TL431, что это за “зверь” такой? – Начинающим – Теория
Николай Петрушов
Рис. 1 TL431.
TL431 была создана в конце 70-х и по настоящее время широко используется в промышленности и в радиолюбительской деятельности.
Но не смотря на её солидный возраст, не все радиолюбители близко знакомы с этим замечательным корпусом и его возможностями.
В предлагаемой статье я постараюсь ознакомить радиолюбителей с этой микросхемой.
Для начала давайте посмотрим, что у неё внутри и обратимся к документации на микросхему, “даташиту” (кстати, аналогами этой микросхемы являются – КА431, и наши микросхемы КР142ЕН19А, К1156ЕР5х).
А внутри у неё с десяток транзисторов и всего три вывода, так что же это такое?
Рис. 2 Устройство TL431.
Оказывается всё очень просто. Внутри находится обычный операционный усилитель ОУ (треугольник на блок-схеме) с выходным транзистором и источником опорного напряжения.
Только здесь эта схема играет немного другую роль, а именно – роль стабилитрона. Ещё его называют “Управляемый стабилитрон”.
Как он работает?
Смотрим блок-схему TL431 на рисунке 2. Из схемы видно, ОУ имеет (очень стабильный) встроенный источник опорного напряжения 2,5 вольт (маленький квадратик) подключенный к инверсному входу, один прямой вход (R), транзистор на выходе ОУ, коллектор (К) и эмиттер (А), которого объединены с выводами питания усилителя и защитный диод от переполюсовки. Максимальный ток нагрузки этого транзистора до 100 мА, максимальное напряжение до 36 вольт.
Рис. 3 Цоколёвка TL431.
Теперь на примере простой схемы, изображенной на рисунке 4, разберём, как это всё работает.
Мы уже знаем, что внутри микросхемы имеется встроенный источник опорного напряжения – 2,5 вольт. У первых выпусков микросхем, которые назывались TL430 – напряжение встроенного источника было 3 вольта, у более поздних выпусков, доходит до 1,5 вольта.
Значит для того, чтобы открылся выходной транзистор, необходимо на вход (R) операционного усилителя, подать напряжение – чуть превышающее опорное 2,5 вольт, (приставку “чуть” можно опустить, так как разница составляет несколько милливольт и в дальнейшем будем считать, что на вход нужно подать напряжение равное опорному), тогда на выходе операционного усилителя появится напряжение и выходной транзистор откроется.
Если сказать по простому, TL431 – это что то типа полевого транзистора (или просто транзистора), который открывается при напряжении 2,5 вольта (и более), подаваемого на его вход. Порог открытия-закрытия выходного транзистора здесь очень стабильный из-за наличия встроенного стабильного источника опорного напряжения.
Рис. 4 Схема на TL431.
Из схемы (рис. 4) видно, что на вход R микросхемы TL431, включен делитель напряжения из резисторов R2 и R3, резистор R1 ограничивает ток светодиода.
То есть светодиод у нас загорится (откроется выходной транзистор) при напряжении источника питания – 5 вольт и более. Потухнет соответственно при напряжении источника менее 5-ти вольт.
Если увеличить сопротивление резистора R3 в плече делителя, то необходимо будет увеличить и напряжение источника питания больше 5 вольт, для того, что-бы напряжение на входе R микросхемы, подаваемое с делителя R2-R3 опять достигло 2,5 вольт и открылся выходной транзистор ТЛ-ки. Получается, что если данный делитель напряжения (R2-R3) подключить на выход БП, а катод ТЛ-ки к базе или затвору регулирующего транзистора БП, то изменением плеч делителя, например изменяя величину R3 – можно будет изменять выходное напряжение данного БП, потому что при этом будет изменяться и напряжение стабилизации ТЛ-ки (напряжение открытия выходного транзистора) – то есть мы получим управляемый стабилитрон.
Или если подобрать делитель не изменяя его в дальнейшем – можно сделать выходное напряжение БП строго фиксированным при определённом значении.
Вывод; – если микросхему использовать как стабилитрон (основное её назначение), то мы можем с помощью подбора сопротивлений делителя R2-R3 сделать стабилитрон с любым напряжением стабилизации в пределах 2,5 – 36 вольт (максимальное ограничение по “даташиту”).
Тогда возникают ещё вопросы. можно ли например заменить TL431 обычным операционником?
– Можно, только если есть желание конструировать, но необходимо будет собрать свой источник опорного напряжения на 2,5 вольт и подать питание на операционник отдельно от выходного транзистора, так как ток его потребления может открыть исполнительное устройство. В этом случае можно сделать опорное напряжение какое угодно (не обязательно 2,5 вольта), тогда придётся пересчитать сопротивления делителя, используемое совместно с TL431, чтобы при заданном выходном напряжении БП – напряжение подаваемое на вход микросхемы было равно опорному.
Ещё один вопрос – а можно использовать TL431, как обычный компаратор и собрать на ней, допустим, терморегулятор, или что то подобное?
– Можно, но так как она отличается от обычного компаратора уже наличием встроенного источника опорного напряжения, схема получится гораздо проще. Например такая;
Рис. 5 Терморегулятор на TL431.
Здесь терморезистор (термистор) является датчиком температуры, и он уменьшает своё сопротивление при повышении температуры, т.е. имеет отрицательный ТКС (Температурный Коэффициент Сопротивления). Терморезисторы с положительным ТКС, т.е. сопротивление которых при увеличении температуры увеличивается – называются позисторы.
В этом терморегуляторе при превышении температуры выше установленного уровня (регулируется переменным резистором), сработает реле или какое либо исполнительное устройство, и контактами отключит нагрузку (тэны), или например включит вентиляторы в зависимости от поставленной задачи.
Эта схема обладает малым гистерезисом, и для его увеличения, необходимо вводить ООС между выводами 1-3, например подстроечный резистор 1,0 – 0,5 мОм и величину его подобрать экспериментальным путём в зависимости от необходимого гистерезиса.
Если необходимо, чтобы исполнительное устройство срабатывало при понижении температуры, то датчик и регуляторы нужно поменять местами, то есть термистор включить в верхнее плечо, а переменное сопротивление с резистором – в нижнее.
И в заключении, Вы уже без труда разберётесь, как работает микросхема TL431 в схеме мощного блока питания для трансивера, которая приведена на рисунке 6, и какую роль здесь играют резисторы R8 и R9, и как они подбираются.
Рис. 6 Мощный блок питания на 13 вольт, 22 ампера.
Простейшая схема терморегулятора. | Мастер Винтик. Всё своими руками!
Добавил: Chip,Дата: 19 Апр 2016Простой терморегулятор можно сделать на основе регулируемого стабилитрона TL431. В схеме он используется в качестве компаратора, которым управляет терморезистор.
Всё это позволяет упростить схему и уменьшить количество деталей.
У TL431 только один вход, второго входа для подачи опорного напряжения не требуется, так как оно вырабатывается внутри самой микросхемы.
Принцип работы терморегулятора
Напряжение на управляющем электроде задается с помощью делителя R1, R2, R3. В качестве R3 используется NTC термистор, у которого сопротивление уменьшается при нагревании.
Когда на выводе «1» микросхемы TL431 напряжение выше 2,5В микросхема открыта — реле включено.
Контакты реле включает симистор, который, в свою очередь, включает нагрузку.
С повышением температуры сопротивление термистора падает, в результате чего, напряжение на выводе «1» становится ниже 2,5В — поэтому реле отключается, следовательно отключается и нагрузка.
С помощью переменного резистора R1 производится настройка температуры срабатывания терморегулятора.
Видео о работе простого терморегулятора на TL431
Валерий Харыбин
P.S. Можно ещё упростить схему, если не ставить симистор, а коммутировать нагрузку непосредственно контактами реле. Для этого должно быть выбрано реле с соответствующим допустимым коммутируемым током для данной нагрузки.
ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ:
П О П У Л Я Р Н О Е:
- Простой и надёжный металлоискатель своими руками
- Схемы светодиодных мигалок
- Проверка радиодеталей мультиметром для начинающих радиолюбителей
Простой экономичный металлоискатель своими руками на одной микросхеме
Если Вы потеряли кольцо, ключ, отвёртку… и знаете приблизительное место потери, то не стоит отчаиваться! Вы можете собрать металлоискатель своими руками или попросить знакомого радиолюбителя собрать несложный металлоискатель своими руками. Ниже представлена схема простого в изготовлении и проверенного годами металлоискателя, который (при определённых навыках) можно сделать за один день. Простота описываемого металлоискателя в том, что он собран всего на одной весьма распространённой микросхеме К561ЛА7 (CD4011BE). Настройка тоже проста и не требует дорогих измерительных приборов. Для настройки генераторов достаточно осциллографа или частотомера. Если всё сделано без ошибок и из исправных элементов, то и эти приборы не понадобятся. Подробнее…
Мультивибратор — простой генератор импульсов. Это одна из первых конструкций начинающих радиолюбителей. На мультивибраторе можно собрать простую мигалку на светодиодах. Итак, если Вы — начинающий радиолюбитель, то после освоения теоретической части электроники можно приступать к практике.
Подробнее…
Статья для начинающих радиолюбителей. В ней приводятся примеры проверки основных радиодеталей, используемых в радиоэлектронной аппаратуре (резисторы, конденсаторы, трансформаторы, катушки индуктивности, дроссели, диоды и транзисторы) с помощью мультиметра или обычного стрелочного омметра. Подробнее…
Популярность: 7 317 просм.
Простой терморегулятор на базе TL431 – 22 Декабря 2010 – Заметки
Необычное применение регулируемого стабилитрона TL431. Простой терморегулятор.
TL431 – регулируемый кремниевый стабилитрон с нормированой термостабильностью в широком диапазоне температур(от -40С до +105С) (отечественный аналог КР142ЕН19А).
TL431 иногда маркируется как LM431 и называют программируемым кремниевым стабилитроном. TL431 наиболее распространен в корпусе TO-92, с тремя выводами, или испольтзуется восьмивыводный в корпусе SO8.
Ниже показана маркировка выводов стабилитрона TL431.
Параметры:
– Диапазон выходного напряжения от +2.5 В до +36 В;
– Температурный коэффициент 50 ppm/°C тип;
– Макс. потеря мощности 770 мВт.
Максимальное напряжение на аноде Uak=36V при токе Ia_max=100mA дают возможность применения TL431 для управления довольно мощной нагрузкой (например, электромагнитным реле).
Принцип работы стабилитрона следующий: когда на управляющем электроде напряжение превышает 2,5 В (задается внутренним опорным напряжением) стабилитрон открыт, через него и нагрузку протекает ток, определяемый сопротивлением нагузки. Если же это напряжение становится меньше указанного порога, стабилитрон закрывается и отключает нагрузку. Cхема терморегулятора на основе стабилитрона TL 431 приведена на рисунке (см. ниже).
В предлагаемой конструкции стабилитрон используется в качестве ключа (компаратора). При этом у него только один вход: второго входа для подачи опорного напряжения не требуется, так как оно вырабатывается внутри данной микросхемы. Такое решение позволяет предельно упростить конструкцию и уменьшить количество деталей. Принцип работы устройства следующий. Напряжение на управляющем электроде 3 задается с помощью делителя R1, R2 и R4. В качестве R4 используется терморезистор с отрицательным ТКС, поэтому при нагревании его сопротивление уменьшается. Когда на резисторе R4, а значит и на управляющем выводе 3, напряжение выше 2,5В стабилитрон открыт и ток проходит через обмотку реле.
Контакты реле включают симистор D2, который включает нагрузку. С повышением температуры сопротивление терморезистора падает, за счет чего напряжение на выводе 3 становится ниже 2,5В – реле отключается, отключается нагрузка. С помощью переменного резистора R1 производится настройка температуры срабатывания терморегулятора.
Датчик температуры R4 должен быть расположен в зоне измерения температуры.
Включение симистора с помощью реле обеспечивает гальваническую развязку терморезистора от сети.Терморезистор типа КМТ, ММТ, СТ1. В качестве реле возможно применение РЭС-55А с обмоткой на 10…12В. Симистор КУ208Г позволяет включить нагрузку до 1,5КВт. Если нагрузка не более 200Вт симистор может работать без применения радиатора.
| –> Что собой представляет сварочный инвертор Сегодня сварку активно используют не только для строительных и монтажных процедур, но и при выполнении различных бытовых работ. Игровые автоматы Плей Фортуна Для любителей азартных игр на просторах интернета представлены много игровых площадок, удовлетворяющих требования своих игроков. Что делать если зависает компьютер Постепенное снижение работоспособности и производительности компьютера – одна из наиболее частотных проблем, с которой сталкиваются пользователи любого ПК. Gaminator Slot — игровые автоматы бесплатно Несмотря на большой ассортимент игровых автоматов, наибольшей популярностью пользуются Гаминаторы. Для тех, кто любит и знает мир спорта — полная версия Вулкан ставка на спорт Отличные знания спортивных игр и событий могут значительно улучшить финансовое положение. Для этого существуют букмекерские конторы, где можно воспользоваться опытом прогнозирования в спорте и заработать. Игровые автоматы на деньги в 2020 году Очень много игроков уже давно просиживают вечера в казино-онлайн. Играть в онлайн автоматы без регистрации Еще с незапамятных времен некоторые люди предпочитали проводить время за игрой… Почему любители игровых автоматов онлайн выбирают Джи Эм Слотс? Важным параметром при выборе пользователями интернет-площадки для азартных забав является добросовестность заведения. Казино Вулкан Stars в 2020 году Со стремительным развитием сети интернет растет и количество предложений от создателей сайтов азартного направления. Игровая индустрия ‒ это отдельная, яркая и эффектная по-своему ниша, где спрос формируется влиянием активности игроков. Вулкан Рояль – казино, где можно в игровые автоматы играть бесплатно Многие даже не задумывались над тем, чем онлайн казино лучше реальных залов. Не нужно искать по всему городу зал и ехать туда, нет огромной очереди к автомату. Все, что нужно – это найти хорошее казино и наслаждаться игрой. |
Заметки для мастера – Домашний “кондиционер”
Таблица благоприятной температуры и влажности воздуха в бытовых помещениях
Постоянство температуры и влажности в квартире благотворно влияет на здоровье окружающих. На рис.1 показаны самые благоприятные параметры воздуха в жилых помещениях (цветная область).
Рис.1
Простой терморегулятор воздуха
Рис.2
Предположим, что данный терморегулятор используют для регулировки температуры воздуха в инкубаторе, рис.1. Если температура в инкубаторе ниже +38°С (выставляют переменным резистором R4), сопротивление терморезистора R3 сравнительно большое и компаратор на DA1 находится в режиме положительного насыщения, транзисторы VT1 и VT2 открыты, реле К1 притянуто, и происходит нагревание воздуха в инкубаторе. При достижении в инкубаторе температуры +38°С сопротивление терморезистора R3 становится меньше и компаратор перебрасывается в состояние отрицательного насыщения (на выходе потенциал общего провода), закрываются транзисторы VT1 и VT2, реле К1 отпускает. В связи с тем, что последовательно с резистором R1 включен резистор R2, который шунтируется нормально замкнутыми контактами реле К1, реле включается при одной температуре, а выключается при другой, т.е. поддерживается температура в инкубаторе в пределах, например, +37,5. ..38°С. Необходимая разность температур обеспечивается подбором резистора R2. Таким образом, такое вредное явление, как “триггерный эффект”, в данной схеме терморегулятора отсутствует. Напряжение срабатывания реле К1 должно быть не ниже 10 В, контакты реле должны выдерживать коммутируемый переменный ток и быть рассчитаны на напряжение не менее 250 В.
Из ж. Радиоаматор
2005 г.
Регулятор температуры
Регуляторы температуры, или, как их еще называют, терморегуляторы, предназначены для поддержания температуры жидкости (например, воды в аквариуме, воды в системе электрического водяного отопления), воздуха в теплице, в жилом помещении и пр.
Принцип любого терморегулятора состоит в плавном или скачкообразном изменении мощности нагревательного элемента в соответствии с температурой датчика.
В терморегуляторе со скачкообразным изменением мощности в нагрузке нагревательный элемент отключается, как только температура датчика достигает определенного значения, и выключается при понижении температуры до ее заданного значения. Нагревательный элемент при этом находится в одном из двух состояний: включен или выключен, поэтому регулятор с таким законом управления часто называют релейным.
Схема регулятора показана на рисунке 3.
Рис.3
Основой терморегулятора является триггер Шмитта, выполненный на логических элементах DD1.1, DD1.2 и резисторах R4,R5. На вход триггера поступает напряжение с делителя R1R2R3. Датчиком температуры служит терморезистор R3. При увеличении температуры его сопротивление уменьшается и поданное на вход триггеров напряжение также уменьшается, что приводит к переключению триггера. При этом на его выводе (вывод 4 микросхемы) устанавливается напряжение низкого уровня, транзистор VT1 и тиристор VS1 закрываются, нагреватель, подключенный к гнезду XS1, обесточивается. Температура воздуха или жидкости начинает уменьшаться, и при некотором ее значении триггер вновь переключается, включается нагреватель. В процессе работы такие включения и выключения периодически повторяются.
Мощность нагревателя не должна превышать 200 Вт. Если мощность необходимо увеличить, следует подобрать тиристор VS1 и соответственно мощность выпрямителя VD2. Так, для мощности нагревателя 2000 Вт потребуется тиристор КУ202М и диоды Д246 (4 шт.), которые включают по схеме выпрямительного моста. Тиристор и диоды следует устанавливать на радиаторах с поверхностью охлаждения 300 см2 (для тиристора) и 70 см2 (для каждого диода).
Терморезистор R3 может быть любого типа, например КМТ-1, КМТ-4, КМТ-12,ММТ-6 и др.
Температуру, при которой происходит переключение триггера, устанавливают переменным резистором R1. Точность поддержания температуры отчасти определяется разницей между напряжениями срабатывания триггера, т.е. его гистерезисом, и может подстраиваться резистором R4. Использовать резистор сопротивлением менее 10 кОм не следует, так как излишне малый гистерезис триггера Шмитта может привести к неустойчивой работе терморегулятора.
Евсеев А. Н.
«Электронные устройства
Для дома»
Простой термостат
Сейчас в литературе есть множество описаний термостатов и терморегуляторов на микросхемах или микроконтроллерах. Но бывает необходимость и в предельно простых схемах, по которым можно сделать термостат практически из того, что есть дома, и в самый короткий срок.
Рис.4
Описываемый здесь термостат, (рис.4), можно использовать для поддержания температуры устанавливаемой в довольно широких пределах. Его можно использовать для поддержания положительной температуры зимой в овощехранилищах, или в сауне, или для поддержания комфортной температуры в жилом помещении. Все зависит от величины сопротивления резистора R3, которое, устанавливают при налаживании (пределы от нуля до 2 МОм).
Сопротивление R3+R2 вместе с сопротивлением терморезистора R1 образует делитель напряжения на базе транзистора VT1. Схема на транзисторах VT1 и VT2 образует триггер Шмитта, а база VT1 является его входом. Когда температура ниже установленной величины, которую нужно поддерживать, сопротивление R1 велико, и ток базы транзистора VT1 низок на столько, что он закрывается. Напряжение на его коллекторе при этом растет и приводит к открыванию транзистора VT2. В результате симистор VS1 открывается и включает питание нагревателя. А за счет тока через транзистор VT2 напряжение на эмиттере VT1 немного увеличивается, что фиксирует триггер в таком состоянии, создавая гистерезис.
Когда температура повышается, вследствие работы нагревателя, сопротивление R1 уменьшается и ток базы VT1 растет. В некий момент он открывается и понижает напряжение на базе VT2, закрывая его. Симистор закрывается и нагреватель выключается. Далее все повторяется снова и снова. Температура поддерживается периодическим включением и выключением нагревателем.
Питается схема транзисторного термореле от бестрансформаторного источника. Сетевой конденсатор С3, реактивное сопротивление которого берет на себя большую часть сетевого напряжения. Затем идет выпрямитель на диодах VD2-VD3 и стабилитрон VD1. Практически получается параметрический стабилизатор из этого стабилитрона и реактивного сопротивления С3. Пульсации сглаживает конденсатор С2.
В схеме используется терморезистор КМТ-4 с отрицательным законом и номинальным сопротивлением 220 Ком (при температуре 25 градусов Цельсия). Можно использовать терморезистор другого номинала, соответственно изменив R2 и R3.
Конденсатор С3 – на напряжение не ниже 300 В.
Транзисторы КТ315Г можно заменить на КТ315Е или КТ3102Г, КТ3102Е.
Диоды КД209 можно заменить на КТ105.
Симистор КУ208Г в металлическом корпусе с крепежным винтом. Его нужно укрепить на металлическом уголке 50х50, который будет работать и как небольшой радиатор. При таком радиаторе мощность до 1000 Вт.
Налаживание. Нужен термометр. Нагреть воду до нужной температуры когда должен включатся нагреватель (следя по термометру), поместить терморезистор в стеклянную пробирку, засыпать песком и заткнуть пробкой, выпустив через нее провода, и поместить его в эту воду. Подобрать сопротивление R3 таким, чтобы при этой температуре нагреватель включался, а при превышении ее выключался. Разницу между температурами включения и выключения (гистерезис) можно становить подбором R5 в небольших пределах.
Работая с термостатом, учтите, что он питается непосредственно от электросети, и все его детали под потенциалом сети, поэтому необходимо соблюдать правила техники безопасности при работе с электроустановками.
Кувшинов А.М.
Термоиндикатор
Термоиндикатор, схема которого показана на рисунке 5, выполнен по мостовой схеме.
Рис.5
Когда мост сбалансирован, ни один из светодиодов не светится. Стоит температуре повысится, включится один из светодиодов. Если температура, напротив, понизится, загорится другой светодиод. Чтобы различать, в какую сторону изменяется температура, для индикации ее повышения можно использовать светодиод красного свечения; для индикации понижения – светодиод желтого (или зеленого) свечения. Для балансировки схемы вместо резистора R2 лучше включить потенциометр.
Шустов М.А.
«Практическая схемотехника»
Электронный регулятор температуры
Рис.6
Схема автомата регулятора температуры показана на рис.6. Здесь, последовательно с «лавинным» ключом на транзисторе V1, включен резистор R3, с которого импульсы поступают на управляющий электрод тиристора V2. Терморезистор R2 подключен параллельно конденсатору С1, поэтому на него ответвляется часть зарядного тока. Величина этого тока «утечки» обратно пропорционально сопротивлению терморезистора. Из-за наличия такого резистора продолжительность заряда конденсатора возрастает, что равносильно увеличению его емкости.
Предположим, температура контролируемого объекта повысилась. Тогда сопротивление терморезистора уменьшиться. Это вызовет уменьшение частоты генератора. В результате импульсы управления на тиристор станут поступать реже, и он большую часть времени будет закрыт. Соответственно уменьшится и мощность на нагрузке Rн (это может быть калорифер, паяльник т.д.).
При всей простоте это устройство обладает широкими возможностями. Так, при замене терморезистора на фоторезистор и использование в качестве нагрузки лампу накаливания нетрудно получить чувствительный светорегулятор.
При построении устройств с питанием от сети нужно помнить, что их детали гальванически связаны с сетью и необходимо соблюдать все меры техники безопасности при изготовлении и их налаживании.
Радиодкружок
г. Барнаул
Простой терморегулятор на tl431
В данном устройстве, стабилитрон TL431 применяется в роли компаратора с одним входом, так как опорное напряжение вырабатывается самой микросхемой. Подобное простое применение стабилитрона максимально упрощает всю конструкцию терморегулятора и позволяет обойтись минимальным количеством деталей рис. 7
Рис. 7
Необходимый уровень напряжения, на управляющем выводе стабилитрона TL431, устанавливается посредством делителя на сопротивлениях Rl, R2, R3.
Резистор R3 – термистор, т.е. терморезистор с отрицательным ТКС (уменьшение сопротивления от нагрева). Если на контакте управления стабилитрона напряжение более 2,5В, микросхема пропускает ток и включает реле. Реле в свою очередь коммутирует управляющий вывод симистора, вследствие чего включается нагрузка (нагреватель).
Когда температура поднимается, сопротивление термистора уменьшается и из-за этого потенциал на управляющем выводе TL431 опускается ниже 2,5В, реле терморегулятора обесточивается и нагрузка отключается. Переменный резистор R1 позволяет просто устанавливать уровень необходимой температуры, при котором будет срабатывать терморегулятор.
Термистор типа СТ1, ММТ, КМТ. С помощью симистора КУ208Г можно управлять нагревателем до 1500 Вт с использованием радиатора для отвода тепла. Если же мощность нагревателя невелика (менее 200 Вт), то в этом случае надобность в радиаторе отпадает. Реле — РЭС55А с рабочим напряжением 10…12 В.
«Энциклопедия начинающего радиолюбителя», Никулин С.А.
Регуляторы температуры на 12 вольт. Как собрать терморегулятор в домашних условиях. Электронный терморегулятор своими руками, схема устройства
Универсальный цифровой терморегулятор ТР-12В-DS предназначен для измерения и поддержания температуры в заданных пределах (от -55 до +125°С), и может широко использоваться для точного регулирования температуры в электросхемах с напряжением 12 Вольт.
Область применения
Терморегулятор ТР-12В-DS наиболее востребован для применения в автомобильной технике с бортовой сетью 12В; может использоваться в инкубаторах, брудерах; в различных системах на основе аккумуляторов, солнечных батарей и других альтернативных источниках энергии; в оборудовании с питанием от 12 Вольт. Датчиком температуры служит широко распространенный высокоточный цифровой датчик DS18B20.
Функциональные возможности
Терморегулятор климат-контроля ТР-12В-DS измеряет значение температуры в месте расположения датчика и дает команду на включение или выключение нагрузки посредством электромагнитного реле. К нему подключаются любые нагревательные или охладительные электроприборы. При этом, максимальная мощность подключаемых устройств не должна превышать 2500 Ватт активной нагрузки (10 Ампер при cos ? = 1).
Прибор имеет настройки температуры, которую надо поддерживать, и гистерезиса, то есть разности температур между включением и выключением нагрузки, благодаря чему можно задать более широкий температурный «коридор» и избежать чрезмерно частого срабатывания реле. Универсальный терморегулятор ТР-12В-DS можно настроить как на режим нагрева (включение нагревательного прибора при падении температуры ниже заданной), так и на режим охлаждения (включение охладительного прибора при поднятии температуры выше заданной). Кроме того, терморегулятор имеет встроенный таймер, благодаря которому можно программировать терморегулятор на поддержание температуры в течение определенного времени (поддержание температуры Х минут -> выключение до ручного включения) либо на работу в циклическом режиме (поддержание температуры Х минут -> простой Y минут -> поддержание температуры …). Также прибор имеет возможность ограничения задаваемых верхнего и нижнего предела диапазона поддерживаемой температуры.
Терморегулятор поставляется в небольшом прозрачном корпусе 6 (8) х 5 х 3 см и имеет отверстия для закрепления саморезами (винтами) на любой подходящей поверхности.
Параметр | Значение |
Диапазон измеряемой температуры | от -55 до +125 °С |
Разрешающая способность | 0,1 °С, 0,1 °С в диапазоне от -9,9 до +99,9 °С, 1 °С в диапазоне от -55 до -10 °С и от +100 до +125 °С |
Погрешность измерения температуры | |
Гистерезис (разность между температурами включения и выключения) | плюс-минус от 0 до 50,0 °С |
Время таймера работы | от 0 до 999 минут |
Время таймера простоя | от 0 до 999 минут |
Звуковая сигнализация окончания процесса | |
Выбор логики работы | нагрев или охлаждение |
Максимальный коммутируемый ток при cos ? =1 | |
Длина соединительных проводов датчика | |
Напряжение питания прибора | 12 Вольт AC/DC |
Способ монтажа (подключения) | на плоскую поверхность, портативный корпусной |
Габаритные размеры | 6 (8) х 5 х 3 см |
В этой статье мы будем рассматривать устройства, поддерживающие определенный тепловой режим, или же сигнализирующие о достижении нужного значения температуры. Такие устройства имеют очень широкую сферу применения: они могут поддерживать заданную температуру в инкубаторах и аквариумах, теплых полах и даже являться частью умного дома. Для вас мы предоставили инструкцию о том, как сделать терморегулятор своими руками и с минимумом затрат.
Немного теории
Простейшие измерительные датчики, в том числе и реагирующие на температуру, состоят из измерительного полуплеча из двух сопротивлений, опорного и элемента, меняющего свое сопротивление в зависимости от прилаживаемой к нему температуры. Более наглядно это представлено на картинке ниже.
Как видно из схемы, резистор R2 является измерительным элементом самодельного терморегулятора, а R1, R3 и R4 опорным плечом устройства. Это терморезистор. Он представляет собой проводниковый прибор, который изменяет своё сопротивление при изменении температуры.
Элементом терморегулятора, реагирующим на изменение состояния измерительного плеча, является интегральный усилитель в режиме компаратора. Данный режим переключает скачком выход микросхемы из состояния выключено в рабочее положение. Таким образом, на выходе компаратора мы имеем всего два значения «включено» и «выключено». Нагрузкой микросхемы является вентилятор для ПК. При достижении температуры определенного значения в плече R1 и R2 происходит смещение напряжения, вход микросхемы сравнивает значение на контакте 2 и 3 и происходит переключение компаратора. Вентилятор охлаждает необходимый предмет, его температура падает, сопротивление резистора меняется и компаратор отключает вентилятор. Таким образом поддерживается температура на заданном уровне, и производится управление работой вентилятора.
Обзор схем
Напряжение разности с измерительного плеча поступает на спаренный транзистор с большим коэффициентом усиления, а в качестве компаратора выступает электромагнитное реле. При достижении на катушке напряжения, достаточного для втягивания сердечника, происходит ее срабатывание и подключение через ее контакты исполнительных устройств. При достижении заданной температуры, сигнал на транзисторах уменьшается, синхронно падает напряжение на катушке реле, и в какой-то момент происходит расцепление контактов и отключение полезной нагрузки.
Особенностью такого типа реле является наличие – это разница в несколько градусов между включением и отключением самодельного терморегулятора, из-за присутствия в схеме электромеханического реле. Таким образом, температура всегда будет колебаться на несколько градусов возле нужного значения. Вариант сборки, предоставленный ниже, практически лишен гистерезиса.
Принципиальная электронная схема аналогового терморегулятора для инкубатора:
Данная схема была очень популярна для повторения в 2000 годах, но и сейчас она не потеряла актуальность и с возложенной на нее функцией справляется. При наличии доступа к старым деталям, можно собрать терморегулятор своими руками практически бесплатно.
Сердцем самоделки является интегральный усилитель К140УД7 или К140УД8. В данном случае он подключен с положительной обратной связью и является компаратором. Термочувствительным элементом R5 служит резистор типа ММТ-4 с отрицательным ТКЕ, это значит, что при нагревании его сопротивление уменьшается.
Выносной датчик подключается через экранированный провод. Для уменьшения и ложного срабатывания устройства, длина провода не должна превышать 1 метр. Нагрузка управляется через тиристор VS1 и максимально допустимая мощность подключаемого нагревателя зависит от его номинала. В данном случае 150 Ватт, электронный ключ – тиристор необходимо установить на небольшой радиатор, для отвода тепла. В таблице ниже представлены номиналы радиоэлементов, для сборки терморегулятора в домашних условиях.
Устройство не имеет гальванической развязки от сети 220 Вольт, при настройке будьте внимательны, на элементах регулятора присутствует сетевое напряжение, которое опасно для жизни. После сборки обязательно изолируйте все контакты и поместите устройство в токонепроводящий корпус. На видео ниже рассматривается, как собрать терморегулятор на транзисторах:
Самодельный термостат на транзисторах
Теперь расскажем как сделать регулятор температуры для теплого пола. Рабочая схема срисована с серийного образца. Пригодится тем, кто хочет ознакомиться и повторить, или как образец для поиска неисправности прибора.
Центром схемы является микросхема стабилизатора, подключенная необычным способом, LM431 начинает пропускать ток при напряжении выше 2,5 Вольт. Именно такой величины у данной микросхемы внутренний источник опорного напряжения. При меньшем значении тока она ни чего не пропускает. Эту ее особенность стали использовать во всевозможных схемах терморегуляторов.
Как видим, классическая схема с измерительным плечом осталась: R5, R4 – дополнительные резисторы , а R9 — терморезистор. При изменении температуры происходит сдвиг напряжения на входе 1 микросхемы, и в случае, если оно достигло порога срабатывания, то напряжение идет дальше по схеме. В данной конструкции нагрузкой для микросхемы TL431 являются светодиод индикации работы HL2 и оптрон U1, для оптической развязки силовой схемы от управляющих цепей.
Как и в предыдущем варианте, устройство не имеет трансформатора, а получает питание на гасящей конденсаторной схеме C1, R1 и R2, поэтому оно так же находится под опасным для жизни напряжением, и при работе со схемой нужно быть предельно осторожным. Для стабилизации напряжения и сглаживания пульсаций сетевых всплесков, в схему установлен стабилитрон VD2 и конденсатор C3. Для визуальной индикации наличия напряжения на устройстве установлен светодиод HL1. Силовым управляющим элементом является симистор ВТ136 с небольшой обвязкой для управления через оптрон U1.
При данных номиналах диапазон регулирования находится в пределах 30-50°С. При кажущейся на первый взгляд сложности конструкция проста в настройке и легка в повторении. Наглядная схема терморегулятора на микросхеме TL431, с внешним питанием 12 вольт для использования в системах домашней автоматики представлена ниже:
Данный терморегулятор способен управлять компьютерным вентилятором, силовым реле, световыми индикаторами, звуковыми сигнализаторами. Для управления температурой паяльника существует интересная схема с использованием все той же интегральной микросхемы TL431.
Для измерения температуры нагревательного элемента используют биметаллическую термопару, которую можно позаимствовать с выносного измерителя в мультиметре или купить в специализированном магазине радиодеталей. Для увеличения напряжения с термопары до уровня срабатывания TL431, установлен дополнительный усилитель на LM351. Управление осуществляется через оптрон MOC3021 и симистор T1.
При включении терморегулятора в сеть необходимо соблюдать полярность, минус регулятора должен быть на нулевом проводе, иначе фазное напряжение появится на корпусе паяльника, через провода термопары. В этом и является главный недостаток этой схемы, ведь не каждому хочется постоянно проверять правильность подключения вилки в розетку, а если пренебречь этим, то можно получить удар током или повредить электронные компоненты во время пайки. Регулировка диапазона производится резистором R3. Данная схема обеспечит долгую работу паяльника, исключит его перегрев и увеличит качество пайки за счет стабильности температурного режима.
Еще одна идея сборки простого терморегулятора рассмотрена на видео:
Регулятор температуры на микросхеме TL431
Простой регулятор для паяльника
Разобранных примеров регуляторов температуры вполне достаточно для удовлетворения нужд домашнего мастера. Схемы не содержат дефицитных и дорогих запчастей, легко повторяются и практически не нуждаются в настройке. Данные самоделки запросто можно приспособить для регулирования температуры воды в баке водонагревателя, следить за теплом в инкубаторе или теплице, модернизировать утюг или паяльник. Помимо этого можно восстановить старенький холодильник, переделав регулятор для работы с отрицательными значениями температуры, путем замены местами сопротивлений в измерительном плече. Надеемся наша статья была интересна, вы нашли ее для себя полезной и поняли, как сделать терморегулятор своими руками в домашних условиях! Если же у вас все еще остались вопросы, смело задавайте их в комментариях.
После новогодних «каникул» начинают валом сыпаться давно ожидаемые посылки. Вот мне и пришёл термостат для одной моей DIY фиговины (я упоминал о ней в своём обзоре).
Похожий уже был здесь в , который написал
Но этот, хоть и несколько подороже, зато больше настроек, да и реле помощнее.
Описание продавца:
Температурный диапазон: -9-99 по Цельсию
Точность: 1 по Цельсию
Точность управления: 1 по Цельсию
Диапазон настройки: -9-99 по Цельсию
Частота обновления: 0.5 S
Входная мощность: DC12V
Выход: релейный выход, Емкость 220 В 10a/12 В 10А
Экологические требования: -10-60 по Цельсию
Влажность: 20%-85%
Размер: 78×51 мм
Датчик температуры: NTC (3950-10 К 1%)
Применимо к различным пространственное контроля температуры, Регулирование температуры воды, инкубаторы, и т. д.
Огни, цифровой трубки, ключевым государственным Описание
Красный индикатор запуска:
Начать (красный) индикатор, который означает, что реле закрыты, устройство начинает работать
Зеленый стоп-сигнал:
Стоп (зеленый) свет, который означает, что реле отключен, устройство перестает работать
Цифровой трубы
Средний Красный светодиодный дисплей для ток температура обнаружения, Слева зеленый цифровой дисплей трубки как набор старт температура, Правой стороне Зеленый Цифровой дисплей для набора остановка температуры.
Подключаем к древнему многострадальному АТ БП (заодно нагрузив его вентилятором для охлаждения датчика).
Термостат «кушает» 12 вольт, именно то, что мне нужно.
Реле нормально разомкнутое, указано, что коммутируемый ток до 10 ампер.
Индикаторы показывают, кроме текущей температуры, ещё и границы срабатывания. Назову их стартовой и финишной температурой (Ksiman в своём обзоре использовал умное слово «гистерезис», мне такое, честно говоря, «слабО»)
К сожалению, светодиодные сборки довольно трудно сфотографировать, так что мне придется ещё и расписывать, ЧТО же там было видно.
Ставим стартовую температуру в 22 градуса и крепко сжимаем датчик в руке…
(стартовая 22, текущая 22, финишная 23)
Температура поднимается и реле срабатывает – текущая температура 24:
Если нужно сделать наоборот – включение при понижении температуры, то достаточно стартовую сделать выше финишной.
Стартовая 24, текущая 24, финишная 22, датчик остужаю вентилятором. Очень медленно остывает…
Ток потребления достаточно небольшой:
Обратная сторона платы. Реле типовое, я даже не стал его нагружать – и так щелчок слышно:
Микросхемы крупным планом.
Звукового сигнала при срабатывании реле нет, буззер, распаянный на плате, попискивает только при нажатии кнопок.
Датчик:
Следует заметить, что установленные пороговые значения температуры сохраняются при отключении питания.
Вот и всё. Простите за некоторую сумбурность, просто очень холодно, мысли путаются.
Термостат куплен за свои.
Планирую купить +78 Добавить в избранное Обзор понравился +45 +107Терморегулятор для инкубатора Мечта-12 (12В) с контролем и регулировкой уровня влажности , а также программируемым таймером поворота / изменения положения лотков в инкубаторе, это универсальное электронное устройство, которое обеспечит качественный и надежный автоматический контроль температуры и влажности в инкубаторе, которые Вам необходимы. Обеспечит управление поворотом лотков по заданным временным промежуткам. Прибор обладает высокой точностью измерения и регулировки. Температура – 0,1 °С. Влажность – 5%. Напряжение питания 12 В.
Назначение и основные характеристики
Любые инкубаторы для яиц требуют постоянного контроля показателей температуры и влажности окружающей среды. Основная сложность при этом является поддержание этих параметров в постоянных значениях! Ведь даже 10 минутный перегрев или переохлаждение инкубируемых яиц ведет к гибели зародыша.
Влажность тоже играет немаловажную роль при инкубировании. Для измерения влажности используется психрометрический метод, основанный на зависимости разности показаний сухого и мокрого термометров прибора. Данный способ является одним из наиболее точных и надежных. Более подробно с этим методом вы можете ознакомится ниже.
Также необходим поворот яиц через определенное время (минимум 3-4 переворота в сутки) на протяжении всего периода инкубации, это связано с тем, что разница температур на различных сторонах яиц может достигать 2 градусов, что привод к уменьшению вывода птенцов.
Для решения этих проблем необходимо использовать различные приборы контроля температуры, влажности, различные таймеры. Электронное устройство МЕЧТА-12 объединяет все эти функции в одном приборе, разработанном и служащим для регулирования параметров температуры и влажности, а также для управления устройствами поворота лотков в инкубаторах.
МЕЧТА-12 является управляющим устройством КИПиА. Прибор анализирует информацию, поступающую от датчиков, анализирует временные интервалы, и посредством реле коммутирует нагрузку на внешние устройства, служащие для изменения климатических условий в регулируемом объекте, а также, если это инкубатор, то включает двигатель устройства поворота лотков.
Для изменения температуры могут быть используются любые нагревательный или охлаждающий приборы с потребляемым током не более 16 Ампер – электрические трубчатые электронагреватели (ТЭН), лампочки накаливания, кондиционеры, холодильные установки и др.
Для регулирования влажности в инкубаторе могут быть подключены ультразвуковые увлажнители, парогенераторы, клапаны устройства, подающего воду для смачивания висячей ткани, подогреваемые емкости с водой, компрессоры, прокачивающие воздух через емкости с водой и т. д. Для понижения влажности к прибору могут быть подключены системы вентиляции.
Кроме инкубаторов прибор также можно использовать для измерения и регулирования температуры и влажности в различного типа помещениях (хранилищах, теплицах), в сушильных камерах, в бытовых условия, как составная часть метеостанции и т.д.
Описание внешнего вида устройства прибора
На передней панели данной модели находится:
1. цифровой индикатор, отображающий текущие значения температуры, влажности, служебную информацию, а также состояние нагрузки (вкл. или выкл.)
2. кнопки управления (с помощью, которых информация пользователя вводится в микроконтроллер):
М – меню; изменение разряда.
ОК – подтверждение; изменение числа в разряде.
Для наладки и технического обслуживания в процессе эксплуатации имеется возможность входа в сервисное меню. Настраиваемые параметры прибора:
– Время работы таймера поворота лотков;
– Значение температуры;
– Значение влажности;
– Параметры гистерезиса;
– Служебные параметры из сервисного меню.
Описание психрометрического метода «сухой-мокрый термометр»: «сухой» термометр показывает температуру окружающего воздуха, а «мокрый» термометр, частично помещенный в дистиллированную воду, показывает меньшую температуру, так как с его поверхности происходит испарение воды, связанное с расходом тепла. Испарение с поверхности влажного термометра происходит тем интенсивнее, чем ниже влажность окружающего воздуха. Разность показаний термометров зависит, следовательно, от значения влажности воздуха. Чем ниже влажность воздуха, тем больше скорость испарения и тем больше разница показаний термометров. Зная разницу температур, вы можете использовать специальную психрометрическую таблицу и узнать значение влажности.
Гарантия: 24 мес.
Универсальный цифровой терморегулятор ТР-12В-DS предназначен для измерения и поддержания температуры в заданных пределах (от -55 до +125°С), и может широко использоваться для точного регулирования температуры в электросхемах с напряжением 12 Вольт.
Область применения
Терморегулятор ТР-12В-DS наиболее востребован для применения в автомобильной технике с бортовой сетью 12В; может использоваться в инкубаторах, брудерах; в различных системах на основе аккумуляторов, солнечных батарей и других альтернативных источниках энергии; в оборудовании с питанием от 12 Вольт. Датчиком температуры служит широко распространенный высокоточный цифровой датчик DS18B20.
Функциональные возможности
Терморегулятор климат-контроля ТР-12В-DS измеряет значение температуры в месте расположения датчика и дает команду на включение или выключение нагрузки посредством электромагнитного реле. К нему подключаются любые нагревательные или охладительные электроприборы. При этом, максимальная мощность подключаемых устройств не должна превышать 2500 Ватт активной нагрузки (10 Ампер при cos ? = 1).
Прибор имеет настройки температуры, которую надо поддерживать, и гистерезиса, то есть разности температур между включением и выключением нагрузки, благодаря чему можно задать более широкий температурный «коридор» и избежать чрезмерно частого срабатывания реле. Универсальный терморегулятор ТР-12В-DS можно настроить как на режим нагрева (включение нагревательного прибора при падении температуры ниже заданной), так и на режим охлаждения (включение охладительного прибора при поднятии температуры выше заданной). Кроме того, терморегулятор имеет встроенный таймер, благодаря которому можно программировать терморегулятор на поддержание температуры в течение определенного времени (поддержание температуры Х минут -> выключение до ручного включения) либо на работу в циклическом режиме (поддержание температуры Х минут -> простой Y минут -> поддержание температуры …). Также прибор имеет возможность ограничения задаваемых верхнего и нижнего предела диапазона поддерживаемой температуры.
Терморегулятор поставляется в небольшом прозрачном корпусе 6 (8) х 5 х 3 см и имеет отверстия для закрепления саморезами (винтами) на любой подходящей поверхности.
Параметр | Значение |
Диапазон измеряемой температуры | от -55 до +125 °С |
Разрешающая способность | 0,1 °С, 0,1 °С в диапазоне от -9,9 до +99,9 °С, 1 °С в диапазоне от -55 до -10 °С и от +100 до +125 °С |
Погрешность измерения температуры | |
Гистерезис (разность между температурами включения и выключения) | плюс-минус от 0 до 50,0 °С |
Время таймера работы | от 0 до 999 минут |
Время таймера простоя | от 0 до 999 минут |
Звуковая сигнализация окончания процесса | |
Выбор логики работы | нагрев или охлаждение |
Максимальный коммутируемый ток при cos ? =1 | |
Длина соединительных проводов датчика | |
Напряжение питания прибора | 12 Вольт AC/DC |
Способ монтажа (подключения) | на плоскую поверхность, портативный корпусной |
Габаритные размеры | 6 (8) х 5 х 3 см |
W1209 Термореле (терморегулятор программируемый) с герметичным датчиком.
Модуль термореле W1209 предназначен для контроля температуры в диапазоне от -50 до +100 градусов. Оснащен LED дисплеем на 3 символа, индикатором включения реле, тремя кнопками управления электронным терморегулятором, разъемом для подключения внешнего термодатчика, клеммами “K0/K1” для подключения нагрузки и “+12V/GND” для питания платы терморегулятора. На дисплее отображается текущая измеряемая температура с датчика, “LL” – если датчик не подключен, и “HH” – если температура вне диапазона.
Характеристики термореле W1209:
Терморезистор | NTC (10К 0.5%) водонепроницаемый датчик |
Температурный диапазон | от -50°C до +110°C |
Точность измерения | |
Точность управления | 0.1°C в диапазоне от -9.9°C до 99.9°C, или 1.0°C вне этого диапазона |
Время обновления показаний | 0. |
Гистерезис (запаздывание) | 0.1°C ……. 5°C |
Точность гистерезиса (запаздывание) | 0.1°C |
Напряжение питания | DC 12V |
Ток покоя | |
Рабочий ток | |
Выходное напряжение | DC 12V |
Максимальный ток нагрузки | 5A / AC 125V, 15A / DC 14V |
Допустимая влажность | от 20% до 85%, Rh |
Длина кабеля | 0,3 метра |
Размеры | 48 мм * 40 мм |
LED дисплей отображает следующие значения:
«LLL» – Датчик не подключен«HHH» – Температура вне диапазона (меньше -50°С или больше 110°C)
«- – – » – Превышение пределов заданных в параметре P6
Подготовка к работе:
- Подключить источник питания 12V постоянного напряжения к контактам «+12V» (плюс 12V) и «GND» (минус 12V)
- Подключить нагрузку к контактам «K0» и «K1» (подключается в разрыв цепи питания управляемого прибора – последовательное подключение)
После подачи питания 12V на контакты «+12V» и «GND», на LED дисплее отобразится текущая температура, измеренная выносным датчиком температуры
Установка и настройка заданной температуры:
Для установки температуры контроля кратковременно нажмите кнопку «SET». после чего кнопками «+» и «-» установите заданную температуру. После установки температуры необходимо еще раз нажать на кнопку «SET», либо не нажимать никакие кнопки в течение 5 секунд.
Программирование:
- Для входа в режим программирования нажмите на кнопку «SET» в течение 5 секунд!
- Кнопками «+» и «-» выбрать код параметра меню (P0….P6) из таблицы «Меню терморегулятора»
- Для настройки параметра нажать на кнопку «SET» и кнопками «+» и «-» изменить значение параметра
- Для сохранения настроек нажать на кнопку «SET», либо не нажимать никакие кнопки в течение 5 секунд.
Для того, чтобы сбросить параметры на заводские настройки (настройки по умолчанию):
- Отключите питание
- Нажмите и удерживайте кнопки « + » и « – »
- Подать питание на терморегулятор
На LED дисплее появится надпись «888», после чего отобразится текущая температура.
Универсальный цифровой терморегулятор ТР-12В-DS предназначен для измерения и поддержания температуры в заданных пределах (от -55 до +125°С), и может широко использоваться для точного регулирования температуры в электросхемах с напряжением 12 Вольт.
Область применения
Терморегулятор ТР-12В-DS наиболее востребован для применения в автомобильной технике с бортовой сетью 12В; может использоваться в инкубаторах, брудерах; в различных системах на основе аккумуляторов, солнечных батарей и других альтернативных источниках энергии; в оборудовании с питанием от 12 Вольт. Датчиком температуры служит широко распространенный высокоточный цифровой датчик DS18B20.
Функциональные возможности
Терморегулятор климат-контроля ТР-12В-DS измеряет значение температуры в месте расположения датчика и дает команду на включение или выключение нагрузки посредством электромагнитного реле. К нему подключаются любые нагревательные или охладительные электроприборы. При этом, максимальная мощность подключаемых устройств не должна превышать 2500 Ватт активной нагрузки (10 Ампер при cos ? = 1).
Прибор имеет настройки температуры, которую надо поддерживать, и гистерезиса, то есть разности температур между включением и выключением нагрузки, благодаря чему можно задать более широкий температурный «коридор» и избежать чрезмерно частого срабатывания реле. Универсальный терморегулятор ТР-12В-DS можно настроить как на режим нагрева (включение нагревательного прибора при падении температуры ниже заданной), так и на режим охлаждения (включение охладительного прибора при поднятии температуры выше заданной). Кроме того, терморегулятор имеет встроенный таймер, благодаря которому можно программировать терморегулятор на поддержание температуры в течение определенного времени (поддержание температуры Х минут -> выключение до ручного включения) либо на работу в циклическом режиме (поддержание температуры Х минут -> простой Y минут -> поддержание температуры …). Также прибор имеет возможность ограничения задаваемых верхнего и нижнего предела диапазона поддерживаемой температуры.
Терморегулятор поставляется в небольшом прозрачном корпусе 6 (8) х 5 х 3 см и имеет отверстия для закрепления саморезами (винтами) на любой подходящей поверхности.
Параметр | Значение |
Диапазон измеряемой температуры | от -55 до +125 °С |
Разрешающая способность | 0,1 °С, 0,1 °С в диапазоне от -9,9 до +99,9 °С, 1 °С в диапазоне от -55 до -10 °С и от +100 до +125 °С |
Погрешность измерения температуры | |
Гистерезис (разность между температурами включения и выключения) | плюс-минус от 0 до 50,0 °С |
Время таймера работы | от 0 до 999 минут |
Время таймера простоя | от 0 до 999 минут |
Звуковая сигнализация окончания процесса | |
Выбор логики работы | нагрев или охлаждение |
Максимальный коммутируемый ток при cos ? =1 | |
Длина соединительных проводов датчика | |
Напряжение питания прибора | 12 Вольт AC/DC |
Способ монтажа (подключения) | на плоскую поверхность, портативный корпусной |
Габаритные размеры | 6 (8) х 5 х 3 см |
После новогодних «каникул» начинают валом сыпаться давно ожидаемые посылки. Вот мне и пришёл термостат для одной моей DIY фиговины (я упоминал о ней в своём обзоре).
Похожий уже был здесь в , который написал
Но этот, хоть и несколько подороже, зато больше настроек, да и реле помощнее.
Описание продавца:
Температурный диапазон: -9-99 по Цельсию
Точность: 1 по Цельсию
Точность управления: 1 по Цельсию
Диапазон настройки: -9-99 по Цельсию
Частота обновления: 0.5 S
Входная мощность: DC12V
Выход: релейный выход, Емкость 220 В 10a/12 В 10А
Экологические требования: -10-60 по Цельсию
Влажность: 20%-85%
Размер: 78×51 мм
Датчик температуры: NTC (3950-10 К 1%)
Применимо к различным пространственное контроля температуры, Регулирование температуры воды, инкубаторы, и т. д.
Огни, цифровой трубки, ключевым государственным Описание
Красный индикатор запуска:
Начать (красный) индикатор, который означает, что реле закрыты, устройство начинает работать
Зеленый стоп-сигнал:
Стоп (зеленый) свет, который означает, что реле отключен, устройство перестает работать
Цифровой трубы
Средний Красный светодиодный дисплей для ток температура обнаружения, Слева зеленый цифровой дисплей трубки как набор старт температура, Правой стороне Зеленый Цифровой дисплей для набора остановка температуры.
Подключаем к древнему многострадальному АТ БП (заодно нагрузив его вентилятором для охлаждения датчика).
Термостат «кушает» 12 вольт, именно то, что мне нужно.
Реле нормально разомкнутое, указано, что коммутируемый ток до 10 ампер.
Индикаторы показывают, кроме текущей температуры, ещё и границы срабатывания. Назову их стартовой и финишной температурой (Ksiman в своём обзоре использовал умное слово «гистерезис», мне такое, честно говоря, «слабО»)
К сожалению, светодиодные сборки довольно трудно сфотографировать, так что мне придется ещё и расписывать, ЧТО же там было видно.
Ставим стартовую температуру в 22 градуса и крепко сжимаем датчик в руке…
(стартовая 22, текущая 22, финишная 23)
Температура поднимается и реле срабатывает – текущая температура 24:
Если нужно сделать наоборот – включение при понижении температуры, то достаточно стартовую сделать выше финишной.
Стартовая 24, текущая 24, финишная 22, датчик остужаю вентилятором. Очень медленно остывает…
Ток потребления достаточно небольшой:
Обратная сторона платы. Реле типовое, я даже не стал его нагружать – и так щелчок слышно:
Микросхемы крупным планом.
Звукового сигнала при срабатывании реле нет, буззер, распаянный на плате, попискивает только при нажатии кнопок.
Датчик:
Следует заметить, что установленные пороговые значения температуры сохраняются при отключении питания.
Вот и всё. Простите за некоторую сумбурность, просто очень холодно, мысли путаются.
Термостат куплен за свои.
Планирую купить +78 Добавить в избранное Обзор понравился +45 +107В этой статье мы будем рассматривать устройства, поддерживающие определенный тепловой режим, или же сигнализирующие о достижении нужного значения температуры. Такие устройства имеют очень широкую сферу применения: они могут поддерживать заданную температуру в инкубаторах и аквариумах, теплых полах и даже являться частью умного дома. Для вас мы предоставили инструкцию о том, как сделать терморегулятор своими руками и с минимумом затрат.
Немного теории
Простейшие измерительные датчики, в том числе и реагирующие на температуру, состоят из измерительного полуплеча из двух сопротивлений, опорного и элемента, меняющего свое сопротивление в зависимости от прилаживаемой к нему температуры. Более наглядно это представлено на картинке ниже.
Как видно из схемы, резистор R2 является измерительным элементом самодельного терморегулятора, а R1, R3 и R4 опорным плечом устройства. Это терморезистор. Он представляет собой проводниковый прибор, который изменяет своё сопротивление при изменении температуры.
Элементом терморегулятора, реагирующим на изменение состояния измерительного плеча, является интегральный усилитель в режиме компаратора. Данный режим переключает скачком выход микросхемы из состояния выключено в рабочее положение. Таким образом, на выходе компаратора мы имеем всего два значения «включено» и «выключено». Нагрузкой микросхемы является вентилятор для ПК. При достижении температуры определенного значения в плече R1 и R2 происходит смещение напряжения, вход микросхемы сравнивает значение на контакте 2 и 3 и происходит переключение компаратора. Вентилятор охлаждает необходимый предмет, его температура падает, сопротивление резистора меняется и компаратор отключает вентилятор. Таким образом поддерживается температура на заданном уровне, и производится управление работой вентилятора.
Обзор схем
Напряжение разности с измерительного плеча поступает на спаренный транзистор с большим коэффициентом усиления, а в качестве компаратора выступает электромагнитное реле. При достижении на катушке напряжения, достаточного для втягивания сердечника, происходит ее срабатывание и подключение через ее контакты исполнительных устройств. При достижении заданной температуры, сигнал на транзисторах уменьшается, синхронно падает напряжение на катушке реле, и в какой-то момент происходит расцепление контактов и отключение полезной нагрузки.
Особенностью такого типа реле является наличие – это разница в несколько градусов между включением и отключением самодельного терморегулятора, из-за присутствия в схеме электромеханического реле. Таким образом, температура всегда будет колебаться на несколько градусов возле нужного значения. Вариант сборки, предоставленный ниже, практически лишен гистерезиса.
Принципиальная электронная схема аналогового терморегулятора для инкубатора:
Данная схема была очень популярна для повторения в 2000 годах, но и сейчас она не потеряла актуальность и с возложенной на нее функцией справляется. При наличии доступа к старым деталям, можно собрать терморегулятор своими руками практически бесплатно.
Сердцем самоделки является интегральный усилитель К140УД7 или К140УД8. В данном случае он подключен с положительной обратной связью и является компаратором. Термочувствительным элементом R5 служит резистор типа ММТ-4 с отрицательным ТКЕ, это значит, что при нагревании его сопротивление уменьшается.
Выносной датчик подключается через экранированный провод. Для уменьшения и ложного срабатывания устройства, длина провода не должна превышать 1 метр. Нагрузка управляется через тиристор VS1 и максимально допустимая мощность подключаемого нагревателя зависит от его номинала. В данном случае 150 Ватт, электронный ключ – тиристор необходимо установить на небольшой радиатор, для отвода тепла. В таблице ниже представлены номиналы радиоэлементов, для сборки терморегулятора в домашних условиях.
Устройство не имеет гальванической развязки от сети 220 Вольт, при настройке будьте внимательны, на элементах регулятора присутствует сетевое напряжение, которое опасно для жизни. После сборки обязательно изолируйте все контакты и поместите устройство в токонепроводящий корпус. На видео ниже рассматривается, как собрать терморегулятор на транзисторах:
Самодельный термостат на транзисторах
Теперь расскажем как сделать регулятор температуры для теплого пола. Рабочая схема срисована с серийного образца. Пригодится тем, кто хочет ознакомиться и повторить, или как образец для поиска неисправности прибора.
Центром схемы является микросхема стабилизатора, подключенная необычным способом, LM431 начинает пропускать ток при напряжении выше 2,5 Вольт. Именно такой величины у данной микросхемы внутренний источник опорного напряжения. При меньшем значении тока она ни чего не пропускает. Эту ее особенность стали использовать во всевозможных схемах терморегуляторов.
Как видим, классическая схема с измерительным плечом осталась: R5, R4 – дополнительные резисторы , а R9 — терморезистор. При изменении температуры происходит сдвиг напряжения на входе 1 микросхемы, и в случае, если оно достигло порога срабатывания, то напряжение идет дальше по схеме. В данной конструкции нагрузкой для микросхемы TL431 являются светодиод индикации работы HL2 и оптрон U1, для оптической развязки силовой схемы от управляющих цепей.
Как и в предыдущем варианте, устройство не имеет трансформатора, а получает питание на гасящей конденсаторной схеме C1, R1 и R2, поэтому оно так же находится под опасным для жизни напряжением, и при работе со схемой нужно быть предельно осторожным. Для стабилизации напряжения и сглаживания пульсаций сетевых всплесков, в схему установлен стабилитрон VD2 и конденсатор C3. Для визуальной индикации наличия напряжения на устройстве установлен светодиод HL1. Силовым управляющим элементом является симистор ВТ136 с небольшой обвязкой для управления через оптрон U1.
При данных номиналах диапазон регулирования находится в пределах 30-50°С. При кажущейся на первый взгляд сложности конструкция проста в настройке и легка в повторении. Наглядная схема терморегулятора на микросхеме TL431, с внешним питанием 12 вольт для использования в системах домашней автоматики представлена ниже:
Данный терморегулятор способен управлять компьютерным вентилятором, силовым реле, световыми индикаторами, звуковыми сигнализаторами. Для управления температурой паяльника существует интересная схема с использованием все той же интегральной микросхемы TL431.
Для измерения температуры нагревательного элемента используют биметаллическую термопару, которую можно позаимствовать с выносного измерителя в мультиметре или купить в специализированном магазине радиодеталей. Для увеличения напряжения с термопары до уровня срабатывания TL431, установлен дополнительный усилитель на LM351. Управление осуществляется через оптрон MOC3021 и симистор T1.
При включении терморегулятора в сеть необходимо соблюдать полярность, минус регулятора должен быть на нулевом проводе, иначе фазное напряжение появится на корпусе паяльника, через провода термопары. В этом и является главный недостаток этой схемы, ведь не каждому хочется постоянно проверять правильность подключения вилки в розетку, а если пренебречь этим, то можно получить удар током или повредить электронные компоненты во время пайки. Регулировка диапазона производится резистором R3. Данная схема обеспечит долгую работу паяльника, исключит его перегрев и увеличит качество пайки за счет стабильности температурного режима.
Еще одна идея сборки простого терморегулятора рассмотрена на видео:
Регулятор температуры на микросхеме TL431
Простой регулятор для паяльника
Разобранных примеров регуляторов температуры вполне достаточно для удовлетворения нужд домашнего мастера. Схемы не содержат дефицитных и дорогих запчастей, легко повторяются и практически не нуждаются в настройке. Данные самоделки запросто можно приспособить для регулирования температуры воды в баке водонагревателя, следить за теплом в инкубаторе или теплице, модернизировать утюг или паяльник. Помимо этого можно восстановить старенький холодильник, переделав регулятор для работы с отрицательными значениями температуры, путем замены местами сопротивлений в измерительном плече. Надеемся наша статья была интересна, вы нашли ее для себя полезной и поняли, как сделать терморегулятор своими руками в домашних условиях! Если же у вас все еще остались вопросы, смело задавайте их в комментариях.
|
|
|
jpg” bgcolor=”#53544E”> | ||
|
jpg”> | |||
|
jpg”> | |||
USB IO Board Stick | |||
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Стабилизатор напряжения на 431. Проверка источника опорного напряжения tl431. Технические характеристики TL431Добрый день друзья! Сегодня мы познакомимся с еще одной железкой, которая используется в вычислительной технике. Используется не так часто, как, скажем, или , но тоже достоин внимания . Что такое опорное напряжение TL431?В блоках питания персональных компьютеров можно встретить источник опорного напряжения (ИВ) на микросхеме TL431. Вы можете думать об этом как о регулируемом стабилитроне. Но это именно микросхема, так как в ней размещено более десятка транзисторов, не считая других элементов. Стабилитрон – это такая штука, которая поддерживает (стремится поддерживать) постоянное напряжение на нагрузке. Дело в том, что микросхемы, входящие в состав компьютера – и большие, и малые – могут работать только в определенном (не очень большом) диапазоне питающих напряжений. Если диапазон превышен, их выход из строя весьма вероятен. Поэтому в (не только компьютерных) схемах и компонентах используются схемы стабилизации напряжения. При определенном диапазоне напряжений между анодом и катодом (и определенном диапазоне катодных токов) микросхема обеспечивает на своем выходе ref опорное напряжение 2.5 В относительно анода. С помощью внешних цепей (резисторов) можно варьировать напряжение между анодом и катодом в достаточно широком диапазоне – от 2,5 до 36 В. Таким образом, нам не нужно искать стабилитроны на определенное напряжение! Можно просто изменить номиналы резисторов и получить нужный нам уровень напряжения. В компьютерных блоках питания имеется резервный источник напряжения +5VSB. Когда вилка блока питания подключена, она присутствует на одном из контактов основного разъема питания, даже если компьютер не включен. В данном случае некоторые компоненты материнской платы компьютера находятся под этим напряжением. . Именно с его помощью запускается основная часть питания – по сигналу с материнской платы. В формировании этого напряжения часто участвует микросхема TL431. При выходе из строя значение дежурного напряжения может отличаться – и довольно сильно – от номинального значения. Чем это может нам угрожать? Если напряжение +5VSB больше необходимого, компьютер может зависнуть, так как часть микросхем материнской платы питается повышенным напряжением. Иногда такое поведение компьютера вводит в заблуждение неопытного ремонтника. Ведь измерил основные питающие напряжения блока питания +3,3 В, +5 В, +12 В – и увидел, что они в пределах допуска. Он начинает копать в другом месте и тратит много времени на устранение неполадок. А надо было просто измерить напряжение дежурного источника! Напомним, что напряжение +5VSB должно быть в пределах 5% допуска, т. Если напряжение резервного источника меньше необходимого, компьютер может вообще не запуститься . Как проверить TL431?Эту микросхему нельзя “прозвонить” как обычный стабилитрон. Чтобы убедиться, что он работает правильно, вам нужно собрать небольшую схему для тестирования. В этом случае выходное напряжение в первом приближении описывается формулой Vo = (1 + R2/R3) * Vref (см. техпаспорт *), где Vref — опорное напряжение, равное 2.5 В. При замыкании кнопки S1 выходное напряжение будет 2,5 В (опорное напряжение), при отпускании — 5 В. Таким образом, нажав и отпустив кнопку S1 и измерив сигнал на выходе схемы, можно убедиться в исправности (или неисправности) микросхемы. Тестовая схема может быть выполнена в виде отдельного модуля с использованием 16-контактного DIP-разъема 2,5 мм. Источник питания и измерительные провода тестера подключаются к выходным клеммам модуля. Для проверки микросхемы нужно вставить ее в разъем, нажать кнопку и посмотреть на дисплей тестера. Если микросхема не вставлена в разъем, выходное напряжение будет примерно 10 В. Вот и все! Просто, не так ли? * Спецификация — это спецификация электронных компонентов. Их можно найти с помощью поисковой системы в Интернете. С вами был Виктор Геронда. До встречи на блоге! Выпуск интегральной микросхемы начался в далеком 1978 году и продолжается по сей день.Микросхема позволяет изготавливать различные типы сигнализаций и зарядных устройств для повседневного использования. Микросхема tl431 широко применяется в бытовой технике: мониторах, магнитофонах, планшетах. TL431 — это разновидность программируемого регулятора напряжения. Схема подключения и принцип работы Принцип работы достаточно прост. Стабилизатор имеет постоянное опорное напряжение , и если подаваемое напряжение будет меньше этого номинала, то транзистор будет закрыт и не будет пропускать ток.
Распиновка и технические параметрыОперационный усилитель доступен в различных упаковках.Изначально это был корпус ТО-92, но со временем он был заменен более новой версией СОТ-23. Ниже распиновка и типы корпусов начиная от самых “древних” и заканчивая обновленной версией. На рисунке видно, что распиновка tl431 различается в зависимости от типа корпуса. У tl431 есть отечественные аналоги КР142ЕН19А, КР142ЕН19А. Имеются и зарубежные аналоги tl431: КА431АЗ, КИА431, LM431BCM, АС431, 3с1265р, которые ничем не уступают отечественному варианту. Спецификация TL431 Этот операционный усилитель работает от 2,5 В до 36 В.
Более подробная техническая характеристика представлена на рис. 4 В описании tl431A видно, что значение тока довольно мало и составляет заявленные 100мА, а количество мощности, которое эти корпуса рассеивают, не превышает сотни милливатт. Этого недостаточно. Если приходится работать с более серьезными токами, то правильнее будет использовать мощные транзисторы с улучшенными параметрами. Проверка стабилизатора Сразу возникает уместный вопрос, как проверить tl431 мультиметром … Как показывает практика, проверить одним мультиметром не получится. Резистор R3 должен быть подобран таким образом, чтобы он ограничивал ток до 20 мА в цепи питания.Его номинал составляет примерно 100 Ом. Резисторы R2 и R3 выполняют роль балансира. Как только на управляющем электроде появится напряжение 2,5 В, переход светодиода разомкнется и через него пойдет напряжение. Преимущество этой схемы в том, что светодиод действует как индикатор. Источник постоянного тока – 5В фиксированный, а управлять микросхемой tl431 можно с помощью переменного резистора R2. При отсутствии питания на микросхему диод не горит. После изменения сопротивления подстроечным резистором загорается светодиод.После этого мультиметр необходимо включить в режим измерения постоянного тока и измерить напряжение на управляющем выводе, которое должно быть 2,5. Если напряжение присутствует и светодиод горит, то элемент можно считать исправным. На основе операционного усилителя tl431 можно создать простой стабилизатор. Для создания нужного значения U необходимы три резистора. Необходимо рассчитать значение запрограммированного напряжения стабилизатора. Расчет можно произвести по формуле: Uвых = Vref (1 + R1/R2).По формуле U на выходе зависит от величины R1 и R2. Чем выше сопротивление R1 и R2, тем ниже напряжение выходного каскада. Получив номинал R2, значение R1 можно рассчитать следующим образом: R1 = R2 (Uвых/Vref – 1). Регулируемый стабилизатор можно включить тремя способами.
Зарядное устройство для мобильного телефона Стабилизатор можно использовать как своего рода ограничитель тока. Это свойство будет полезно в устройствах для зарядки мобильных телефонов. Если напряжение в выходном каскаде не достигает 4,2 В, ограничивается ток в цепях питания. После достижения заявленных 4,2 В стабилизатор снижает значение напряжения – следовательно, падает и значение тока.Элементы схемы VT1, VT2 и R1-R3 отвечают за ограничение величины тока в цепи. Сопротивление R1 шунтирует VT1. После превышения 0,6 В элемент VT1 открывается и постепенно ограничивает подачу напряжения на биполярный транзистор VT2. На базе транзистора VT3 резко снижается значение тока. Переходы постепенно закрываются. Напряжение падает, что приводит к падению силы тока. Как только U приближается к 4,2 В, регулятор tl431 начинает уменьшать свое значение в выходных каскадах устройства, и заряд прекращается. Для изготовления устройства необходимо использовать следующий набор элементов: Необходимое особое внимание обратить на транзистор аз431 … Для равномерного снижения напряжения в выходных каскадах желательно поставить транзистор аз431, даташит биполярного транзистора можно увидеть в таблице.
Операционный усилитель TL431 является многофункциональным элементом и позволяет конструировать различные устройства: зарядные устройства для мобильных телефонов, системы сигнализации и многое другое. Как показывает практика, операционный усилитель имеет хорошие характеристики и не уступает зарубежным аналогам. Мне нужен был недорогой эталон напряжения. Полистав каталоги, остановил свой выбор на микросхеме TL431 за 20 руб. Сейчас я вам расскажу, что это за насекомое и как его использовать. TL431 — это так называемый программируемый стабилитрон. Он используется в качестве источника опорного напряжения и источника питания для маломощных цепей. Выпускается несколькими производителями и в разных упаковках, мне достался от Texas Instruments в упаковке SOT23. Технические характеристики: Выходное напряжение от 2,5 до 36 В Имеет три вывода. В полной схеме подключения к TL431 добавлены еще два резистора, но в этом случае можно получить произвольное выходное напряжение. Если задать номинал одного из резисторов и выходное напряжение, то можно рассчитать номинал второго резистора. Если для получения опорного напряжения используется TL431, то резисторы R2 и R3 нужно брать с точностью до 1% из серии Е96. Исходные данные Входное напряжение Uвх = 9 В Данные из техпаспорта: Iст = 1..100 мА Плата Устанавливаем номинал резистора R2. Максимальное значение этого резистора ограничено током Iref = 2 мкА. Если взять номинал резистора R2 равным единицам/десяткам кОм, то так и пойдет. Пусть R2 = 10 кОм. Поскольку в качестве источника питания используется TL431, высокая точность здесь не нужна и слагаемым Iref*R2 можно пренебречь. Ток делителя напряжения равен Uвых / (R1 + R2) = 5/20000 = 250 мкА. Ток TL431 может быть от 1 до 100 мА. Если принять ток Iст > 2 мА, то током делителя можно пренебречь. Тогда входной ток будет Iin = Ist + Il = 2 + 10 = 12 мА. А номинальное значение R1 = (Uвх – Uвых) / Iвх = (9 – 5) /0,012 = 333 Ом. Округлим до 300. Мощность, рассеиваемая на резисторе R1, равна (9 – 5) * 0,012 = 0,05 Вт. На остальных резисторах она будет еще меньше. R1 = 300 Ом Примерно так, без учета нюансов. Если использовать TL431 и поставить конденсатор на выходе, микросхема может “гудеть”. Вместо снижения выходного шума на катоде появится периодический пилообразный сигнал в несколько милливольт. Про светодиоды я уже писал довольно много, теперь читатели не знают, как их правильно запитать и чтобы они не сгорели раньше времени. Сейчас продолжаю стремительно расширять раздел блоков питания, стабилизаторов напряжения и преобразователей тока. В первую десятку популярных электронных компонентов входят регулируемый регулятор TL431 и его собрат, ШИМ-контроллер TL494. В блоках питания он действует как «программируемый источник опорного напряжения, схема очень проста.В импульсных блоках питания на TL431 реализована обратная связь и опорное напряжение. Ознакомьтесь с характеристиками и паспортами других ИС, используемых для питания.
Технические характеристики Широко применяется благодаря крутизне своих технических характеристик и стабильности параметров при разных температурах. Основные характеристики:
Подробные характеристики и режимы работы указаны в даташите на русском языке в конце этой страницы или вы можете скачать Пример использования на плате Стабильность параметров зависит от температуры окружающей среды, очень стабильна, на выходе мало шума и напряжение плавает +/- 0.005В по техпаспорту. Помимо бытовой модификации TL431C от 0° до 70° доступна версия TL431A с более широким диапазоном температур от -40° до 85°. Проверить работоспособность микросхемы мультиметром невозможно, так как она состоит из 10 транзисторов. Для этого необходимо собрать тестовую схему включения, по которой можно определить степень исправности, элемент не всегда выходит из строя полностью, он может просто сгореть. Схемы подключения TL431Рабочие характеристики стабилизатора задаются двумя резисторами. Варианты использования этой микросхемы могут быть разными, но наибольшее распространение она получила в блоках питания с регулируемым и фиксированным напряжением. Он часто используется в стабилизаторах тока в зарядных устройствах USB, промышленных блоках питания, принтерах и другой бытовой технике. TL431 встречается почти в любом блоке питания ATX от компьютера, можно у него позаимствовать.Силовые элементы с радиаторами, диодные мосты тоже есть. В этой микросхеме реализовано множество схем зарядного устройства для литиевых аккумуляторов. Распиновка TL431Как показывает практика, распиновка TL431 может быть разной, и зависит от производителя.На изображении показана распиновка из таблицы данных Texas Instruments. Если снять его с какой-нибудь готовой платы, то распиновку ножек видно на самой плате. Datasheet на русском языке..Многие радиолюбители не очень хорошо владеют английским языком и техническими терминами. Я достаточно хорошо владею языком предполагаемого врага, но при разработке меня все же раздражает постоянное воспоминание о переводе электрических терминов на русский язык. Перевод даташита TL431 на русский язык сделал наш коллега, которому мы благодарны. Николай Петрушов Рис. 1 TL431. TL431 был создан в конце 70-х годов и до сих пор широко используется в промышленности и радиолюбительской деятельности. Для начала посмотрим, что у него внутри и обратимся к документации на микросхему, даташит (кстати аналоги этой микросхемы – КА431, и наши микросхемы КР142ЕН19А, К1156ЭП5х). Оказывается все очень просто. Внутри обычный операционный усилитель (треугольник на блок-схеме) с выходным транзистором и источником опорного напряжения. Теперь на примере простой схемы, показанной на рисунке 4, посмотрим, как все это работает. Из схемы (рис. 4) видно, что делитель напряжения из резисторов R2 и R3 подключен к входу R микросхемы TL431, резистор R1 ограничивает ток светодиода. Получается, что если этот делитель напряжения (R2-R3) подключить к выходу блока питания, а катод ТЛ-ки к базе или затвору регулирующего транзистора блока питания, то изменением плеч делителя, например изменяя номинал R3, можно будет изменить выходное напряжение этого блока питания, т.к. в этом случае изменится и напряжение стабилизации ТЛ-ки (напряжение открытия выходного транзистора) – т.е. мы получим управляемый стабилитрон. Выход; – если микросхема используется как стабилитрон (его основное назначение), то можно сделать стабилитрон с любым напряжением стабилизации в диапазоне 2,5 – 36 вольт подбором сопротивлений делителя R2-R3 (максимальное ограничение на «техническое описание»). Тогда возникает больше вопросов. можно ли например TL431 заменить на обычный операционник? Еще вопрос – можно ли использовать TL431 как штатный компаратор и собрать на нем, скажем, термостат или что-то в этом роде? Можно, но так как от обычного компаратора он отличается наличием встроенного источника опорного напряжения, то схема получится намного проще. Например это; Здесь термистор (термистор) является датчиком температуры, и он уменьшает свое сопротивление при повышении температуры, т. Рис. 6 Мощный блок питания 13 В, 22 А. Цифровой термостат с АРНЦифровой термостат с АРН Введение: Перемычка DP1 — Аппаратное отключение обогрева (система используется только для охлаждения. Не использовать светодиод 1. Выход обогрева не используется.) Светодиод 1 светится = нагрев включен, светодиод 1 мигает = нагрев активен. TL1 – отключение/включение обогрева (основной экран) или “+” (в режиме настройки) Температура охлаждения автоматически устанавливается как минимум на 1°C выше температуры нагрева, так что отопление и кондиционирование воздуха не могут работать одновременно или попеременно.В случае более значительных превышений температуры однако разница температур должна быть установлена вручную еще больше. Пример: Гистерезис установлен на 2°C. Температура нагрева устанавливается на 20°C. Таким образом, нагрев начинается при 19°C и останавливается при 21°C. Температура охлаждения установлена на 28°C. Таким образом, охлаждение начинается при 29°С и заканчивается при 27°С. Программа для бесплатного скачивания: Схема простого цифрового термостата AVR с ATmega8(A)(L).
Видео – проверка термостата (используется только для отопления). Добавлено: 1. 10. 2012 пошаговая инструкция по изготовлению самодельного устройстваПростой электронный терморегулятор своими руками.Предлагаю способ изготовления самодельного терморегулятора для поддержания комфортной температуры в помещении в холодную погоду. Термостат позволяет коммутировать мощность до 3,6 кВт. Важнейшей частью любой радиолюбительской конструкции является корпус. Красивый и надежный корпус обеспечит долгую жизнь любому самодельному устройству. В показанном ниже варианте термостата использован удобный малогабаритный корпус и вся силовая электроника от продаваемого в магазинах электронного таймера. Электронная часть самоделки построена на микросхеме компаратора LM311. Описание работы схемыДатчик температуры терморезистор R1 номиналом 150к, тип ММТ-1. Датчик R1 вместе с резисторами R2, R3, R4 и R5 образуют измерительный мост. Для подавления помех установлены конденсаторы С1-С3. Переменный резистор R3 уравновешивает мост, то есть задает температуру. Если температура датчика температуры R1 упадет ниже установленного значения, то его сопротивление увеличится. Напряжение на входе 2 микросхемы LM311 станет больше, чем на входе 3.Компаратор сработает и на его выходе 4 установится высокий уровень, подача напряжения на электронную схему таймера через светодиод HL1 вызовет срабатывание реле и включение нагревательного прибора. При этом загорится светодиод HL1, указывая на то, что нагрев включен. Резистор R6 создает отрицательную обратную связь между выходом 7 и входом 2. Это позволяет установить гистерезис, то есть включение обогрева при температуре ниже, чем его выключение. Питание на плату подается от схемы электронного таймера.Резистор R1, размещенный на земле, требует тщательной изоляции, так как питание терморегулятора бестрансформаторное и не имеет гальванической развязки с сетью, то есть на элементах устройства присутствует опасное сетевое напряжение … Порядок изготовления Термостат и изоляция термистора показаны ниже. Как сделать терморегулятор своими руками1. Вскрыт донор корпуса и цепи питания – электронный таймер CDT-1G.На серый трехжильный кабель установлен микроконтроллер таймера. Отпаиваем шлейф от платы. Отверстия для проводов шлейфа обозначены (+) – питание +5 Вольт, (O) – питание управляющего сигнала, (-) – минус питание. Электромагнитное реле будет переключать нагрузку. 2. Так как питание схемы от блока питания не имеет гальванической развязки от сети, то все работы по проверке и настройке схемы ведутся от безопасного источника питания 5 вольт.Сначала на стенде проверяем работоспособность элементов схемы. 3. После проверки элементов схемы конструкция собирается на плате. Плата для устройства не проектировалась и собрана на куске макетной платы. После сборки также проводится проверка работоспособности на стенде. 4. Термодатчик R1 установлен снаружи на боковой поверхности корпуса колодки-розетки, жилы изолированы термоусадочной трубкой. Для предотвращения контакта с датчиком, а также сохранения доступа наружного воздуха к датчику сверху устанавливается защитная трубка.Трубка изготовлена из средней части шариковой ручки. В трубке прорезано отверстие для установки на датчик. Трубка приклеена к корпусу. 5. Переменный резистор R3 установлен на верхней крышке корпуса, там же сделано отверстие для светодиода. Полезно для безопасности покрыть корпус резистора слоем изоленты. 6. Ручка регулировки резистора R3 самодельная и сделана своими руками из старой зубной щетки подходящей формы :). Резистор R3В этой статье мы рассмотрим устройства, поддерживающие определенный тепловой режим, или сигнализирующие о достижении нужной температуры.Такие устройства имеют очень широкий спектр применения: они могут поддерживать заданную температуру в инкубаторах и аквариумах, теплых полах и даже быть частью умного дома. Для вас мы предоставили инструкцию, как сделать терморегулятор своими руками и с минимальными затратами. Немного теорииПростейшие измерительные датчики, в том числе и реагирующие на температуру, состоят из измерительного полуплеча двух сопротивлений, эталонного и элемента, изменяющего свое сопротивление в зависимости от приложенной к нему температуры.Нагляднее это показано на картинке ниже. Как видно из схемы, резистор R2 является измерительным элементом самодельного термостата, а R1, R3 и R4 – опорным плечом прибора. Это термистор. Это токопроводящее устройство, которое меняет свое сопротивление при изменении температуры. Элемент термостата, реагирующий на изменение состояния измерительного плеча, представляет собой интегральный усилитель в режиме компаратора. Этот режим резко переключает выход микросхемы из выключенного состояния в рабочее положение.Таким образом, на выходе компаратора имеем только два значения «вкл» и «выкл». Нагрузкой микросхемы является вентилятор для ПК. При достижении температуры определенного значения в плечах R1 и R2 происходит сдвиг напряжения, вход микросхемы сравнивает значение на выводах 2 и 3, компаратор переключается. Вентилятор охлаждает необходимый объект, его температура падает, сопротивление резистора изменяется, и компаратор отключает вентилятор. Таким образом поддерживается температура на заданном уровне, а работа вентилятора контролируется. Обзор схемыНапряжение разности с измерительного плеча подается на спаренный транзистор с большим коэффициентом усиления, а в роли компаратора выступает электромагнитное реле. Когда катушка достигает напряжения, достаточного для втягивания сердечника, она срабатывает и подключает через свои контакты исполнительные устройства. При достижении заданной температуры снижается сигнал на транзисторах, одновременно падает напряжение на катушке реле и в какой-то момент происходит размыкание контактов и отключение полезной нагрузки. Особенностью этого типа реле является наличие – это разница в несколько градусов между включением и выключением самодельного терморегулятора, за счет наличия в цепи электромеханического реле. Таким образом, температура всегда будет колебаться на несколько градусов вокруг нужного значения. Представленный ниже вариант сборки практически лишен гистерезиса. Принципиальная электронная схема аналогового термостата для инкубатора: Эта схема была очень популярна для повторения в 2000 году, но и сейчас не потеряла своей актуальности и отлично справляется с возложенной на нее функцией.Если у вас есть доступ к старым деталям, вы можете собрать термостат своими руками практически бесплатно. Сердцем самоделки является интегральный усилитель К140УД7 или К140УД8. В данном случае он связан с положительной обратной связью и является компаратором. Термочувствительный элемент R5 представляет собой резистор ММТ-4 с отрицательным ТКЕ, а значит, при нагреве его сопротивление уменьшается. Выносной датчик подключен экранированным проводом. Для уменьшения и ложных срабатываний устройства длина провода не должна превышать 1 метра.Нагрузка управляется через тиристор VS1 и от его номинала зависит максимально допустимая мощность подключаемого нагревателя. При этом 150 Вт электронный тиристорный ключ необходимо установить на небольшой радиатор для отвода тепла. В таблице ниже приведены номиналы радиоэлементов для сборки терморегулятора в домашних условиях. Устройство не имеет гальванической развязки от сети 220 Вольт, будьте внимательны при настройке, на элементах регулятора присутствует сетевое напряжение, что опасно для жизни.После сборки обязательно заизолируйте все контакты и поместите устройство в непроводящий ток корпус. На видео ниже показано, как собрать транзисторный термостат: Самодельный транзисторный термостат Сейчас мы расскажем, как сделать регулятор температуры для теплого пола. Рабочая схема скопирована с серийного образца. Полезно для тех, кто хочет просмотреть и повторить, или как образец для устранения неполадок устройства. Центр схемы – микросхема стабилизатора, подключена необычным образом, LM431 начинает пропускать ток при напряжении выше 2.5 вольт. Именно такое значение у данной микросхемы имеет внутренний источник опорного напряжения. При меньшем значении тока ничего не пропускает. Эту его особенность стали использовать во всевозможных схемах термостатов. Как видите, осталась классическая схема с измерительным плечом: R5, R4 — добавочные резисторы, а R9 — терморезистор. При изменении температуры напряжение на входе 1 микросхемы смещается, и если оно достигает порога срабатывания, то напряжение идет дальше по цепи.В данной конструкции нагрузкой для микросхемы TL431 являются светодиод индикации работы HL2 и оптопара U1, для оптической развязки цепи питания от цепей управления. Как и в предыдущем варианте, прибор не имеет трансформатора, а питается от цепи гасящих конденсаторов С1, R1 и R2, поэтому он также находится под опасным для жизни напряжением, и при работе с ним нужно быть предельно осторожным схема. Для стабилизации напряжения и сглаживания пульсаций сетевых скачков в схеме установлены стабилитрон VD2 и конденсатор С3.На приборе установлен светодиод HL1 для визуальной индикации наличия напряжения. Элемент управления питанием – симистор ВТ136 с небольшой обвязкой для управления через оптопару У1. При этих номиналах диапазон регулирования находится в пределах 30-50°С. Несмотря на кажущуюся сложность конструкции, легко настраивается и легко повторяется. Наглядная схема терморегулятора на микросхеме TL431, с внешним питанием 12 вольт для использования в системах домашней автоматики представлена ниже: Этот термостат может управлять вентилятором компьютера, силовым реле, световыми индикаторами и звуковой сигнализацией.Для управления температурой паяльника есть интересная схема на той же микросхеме TL431. Для измерения температуры нагревательного элемента используется биметаллическая термопара, которую можно взять в мультиметре с выносного счетчика или купить в специализированном магазине радиодеталей. Для повышения напряжения с термопары до уровня срабатывания TL431 на LM351 установлен дополнительный усилитель. Управление осуществляется через оптопару МОС3021 и симистор Т1. При включении термостата в сеть необходимо соблюдать полярность, минус регулятора должен быть на нулевом проводе, иначе на корпусе паяльника, через провода термопары появится фазное напряжение. Это главный недостаток данной схемы, ведь не всем хочется постоянно проверять, что вилка подключена к розетке, а пренебрегая этим, можно получить удар током или повредить электронные компоненты при пайке. Диапазон регулируется резистором R3.Эта схема обеспечит длительную работу паяльника, исключит его перегрев и повысит качество пайки за счет стабильности температурного режима. Еще одна идея по сборке простого терморегулятора обсуждается в видео: Терморегулятор на микросхеме TL431 Простой регулятор для паяльника Разобранных образцов терморегуляторов вполне достаточно для нужд домашнего мастера.Схемы не содержат дефицитных и дорогих запчастей, легко воспроизводимы и практически не нуждаются в корректировке. Эти самоделки легко приспособить для регулирования температуры воды в баке водонагревателя, контроля тепла в инкубаторе или теплице, модернизации утюга или паяльника. Кроме того, восстановить старый холодильник можно, переделав регулятор для работы с отрицательными температурами, заменив сопротивления в измерительном плече. Надеемся, наша статья была интересной, вы нашли ее полезной для себя и поняли, как сделать терморегулятор своими руками в домашних условиях! Если у вас остались вопросы, не стесняйтесь задавать их в комментариях. Работу газового или электрического котла можно оптимизировать, используя внешнее управление агрегатом. Для этой цели предназначены внешние термостаты, доступные на рынке. Эта статья поможет вам разобраться, что представляют собой эти устройства и разобраться в их разновидностях. Также будет рассмотрен вопрос, как собрать терморегулятор своими руками. Назначение термостатовЛюбой электрический или газовый котел оснащен комплектом автоматики, следящей за нагревом теплоносителя на выходе из агрегата и отключающей основную горелку при достижении заданной температуры.Оборудованы аналогичными средствами и твердотопливные котлы. Они позволяют поддерживать температуру воды в определенных пределах, но не более того. При этом не учитываются климатические условия в помещении или на улице. Это не очень удобно, домовладельцу приходится постоянно самостоятельно выбирать подходящий режим работы котла. Погода может меняться в течение дня, то в комнатах становится жарко или прохладно. Было бы намного удобнее, если бы автоматика котла ориентировалась на температуру воздуха в помещениях.
Типы тепловых релеОбычный термостат представляет собой небольшой электронный блок, закрепленный на стене в подходящем месте и подключенный к источнику тепла проводами. На передней панели есть только регулятор температуры, это самый дешевый тип устройства. Кроме нее есть и другие типы тепловых реле:
Многофункциональные программируемые термостаты значительно экономят электроэнергию. В те часы дня, когда дома никого нет, нет смысла поддерживать в помещениях высокую температуру.Зная график работы своей семьи, домовладелец всегда может запрограммировать термовыключатель так, чтобы в определенные часы температура воздуха падала, а отопление включалось за час до прихода людей. Бытовые термостаты, оснащенные GSM-модулем, способны обеспечить дистанционное управление котельной посредством сотовой связи. Бюджетный вариант — отправка уведомлений и команд в виде смс-сообщений с мобильного телефона. Продвинутые версии устройств имеют собственные приложения, установленные на смартфоне. Как собрать термостат самостоятельно?Имеющиеся в продаже устройства управления отоплением достаточно надежны и не вызывают нареканий. Но при этом они стоят денег, и это не устраивает тех домовладельцев, которые хоть немного разбираются в электротехнике или электронике. Ведь понимая, как должен функционировать такой терморегулятор, вы сможете собрать и подключить его к теплогенератору своими руками. Конечно, сделать сложное программируемое устройство сможет далеко не каждый.Кроме того, для сборки такой модели необходимо приобрести комплектующие, тот же микроконтроллер, цифровой дисплей и другие детали. Если вы новичок в этом деле и разбираетесь в вопросе поверхностно, то стоит начать с какой-нибудь простой схемы, собрать и запустить ее в работу. Добившись положительного результата, можно нацеливаться на что-то более серьезное. Для начала нужно иметь представление из каких элементов должен состоять термостат с регулировкой температуры.Ответ на вопрос дает принципиальная схема, представленная выше и отражающая алгоритм работы устройства. По схеме любой термостат должен иметь элемент, который измеряет температуру и подает электрический импульс на блок обработки. Задача последнего — усилить или преобразовать этот сигнал таким образом, чтобы он служил командой исполнительному элементу — реле. Далее мы представим 2 простые схемы и объясним их работу в соответствии с этим алгоритмом, не прибегая к конкретным терминам. Цепь стабилитронаСтабилитрон — это тот же полупроводниковый диод, который пропускает ток только в одном направлении. Отличие от диода в том, что стабилитрон имеет управляющий контакт. Пока на него подается заданное напряжение, элемент открыт и по цепи протекает ток. Когда его значение падает ниже предела, цепочка разрывается. Первый вариант – схема теплового реле, где роль логического блока управления играет стабилитрон: Как видите, диаграмма разделена на две части.С левой стороны показана часть, предшествующая управляющим контактам реле (обозначение К1). Здесь измерительным узлом является терморезистор (R4), его сопротивление уменьшается с повышением температуры окружающей среды. Ручной регулятор температуры представляет собой переменный резистор R1, цепь питается напряжением 12 В. В штатном режиме на управляющем контакте стабилитрона присутствует напряжение более 2,5 В, цепь замкнута, реле включен.
Как только температура поднимется выше установленного предела, сопротивление R4 упадет, напряжение станет меньше 2,5 В, стабилитрон разорвет цепь. Далее то же самое сделает реле, отключив силовую часть, схема которой показана справа. Здесь простой термостат для котла снабжен симистором Д2, который вместе с замыкающими контактами реле служит исполнительным узлом.Через него проходит напряжение питания котла 220 В. Логическая микросхемаЭта схема отличается от предыдущей тем, что вместо стабилитрона в ней используется логическая микросхема К561ЛА7. Датчик температуры по-прежнему терморезистор (обозначение – VDR1), только теперь решение о замыкании цепи принимает логический блок микросхемы. Кстати марка К561ЛА7 выпускается с советских времен и стоит сущие копейки. Для промежуточного усиления импульсов используется транзистор КТ315, для этих же целей в оконечном каскаде установлен второй транзистор КТ815.Эта схема соответствует левой части предыдущей, силовой агрегат здесь не показан. Как нетрудно догадаться, может быть аналогично – с симистором КУ208Г. Работа такого самодельного термостата проверена на котлах ARISTON, BAXI, Дон. Заключение Самостоятельно подключить термостат к котлу не сложно; в интернете много материалов на эту тему. Но сделать его своими руками с нуля не так-то просто, кроме того, для проведения регулировки потребуется измеритель напряжения и тока.Покупать готовое изделие или браться за его изготовление самостоятельно – решение остается за вами. Терморегулятор в быту используется в самых разных устройствах, начиная от холодильника и заканчивая утюгами и паяльниками. Наверное, нет такого радиолюбителя, который обошёл бы такую схему. Чаще всего в качестве датчика температуры или датчика в различных любительских конструкциях используются термисторы, транзисторы или диоды. Работа таких терморегуляторов достаточно проста, алгоритм работы примитивен, и, как следствие, простая электрическая схема. Заданная температура поддерживается включением и выключением нагревательного элемента (ТЭН): как только температура достигает заданного значения, срабатывает компаратор и ТЭН выключается. Этот принцип регулирования реализован во всех простых регуляторах. Казалось бы, все просто и понятно, но это только к делу, пока дело не доходит до практических опытов. Самый сложный и трудоемкий процесс при изготовлении «простых» термостатов – настройка на необходимую температуру.Для определения характерных точек шкалы температур датчик предлагается сначала погружать в сосуд с тающим льдом (это ноль градусов Цельсия), а затем в кипящую воду (100 градусов). После такой “калибровки” методом проб и ошибок, с помощью термометра и вольтметра выставляется необходимая температура срабатывания. После таких экспериментов результат не самый лучший. В настоящее время различные компании производят множество датчиков температуры, которые уже откалиброваны в процессе производства.В основном это датчики, предназначенные для работы с микроконтроллерами. Информация на выходе этих датчиков цифровая, передается по однопроводному двунаправленному интерфейсу 1-wire, что позволяет создавать на базе таких устройств целые сети. Другими словами, очень легко создать многоточечный термометр, следить за температурой, например, в помещении и за окном, и даже не в одной комнате. На фоне такого обилия интеллектуальных цифровых датчиков хорошо смотрится скромный прибор LM335 и его разновидности 235, 135.Первая цифра в маркировке указывает на назначение устройства: 1 соответствует военной приемке, 2 – промышленному использованию, а тройка – использованию компонента в бытовой технике. Кстати, такая же стройная система обозначений характерна для многих импортных деталей, таких как операционные усилители, компараторы и многие другие. Отечественным аналогом таких обозначений стала маркировка транзисторов, например, 2Т и КТ. Первые предназначались для военных, вторые — для широкого применения.Но пора вернуться к уже знакомому LM335. Внешне этот датчик выглядит как маломощный транзистор в пластиковом корпусе ТО-92, но внутри у него 16 транзисторов. Также этот датчик может быть в корпусе СО – 8, но различий между ними нет. Внешний вид датчика показан на рисунке 1. Рисунок 1. Внешний вид датчика LM335 По принципу работы датчик LM335 представляет собой стабилитрон, в котором напряжение стабилизации зависит от температуры.При повышении температуры на один градус Кельвина напряжение стабилизации увеличивается на 10 милливольт. Типовая схема подключения показана на рисунке 2. Рисунок 2. Типовая схема подключения датчика LM335 При взгляде на этот рисунок сразу возникает вопрос, какое сопротивление резистора R1 и какое напряжение питания при такой схеме включения. Ответ содержится в технической документации, где сказано, что нормальная работа изделия гарантируется в диапазоне тока 0.45…5,00 миллиампер. Обратите внимание, что предел 5 мА не должен превышаться, так как датчик перегревается и измеряет собственную температуру. Что покажет датчик LM335? Согласно документации (Data Sheet) датчик откалиброван по абсолютной шкале Кельвина. Если предположить, что температура в помещении -273,15°С, а это абсолютный ноль в Кельвинах, то рассматриваемый датчик должен показывать нулевое напряжение. При повышении температуры на каждый градус выходное напряжение стабилитрона будет увеличиваться на целых 10 мВ или 0.010В. Чтобы преобразовать температуру из обычной шкалы Цельсия в шкалу Кельвина, просто добавьте 273,15. Ну про 0,15 всегда забывают, поэтому просто 273, и получается, что 0°С это 0+273=273°К. В учебниках физики нормальная температура 25°С, а по Кельвину 25+273=298, а точнее 298,15. Именно эта точка упоминается в техпаспорте как единственная точка калибровки датчика. Таким образом, при температуре 25°С на выходе датчика должно быть 298.15 * 0,010 = 2,9815В. Рабочий диапазон датчика находится в пределах -40…100°С и во всем диапазоне характеристика датчика очень линейна, что позволяет легко рассчитать показания датчика при любой температуре: сначала нужно преобразовать температура от Цельсия до Кельвина. Затем умножьте полученную температуру на 0,010В. Последний ноль в этом числе указывает на то, что напряжение в Вольтах указано с точностью до 1 мВ. Все эти рассуждения и расчеты должны привести к мысли, что при изготовлении термостата вам не придется ничего калибровать, погружая датчик в кипящую воду и тающий лед.Достаточно просто рассчитать напряжение на выходе LM335, после чего остается только установить это напряжение в качестве задающего на вход компаратора (компаратора). Еще одной причиной использования LM335 в его конструкции является низкий ценник. В интернет-магазине его можно купить примерно за 1 доллар. Вероятно, доставка будет стоить дороже. После всех этих теоретических рассуждений можно переходить к разработке электрической схемы терморегулятора. В данном случае для погреба. Схема термостата для погреба Чтобы сконструировать погребной термостат на основе аналогового датчика температуры LM335, ничего нового изобретать не нужно. Достаточно обратиться к технической документации (Data Sheet) на данный компонент. В техпаспорте указаны все способы использования датчика, включая собственно термостат. А вот эту схему можно считать функциональной, по которой можно изучить принцип работы.На практике придется дополнить его устройством вывода, позволяющим включать ТЭН заданной мощности и, конечно же, блоком питания и, возможно, индикаторами работы. Об этих узлах мы поговорим чуть позже, а пока посмотрим, что предлагает фирменная документация, это даташит. Схема в том виде, в каком она есть, показана на рисунке 3. Рисунок 3. Схема подключения датчика LM335 Как работает компаратор Основой предлагаемой схемы является компаратор LM311, он же 211 или 111.Как и все компараторы, 311-й имеет два входа и выход. Один из входов (2) прямой и отмечен знаком +. Другой вход – обратный (3) помечен знаком минус. Выход компаратора пин 7. Логика компаратора достаточно проста. Когда напряжение на прямом входе (2) больше, чем на инверсном (3), на выходе компаратора устанавливается высокий уровень. Транзистор открывается и подключает нагрузку. На рисунке 1 это сразу ТЭН, а это функциональная схема.К прямому входу подключен потенциометр, который задает порог компаратора, т.е. заданное значение температуры. Когда напряжение на обратном входе больше, чем на прямом входе, на выходе компаратора будет низкий уровень. Датчик температуры LM335 подключен к инверсному входу, поэтому при повышении температуры (нагреватель уже включен) напряжение на инверсном входе будет увеличиваться. Когда напряжение датчика достигает порога, установленного потенциометром, компаратор переключается на низкий уровень, транзистор закрывается и выключает нагреватель.Затем весь цикл будет повторяться. Осталось совсем ничего – на основе рассмотренной функциональной схемы разработать практическую схему, максимально простую и доступную для повторения начинающими радиолюбителями. Возможный вариант практической схемы показан на рисунке 4. Рисунок 4. Несколько пояснений к принципиальной схеме Нетрудно заметить, что базовая схема немного изменилась.В первую очередь вместо нагревателя транзистор будет включать реле, а что реле включать об этом чуть позже. Также появился электролитический конденсатор С1, назначение которого сглаживание пульсаций напряжения на стабилитроне 4568. Но о назначении деталей поговорим чуть подробнее. Питание датчика температуры и делителя напряжения уставки температуры R2, R3, R4 стабилизировано параметрическим стабилизатором R1, 1N4568, C1 с напряжением стабилизации 6 В.4В. Даже если все устройство будет питаться от стабилизированного источника, дополнительный стабилизатор не помешает. Это решение позволяет запитать все устройство от источника, напряжение которого можно выбирать в зависимости от имеющегося напряжения катушки реле. Скорее всего это будет 12 или 24В. Блок питания может быть даже нерегулируемый, просто диодный мост с конденсатором. Но лучше не поскупиться и поставить в блок питания интегральный стабилизатор 7812, который также обеспечит защиту от КЗ. Если разговор зашел о реле, что можно применить в этом случае? В первую очередь это современные малогабаритные реле, наподобие тех, что используются в стиральных машинах. Внешний вид реле показан на рисунке 5. Рис. 5. Маленькое реле Несмотря на свои миниатюрные размеры, такие реле могут коммутировать ток до 10А, что позволяет коммутировать нагрузку до 2КВт. Это если на все 10А, но это не обязательно. Максимум, что можно включить таким реле, это ТЭН мощностью не более 1 кВт, ведь должен же быть хоть какой-то “запас прочности”! Очень хорошо, если реле своими контактами включает магнитный пускатель серии ПМЭ, и пусть включает ТЭН.Это один из самых надежных вариантов переключения нагрузки. Возможная реализация этой опции показана на рисунке 6. Рисунок 6. Блок питания термостата Питание устройства нестабилизированное, а так как сам термостат (одна микросхема и один транзистор) мощности практически не потребляет, то в качестве источника питания вполне подойдет любой сетевой адаптер китайского производства. Если делать блок питания, как показано на схеме, то вполне подойдет небольшой силовой трансформатор от кассетного магнитофона, калькулятора или чего-то еще.Главное, чтобы напряжение на вторичной обмотке не превышало 12..14В. При меньшем напряжении реле не сработает, а при большем может просто сгореть. Если выходное напряжение трансформатора в пределах 17…19В, то без стабилизатора не обойтись. Это не должно пугать, ведь современные интегральные стабилизаторы имеют всего 3 вывода, припаять их не так уж и сложно. Включение нагрузки Открытый транзистор VT1 включает реле К1, которое своим контактом К1.1, включает магнитный пускатель К2. Контакты магнитного пускателя К2.1 и К2.2 подключают нагреватель к сети. Следует отметить, что ТЭН включается сразу двумя контактами. Такое решение гарантирует, что при выключенном пускателе фазы на нагрузке не останется, если, конечно, все в порядке. Так как в погребе сыро, иногда очень сыро, и очень опасно с точки зрения электробезопасности, то лучше всего подключить все устройство с помощью УЗО в соответствии со всеми требованиями к современной электропроводке. Каким должен быть обогреватель Опубликовано множество схем регулирования температуры погреба. Когда-то их печатал журнал “Моделист-конструктор” и другие печатные издания, но сейчас все это изобилие перекочевало в интернет. В этих статьях даны рекомендации, каким должен быть утеплитель. Кто-то предлагает обычные стоваттные лампы накаливания, трубчатые обогреватели марки ТЭН, масляные радиаторы (можно даже с неисправным биметаллическим регулятором).Также предлагается использовать бытовые обогреватели со встроенным вентилятором. Главное, чтобы не было прямого доступа к токоведущим частям. Поэтому ни в коем случае нельзя использовать старые электрические плиты с открытой спиралью и самодельные обогреватели типа «коза». Сначала проверьте установку Если прибор собран без ошибок из исправных деталей, то специальной настройки не требуется. Но в любом случае перед первым включением обязательно нужно проверить качество монтажа: нет ли на печатной плате непропаянных или, наоборот, замкнутых дорожек.И вы не должны забывать делать эти действия, просто возьмите это за правило. Особенно это касается конструкций, подключенных к электрической сети. Настройка термостата Если первое включение конструкции произошло без дыма и взрывов, то единственное, что нужно сделать, это установить опорное напряжение на прямом входе компаратора (вывод 2), согласно нужной температуре. Для этого нужно произвести несколько расчетов. Предположим, что температура в подвале должна поддерживаться на уровне +2 градуса Цельсия. Затем сначала переводим его в градусы Кельвина, затем результат умножаем на 0,010В в итоге получается опорное напряжение, оно же заданное значение температуры. (273,15 + 2) * 0,010 = 2,7515 (В) Если предположить, что термостат должен поддерживать температуру, например, +4 градуса, то получится следующий результат: (273,15 + 4) * 0,010 = 2,7715 (В) В быту и в подсобном хозяйстве часто требуется поддерживать температурный режим помещения.Раньше для этого требовалась довольно большая схема, выполненная на аналоговых элементах, одну такую мы и рассмотрим для общего развития. Сегодня все гораздо проще, если необходимо поддерживать температуру в диапазоне от -55 до +125°С, то программируемый термометр и термостат DS1821 отлично справится с этой целью. Цепь термостата на специализированном датчике температуры. Этот термодатчик DS1821 можно недорого купить в ALI Express (для заказа нажмите на картинку чуть выше) Порог температуры включения и выключения термостата задается значениями TH и TL в памяти датчика, которые необходимо запрограммировать в DS1821.Если температура поднимется выше значения, записанного в ячейке TH, на выходе датчика появится уровень логической единицы. Для защиты от возможных помех схема управления нагрузкой реализована так, что первый транзистор запирается в той полуволне сетевого напряжения, когда оно равно нулю, тем самым подавая напряжение смещения на затвор второго полевого транзистора , который включает оптосимистор, а тот уже открывает смистор VS1, управляющий нагрузкой… Нагрузкой может быть любое устройство, например электродвигатель или нагреватель.Надежность блокировки первого транзистора необходимо регулировать подбором необходимого номинала резистора R5. Датчик температуры DS1820 способен регистрировать температуру от -55 до 125 градусов и работает в режиме термостата. Цепь термостата на датчике DS1820 Если температура превысит верхний порог TH, то на выходе DS1820 будет логическая единица, нагрузка будет отключена от сети. Если температура упадет ниже нижнего запрограммированного уровня TL, то на выходе датчика температуры появится логический ноль и будет включена нагрузка.Если есть непонятные моменты, то конструкция самоделки позаимствована у №2 за 2006 год. Сигнал с датчика поступает на прямой выход компаратора на операционном усилителе CA3130. На инвертирующий вход того же ОУ поступает опорное напряжение с делителя. Переменное сопротивление R4 задает требуемый температурный режим. Цепь термостата на датчике LM35 Если потенциал на прямом входе ниже установленного на выводе 2, то на выходе компаратора мы будем иметь уровень около 0.65 вольт, а если наоборот, то на выходе компаратора мы получим высокий уровень около 2,2 вольта. Сигнал с выхода ОУ через транзисторы управляет работой электромагнитного реле. При высоком уровне он включается, а при низком – выключается, переключая своими контактами нагрузку. TL431 — программируемый стабилитрон. Используется в качестве источника опорного напряжения и источника питания для маломощных цепей. Необходимый уровень напряжения на управляющем выводе микросборки TL431 устанавливается с помощью делителя на резисторах Rl, R2 и термистора с отрицательным ТКС R3. Если напряжение на управляющем выводе TL431 выше 2,5В, микросхема пропускает ток и включает электромагнитное реле. Реле переключает управляющий выход симистора и подключает нагрузку. При повышении температуры сопротивление термистора и потенциал на управляющем контакте TL431 падает ниже 2,5В, реле размыкает передние контакты и отключает ТЭН. С помощью сопротивления R1 регулируем уровень нужной температуры для включения ТЭНа.Эта схема способна управлять ТЭНом до 1500 Вт. Реле подходит для РЭС55А с рабочим напряжением 10…12 В или его эквивалентом. Аналоговая конструкция термостата используется для поддержания заданной температуры внутри инкубатора, либо в ящике на балконе для хранения овощей зимой. Питание осуществляется от автомобильного аккумулятора на 12 вольт. Конструкция состоит из реле в случае падения температуры и отключения при повышении установленного порога. Температура срабатывания реле термостата задается уровнем напряжения на выводах 5 и 6 микросхемы К561ЛЕ5, а температура выключения реле задается потенциалом на выводах 1 и 21. Разность температур регулируется падение напряжения на резисторе R3. В роли датчика температуры R4 используется термистор NTC, т.е. Конструкция небольшая и состоит всего из двух блоков – измерительного блока на основе компаратора на ОУ 554СА3 и коммутатора нагрузки до 1000 Вт, построенного на стабилизаторе мощности КР1182ПМ1. На третий прямой вход ОУ поступает постоянное напряжение с делителя напряжения, состоящего из сопротивлений R3 и R4. На четвертый инверсный вход подается напряжение от другого делителя на сопротивлении R1 и термисторе ММТ-4 R2. Датчик температуры представляет собой термистор, расположенный в стеклянной колбе с песком, которая находится в аквариуме. Основным узлом конструкции является м/с К554САЗ – компаратор напряжения. С делителя напряжения, в состав которого также входит термистор, управляющее напряжение поступает на прямой вход компаратора.Другой вход компаратора используется для регулирования требуемой температуры. Делитель напряжения выполнен из сопротивлений R3, R4, R5, образующих мост, чувствительный к изменениям температуры. При изменении температуры воды в аквариуме изменяется и сопротивление термистора. Это создает дисбаланс напряжений на входах компаратора. В зависимости от разности напряжений на входах будет меняться выходное состояние компаратора.Нагреватель сделан таким образом, что при понижении температуры воды аквариумный термостат автоматически включается, а при повышении температуры воды выключается. Компаратор имеет два выхода, коллектор и эмиттер. Для управления полевым транзистором требуется положительное напряжение, поэтому именно коллекторный вывод компаратора подключается к плюсовой линии схемы. Сигнал управления поступает с вывода эмиттера. Резисторы R6 и R7 являются выходной нагрузкой компаратора. Полевой транзистор IRF840 используется для включения и выключения нагревательного элемента в термостате. Для разрядки затвора транзистора присутствует диод VD1. В цепи термостата используется бестрансформаторный источник питания. Избыточное переменное напряжение снижается за счет реактивного сопротивления конденсатора С4. Основой первой конструкции термостата является микроконтроллер PIC16F84A с датчиком температуры DS1621 с интерфейсом l2C. В момент включения питания микроконтроллер сначала инициализирует внутренние регистры датчика температуры, а затем настраивает его.Термостат на микроконтроллере во втором случае выполнен уже на PIC16F628 с датчиком DS1820 и управляет подключенной нагрузкой с помощью контактов реле. Температурная зависимость падения напряжения на p-n переходе полупроводников как нельзя лучше подходит для создания нашего самодельного датчика.
Проект | Недорогой программируемый источник питания См. изменения ниже! Если заявленный продукт имеет диапазон входного напряжения от 4,5 В до 40 В, внутренний источник питания должен быть достаточно надежным. Преобразователь постоянного тока в постоянный, описанный в предыдущей записи журнала, использует следующую схему линейного регулятора напряжения 3,6 В, которое я измерил с помощью вольтметра Fluke: Я использовал подсказки из этой статьи, чтобы сделать несколько простых вычислений: При напряжении 40 В и (гипотетической) температуре окружающей среды 20 °C рассеиваемая мощность TL431 на 30 % превышает абсолютные максимальные значения! TL431 должна оставаться ниже повреждающей температуры перехода 150°C.С другой стороны, если я рассчитываю с рабочим током микрокластера 25 мА (включая светодиодный дисплей), то LM317 в корпусе TO92, используемый в других «преобразователях постоянного тока с вольтметром», накладывает еще более низкие ограничения на напряжение питания (19 В × 0,025). A×160°/Вт + 50°C = 121°C, спецификация). Это означает, что модуль «DCDC-MH» немного прочнее, чем другие виды. Конечно, это все еще не объясняет, почему я измерил 3,6 В вместо 3,33 В, которые я ожидал в примечаниях по применению (возможно, «универсальный TL431» скорее «D», а не «B» класса 😉 ) . Еще меня поражает роль Cx. Не усиливает передачу шума от +BATT к +VSS? Схема, обсуждаемая в упомянутой выше статье, будет выглядеть примерно так: К сожалению, в настоящее время я не знаю, как смоделировать переходную характеристику линейного регулятора. Может быть, у кого-то есть предложение? Редактировать 1: 1. После того, как @Ken Yap указал на ошибку в моем чтении схемы, я исправил расчеты и выводы.Из-за взаимности ошибки и эффекта результаты не изменились 😉 2. Кен предположил, что работа без тока светодиода может быть за пределами рабочего диапазона схемы линейного регулятора на плате DCDC-MH, и поэтому она достигает 3,6 В вместо ожидаемых 3,33 В. Я проверил эту гипотезу и не нашел никакой зависимости от нагрузки:
Также я убил D882 (и пришлось заменить его на 40-летний BC238 из коробки б/у деталей, но напряжение не изменилось). Примечание для себя: есть причина, по которой линейные регуляторы TL431 и 78L05 имеют схемы защиты! Редактировать 2: @rubypanther считает, что назначение колпачка в цепи DCDC-MH — плавный пуск или снижение переходных характеристик. Возможно, он прав, и в этом нет ничего необычного: в техническом описании TI TL431 предлагается очень похожая схема: . Стабильность и запас по фазе TL431 представляются «интересной» проблемой для инженеров-конструкторов.машюр ниагаРис. 1 TL431. TL431 был создан в конце 70-х годов и в настоящее время широко используется в промышленности и в радиолюбительской деятельности. Но, несмотря на ее солидный возраст, далеко не все радиолюбители близко знакомы с этим замечательным органом и его возможностями. В предлагаемой статье я постараюсь познакомить радиолюбителей с этой микросхемой. Для начала посмотрим, что у него внутри и обратимся к документации на микросхему, “даташиту” (кстати, аналоги этой микросхемы – КА431, а наши микросхемы КР142ЕН19А, К1156ЕР5х). Рис. 2 Устройство TL431. Оказывается все очень просто. Внутри обычный операционный усилитель на ОУ (треугольник на блок-схеме) с выходным транзистором и источником опорного напряжения. Рис. 3. Распиновка – TL431. Теперь на примере простой схемы, изображенной на рисунке 4, разберем, как это работает. Рис. 4 Схема на TL431. Из схемы (рисунок 4) видно, что на вход R микросхемы TL431 делитель напряжения из резисторов R2 и R3 включен, резистор R1 ограничивает ток светодиода. Так как резисторы делителя одинаковые (напряжение блока питания делится пополам), то выходной транзистор усилителя (ТЛ-ки) откроется при напряжении 5 вольт и более (5/2=2,5 ). На вход R в этом случае будет подаваться 2,5 вольта с делителя R2-R3. То есть светодиод у нас загорится (откроется выходной транзистор) при напряжении источника питания – 5 вольт и более. Соответственно он погаснет при напряжении источника менее 5 вольт. При увеличении сопротивления резистора R3 в плече делителя потребуется увеличить напряжение источника питания более чем на 5 вольт, чтобы напряжение на входе R микросхемы с делителя R2-R3 снова достигает 2,5 вольта и выходной транзистор TL открывается – да. Получается, что если этот делитель напряжения (R2-R3) подключить к выходу БП, а катод ТЛК к базе или затвору регулирующего транзистора БП, то изменение плеч делителя, например изменением значение R3 – можно будет изменить выходное напряжение этого БП, т.к. при этом изменится напряжение стабилизации ТЛ-ки (напряжение открытия выходного транзистора) – то есть мы получим управляемый стабилитрон. Заключение; – Если микросхема используется как стабилитрон (его основное назначение), то можно сделать стабилитрон с любым напряжением стабилизации в пределах 2,5-36 вольт (максимальное ограничение в “даташите”) подбором резистора R2- Делитель R3. Тогда еще есть вопросы. можно ли например заменить TL431 обычным операционным усилителем? Еще вопрос – можно ли использовать TL431 как обычный компаратор и собрать на нем, скажем, терморегулятор или что-то в этом роде? – Можно, но так как от обычного компаратора он отличается уже наличием встроенного источника опорного напряжения, то схема будет намного проще.Например, такой; Рис. 5 Термостат на TL431. Здесь термистор (термистор) является датчиком температуры, и он уменьшает свое сопротивление при повышении температуры, т.е. имеет отрицательный ТКС (температурный коэффициент сопротивления). Терморезисторы с положительным ТКС, т.е. сопротивление которых увеличивается с повышением температуры, называются позисторами. Рис. 6 Мощный блок питания на 13 В, 22 А . |