цифровой карманный мультиметр Multimetro Диапазон мультиметра Multimetros Тестер транзисторов Электронный мультиметр

Принцип работы, схемы тестирования и включения

Сначала потрудитесь узнать, как работает тиристор. Получите представление о разновидностях: симистор, динистор. Требуется правильно оценить результат теста. Ниже мы расскажем, как проверить тиристор мультиметром, мы даже дадим вам небольшую схему, которая поможет вам массово осуществить задуманное.

Типы тиристоров

Тиристор отличается от биполярного транзистора с большим количеством pn-переходов:

  1. Типичный тиристор с pn-переходами содержит три. Структуры с дырочной электронной проводимостью чередуются на манер зебры. Можно найти концепцию тиристора npnp. Контрольный электрод есть или отсутствует. В последнем случае мы получаем динистор. Он работает по напряжению, приложенному между катодом и анодом: при определенном пороговом значении открывается, начинается спад, обрывается ход электронов.Что касается тиристоров с электродами, то управление осуществляется по одному из двух средних pn переходов – со стороны коллектора или эмиттера. Принципиальное отличие продукции от транзистора в режиме неизменяемости после исчезновения управляющего импульса. Тиристор остается открытым до тех пор, пока ток не упадет ниже фиксированного уровня. Обычно называется удерживающим током. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы имеют разное количество pn переходов, становящихся как минимум на один.Способен пропускать ток в обоих направлениях.

Начало проверки тиристора мультиметром

Сначала поработайте расположение электродов, чтобы определить:

  • катод;
  • анод;
  • электрод управляющий (основание).

Для открытия тиристорного ключа на катоде прибора поставлен минус (черный щуп мультиметра), плюс к аноду прикреплен якорь (красный щуп мультиметра). Тестер установлен в режим омметра.Низкое сопротивление открытого тиристора. Прекратите устанавливать предел 2000 Ом. Пришло время напомнить: тиристор можно управлять (открывать) положительными или отрицательными импульсами. В первом случае тонкой штыревой перемычкой замыкаем анод на основание, во втором – катод. Кое-где тиристор должен открыться, в результате сопротивление будет меньше бесконечности.

Процесс тестирования сводится к пониманию того, как тиристор управляется напряжением. Отрицательный или положительный.Попробуйте и так, и так (если нет маркировки). Одна попытка сработает ровно, если тиристор исправен.

Далее процесс отличается от проверки транзистора. Когда управляющий сигнал исчезнет, ​​тиристор останется открытым, если ток превысит порог удержания. Ключ может закрываться. Если ток не достигает порога удержания.

  1. Регистрируемые технические характеристики тока удержания тиристора. Потрудитесь загрузить полную документацию из Интернета, будьте в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подается на щупы (обычно 5 вольт), какую мощность выдает. Проверить можно, подключив большой конденсатор. Нужно правильно подключить щупы к выходам прибора в режиме измерения сопротивления, дождаться, пока цифры на дисплее вырастут от нуля до бесконечности. Процесс зарядки конденсатора завершен. Теперь переходим в режим измерения постоянного напряжения, видим значение разности потенциалов на ножках конденсатора (мультиметр выдает в режиме измерения сопротивления).По вольт-амперной характеристике тиристора легко определить, достаточно ли значений для создания тока удержания.

Динисторы проще назвать. Попробуйте открыть ключ. Это зависит от того, хватит ли мощности мультиметра для преодоления преграды. Для гарантированной проверки тиристора лучше собрать отдельную схему. Как показано на картинке. Схема образована следующими элементами:


Почему выбирают питание +5 вольт.Напряжение легко найти на телефонном переходнике (зарядном устройстве). Присмотритесь: есть надпись типа 5V– / 420 mA. Выведите значения напряжения, тока (сразу посмотрите, хватит ли тиристора на удержание). Каждый знаток знает: +5 вольт для подключения к шине USB. Теперь практически любой гаджет, компьютер снабжен портом (в другом формате). Избегайте проблем с питанием. На всякий случай рассмотрим момент поподробнее.

Проверка тиристоров на разъеме мультиметра на транзисторы

Многие задаются вопросом, можно ли прозвонить тиристор мультиметром через штатное гнездо транзисторов лицевой панели, обозначенное pnp / npn.Ответ положительный. Вам просто нужно подать правильное напряжение. Коэффициент усиления, отображаемый на дисплее, скорее всего, будет неправильным. Поэтому ориентируйтесь на цифры, избегайте. Посмотрим, как что-то делается. Если тиристор открывается с положительным потенциалом, необходимо подключить его к выводу B (основание) полу-npn. Анод наклеен на штифт С (коллектор), катод – на Е (эмиттер). Мощный тиристор мультиметром проверить вряд ли получится, для микроэлектроники техника подойдет.

Где взять тестер питания

Положение электродов мультиметра

Телефонный адаптер дает ток 100 – 500 мА.Часто этого бывает недостаточно (при необходимости проверить тиристор КУ202Н мультиметром ток разблокировки 100 мА). Где взять еще? Посмотрим на шину USB: третья версия будет выдавать 5 А. Чрезвычайно большой ток для микроэлектроники, ставит под сомнение силовые характеристики интерфейса. Распиновку смотрим в сети. Вот изображение, показывающее расположение типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип A характерен для компьютеров.Самый распространенный. Найдите на переходниках (зарядных устройствах) портативных плееров, iPad. Может использоваться как тиристор цепи тестирования источника питания.
  2. Второй тип В более терминальный. Подключены периферийные устройства, такие как принтеры, другая оргтехника. Найти как источник питания сложно, игнорируя факт недоступности, авторы проверили макет.

Если перерезать USB-кабель – наверняка многие кинутся убивать старую технику, оторвут хвосты мышам – внутри + 5-вольтовый шнур питания традиционно красный, оранжевый.Информация поможет правильно прозвонить цепь, получить необходимое напряжение. Присутствует на выключенном системном блоке (подключен к розетке). Вот почему свет мыши продолжает гореть. На время теста компу будет достаточно для перехода в режим гибернации. Кстати, напрямую не доступен в Windows 10 (залезть по настройкам вы найдете в управлении питанием).


Отображение порта USB

Заручившись помощью схемы, проверьте тиристор, не испаряясь.Рабочая точка устанавливается относительно земли порта, поэтому внешние устройства будут играть небольшую роль. Традиционно заземление персонального компьютера привязано к корпусу, куда идет провод входного фильтра гармоник. Цепь +5 вольт, заземление отвязано от шины. Достаточно отключить тестируемую схему от источника питания. Для проверки тиристора нужно будет припаять антенны на каждом выходе. Для подачи питания контрольный сигнал.

Многие ползают по стулу, не понимая одного: тут мы рассказываем, как мультиметром прозвонить тиристор, а тут светодиод плюс все навороты? На место светодиода можно – еще лучше – включить щупы тестера, зарегистрировать ток.Можно использовать небольшое напряжение питания, но в то же время это всегда безопаснее. Что касается персонального компьютера, то он дает широкие возможности для тестирования любых элементов, в том числе тиристоров. Блок питания обеспечивает набор напряжений:

  1. +5 В идет на кулеры, многие другие системы. Собственно стандартное напряжение питания. Провода напряжения красные.
  2. Для питания многих потребителей используется напряжение +12 Вольт. Желтый провод (не путать с оранжевым).
  3. – осталось 12 вольт для совместимости с RS.Старый добрый COM-порт, через который программируются адаптеры сегодня в промышленных системах. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно имеет напряжение +3,3 В.

Видите, разброс большой, главное актуальный. Электропитание компьютеров варьируется в районе 1 кВт. Открой любой тиристор! Пора заканчивать. Надеюсь, читатели теперь знают, как тиристор совмещается с мультиметром. Иногда приходится повозиться. Вышеупомянутый тиристор КУ202Н имеет структуру pnpn, без блокировки.После исчезновения управляющего напряжения ключ не замыкается. Для выключения светодиода необходимо отключить питание. Разблокировка положительным напряжением. Подходит по выкройке. Единственный ток удержания составляет 300 мА. Случай, когда не всякое зарядное устройство для телефона подходит для эксперимента.

Среди домашних мастеров и умельцев периодически возникает необходимость определения исправности тиристора или симистора, которые широко используются в бытовых приборах для изменения частоты вращения ротора электродвигателей, в регуляторах мощности, осветительной арматуре и в других устройствах.

Как устроен диод и тиристор

Прежде чем описывать способы проверки, вспомним тиристорное устройство, которое недаром называют управляемым диодом. Это означает, что оба полупроводниковых элемента имеют практически одно и то же устройство и работают совершенно одинаково, за исключением того, что у тиристора есть ограничение – управление через дополнительный электрод посредством передачи через него электрического тока.

Тиристор и диод пропускают ток в одном направлении, что во многих конструкциях советских диодов обозначается направлением угла треугольника на мнемоническом символе, расположенном непосредственно на корпусе.В современных диодах в керамическом корпусе для маркировки катода обычно наносят кольцевую полоску рядом с катодом.

Проверьте работоспособность и тиристор, пропустив через них ток нагрузки. Для этой цели разрешается использовать лампы накаливания от старых карманных фонариков, нить которых светится от силы тока около 100 мА и менее. При прохождении тока через полупроводник лампа будет гореть, а при ее отсутствии – нет.

Подробнее о работе диодов и тиристоров читайте здесь:

Как проверить исправность диода

Обычно для оценки исправности диода используют омметр или другие приборы, которые имеют функцию измерения активного сопротивления.Подавая напряжение на электроды диода в прямом и обратном направлении, они определяют значение сопротивления. С разомкнутым pn. При переходе омметр покажет нулевое значение, а в замкнутом – бесконечное значение.

Если омметр отсутствует, то исправность диода можно проверить при помощи батарейки и лампочки.


Перед проверкой диода таким способом необходимо учесть его мощность. В противном случае ток нагрузки может разрушить внутреннюю структуру кристалла.Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и снизить ток нагрузки до 10-15 мА.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три самых распространенных и доступных в домашних условиях.

Аккумулятор и световой метод


При использовании этого метода следует также оценить токовую нагрузку 100 мА, создаваемую лампочкой на внутренних цепях полупроводника, и применить ее на короткое время, особенно для цепей управляющих электродов.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Такой неисправности практически не возникает, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Это займет всего несколько секунд.

При сборке схемы по первому варианту полупроводниковый переход устройства не пропускает ток, и свет не горит.В этом его главное отличие в работе от обычного диода.

Для открытия тиристора достаточно приложить к управляющему электроду положительный потенциал источника. Этот вариант показан на второй диаграмме. Неповрежденное устройство разомкнет внутреннюю цепь, и ток потечет через нее. Это укажет на свечение лампочек накаливания.

На третьей диаграмме показано отключение питания от управляющего электрода и прохождение тока через анод и катод.Это связано с удерживанием избыточного тока внутреннего перехода.

Эффект удержания используется в схемах управления мощностью, когда для размыкания тиристора, регулирующего величину переменного тока, подается короткий импульс тока от фазовращателя к управляющему электроду.

Зажигание лампочки в первом случае или отсутствие ее люминесценции во втором говорят о выходе из строя тиристора. Но потеря свечения при снятии напряжения с контакта управляющего электрода может быть вызвана тем, что величина тока, протекающего по цепи анод-катод, меньше предельного значения удержания.

Разрыв цепи через анод или катод вызывает закрытие тиристора.

Методика испытаний на самодельном приборе

Для снижения риска повреждения внутренних цепей полупроводниковых переходов при проверке тиристоров малой мощности можно подбирать значения токов в каждой цепи. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, рассчитанное на работу от 9-12 вольт. При использовании других напряжений питания следует произвести пересчет значений сопротивления R1-R3.

Рис. 3. Схема устройства для проверки тиристоров

Через светодиод HL1 достаточно тока около 10 мА. При частом использовании устройства для подключения электродов тиристора ВС желательно делать контактные розетки. Кнопка SA позволяет быстро переключать цепь управляющего электрода.

Свечение светодиода перед нажатием кнопки SA или отсутствие его свечения – явный признак повреждения тиристора.

Метод с помощью тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему.В нем источником тока является аккумулятор устройства, а вместо свечения светодиода используется отклонение стрелки аналоговых моделей или цифровые показания на табло цифровых устройств. При указании большого сопротивления тиристор закрыт, а при малых значениях – открыт.


Здесь оцениваются те же три этапа тестирования с выключенной кнопкой SA, кратковременным нажатием и затем снова отключенной. В третьем случае тиристор, вероятно, изменит свое поведение из-за небольшой величины испытательного тока: его недостаточно для удержания.

Низкое сопротивление в первом случае и высокое во втором говорят о нарушениях полупроводникового перехода.

Метод омметра позволяет проверить исправность полупроводниковых переходов без пайки тиристора от большинства печатных плат.

Конструкцию симистора можно представить как состоящую из двух тиристоров, включенных противоположно друг другу. Его анод и катод не имеют строгой полярности, как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить с помощью описанных выше методов тестирования.

Симистор – один из радиоэлементов «семейства» тиристоров. Два других: динистор – это двухэлектродное устройство, тринистор – трехэлектродное устройство. Фактически, симистор также является трехэлектродным устройством, но если в триисторе есть три pn перехода, то в симисторе их четыре. Поперечное сечение структуры кристалла тринистора показано на рис.1 слева и симистор справа.

Благодаря такой структуре симистора, в отличие от триристора, можно управлять проводимостью в обоих направлениях с помощью одного управляющего электрода. В результате симистор чаще всего используется как ключ в цепях переменного тока.

Конструктивно симистор выполнен в том же корпусе, что и тринистор (рис. 2). Аналогично тринистору, одна крайняя область с проводимостью n-типа подключается к корпусу и служит выводом 2.Другая крайняя область (n-тип) подключена к выводу 1. Средняя область (p-тип) подключена к выходу управляющего электрода.

При работе в каком-либо устройстве для размыкания симистора управляющий импульс подается на управляющий электрод относительно контакта 1, и полярность импульса зависит от полярности коммутируемого напряжения, приложенного между контактами 1 и 2. Если напряжение на выводе 2 положительное, симистор открывается импульсом напряжения любой полярности. При отрицательном напряжении на этом выводе управляющий импульс должен иметь отрицательную полярность.Выключение (замыкание) симистора осуществляется, как и в случае с тристором, снятием напряжения с вывода 2.

Разобравшись с устройством и работой симистора, теперь легко научиться проверять это с помощью простой приставки (рис. 3).


Переключатели SA1 и SA2 изменяют полярность управляющего и коммутируемого напряжения соответственно. Кнопка SB1 служит для подачи управляющих импульсов, а SB2 – для отключения симистора. Индикатор симистора – лампа накаливания HL1, рассчитанная на напряжение, которое приложено к выводу 2 симистора.Кормить приставку необходимо из двух отдельных источников.

Для крепления навесных деталей можно использовать любой подходящий корпус из изоляционного материала, например пластиковую мыльницу (рис. 4).

При указанном на схеме положении подвижных контактов переключателей и нажатии кнопки SB1 симистор размыкается, световой индикатор загорается. Затем нажимаем кнопку SB2, симистор замыкается, лампа гаснет. Далее подвижные контакты переключателя SA1 переводят в противоположное положение и снова нажимают кнопку SB1.Если симистор исправен, лампа будет мигать.

С помощью домашнего тестера (мультиметра) можно проверить самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой, это настоящая находка. Например, проверка тиристора мультиметром может избавить вас от необходимости искать новую деталь при ремонте электрооборудования.

Это полупроводниковый прибор, выполненный по классической монокристаллической технологии. На кристалле их три или больше. pn переход с диаметрально противоположными установившимися состояниями.Основное применение тиристоров – электронный ключ. Эти радиоэлементы можно эффективно использовать вместо механических реле.

Включение регулируемое, относительно плавное и без дребезга контактов. Нагрузка в основном направлении открытия p – n переходов контролируется в режиме управления, можно контролировать скорость увеличения рабочего тока.

Кроме того, тиристоры, в отличие от реле, отлично интегрируются в электрические схемы любой сложности. Отсутствие искрящихся контактов позволяет использовать их в системах, где шум переключения недопустим.

Деталь компактная, доступна в различных форм-факторах, в том числе для установки на радиаторы охлаждения.

Тиристоры управляются внешним воздействием:

  • Электрический ток, подводимый к управляющему электроду;
  • Луч света, если используется фототиристор.

В этом случае, в отличие от того же реле, нет необходимости постоянно посылать управляющий сигнал. Рабочий p-n переход будет открыт даже после окончания подачи управляющего тока.Тиристор закрывается, когда рабочий ток, протекающий через него, падает ниже порога удержания.

Тиристоры доступны в различных модификациях, в зависимости от способа управления и дополнительных функций.

  • Диод прямой проводимости;
  • Диод обратной проводимости;
  • Диод симметричный;
  • Триод прямой проводимости;
  • Триод обратной проводимости;
  • Асимметричный триод.

Существует разновидность триодного тиристора с двунаправленной проводимостью.

Что такое симистор и чем он отличается от классических тиристоров?

Симистор (или «симистор») – особая разновидность триодного симметричного тиристора. Основное преимущество – возможность проводить ток на рабочих pn переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Принцип работы и конструкция такие же, как у других тиристоров. При подаче тока менеджера pn соединение разблокируется и остается открытым до тех пор, пока рабочий ток не уменьшится.
Популярное применение симисторов – стабилизаторов напряжения для систем освещения и бытовых электроинструментов.

Работа этих радиодеталей напоминает принцип транзисторов, но детали не взаимозаменяемы.

Разобравшись, что такое тиристор и симистор, научимся проверять эти детали на работоспособность.

Как вызвать тиристор мультиметром?

Сразу оговорюсь – исправность тиристора можно проверить без тестера.Например, с помощью лампочки от фонарика и пальчикового аккумулятора. Для этого последовательно включите источник питания, соответствующий напряжению лампочки, рабочих выводов тиристора и лампочки.

Важно! Не забывайте, что обычный тиристор проводит ток только в одном направлении. Поэтому соблюдайте полярность.

При подаче управляющего тока (достаточно батареек АА) – светится. Итак, схема управления в порядке.Затем отключите аккумулятор, не отключая источник рабочего тока. Если pn-переход в порядке и установлен определенный ток удержания, свет останется включенным.

Если у вас нет подходящей лампы и батарейки, следует знать, как проверить тиристор мультиметром.

    1. Переключатель тестера установлен в режим тонового набора. При этом на проволочных щупах появится достаточное напряжение для проверки тиристора. Рабочий ток не открывает pn переход, поэтому сопротивление на выводах будет высоким, ток не течет.На дисплее мультиметра отображается «1». Мы убедились, что рабочий п-переход не нарушен;
    2. Проверить открытие перехода. Для этого соедините управляющий выход с анодом. Тестер дает ток, достаточный для размыкания спая, и сопротивление резко падает. На дисплее появляются цифры, отличные от единицы. Тиристор «открытый». Таким образом, мы проверили работоспособность элемента управления;

  1. Размыкаем управляющий контакт.При этом сопротивление должно снова стремиться к бесконечности, то есть на табло мы видим «1».

Почему тиристор не оставался открытым?

Дело в том, что мультиметр не выдает тока, достаточного для срабатывания тиристора по «току удержания». Этот пункт мы не можем проверить. Однако оставшиеся контрольные точки говорят о хорошем состоянии полупроводникового прибора. Если поменять полярность – тест не пройдет. Таким образом, убеждаемся в отсутствии обратной пробоя.

Вы можете проверить чувствительность тиристора. В этом случае переводим переключатель тестера в режим омметра. Измерения производятся по ранее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начнем с предела измерения вольтметра «х1».

Чувствительные тиристоры сохраняют разомкнутое состояние при отключении управляющего тока, что фиксируем на приборе. Увеличьте предел измерения до «x10». В этом случае ток на измерительных выводах тестера уменьшается.

Если при отключении управляющего тока переход не замыкается, мы продолжаем увеличивать предел измерения до тех пор, пока тиристор не сработает по току удержания.

Важно! Чем меньше ток удержания, тем чувствительнее тиристор.

При проверке деталей из одной партии (или с одинаковыми характеристиками) выбирайте более чувствительные элементы. Такие тиристоры имеют более гибкие возможности управления, соответственно, более широкую область применения.

Освоив принцип проверки тиристора – несложно догадаться, как проверить симистор мультиметром.

Важно! При наборе необходимо учитывать, что этот полупроводниковый ключ имеет симметричную двустороннюю проводимость.

Проверка симистора мультиметром

Схема подключения для поверки аналогична. Можно использовать лампу накаливания или мультиметр с широким диапазоном измерений в режиме омметра. После прохождения тестов с одной полярностью переключаем щупы тестера на обратную полярность.

Рабочий симистор должен показать очень похожие результаты тестирования.Необходимо проверить открытие и удержание p – n перехода в обоих направлениях по всей шкале измерительного диапазона мультиметра.

Если радиокомпонент, который необходимо проверить, находится на печатной плате – отпаивать его для проверки не нужно. Достаточно отпустить управляющий выход. Важный! Не забудьте обесточить проверяемый электроприбор.

В заключение посмотрите видео: Как проверить тиристор мультиметром.

Для коммутации электрических сетей переменного тока используются различные элементы. Чаще всего используются мощные симисторы, которые необходимы для конструкции трансформаторов и зарядных устройств.

Симисторы – это разновидность тиристоров, аналогичных кремниевым выпрямителям в корпусе. Но в отличие от тиристоров, которые являются однонаправленными устройствами, т.е. они пропускают ток только в одном направлении, а симисторы – двусторонние. С их помощью можно передавать ток в обоих направлениях. Они имеют пять тиристорных слоев, которые снабжены электродами.На первый взгляд отечественные симисторы напоминают pn структуру, но имеют несколько участков с проводимостью n-типа. Последняя область, расположенная после этого слоя, имеет прямое соединение с электродом, что обеспечивает высокую проводимость сигнала. Иногда их также сравнивают с выпрямителями, но стоит помнить, что диоды передают электрический сигнал только в одном направлении.

Фото – использовать тиристор

Симистор

считается идеальным устройством для использования в коммутационных сетях, поскольку он может контролировать ток через обе половины переменного цикла.Тиристор управляет только половиной цикла, а вторая половина сигнала не используется. Благодаря такой особенности работы симистор отлично передает сигналы от любых электрических устройств; вместо реле часто используется симистор. Но пока этот симистор редко используется в сложных электрических устройствах, таких как трансформаторы, компьютеры и т. Д.


Фото – симистор

Видео: как работает симистор

Принцип действия

Принцип работы симистора очень похож на тиристорный, но его легче понять, исходя из работы тринисторного аналога этого компонента электрических сетей.Обратите внимание, что четвертый полупроводниковый компонент разделен, что позволяет выполнять следующие функции:

  1. Монитор катода и анода;
  2. При необходимости поменяйте их местами, что позволяет менять полярность работы.

В этом случае работу устройства можно рассматривать как комбинацию двух противоположно направленных тиристоров, но работающих по полному циклу, т.е. не обрывающих сигналы. Обозначение на схеме, соответствующее двум подключенным тиристорам:

Фото – тринистор аналог симистора

Согласно чертежу на электрод, которым является контроллер, передается сигнал, позволяющий размыкать контакт детали.В момент, когда положительное напряжение на аноде, соответственно, на катоде станет отрицательным, электрический ток начнет протекать через тринистор, который находится на схеме слева. Исходя из этого, если полярность полностью изменена, что меняет местами заряды катода и анода, ток, передаваемый через контакты, будет проходить через правый тринистор.

Здесь последний слой на симисторе отвечает за полярность напряжения. Он контролирует напряжение на контактах и, сравнивая его, направляет ток на определенный триристор.Прямо пропорционально этому, если сигнал не подан, то все тринисторы замкнуты и прибор не работает, то есть не передает никаких импульсов.

Если есть сигнал, есть подключение к сети и ток должен куда-то течь, то симистор в любом случае проводится полярностью направления, в данном случае продиктованным зарядом и полярностью полюсов, катод и анод.

Обратите внимание: на приведенной выше диаграмме показана вольт-амперная характеристика (ВАХ) симистора на Рисунке 3.Каждая из кривых имеет параллельное направление, но в другом направлении. Они повторяют друг друга под углом 180 градусов. Такой график говорит о том, что симистор является аналогом динистора, но при этом участки, через которые динисторы не передают сигнал, очень легко преодолеваются. Параметры устройства можно регулировать, подавая ток разного напряжения, это позволит разблокировать контакты в нужном направлении, просто изменив полярность сигнала. На чертеже места, которые могут отличаться, отмечены пунктирными линиями.


Фото – симисторы

Благодаря этому ВАХ становится понятно, почему стабилизированный тиристор получил такое название. Симистор – означает «симметричный» тиристор, в некоторых учебниках и магазинах его можно назвать симистором (зарубежный вариант).

Сфера использования

Двунаправленность делает симисторы очень удобными переключателями для цепей переменного тока, позволяя им управлять большими токами электрической энергии, проходящей через небольшие контактные полюса. Кроме того, вы даже можете контролировать процентное соотношение индуктивного тока нагрузки.


Фото – работа симистора

Устройства используются в радиотехнике, электротехнике, механике и других отраслях, где может потребоваться контроль тока. Оптосимисторы часто используются в системах охранной сигнализации и диммерах, где для правильной работы устройств требуется полный цикл, а не полпериода. Хотя довольно часто использование этой радиокомпоненты оказывается неэффективным. Например, для работы небольшого микроконтроллера или трансформатора иногда лучше подключить тиристоры малой мощности, которые будут одинаково обеспечивать работу обоих периодов.

Проверка, распиновка и использование симисторов

Для того, чтобы использовать прибор в работе, нужно уметь проверять симистор мультиметром или «прозвонить» его. Для проверки необходимо оценить характеристики контролируемых кремниевых диодов. Такие выпрямители позволяют скорректировать нужные показания и проверить. Отрицательный контакт омметра подключается к катоду, а положительный – к аноду. После нужно одеть индикатор омметра на единицу, а электрод сравнения соединить с выходом анода.Если данные будут в пределах от 15 до 50 Ом, то деталь работает нормально.


Фото – управление световыми симисторами

Но при этом при отключении контактов от анода омметр должен оставаться на приборе. Убедитесь, что простой измерительный прибор не показывает остаточного сопротивления, иначе он укажет, что деталь не работает.

В повседневной жизни симисторы часто используются для создания приборов, продлевающих срок службы различных устройств.Например, для ламп накаливания или счетчиков можно сделать регулятор мощности (нужен тиристор MAC97A8 или ТК).


Фото – схема регулятора мощности на симисторе

На схеме показано, как собрать регулятор мощности. Обратите внимание на элементы DD1.1.DD1.3, где указан генератор, за счет этой части вырабатывается около 5 импульсов, которые представляют собой полупериоды одиночного сигнала. Импульсы управляются резисторами, а выпрямительный диодный транзистор контролирует момент включения симистора.


Фото – Измерение симистора

Этот транзистор открыт, исходя из этого, сигнал подходит на вход генератора, при этом симисторы и остальные транзисторы закрыты. Но если в момент размыкания контактов состояние генератора не меняется, то кумулятивными элементами будет генерироваться небольшой импульс для запуска цоколя. Такую схему диммера на симисторе можно использовать для управления работой осветительных приборов, стиральной машины, оборотов пылесоса или ламп накаливания с датчиком движения.Используйте тестер, чтобы проверить работоспособность схемы и можете ли ее использовать.


Фото – работа симистора

Для улучшения системы можно организовать управление симистором через оптрон, чтобы элемент можно было запускать только после сигнала. Учтите, что при пролистывании барабана движения происходят очень резко, значит неисправен электронный модуль. Чаще всего горит симистор, импортные проводники часто не выдерживают скачков напряжения.Чтобы заменить его, просто выберите ту же деталь.


Фото – тиристорное зарядное устройство

Аналогично по схеме можно собрать зарядное устройство на симисторе, в зависимости от требований нужно просто купить маломощные или силовые детали КУ208Г, КР1182ПМ1, Z0607, BT136, BT139 (BTB – VTB, BTA – BTA будет тоже работают).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *