Калькулятора теплых полов
Для чего это нужно
Калькулятор теплого пола позволяет легко рассчитать необходимое количество греющего кабеля для основных типов помещений.
Кнопка «Рассчитать» запускает расчет параметров монтажа.
Вы можете сохранить результаты расчета в формате pdf и перейти в каталог для заказа товара.
Результаты программы расчета могут отличаться от результатов профессиональных инженерных расчетов.
Памятка перед монтажем. Частично аккумулирующее отопление
Снижение затрат на электроэнергию может достигаться за счет использования систем отопления, задействованных в ночные часы. Для этого необходимо, чтобы тепло накапливалось в бетонной стяжке во время действия низких тарифов, и обогревало помещение днем. Бетонная стяжка прогревается нагревательными кабелями, интенсивность, скорость прогревании накопление тепла зависит от толщины стяжки, глубины залегания кабеля и материала покрытия пола.
Правильный температурный режим
Для достижения максимального уровня комфорта мы рекомендуем поддерживать следующие температуры поверхности пола:
- Линолеум 26-28 °C
- Керамическая плитка/ бетонный пол 26-28 °C
- Ламинат 23-27 °C
Максимальная температура пола может быть ограничена терморегулятором.
Если Вам неизвестна максимально допустимая температура поверхности для Вашего материала покрытия пола, пожалуйста, свяжитесь с его производителем.
Важно! Дерево является хорошим теплоизоляционным материалом.
Что нужно учесть при монтаже теплого пола
- Нагревательные кабели не устанавливаются под мебелью и стационарными предметами
- Необходимо соблюдать монтажный интервал в расчетных пределах и минимальный радиус изгиба
- Нельзя допускать пересечения нагревательных кабелей друг с другом
- Кабель должен находиться в равномерной и однородной среде по всей его длине
- Во избежание перегрева, кабель нельзя устанавливать внутри теплоизоляционного слоя
- Во избежание физических повреждений, кабель укладывается только на очищенную поверхность
- Нагревательный кабель не должен проходить через подвижный шов, изломы или монтироваться в зонах возможного перегрева.
Расстояние до источников тепла, например, камина, печи в сауне и т.п. должно быть не менее 0,5 м
- Возможность использования нагревательного кабеля с материалами покрытия пола регламентируется их производителями
- Резистивный нагревательный кабель нельзя укорачивать или наращивать
- Во всех зонах необходимо использовать устройство защитного отключения на 30 мA
- Угол установки гофро-трубки под датчик на стене должен быть таким, чтобы датчик было легко извлечь в случае его выхода из строя. Датчик устанавливается посередине между витками кабеля
- Монтажный интервал может быть меньше в зонах максимальных теплопотерь, например, окон, но не менее 2-х радиусов изгиба
- Нельзя включать кабель до окончательного высыхания стяжки или выравнивающего раствора. Точные сроки регламентируются производителями. Для бетонной стяжки этот срок составляет около 30 дней, для выравнивающего раствора или клея — до 14 дней.
как правильно рассчитать площадь теплого водяного пола, верная формула расчета мощности в частном доме
Благоустройство дома должно начинаться с соответствующего расчета.
Особенности
Теплый пол является обогревающим оборудованием, и его устойчивая работа крайне важна. Она зависит не только от качества монтажа, но и от использованных материалов. Важнейшей составляющей эффективности работы пола является надежный расчет всех рабочих параметров. Еще из школьных задачек понятно, что сложно что-то рассчитать, не понимая смысла, поэтому нужно разобраться в принципах работы отопительной системы и в особенностях ее размещения. Существует два вида теплых полов:
- теплые полы с водяным теплоносителем;
- электрические теплые полы.
Конструкция водяных теплых полов устроена так, что обогрев происходит за счет тепла, отдаваемого отопительными контурами, состоящими из водяных труб небольшого диаметра. Эти трубки прокладываются под поверхностью пола и зацикливаются у обогревающего агрегата – котла, который отвечает за обогрев. В большинстве случаев система дополняется устройствами, обеспечивающими комфортный нагрев, а также средствами регулирования.
Теплые полы, работающие за счет электроэнергии, осуществляют нагрев поверхности пола по похожей технологии. Вместо трубок в конструкцию пола укладывается специальный двухжильный кабель, который является теплоизлучающим проводником. Интенсивность излучения регулируется специальным терморегулятором.
Нужно иметь представление и о том, как располагается эта система в обогреваемом помещении. Для простоты понимания нужно представить пол как слоеный торт. Первым каркасным слоем обычно является бетонная плита, на которую стелется рулон гидроизоляционного материала. Далее накладывают материал с маленьким сопротивлением теплопередаче, например, пенополистерол, который утепляется фольгой. Наконец, на это все накладывают стяжку, в которую монтируются отопительные трубы теплого пола.
Расчет теплых полов представляет собой довольно серьезную задачу. Выполнить его нужно максимально внимательно. В результате это позволит получить полное представление о необходимых характеристиках для насоса, протяженности трубок отопления, количестве теплоизлучения для конкретных случаев и многом другом. Конечно, если есть деньги, то можно заплатить за комплекс услуг специалистам, но лучше держать все под своим контролем.
Несмотря на то, что расчет непростой, следуя пошаговым указаниям, справиться с ним не будет сложно.
Таблица расчета в частном доме
Теплый пол может служить в качестве главного источника отопления в помещении или средством для обогрева только поверхности пола. В зависимости от того, какие конкретно функции планируется возложить на систему теплого пола, и ведется расчет его теплоотдачи. Помимо этого, входными данными также являются геометрические и структурные характеристики помещения. Сперва необходимо выяснить, какое количество тепла будет теряться за счет конструктивных особенностей помещения. Не зная этого параметра, нельзя понять, сколько тепла должен отдавать отопительный контур, на что в целом и ориентирован расчет.
Только после этого шага можно подобрать остальные параметры системы, такие как:
- требуемая мощность насоса;
- мощность электрокотла или газового котла;
- материал и толщина трубок теплоносителя;
- длина контуров.
В том случае, если система отопления в доме функционирует отлично, и от системы теплого пола требуется только утепление поверхности пола, главной расчетной величиной будет метраж отапливаемого помещения. Тепловые потери и длины прокладываемых трубных контуров теплого водяного пола главным образом будут зависеть от геометрии обогреваемой поверхности. Чтобы расчет был абсолютно точным, нужно учесть климат, строительные особенности, этажность и многое другое. В итоге получится довольно сложный тепловой расчет.
Может оказаться так, что потребитель не является профессионалом, а сэкономить на обустройстве дома все же хочет.Формула мощности
Мк = 1,2 x Q, где Мк – необходимая мощность теплоотдачи отопительного контура, Q – это те самые теплопотери, а 1,2 является коэффициентом погрешности.
Из формулы понятно, что целевым параметром является температура теплоносителя в контуре, для определения которой нужно вычислить потери тепла. Для их определения нужно будет пройтись по дому с рулеткой. Необходимо вымерить площади и толщины всех ограждающих объектов: стен, пола, окон, дверей и так далее. Для учета структуры материала всех объектов понадобится коэффициент, характеризующий теплопроводность отдельных материалов (λ). Соответственно, нужно знать, из чего сделано то, что подлежит расчету, будь то стена, дверь или потолок. Все популярные строительные материалы и их коэффициенты приведены в следующей таблице:
Теплопотери рассчитываются отдельно для каждого оградительного элемента помещения, так как каждый объект обладает разными свойствами. Вычисление производится по следующей формуле:
Q = (1/R) x (tвн-tн) x (1 + ∑β) х S, где R – это температурное сопротивление сырьевого материала, из которого сделано ограждающее сооружение, t – температура сооружения, индексы соответственно подразумевают наружную и внутреннюю температуру, S – геометрическая площадь элемента, β – климатические теплопотери в зависимости от стороны света, которые необходимо учесть.
Высчитанные потери тепла по отдельным элементам в итоге суммируются. Так, полученные общие теплопотери помещения подставляют в формулу для вычисления Мк – мощности теплоотдачи контура.
Для примера рассчитаем требуемую теплоотдачу контура для блочного помещения 20х20 м, ширина стен которого составляет 2,5 мм. Исходя из того, что термическое сопротивление пенобетонных блоков равно 0,29 (Вт/м x K), получим расчетное значение Rпб = 0,25/0. 29 = 0,862 (Вт/м x K). Стены отштукатурены слоем в 3 мм, а это означает, что к полученному сопротивлению нужно прибавить Rшт = 0,03/0,29 = 0,1 (Вт/м x K). Значит, общее термическое сопротивление стены – Rст = 0,1 + 0,862 = 0,962 (Вт/м x K). Далее вычислим потери тепла по вышеуказанной формуле:
Q = (1/0,962) x (20 – (-10)) x (1 + 0,05) x 40 = 1309 Вт.
Абсолютно так же вычислим теплопотери через потолок, дверь и окна. Все полученное суммируем и подставляем в формулу для определения мощности контура отопления. К полученному значению нужно добавить 10%, которые внесут в расчет поправку на воздушную инфильтрацию. С этим может справиться любой калькулятор.
Как правильно рассчитать укладку?
После того, как выяснена мощность, необходимая теплому полу, можно ознакомиться с тонкостями расположения его контура. Далее останется лишь посчитать необходимую длину контура, что поможет составить представление о предстоящих расходахДля наглядности нужно сделать набросок на миллиметровке. Чертеж должен быть выполнен с учетом шага трубы и масштабных коэффициентов.
Шаг – это вымеренный промежуток пустот между трубами, он должен быть выбран в соответствии с несколькими условиями:
- при перемещении по полу человеческая ступня не должна ощущать разницу температур, Так, если шаг слишком велик, то поверхность будет обогреваться полосами.
- Шаг должен быть выбран таким образом, чтобы труба максимально экономично и эффективно выполняла свою функцию.
Для безошибочного монтажа трубопровода нужно понять достоинства и недостатки используемых типов укладки. В настоящее время для монтажа отопительного трубопровода пользуются 4 схемами:
- «Улитка (спираль)» – самый востребованный вариант, потому что такая укладка обеспечивает равномерное распространение тепловой энергии. Расположение происходит от периферии к центру с постоянным уменьшением радиуса, а потом в другую сторону. При использовании данного метода длина шага может быть любой величины, начиная от 10 мм.
Также данный способ является самым легким в плане монтажа, нет ограничений в связи с формой помещения.
- «Змейка» – довольно непопулярный метод контурного расположения. Огромный недостаток заключается в том, что подключение к питающему агрегату происходит с одной стороны, поэтому наблюдается значительный температурный перепад.
Поверхность пола будет тем холоднее, чем дальше вы находитесь от котла. Вторым значительным минусом «змейки» является сложность монтажа. Такое расположение предусматривает изгибы трубы в180 градусов. Вследствие этого межтрубный шаг должен быть увеличен до 200 мм, в то время как универсальным значением принято считать 150 мм.
- «Угловая змейка». Распространение теплого потока идет от угла, в котором расположен котел. Способ не популярен, потому что температура распространяется градиентом, что, по сути, создает эффект «солнца». Чем вы ближе, тем теплее.
- «Двойная змейка» является модификацией обычной «змейки». Отличие состоит в том, что компенсируются потери тепла. Это происходит за счет циркуляции потока в обоих направлениях. Укладка таким способом так же сложна.
«Змейка» применяется для небольших помещений, например, ванной комнаты.
Все вышеуказанные способы можно комбинировать друг с другом. «Змейкой» иногда покрывают небольшие площади, а «спиралью» обводят элементы, которые обогревать не нужно. Иногда комбинированные методы укладки трубы обеспечивают наименьшие затраты материала и минимальные вложения. Теперь, обладая необходимыми сведениями, можно приступать к расчету необходимой длины трубопровода. Расчет ведется по несложной формуле:
L = 1,1 x S\N. Приведенная формула отражает зависимость длины отопительной трубы (L) от площади контура (S) с учетом шага (N). Коэффициент 1,1 необходим для учета запаса трубы под изгибы. В конце следует также учесть отрезки, которые будут током и противотоком соединять укладку с котлом.
Чтобы не возникало недопониманий, рассчитаем длину отопительного контура для гостиной комнаты величиной 25 кв. м. Дабы снять ограничение в размерности шага, отдадим предпочтение методу спиральной укладки и выберем шаг 0,15 метра. В рассматриваемом случае получается, что длина прокладываемого трубопровода равна L = 1,1 x 25/0,15 = 183,4 м.
Допустим, система теплого пола работает от гребенки, которая расположена в 5 м от контура. При расчете необходимо удвоить это расстояние, так как коллектор имеет противоток. Следовательно, результирующая протяженность контура составит L = 183.4 + 5 + 5 = 193,4 м.
Советы профессионалов
Разобравшись с расчетом, можно идти с результатами к специалистам и конкретизировать их задачу. Не нужно спешить, не лишним будет ознакомиться с некоторыми нюансами. С ними можно столкнуться, только устанавливая теплый пол уже не в первый раз. Те, кто хорошо знают это дело, рекомендуют:
- при нанесении на чертеж контура старайтесь придумать, как задействовать как можно меньше трубы. При незначительной длине трубопровода не будет ощутимых сопротивлений, а значит, и перепадов давления, то есть не нужно будет тратиться на мощный насос.
В целом, короткая труба потребует меньше затрат.
- Когда закончен расчет длины трубопровода, полученное значение нужно сравнить с допустимой протяженностью контура. Она зависит от диаметра трубы, которая будет прокладываться. Если диаметр 16 мм, тогда допустимое значение длины контура равно 100 м, а если диаметр равен 20 мм, то ограничение составит 120 м.
- Межтрубный шаг берется в оптимальном диапазоне, но зависит от диаметра отопительного трубопровода.
- Проектируя укладку, нужно помнить, что в помещении не все зоны имеют одинаковую потребность в обогреве, поэтому у окон и дверных конструкций планируйте расположение трубы более плотно. Это обеспечит там интенсивный нагрев.
- В случаях, когда проектируемая площадь превышает 40 кв. м, нужно подключать второй контур, так как работа одноконтурного теплого пола в больших помещениях неэффективна.
Таким образом, расчет теплого пола может быть произведен самостоятельно.
Рекомендуется выполнить расчет и вручную по формулам, и на специальном калькуляторе, а после – сравнить получившиеся значения.
Дополнительную информацию по этому вопросу, вы можете узнать посмотрев видео ниже.
Как рассчитать теплый пол для квартиры или дома
Сегодня система обогрева «теплый пол» широко применяется не только в качестве дополнительного отопления, но и основного- без радиаторов на стене. Он создает комфортный и более эффективный обогрев помещения по сравнению с традиционным отоплением. Про преимущества и подключение системы Теплый пол читайте в предыдущей нашей статье.
Смонтировать теплый пол своими руками сможет большинство хозяев без вызова специалистов. Вам необходимо купить коробку со всем необходимым под названием «теплый пол» и терморегулятор. Как уложить его правильно Я расскажу в следующей статье.
Перед покупкой необходимо рассчитать величину необходимой мощности для площади помещения. При этом учитывают только лишь полезную площадь, которая не занята мебелью или бытовой техникой.
На участки пола ими занятые нельзя укладывать греющий кабель, что будет приводить к его перегреву с последующей поломкой.
Если в комнате очень мало полезного пространства, тогда укладывать греющий кабель нет смысла.
Если Вы планируйте применять электрические тёплые полы в качестве единственного или основного источника обогрева помещения, учитывайте что если греющий кабель будет уложен менее чем на 70 % от всей площади- тогда в помещении будет прохладно.
Теплый пол запрещено монтировать под паркет из-за особенностей этого материала.
Удельная мощность, применяемая при расчетах.
Если Вы рассчитываете использовать электрический теплый пол как основной или единственный вид отопления, тогда удельная мощность должна находится в пределах от 160 до 180 Ватт на 1 квадратный метр.
Удельная мощность дополнительного отопления должна находится в пределах от 120 до 140 Ватт на 1 квадратный метр. Данный вид обогрева используется только совместно с основным источником отопления (газовый котел или электрическое). Наилучший вариант использования в квартирах в межсезонье в момент, когда еще не начался или уже закончился отопительный сезон, а на улице еще холодно.
Необходимую величину мощности обогрева для разных помещений Вы найдете в таблице.
Все помещения в доме или квартире по-разному используются, поэтому и требования будут разные.
Понятно, что мощность системы обогрева кухни или коридора будет меньшей, чем для спальни.
Все значения мощности указаны с небольшим запасом, потому что терморегулятор, как правило редко устанавливается на максимум. А делая мощность теплого пола с 20-25 процентным запасом- Вы исключаете возможность того, что степень нагрева будет недостаточной. Согласитесь, что проще уменьшить регулировку, чем испытывать дискомфорт от недостаточности тепла. Кроме того существует много различных факторов, которые влияют на эффективность системы теплый пол.
Так например, если помещение расположено на первом этаже, тогда мощность необходимо увеличить 15 – 20 процентов.
Пример расчета электрического теплого пола.
Что бы рассчитать необходимо воспользоваться довольно простой формулой. Берем из таблицы коэффициент удельной мощности для подходящего типа помещения и вида обогрева, умножаем на площадь помещения, на которой Вы собираетесь установить электрический теплый пол.
Например, сделаем расчет для комнаты на 2 этаже общей площадью 15 квадратных метров.
- Сразу необходимо определить полезную площадь. Например у вас установлена кровать размером 2 на 2.
20 м, занимаемая ей площадь равна 2х2.2=4.4 кв. метра. А так же стоит шкаф, площадь которого равна 1х1.1=1.1 кв. м. Полезная площадь будет равна 15-4.4-1.1=9.5 кв. м.
- Из таблицы берем подходящий коэффициент для дополнительного обогрева комнаты не первого этажа, который равен 120-130 Вт на метр.
- Перемножаем два этих числа и получаем 9.5х120= 1140 Ватт.
Значит нам необходимо купить электрический теплый пол мощностью 1200 Ватт.
Аналогично рассчитываются и другие помещения дома или квартиры.
расчет мощности и энергопотребления теплого пола –
Расчет мощности системы
ПРОИЗВЕСТИ РАСЧЕТ МОЩНОСТИ СИСТЕМЫ НАГРЕВА, НУЖНОЕ КОЛИЧЕСТВО РЕГУЛЯТОРОВ ТЕМПЕРАТУРЫ, ПРОИЗВЕСТИ ПРОВЕРКУ СИЛОВЫХ ВОЗМОЖНОСТЕЙ ЭЛЕКТРИЧЕСКОЙ СЕТИ. РАСЧЕТ: МАКСИМАЛЬНАЯ МОЩНОСТЬ ИНФРАКРАСНОГО ПЛЕНОЧНОГО НАГРЕВАТЕЛЯ СОСТАВЛЯЕТ 220 ВТ НА 1 М2, ИСХОДЯ ИЗ ОБЩЕГО КОЛИЧЕСТВА НАГРЕВАТЕЛЬНОЙ ПЛЕНКИ РАССЧИТЫВАЕТСЯ СИЛА ТОКА ПО ФОРМУЛЕ: I = P/U ГДЕ I – СИЛА ТОКА, Р – МОЩНОСТЬ НАГРЕВАТЕЛЬНОЙ ПЛЕНКИ, U – НАПРЯЖЕНИЕ ЭЛЕКТРОСЕТИ. ПОКАЗАТЕЛИ СИЛЫ ТОКА НУЖНО ЗНАТЬ ДЛЯ ТОГО, ЧТОБЫ ПОДОБРАТЬ НУЖНЫЕ СЕЧЕНИЯ ЭЛЕКТРИЧЕСКОГО ПРОВОДА, ВЫБРАТЬ ПОДХОДЯЩУЮ МОДЕЛЬ ТЕРМОРЕГУЛЯТОРА И ОПРЕДЕЛИТЬ СООТВЕТСТВИЕ СВОЕЙ ШТАТНОЙ ЭЛЕКТРОПРОВОДКИ ПРЕДПОЛАГАЕМЫМ СИЛОВЫМ НАГРУЗКАМ НА НЕЕ. |
СЕЧЕНИЕ ЭЛЕКТРИЧЕСКОГО ПРОВОДА | ДОПУСТИМЫЙ ТОК, МЕДЬ | ДОПУСТИМЫЙ ТОК, АЛЮМИНИЙ |
1,5 КВ. ММ | 16 АМПЕР | 10 АМПЕР |
2,5 КВ. ММ | 25 АМПЕР | 16 АМПЕР |
4 КВ. ММ | 32 АМПЕР | 25 АМПЕР |
Пример расчета
Помещение:
кухня-столовая, которая имеет площадь 20 метров квадратных. Напольное покрытие – ламинированная доска.
Вид отопления – основной.
Вычитая площадь мягкой мебели и кухонного гарнитура, установленной бытовой техники и отступлений по периметру кухни, на все помещение потребуется количество пленки общей площадью примерно 12 квадратных метров.
Соответственно, общая максимальная мощность нагревательной системы составляет:
Р = 12 м2 х 220 Вт = 2 640 Вт.
І = Р/U = 2 640Вт / 220 В = 12,0 А
Для данного объекта рекомендуется:
- сечения электрического провода, медь – полтора кв. мм;
- минимальная мощность терморегулятора 3 кВт.
Максимальная площадь пленочного инфракрасного нагревателя, который можно подключать к терморегуляторам, имеющимся на рынке:
- 3 кВт = 13,5 м2;
- 3,5 кВт = 15,9 м2;
- 4 кВт = 18,1 м2;
- 6 кВт = 27,2 м2
Формула для расчета энергопотребления
P = S (кв.м) х 0,4 х 0,35 х U (расчет энергопотребления на 1 кв.м./час)
где:
- S – площадь помещения
- 0,4 это 40% от площади помещения, закрытой пленкой (дополнительный обогрев)
- 0,35 это коэффициент работы теплого пола с применением терморегулятора
- U это 220 Вт номинальная мощность пленки
Итак, 30 кв. м х 0,4 х 0,35 х 220 = 924 Вт/час
924 Вт/час х 2,42 (средний тариф по России)/ 1000 = 2,23 руб/час
Пол работает (при условии, что это дополнительный обогрев) в среднем 4- 5 часов в день
2,23 х 5 = 11,2 руб/ сутки
Итого: 11,2 х 31 день = 346 руб/ месяц
Как рассчитать водяной тёплый пол: расчёт теплопотерь, видео
В следующих материалах (начиная с этого) разберёмся на примере, как рассчитать водяной тёплый пол. И начнём с расчёта тепловых потерь каждого помещения и всего дома в целом.
Для чего нужен расчёт теплопотерь дома?
расчёт тепловых потерь нужно делать, чтобы убедиться, хватит ли отопления тёплым полом для обогрева данного помещения. Есть, конечно, ещё ограничения, связанные с тем, какое покрытие будет у пола и в каком регионе дом находится. Одно дело хорошо утепленный дом и покрытие плиткой, другое – неутеплённый дом с дощатым полом… но обо всём этом в других материалах.
Итак, можно ли в этом помещении (доме) делать теплые полы, задаёте вы вопрос? Если теплопотери меньше или равны 100 Вт/м2, то можно, и система тёплого пола будет работать как основное отопление.
Если же теплопотери выше 100 Вт/м2, тогда нужно либо пересмотреть систему отопления, выбрав другую, или сделать комбинированную (тёплый пол + радиаторы), или утеплять дом.
Рассчитаем тепловые потери помещений дома, план которого был представлен в одной из прошлых статей. Приведу снова этот план здесь:
Сперва нужно рассчитать теплопотери через все ограждающие конструкции (стены, полы, потолки). Материалы конструкций перечислялись, так что здесь этого делать не стану. Но лучше отметить их на плане. На плане также отмечены размеры оконных и дверных проёмов, т. к. их присутствие влияет на тепловые потери помещений.
Расчёт тепловых потерь в программе Valtec
Открываем программу Valtec, дважды кликнув на значке:
Дальнейшие действия уже разбирались в материалах, посвящённых радиаторной системе отопления, переписывать их заново смысла нет, вот ссылки: статья о расчёте тепловой энергии на отопление и несколько видео о расчёте тепловых потерь дома. Прочитайте, посмотрите видеоролики, выполните для своего дома всё, что нужно, после чего возвращайтесь сюда.
Продолжение расчётов смотрите, перейдя по ссылке внизу этой страницы.
как рассчитать водяной тёплый пол
5-ступенчатый расчет тепловых потерь
Расчет тепловой нагрузки необходим до начала установки системы лучистого отопления, поскольку разные типы систем лучистого отопления имеют разные значения мощности в БТЕ.
Типичный расчет тепловой нагрузки состоит из расчета поверхностных тепловых потерь и тепловых потерь из-за инфильтрации воздуха. И то, и другое следует делать отдельно для каждой комнаты в доме, поэтому хорошее начало – это иметь план этажа с размерами всех стен, полов, потолка, а также дверей и окон.
Ниже приведен пример 5-шагового руководства по расчету поверхностных тепловых потерь:
Шаг 1 – Расчет дельты T (расчетная температура):
Дельта T – это разница между расчетной температурой в помещении (T1) и расчетной температурой снаружи (T2), где расчетная температура в помещении обычно составляет 68-72 ° F в зависимости от ваших предпочтений, а расчетная температура наружного воздуха является типичным минимумом в течение отопительного сезона. Первый можно получить, позвонив в местную коммунальную компанию.
Предполагая, что T1 равно 72F, а T2 равно –5F, Delta T = 72F - (-5F) = 72F + 5F = 77F
Шаг 2 – Расчет площади поверхности:
Если расчет выполняется для внешней стены с окнами и дверями, расчет теплопотерь окна и двери должен выполняться отдельно.
Площадь стены = 8 футов x 22 фута - 24 квадратных футов - 14 квадратных футов = 176 квадратных футов - 38 квадратных футов = 138 квадратных футов
Шаг 3 – Рассчитайте U-значение:
Используйте руководство «Типичные значения R и U» для получения значения R стены.
Значение U = 1 / значение R Значение U = 1 / 14,3 = 0,07
Шаг 4 – Расчет теплопотерь поверхности стены:
Потери тепла с поверхности можно рассчитать по следующей формуле:
Потери тепла на поверхности = Значение U x Площадь стены x Разница T Потери тепла на поверхности = 0.07 x 138 кв. Футов x 77F = 744 BTUH
(U-значение основано на предположении, что деревянная каркасная стена 2×4 с 3,5-дюймовой изоляцией из стекловолокна)
Шаг 5 – Рассчитайте общие потери тепла стеной:
Выполните шаги с 1 по 4, чтобы рассчитать теплопотери отдельно для окон, дверей и потолка. Тепловые потери двери = 0,49 x 24 кв. Фута x 77F = 906 BTUH
(значение U основано на предположении, что дверь из цельного дерева)
Тепловые потери окна = 0,65 x 14 кв. Футов x 77F = 701 BTUH
(Значение U основано на предположении, что окно состоит из двух панелей)
Потери тепла на потолке = 0.05 x 352 кв. Футов x 77F = 1355 BTUH
(U-значение основано на предположении, что изоляция из стекловолокна 6 дюймов. Поверхность потолка составляет 22 фута x 16 футов)
Теперь сложите все числа вместе:
Общие тепловые потери стены = Потери в стенах + Потери на окнах + Потери в дверях + Потери на потолке
Общие тепловые потери стен = 744 BTUH + 906 BTUH + 701 BTUH + 1352 BTUH = 3703 BTUH
Всегда следует учитывать скорость инфильтрации воздуха.
Для расчета потерь тепла в помещении из-за инфильтрации воздуха можно использовать следующую формулу:
Где объем помещения = длина x ширина x высота
изменения воздуха в час учитывают утечку воздуха в комнату.
Например: Потери тепла при инфильтрации воздуха = (22 фута x 16 футов x 8 футов) x 77F x 1,2 x 0,018 = 4683 BTUH
Для фактических расчетов обратитесь к подрядчику или разработчику системы.
Системы лучистого теплого пола. PEX в системе лучистого обогрева пола
1. Что мне нужно для существующей структуры?
Чтобы правильно определить размер большинства компонентов, относящихся к вашей системе теплого пола, мы настоятельно рекомендуем рассчитать теплопотери для вашего проекта, если это ваш основной источник тепла.Это еще более важно при установке в существующем доме. Почему? Потеря тепла является критическим шагом, поскольку мы можем оценить среднюю мощность теплоносителя в 25 БТЕ на квадратный фут, но окна, двери, изоляция и градусо-дни – все это оказывает большое влияние на получение именно того, что вам нужно.
Самая распространенная ошибка при определении размеров теплого пола – это завышение размера. Это не только увеличивает стоимость установки новой системы лучистого отопления, но и заставляет ее работать неэффективно, чаще выходить из строя и обходиться дороже в эксплуатации.Негабаритное отопительное оборудование также часто создает неудобные и большие перепады температуры в доме, плюс оно сокращает цикл работы водогрейного котла и выходит за рамки проектных параметров, что обходится вам дороже.
Мы не занимаемся продажей оборудования, которое вам не нужно, и небольшая предварительная работа может сэкономить вам тысячи долларов в течение всего срока службы вашей системы.
2. Как рассчитать потери тепла?
Тепловые потери могут различаться в домах разного возраста и местоположения.Например, здесь, в Вермонте, теплопотери в новом доме могут составлять от 25 до 30 британских тепловых единиц на квадратный фут, в соседнем доме, построенном в 1970-х годах, может быть от 35 до 50 британских тепловых единиц на квадратный фут, а в доме рядом с этим домом, построенном ранее. до Второй мировой войны – может достигать 100 британских тепловых единиц за квадратный фут. Получить математику? Трудно сказать, что такое потери тепла в старых структурах Btu без потери тепла чем-то еще, что говорит нам то, что нам нужно знать.
Попросите вашего архитектора или строителя предоставить его вам, как это требуется во многих штатах, таких как Нью-Хэмпшир или Калифорния.
Рассчитайте это самостоятельно с помощью программного обеспечения – вернитесь к калькулятору тепловых потерь в разделе «Установки радиантных трубок Pex».
Или используйте одну из двух различных ориентировок для грубой обработки, указанных ниже.
Тип изоляции и климатическая зона
(Обратите внимание: мы настоятельно рекомендуем вам выполнить расчет теплопотерь и предоставить приведенную ниже информацию в качестве отправной точки)
1) Отсутствие изоляции на стенах, потолках и полах; нет штормовых окон; окна и двери подходят свободно …. от 60 до 100 БТЕ на кв. Ft.
2) Утеплитель Р-11 в стенах и потолках; отсутствие теплоизоляции полов над подлозковыми пространствами; нет штормовых окон; двери и окна подходят довольно плотно …. 50-60 BTU на кв. Ft.
3) Утеплитель R-19 в стенах, R-30 в потолках и R-11 в полах; плотно закрывающиеся штормовые окна или окна с двойным остеклением …. от 29 до 35 БТЕ на кв. Ft.
4) Дом «Energy Star Rated» с изоляцией стен R-24 +, R-40 в потолках и R-19 в полу; плотно закрывающиеся штормовые окна или стеклопакеты; пароизоляция тщательно загерметизирована при строительстве…. от 20 до 25 БТЕ на кв. Ft.
5) SIP или защищенный от земли дом с небольшой экспозицией; Окна заполнены аргоном и изолированы R40 + …. от 10 до 15 БТЕ на кв. Ноги.
Климатическая зона
Тепловая пл. Съемка климатической зоны для дома до 1970-х годов
Хьюстон, Техас ЗОНА 1 -> 15-25 БТЕ на квадратный фут
Los Angles, CA ZONE 2 -> 25-30 БТЕ на квадратный фут
Сент-Луис, МО ЗОНА 3 -> 30-40 БТЕ на квадратный фут
Нью-Йорк, ЗОНА 4 Нью-Йорка -> 40-50 БТЕ на квадратный фут
Миннеаполис, Миннесота, ЗОНА 4 -> 50-60 БТЕ на квадратный фут
Расчетная температура вне помещения
Расчетная наружная температура (ODT), также обозначаемая как 2. 5% расчетной дневной температуры – это не самый холодный день, а температура, которая достигается в 97,5% случаев.
Примеры:
ODT Chicago = – 8 градусов F
ODT Денвер = 1 градус F
ODT Minnesota = -12 градусов F
ODT Вашингтон = 17 градусов F
Просто умножьте соответствующий коэффициент на общую отапливаемую площадь вашего дома, чтобы получить приблизительную требуемую теплопроизводительность. Например, если вы живете в Зоне 3, ваш дом хорошо изолирован, и у вас есть 2 000 отапливаемых квадратных футов, уравнение будет выглядеть так:
2000 квадратных футов нового строительства класса «Energy Star», но с большим количеством окон =
35 БТЕ на кв. Фут.70,000 БТЕ Нагрузка
Затем, чтобы рассчитать мощность бойлера для горячей воды, умножьте его коэффициент полезного действия на указанный входной рейтинг, чтобы получить фактическую тепловую мощность в британских тепловых единицах. Пример котла средней эффективности. Конечно, это очень простой способ посмотреть на эффективность, но на самом деле он более сложный. Факторы, такие как время, необходимое для достижения КПД, конденсация, прямая вентиляция или нет, использование pex и большого количества воды в котле, влияют на истинную эффективность.
87 000 британских тепловых единиц на входе X.КПД 86 = 73000 БТЕ, фактическая выработка
3. Существующая система отопления
Все водогрейные котлы, продаваемые в США, должны иметь паспортную табличку. Проверьте паспортную табличку и получите:
1) Например -> 92 000 британских тепловых единиц на входе вашего водогрейного котла X .80 КПД вашего бойлера = 73000 британских тепловых единиц фактической мощности
2) Подсчитайте общие погонные метры плинтуса в доме. Умножьте это число на 600 БТЕ. Это даст вам выход BTU при 180 градусах F.Это число должно быть близко к фактической мощности котлов.
Есть несколько способов рассчитать теплопотери. Используйте приведенную выше информацию, чтобы получить общее представление. Мы настоятельно рекомендуем вам скачать калькулятор теплопотерь. Почему? Потому что окна и двери имеют огромное значение для тепловой нагрузки вашего дома. Как только вы составите представление о своих требованиях, мы сможем предоставить вам ценовое предложение.
4. Способы установки Radiant PEX на существующий пол
Трубы PEX под полом – обычно под паркетом или плиточным полом
PEX In Floor – Обычно в заливном цементе
PEX Over Floor – Обычно используется ThermalBoard, VersaTherm или Creatherm Radiant Heat Mass
5.Плита системы лучистого отопления в полу, класс
Для плит в жилых домах мы рекомендуем трубку PEX диаметром 1/2 дюйма с шагом 12 дюймов по центру. Вдоль стен с большим количеством стекла или с высокими тепловыми потерями PEX должен составлять от 6 до 9 дюймов по центру на внешних стенах для первых 2 футов и 12 дюймов по центру во всех остальных местах. Система лучистого обогрева пола даст вам наибольшую выходную мощность в британских тепловых единицах, но также и самое медленное время отклика.
При расчете общей длины трубки вам необходимо разделить любую 6-дюймовую область расстояния на.5, разделите любую 9-дюймовую область с интервалом на 0,75 и любую 12-дюймовую область с интервалом на 1. Это даст вам общую длину PEX, необходимую в плите. Вам нужно будет добавить длину трубки, необходимую для получения коллектор pex.
Обычно коллекторы pex монтируются на расстоянии 18–24 дюймов от плиты.
6. Установка трубки PEX
При соблюдении надлежащей практики прокладки трубопроводов максимальная длина каждого участка трубопровода PEX размером 1/2 дюйма не должна превышать 300 футов (максимум 300 футов является нормой во многих местах).Когда петли труб превышают 300 футов, вам необходимо использовать более крупные циркуляционные насосы (насосы) для поддержания этого перепада температуры. С более крупными циркуляционными насосами начальная стоимость выше, и они обычно требуют в два раза больше электроэнергии для работы. Большинство хороших монтажников излучающих систем стараются ограничить длину петель трубопровода до 300 футов.
Существует множество правильных способов установки PEX в теплый пол внутри плиты. Лучше всего привязать PEX к арматурной сетке или арматуре. При прикреплении трубки PEX к арматурной сетке или арматуре рекомендуется использовать стяжку-молнию через каждые 2 фута трубки PEX.
Другой способ установки PEX в плиту – это прикрепление трубки PEX к ребристой изоляции. Часто используются изоляционные винтовые зажимы или большие пластиковые скобы.
Мы рекомендуем изоляционный винтовой зажим или скобу через каждые 2 фута при установке трубки только поверх изоляции (без проволочной сетки). Если вы используете 2-дюймовую изоляцию из полистирола, рекомендуется использовать 6 мил. полиэтиленовый влагобарьер.
Установка коллекторов и поддержание давления в линиях (давление воздуха или воды) для заливки бетона настоятельно рекомендуется и требуется по нормам во многих местах.
7.Изоляция
Изоляция всегда необходима для любой системы лучистого отопления и особенно необходима под плитами. Почему, если в почве есть влага, она будет отводить тепло с огромной скоростью, делая вашу систему неэффективной.
Сегодня многие излучающие плиты устанавливаются с изоляцией только по периметру. По их мнению, вы должны хранить тепло в земле, чтобы использовать его позже. Одна из проблем с этим представлением заключается в том, что большая часть тепла поглощается землей и никогда не согревает ваш дом.Почему вы хотите платить за обогрев земли? Изоляция плиты важна для всей плиты.
Мы рекомендуем изоляцию Slab Shield Insulation, которая была разработана специально для применения под плитами. Изготовлен с использованием двух отдельных слоев пенополиэтилена толщиной 1/4 дюйма с алюминиевым центром. Этот продукт доступен в рулонах размером 4 фута x 63 фута для облегчения нанесения. Его просто раскручивают и склеивают между собой (это необходимо для достижения полной пароизоляции). С Slab-Shield вы не потеряете время, устанавливая пенопластовые плиты размером 4 фута x 8 футов.Благодаря сопротивлению проколу 92,9 фунтов на квадратный дюйм вы можете работать и ходить по нему, не разрушая его.
8. Вот примерное представление о том, сколько это будет стоить
Ниже приведены некоторые рекомендации по ценообразованию. Эти цифры выше, чем в большинстве предложений, но могут служить «заменой» при формировании бюджета строительства.
Водогрейный котел среднего КПД (87% +): от 1500 до 3000 долларов
Высокопроизводительный (95% +) водогрейный котел: от 2200 до 5500 долларов
Бесконтактный водонагреватель в качестве источника тепла: от 1200 до 1700 долларов
За контроль зоны: 250 долларов США.00 шт. зона
Плита класса Radiant: 1,20 доллара за квадрат
Wood Underfloor Radiant: 1,70 доллара за квадрат
Радиаторы Myson: 260 долларов за 5000 BTU
Люди считают, что лучистое отопление обладает превосходными экономическими преимуществами и преимуществами комфорта. Но при росте цен на энергию на 35% в этом году, какую бы эффективную систему вы ни выбрали, вы оцените экономию средств!
Как определить правильный размер и расстояние между трубками для вашего проекта
Трубки являются неотъемлемой частью любой системы водяного лучистого отопления.Как и вены, он переносит теплую жидкость и тепло по полу, превращая их в удобные теплые поверхности. Мы предлагаем лучшие трубки из PEX и PERT для наших гидравлических систем, доступные в различных размерах от 3/8 ″ до 1 ″. Эти трубки обеспечивают отличные характеристики в излучающих системах и предоставляют разработчику системы самые большие возможности для выбора компонентов. Имея пять доступных размеров, как узнать, какой из них лучше всего подходит для вашего проекта? Эти общие правила могут помочь.Трубки
PEX и PERT бывают разных размеров. Наиболее распространены размеры 3/8 ″, 1/2 ″, 5/8 ″ и 3/4 ″. Как правило, для системы обогрева пола в жилых помещениях мы рекомендуем трубы 3/8 ″ и 1/2 ″. Размер трубки определяет скорость потока, которая может быть достигнута, а также указывает максимальную длину контура в зависимости от напора. Обычно мы рекомендуем трубы 5/8 ″ и 3/4 ″ для крупных коммерческих предприятий и при таянии снега.
Такие факторы, как размер трубок, расстояние между трубками и температура воды, напрямую представляют тепловую мощность (в BTH / кв.футов / час) системы лучистого отопления. Последнее особенно важно, поскольку расчет потерь тепла является начальным этапом каждого проекта лучистого отопления и позволяет установщику определить, какой размер трубы использовать и какой длины будет максимальная длина.
Для увеличения производительности пола для выбранных размеров и длины трубок может потребоваться увеличение потока, расстояние между трубками может быть ближе друг к другу или повышение температуры воды. Например, увеличив поток через трубку PEX 1/2 ″ только на 0.1 галлон в минуту, выходная мощность увеличится до 5 БТЕ / кв. фут / час
С трубкой 1/2 ″ 6 ″ шаблон иногда используется в небольших помещениях, таких как ванные комнаты, и для экстремально холодного климата, в то время как узоры 8 ″ и 9 ″ являются стандартными для большинства жилых помещений в большинстве климатических условий, а 12 ″. узор используется в гаражах. Для большинства крупных магазинов и небольших коммерческих предприятий обычно используются трубки 5/8 ″ с кислородным барьером из PEX или InfloorPERT®. Для трубок диаметром 5/8 дюймов стандартным является шаблон от 9 до 12 дюймов. Для больших магазинов и больших коммерческих зданий (обычно более 5000 квадратных футов) кислородная трубка 3/4 дюйма является стандартной.Для трубок диаметром 3/4 дюйма используется расстояние 12 дюймов или 18 дюймов, в зависимости от климата и желаемой температуры помещения.
Теперь, когда вы выбрали размер и расстояние между трубами для своего проекта, просто умножьте квадратные метры обогреваемого пространства на один из следующих множителей, чтобы определить общий линейный метр трубы, который вам понадобится. Обязательно используйте правильный множитель, который соответствует выбранному вами интервалу:
6 ″ интервал = кв. Футов x 2,0
8 ″ интервал = кв.фут x 1,5
9 ″ интервал = квадратный фут x 1,34
12 ″ интервал = квадратный фут x 1,0
18 ″ интервал = квадратный фут x 0,67
После того, как вы определили фактическую общую длину трубок, которые вам понадобятся, следующим шагом будет определение количества петель или контуров труб. Для трубок 1/2 дюйма длина контура 300 футов является стандартной, но контуры от 250 до 350 футов находятся в пределах диапазона, рекомендованного ассоциацией Radiant Panel Association. С трубкой 5/8 ″ 400 ′ и 3/4 ″ трубки 500 ′ контуры являются стандартными.Например, если вы используете трубку 1/2 дюйма и определили, что вам потребуется 900 футов трубки, у вас будет три контура по 300 футов каждая и трехпортовый коллектор. Если вы используете трубку 5/8 дюйма и определили, что вам потребуется 3000 футов трубки, у вас будет восемь контуров по 375 футов каждая и восьмипортовый коллектор.
Мы ответим на любые Ваши вопросы по дизайну. Мы также предлагаем бесплатные услуги по проектированию в составе продаваемых нами систем. Свяжитесь с нами сегодня чтобы начать. www.infloor.com
Максимальная длина участка трубопровода:
3/8 дюйма Петли трубки не должны превышать 200 футов
1/2 дюйма Петли трубки не должны превышать 300 футов
5/8 дюйма Петли трубки не должны превышать 400 футов
3/4 дюйма Петли трубок не должны превышать 500 футов 9000 мм.
Присоединяйтесь к нашему онлайн-сообществу и оставайтесь в курсе событий с Infloor Heating Systems:
Schlüter®-DITRA-HEAT-E | Schlüter-Systems
Электрическая система обогрева полов и стен
Schlüter-DITRA-HEAT-E – это электрическая система теплого пола, которую также можно использовать для обогрева стен – идеальное дополнение к нашей системе Schlüter-BEKOTEC-THERM на водной основе.Электрическая система обогрева полов и стен – ультратонкий универсальный талант. Вместе мат и нагревательные провода имеют толщину всего 5,5 мм, что делает их пригодными как для модернизации, так и для использования в новых строительных проектах.
Преимущества Schlüter®-DITRA-HEAT-E
- Приятный микроклимат в помещении
благодаря мягкому излучаемому теплу. - Точное управление
Цифровые термостаты, установленные в каждой комнате, позволяют удобно и точно по времени устанавливать желаемую температуру. - Экономичный
на покупку, установку и обслуживание. - Долговечность и не требует обслуживания
Системы электрического теплого пола отличаются высокой прочностью и не изнашиваются, что делает систему практически не требующей обслуживания. - Простота дооснащения
Быстрая и простая установка. - Малая монтажная высота
Расцепляющий мат с нагревательными кабелями имеет толщину всего 5,5 мм. - Удобные комплекты
Schlüter-Systems предлагает удобные комплекты, включающие все необходимые системные компоненты для конфигураций общих помещений. - Подходит для аллергиков
Помещение отапливается мягко и равномерно, что позволяет избежать появления аллергенных веществ.
Быстрая и гибкая установка
Структура и функции
Нагревательные провода заделываются непосредственно в разъединяющий мат с помощью клея для плитки, чтобы обеспечить быструю и эффективную теплопередачу.Тонкая система с множеством гибких вариантов установки предлагает оптимальную свободу выбора обогреваемых участков и гарантирует точный обогрев и отсоединение. Малая монтажная высота Schlüter®-DITRA-HEAT делает его идеальным выбором для модернизации существующих конструкций.
Как используется Schlüter®-DITRA-HEAT-E?
Schlüter-DITRA-HEAT-E предназначен для установки в стены и полы, где он используется для целевого нагрева поверхностей.Более того, Schlüter-DITRA-HEAT-E предлагает дополнительные функции, которые необходимы для высококачественных покрытий из плитки и камня. Таким образом, система защищает пол от проникновения влаги, предотвращает передачу трещин в покрытие и гарантирует прямую передачу нагрузки, а также нейтрализует расцепление, чтобы ваши стены и напольные покрытия оставались красивыми в течение длительного времени. Благодаря способности разъединяющего мата DITRA-HEAT перекрывать трещины, система обогрева подходит для использования с критически важными поверхностями, такими как деревянные конструкции и зеленые стяжки .
Сертифицированный гидроизоляционный узел. Одобрено для влажных помещений.
Выбирайте проверенное качество: Schlüter-DITRA-HEAT-E также сертифицирован для клеевой гидроизоляции с национальным техническим допуском (abP), необходимым в Германии. Эта дополнительно интегрированная функция обеспечивает максимальную надежность для подрядчиков при установке интеллектуальной системы: DITRA-HEAT-E, которая имеет национальное техническое разрешение с сертификатом No. P-66821401.201 для зоны установки A, а также клееный разъединительный мат Schlüter-DITRA 25 подходят для использования в ванных комнатах и других влажных помещениях.
Обзор компонентов системы
Ваша электрическая система теплого пола в комплекте
Schlüter-DITRA-HEAT-E компания Schlüter-Systems разработала уникальную тонкослойную систему нагрева для простого, индивидуального и целенаправленного нагрева определенных поверхностей.
В отличие от обычных нагревательных матов, кабели системы DITRA-HEAT-E индивидуально прокладываются в разъединяющем мате. Благодаря использованию тонкослойной технологии система электрического теплого пола также работает в тех местах, где системы водяного теплого пола не подходят по конструктивным причинам.
Настоящий универсал, который создает теплые плитки везде, где требуется сборка системы на минимальной высоте. Запатентованная технология DITRA также гарантирует надежное разъединение и отсутствие трещин на полу.Вы можете рассчитывать на приятно теплую плитку везде, где ВЫ желаете тепла. В том числе на ответственных основаниях, таких как деревянные полы!
Особо тонкий и отзывчивый
Schlüter-DITRA-HEAT-E стал синонимом электрических систем теплого пола во всем мире: торговцы любят простоту установки, дизайнеры вдохновляются его гибкостью в использовании, а домовладельцы наслаждаются приятным и отзывчивым теплом своих полов.
Вот как работает нагрев тонкой системой:
Schlüter-DITRA-HEAT-E состоит из разделительного мата и нагревательного кабеля (монтажная высота стыка всего 5.5 мм), которые комбинируются прямо на месте. В результате получается встроенный нагревательный мат. Обогреваемые участки можно определить индивидуально, чтобы они соответствовали любому проекту пола. DITRA-HEAT-E – идеальный выбор для переоборудования и ремонта.
Удобные комплектации
Ваш розничный продавец предлагает широкий выбор удобных комплектов для комнат общего пользования. В комплект входят следующие компоненты:
- Разъединительные маты Schlüter®-DITRA-HEAT-MA
- Нагревательные кабели Schlüter®-DITRA-HEAT-E-HK
- Термостат Schlüter®-DITRA-HEAT-E-R
Наборы включают в себя все необходимые компоненты для установки вашей системы отопления пола и стен в одной удобной упаковке.
Информация о продукте (PDF)
Более быстрая тепловая реакция, дополнительная изоляция от ударного шума
Schlüter®-DITRA-HEAT-DUO
Новый Schlüter-DITRA-HEAT-DUO – правильное решение там, где тепло необходимо быстро и в течение короткого времени.Например, в ванной комнате необходима высокочувствительная и эффективная система, которая используется только в определенные часы утром и ночью. Система быстро создает теплые зоны в определенных зонах комфорта, например, перед туалетным столиком.
Дополнительный 2-миллиметровый флис действует как тепловой барьер: основная часть (более 80%) тепла направляется прямо к верху в напольное покрытие в фазе нагрева, что делает ощутимый тепловой эффект намного быстрее и дает энергию. -эффективный.
Изоляция от ударного шума до 13 дБ
Флисовый компонент разъединяющего мата не только улучшает реакцию на нагрев, но также обеспечивает значительное снижение передачи ударного шума: независимый испытательный институт подтвердил снижение ударного шума до 13 дБ для разъединяющего мата.
В нашей таблице показано, когда какая система имеет наибольший смысл:
Schlüter®-DITRA-HEAT | Schlüter® -DITRA-HEAT-DUO | |
по сравнению с обычной системой теплого пола | х | – |
поверх керамического теплого пола | х | – |
над деревянными конструкциями | х | х |
над стяжкой без подогрева | – | х |
над несущим предыдущим покрытием (без подогрева) | – | х |
Максимальная длина трубы для теплого пола.Как рассчитать водяной теплый пол? Сколько метров оптимальная длина петли
Максимальная длина трубы для теплого пола. Как рассчитать водяной теплый пол? На сколько метров оптимальная длина петли
Теплый пол прекрасное решение для благоустройства своего жилья. Температура пола напрямую зависит от длины скрытых в стяжке труб теплого пола. Труба в полу укладывается петлями. Фактически от количества петель и их длины складки и общая длина трубы.Понятно, что чем длиннее труба в том же объеме, тем теплее пол. В этой статье поговорим об ограничениях по длине одного контура теплого пола.
Примерные расчетные характеристики для труб диаметром 16 и 20 мм составляют: 80-100 и 100-120 метров соответственно. Эти данные приведены приблизительно для приблизительных расчетов. Рассмотрим процесс монтажа и заливку теплых полов более подробно.
Последствия превышения длины
Разберемся, к каким последствиям может привести увеличение длины трубы теплого пола.Одна из причин – увеличение гидравлического сопротивления, что создаст дополнительную нагрузку на гидронасос, в результате чего он может выйти из строя или просто не справиться с возложенной на него задачей. Расчет сопротивления состоит из множества параметров. Условия, параметры укладки. Материал использованных труб. Вот три основных: длина петли , количество изгибов и тепловая нагрузка на нее .
Стоит отметить, что тепловая нагрузка с увеличением петли растет. Также увеличивает расход и гидравлическое сопротивление.Скорость потока имеет ограничения. Оно не должно превышать 0,5 м / с. Если мы превысим это значение, в трубопроводной системе могут возникнуть различные шумовые эффекты. Увеличивается и основной параметр, для которого производится данный расчет. Гидравлическое сопротивление нашей системы. У него также есть ограничения. Они составляют 30-40 кПа на петлю.
Следующая причина заключается в том, что при увеличении длины трубы теплого пола возникает давление на стенки трубы, вызывающее удлинение этой площади при нагревании. Трубе, находящейся в стяжке, некуда деваться.И она начнет сужаться в самом слабом месте. Сужение может вызвать перекрытие потоков охлаждающей жидкости. У труб из разного материала разный коэффициент расширения. Например, в полимерных трубах очень высокий коэффициент расширения. Все эти параметры необходимо учитывать при устройстве теплого пола.
Поэтому заливать стяжку теплого пола необходимо гофрированными трубами. Давить воздух лучше с давлением около 4 бар. Таким образом, когда вы наполните систему водой и начнете ее нагревать, труба в стяжке будет расширяться.
Оптимальная длина трубы
Учитывая вышеперечисленные причины, с учетом поправок на линейное расширение материала труб, принять за основу максимальную длину труб теплого пола по контуру:
В таблице указаны оптимальные размеры длины теплого пола, подходящие для всех режимов теплового расширения труб в различных режимах эксплуатации.
Примечание: Б. для жилых домов достаточно трубы 16 мм. Не следует использовать больший диаметр.Это приведет к огромным потерям энергии.
1.
2.
3.
4.
5.
6.
Правильный расчет – залог успеха в любом бизнесе. Однако не так-то просто реализовать на практике все задумки. Это заявление полностью относится к сообщениям, которые нужно создать. Вы можете рассчитывать только с точностью до миллиметров, но все же проверка полученных данных будет необходима на каждом этапе работы, так как все полностью учесть невозможно. К тому же в каждой квартире свои особенности поверхности пола, поэтому часто бывает сложно учесть все изгибы и впадины.Однако не стоит отчаиваться, ведь правильно установить систему теплого пола хоть и сложно, но реально.
Как установить трубы отопления
Подземная водопроводная система состоит из множества элементов, основными из которых являются трубы, отводящие тепло под полом всего дома.Исходя из того, насколько удобнее мастеру, можно организовать общение в 4-х вариантах:
- Змея.
- Уголок змейки.
- Двойная змея.
- Улитка.
Правильный расчет системы отопления – Задача сложная, но вполне выполнимая при пошаговом подходе. Учесть абсолютно все нюансы при установке теплого пола проблематично, поэтому стоит обратить внимание на самые важные характеристики, а именно длину труб и объем воды в них. Кроме того, стоит помнить, что даже незначительное превышение длины петли в 100 м может серьезно навредить системе и выдать выход далеко от ожидаемой температуры.Модель двойного киннинга, в свою очередь, будет намного эффективнее, что позволит отдать дом без особых хлопот и с меньшим потреблением ресурсов.
Практически в каждом загородном доме обязательно монтируется теплый пол. Перед тем, как создать такой обогрев, производится расчет необходимой длины трубы.
В каждом частном доме автономная система теплоснабжения. Если позволяет планировка помещений, владельцы таких загородных владений сами монтируют теплые водяные полы.
Конечно, установку такого пола можно произвести и в обычной квартире, но эта работа отличается большой сложностью. Владельцам и сотрудникам предстоит решить множество проблем. Основной сложностью станет подключение трубы к действующей системе теплоснабжения. Установить дополнительный бойлер в малогабаритной квартире просто невозможно.
Исходя из правильности этого расчета, количество тепла зависит от помещения, которое нужно ввести в комнату, чтобы в ней всегда была комфортная температура.Расчеты помогут определить мощность теплого пола, а также помогут сделать правильный выбор бойлера и насоса.
Выполнить такой расчет очень сложно. При этом необходимо учитывать довольно много разных критериев:
- Сезон;
- Температура воздуха на улице;
- Тип номера;
- Количество и размеры окна;
- Покрытие пола.
- Утеплитель стен;
- Если комната расположена внизу или на верхних этажах;
- Альтернативные источники тепла;
- Оргтехника;
- Освещение.
Для облегчения выполнения этого расчета взяты средние значения. Если в доме стеклопакеты и сделана хорошая теплоизоляция, этот параметр будет примерно 40 Вт / м2.
Теплые здания с небольшой теплоизоляцией постоянно теряют около 70-80 Вт / м2.
Если брать старый дом, резко возрастают теплопотери и приближаются к 100 Вт / м2.
В новых коттеджах, где не производится утепление стен, где установлены панорамные окна, потери могут составить около 300 Вт / м2.
Выбрав примерную стоимость для своего помещения, можно приступить к расчету восполнения теплопотерь.
Как определить оптимальную температуру в помещении
В этом случае особых сложностей не возникает. Для ориентации вы можете использовать рекомендуемые значения или придумать свои. И обязательно нужно учитывать напольное покрытие.
Пол в жилом помещении должен нагреваться до 29 градусов. При расстоянии от внешних стен более полуметра температура пола должна достигать 35 градусов.Если в помещении постоянно повышенная влажность, потребуется нагреть половую поверхность до 33 градусов.
Если в доме настелен деревянный паркет, нельзя нагревать пол выше 27 градусов, так как паркет может испортиться.
Ковер способен задерживать тепло, он дает возможность повышать температуру примерно на 4-5 градусов.
Как производится расчет
Расчет трубы для теплого пола производится по следующей схеме. На один квадратный метр поверхности пола требуется 5 метров трубы.Длина ступеньки должна быть 20 см. Необходимое количество рассчитывается по формуле:
- L = S / N x 1,1
- Площадь – S:
- АКЦИОНЕРНАЯ СТУПЕНЬ – N;
- Труба запасная, для создания поворотов – 1.1.
Для большей точности расстояние от коллектора до пола добавляется и умножается на два. Пример расчета длины трубы толстого пола:
- Жилая площадь – 15 квадратных метров. м;
- Длина от коллектора до пола – 4 м;
- Шаг штабелирования – 0.15м;
- Получается: 15 / 0,15 х 1,1 + (4 х 2) = 118 м.
Расчет длины контура
Для расчета длины контура необходимо учитывать диаметр трубы и материал, из которого она изготовлена. Возьмем, к примеру, металлопластиковую трубу диаметром 16 дюймов. Чтобы теплый пол хорошо функционировал, длина водяного контура должна быть не более 100 метров. Наиболее подходящей считается длина для такой трубы 75-80 метров.
Если берется 18 мм, из полиэтилена, длина водяного контура должна быть в пределах 120 метров. В основном труба равна 90-100 метрам.
Расход трубы для теплого пола из металлопластиковой трубы 20 мм составит 100-120 метров.
При выборе трубы необходимо учитывать площадь помещения. Надо сказать, что материал и способ укладки сильно влияют на качество теплого пола и его долговечность. Практика показала, что самым лучшим материалом для утепления будут металлопластиковые трубы.
Расчет количества контуров
Если учесть все правила, становится понятно, что для небольших помещений достаточно одного шлейфового контура. Когда площадь комнаты намного больше, нужно разделить ее на секции в соотношении 1: 2. Другими словами, ширина воды будет меньше ее длины, ровно наполовину. Для определения количества сайтов необходимо знать следующие параметры:
- Шаг 15 см – площадь 12 кв. метры;
- 20 см – 16 кв.метры;
- 25 см – 20 кв. метры;
- 30 см – 24 кв. метров.
Иногда область подчеркивания делают длиннее 15 метров. Мастера советуют указанные значения увеличить еще на 2 кв. метр.
Можно ли смонтировать теплый пол с разными петлями?
Идеальным считается теплый пол, где каждая петля имеет одинаковую длину. Это позволит вам не заниматься дополнительной настройкой, вам не нужно регулировать баланс.
Конечно, длина контура может быть одинаковой, но это не всегда выгодно.
Например, объект состоит из нескольких помещений, в которых необходима установка теплого пола. Одно из таких помещений – санузел площадью 4 кв. метр. Общая длина трубы этого контура с учетом расстояния до коллектора будет равна 40 м. Конечно, никто не приспособится к такому размеру, поделив полезную площадь под 4 квадратных метра.метр. Это деление будет совершенно ненужным. Ведь есть специальная балансировочная фурнитура, с помощью которой можно выравнивать напор контуров.
Сегодня также можно произвести расчет с целью определения максимальной длины длины трубы относительно каждого контура с учетом типа оборудования и площади объекта.
Мы не будем рассказывать вам, как производятся эти сложные вычисления. Просто при устройстве теплого пола разброс длины трубопровода отдельного контура принимают в пределах 30-40%.
Кроме того, при необходимости появляется возможность «манипулировать» диаметрами труб. Возможность смены шага установки, большие квадраты Разбейте на несколько средних кусочков.
Если комната очень большая, нужно ли создать несколько контуров?
Конечно, теплый пол в таких помещениях лучше разделить на части и смонтировать по нескольким контурам.
Такая потребность связана с разными причинами:
- Небольшая длина трубы позволит предотвратить появление «запертой петли», когда циркуляция теплоносителя становится невозможной;
- Площадь бетонного участка должна быть не более 30 кв.метров. Длина ее сторон должна быть в соотношении 1: 2. Один из концов плиты должен иметь длину менее 8 метров.
Заключение
Изначально главное знать исходные данные своего помещения, а формулы помогут определить, сколько труб должно быть на 1 м2 теплого пола.
По теплому полу ходить приятно, нет дискомфорта от холода под ногами и духоты наверху комнаты. Грамотно оборудованная система позволяет равномерно утеплить все площади комнат, создавая комфорт и экономя средства на отопление.Монтаж теплого пола относительно прост, но эффективность отопительного контура полностью зависит от правильности расчетов при составлении проекта.
Чтобы теплый пол создавал нужный микроклимат и не стал причиной неудобств или несчастных случаев, помещение, в котором будет установлен этот отопительный контур, должно соответствовать следующим требованиям:
- высота потолков черного пола должна быть такой, чтобы ее уменьшение на 20 см не доставляло дискомфорта;
- дверной проем должен иметь высоту не менее 2.1 м;
- черновой пол должен быть достаточно прочным, чтобы выдерживать цементную стяжку, которую замыкают тепловым контуром;
- если черновой пол уложен на землю или под утепленным помещением есть неотапливаемое, необходимо проложить дополнительный слой утеплителя с экранирующим покрытием;
- Поверхность, на которую устанавливается тепловой контур и все составляющие «пирога» теплого пола, должна быть гладкой и чистой.
При соблюдении вышеуказанных требований система «теплый пол» будет установлена без проблем.Однако его эффективность зависит не только от размера комнаты, но и от других ее характеристик, учет которых поможет выполнить следующие рекомендации:
- Стены являются основным источником теплопотерь, поэтому перед расчетом и установкой системы отопления необходимо хотя бы приблизительно рассчитать объем тепловых потерь. Если полученная цифра окажется выше 100 Вт на квадратный метр, стены желательно утеплить, чтобы не переплачивать за отопление;
- Тепловой контур не должен попадать под установку массивной мебели и тяжелого стационарного оборудования.Постоянное сильное давление на пол приведет к повреждению труб или кабелей системы отопления и выведет ее наружу.
- Для равномерного прогрева помещения необходимо, чтобы такие неотапливаемые зоны занимали не более 30% площади пола. Поэтому перед проведением расчетов выполняется чертеж комнаты в масштабе, и отмечается на этом чертеже место, которое следует оставить неуслышанным. Затем рассчитывается общая рабочая площадь – она должна составлять 70% и более от общей.
- Необходимо рассчитать оптимальную форму, длину и шаг теплового контура и его мощность, а также выполнить чертеж с указанием мест подключения к системе отопления, направления потока теплоносителя.
Способы установки системы «Теплый пол»
Для правильного функционирования данной системы отопления важна четкая последовательность так называемого «пирога» теплого пола.
Тепловой контур размещается на предварительно нагретой и водонепроницаемой поверхности, а также поверх залитой или засыпающей цементной стяжки, поверх которой укладывается чистовое покрытие пола.Вышеуказанные слои – оболочка торта – потребуются в обоих случаях. Они защищают систему от внешних воздействий и повышают ее эффективность.
Во избежание лишних затрат и технологических ошибок, которые могут привести к частичной или полной переделке системы своими руками, расчет водяного теплого пола производится заранее перед укладкой. Требуются следующие вводные данные:
- Материалы, из которых построен корпус;
- Наличие других источников тепла;
- Площадь номера;
- Наличие наружной теплоизоляции и качественного остекления;
- Районное расположение дома.
Также необходимо определить, какая максимальная температура воздуха в помещении требуется для комфорта жильцов. В среднем рекомендуется делать расчет контура водяного пола из расчета 30-33 ° С. Однако такие высокие показатели при эксплуатации могут и не понадобиться, максимально комфортно человек себя чувствует при температуре до 25 градусов. .
В случае использования в доме дополнительных источников тепла (кондиционер, центральная или отопительная система и т. Д.)) расчет теплого пола можно ориентироваться на средние максимальные показатели 25-28 ° С.
Совет! Подключать теплые водяные полы своими руками напрямую через систему центрального отопления категорически не рекомендуется. Желательно использовать теплообменник. Идеальный вариант – полностью автономное отопление и подключение теплых полов через коллектор к котлу.
Эффективность системы напрямую зависит от материала труб, по которым будет перемещаться теплоноситель.Используйте 3 разновидности:
- Медь;
- Полиэтилен или прошитый полипропилен;
- Металлопластик.
Вт. Медные трубы Максимальная теплоотдача, но довольно высокая стоимость. Полиэтилен I. Полипропиленовые трубы Они обладают низкой теплопроводностью, но относительно дешевы. Оптимальный вариант по соотношению цены и качества – металлопластиковые трубы. У них низкая теплопередача и приемлемая цена.
Опытные специалисты в первую очередь учитывают следующие параметры:
- Определение желаемого значения t в помещении.
- Правильно рассчитайте теплопотери дома. Для этого можно воспользоваться программами-калькуляторами или пригласить специалиста, но можно произвести приблизительный подсчет теплопотерь самостоятельно. Простой способ рассчитать поле теплой воды и теплопотери в помещении – это среднее значение теплопотерь в помещении – 100 Вт на 1 кв. Метр с учетом высоты потолка не более 3 метров и отсутствие прилегающих неотапливаемых помещений. Для угловых комнат и тех, в которых два и более окон – теплопотери рассчитываются из расчета 150 Вт на 1 кв.М. Метр.
- Расчет Сколько будут теплопотери по контуру на каждый м2 обогреваемой водяной системы.
- Определение расхода тепла на M2, исходя из материала декоративного покрытия (например, теплопередающая керамика выше, чем у ламината).
- Расчет температуры поверхности с учетом теплопотерь, теплопередачи, заданной температуры.
В среднем необходимая мощность на каждые 10 м2 площади кладки должна составлять около 1.5 кВт. При этом необходимо учитывать пункт 4 приведенного выше списка. Если дом хорошо утеплен, окна из качественного профиля, то по теплоотдаче можно выделить 20% мощности.
Соответственно при площади комнаты 20 м2 расчет будет происходить по следующей формуле: Q = Q * x * s.
3кВт * 1,2 = 3,6 кВт, где
Q – Требуемая теплопроизводительность,
q = 1,5 кВт = 0,15 кВт – постоянная на каждые 10м2,
х = 1,2 – усредненный коэффициент теплопотерь,
S – площадь помещения.
Перед тем, как приступить к монтажу системы своими руками, рекомендуется составить схему, точно указать расстояние между стенами и наличие в доме других источников тепла. Это даст возможность максимально точно рассчитать вместимость водяного пола. Если площадь участка не позволяет использовать один контур, то правильно спланируйте систему исходя из установки коллектора. Кроме того, вам нужно будет самостоятельно смонтировать шкаф для устройства и определить его расположение, расстояние до стен и т. Д.
Сколько метров оптимальной длины петли
х3_2.Часто встречается информация, что максимальная длина одной цепи составляет 120 м. Это не совсем соответствует истине, так как параметр напрямую зависит от диаметра трубы:
- 16 мм – Max L 90 метров.
- 17 мм – Максимальная длина 100 метров.
- 20 мм – Макс.длина 120 метров.
Соответственно, чем больше диаметр трубопровода, тем меньше гидравлическое сопротивление и давление.Так что это более длинный контур. Но опытные мастера рекомендуют не «гнаться» за максимальной длиной и выбирать трубу D 16 мм.
Также необходимо учитывать, что толстые трубы D 20 мм проблематично изгибаются, соответственно, укладка кладки будет больше рекомендуемого параметра. А это означает низкий уровень эффективности системы, т.к. расстояние между витками будет большим, в любом случае придется делать квадратный контур улитки.
Если для обогрева большого помещения недостаточно одного контура, то лучше монтировать двухдверный пол.Настоятельно рекомендуется делать контуры одинаковой длины, чтобы поверхность поверхности была однородной. Но если разницы в размерах все же не избежать – допускается погрешность в 10 метров. Расстояние между контурами равно рекомендуемому шагу.
Гидравлический шаг между витками
Равномерность поверхности зависит от величины поворота поверхности. Обычно используют 2 вида укладки труб: змейка или улитка.
Змейку желательно делать в помещении с минимальными тепловыми потерями и небольшой площадью.Например, в ванной или коридоре (так как в частном доме или квартире они находятся внутри без контакта с внешней средой). Оптимальный шаг петли для змейки – 15-20 см. При таком типе прокладки потери напора примерно 2500 Па.
Петли-улитки используются в просторных помещениях. Такой способ сохраняет длину контура и дает возможность равномерно утеплить комнату как посередине, так и ближе к наружным стенам. Шаг петли рекомендуется в пределах 15-30 см.Специалисты утверждают, что идеальное расстояние ступеньки составляет 15 см. Потеря давления в улитке – 1600 Па. Соответственно, такой вариант укладки более выгоден с точки зрения энергоэффективности установки (можно покрыть меньшую полезную площадь). Вывод: Улитка более эффективна, она понижает давление меньше, соответственно выше КПД.
Общее правило для обеих схем – ближе к стенам стены нужно уменьшить до 10 см. Соответственно, начиная с середины контура петли помещения, постепенно заделывают контур петли.Минимальное расстояние укладки до наружной стены 10-15 см.
Еще один важный момент – нельзя укладывать трубы поверх швов бетонных плит. Необходимо составить схему так, чтобы соблюдалось одинаковое расположение петли между стыками плиты с двух сторон. Для установки своими руками можно предварительно нарисовать схему черным галстуком мелом.
Сколько градусов допускается при понижении температуры
Проектирование системы Помимо потерь тепла и давления учитываются температурные различия.Максимальный перепад – 10 градусов. Но рекомендуется ориентироваться на 5 ° C для равномерной работы системы. Если заданная комфортная температура поверхности пола составляет 30 ° C, то прямая труба должна подводиться около 35 ° C.
Давление и температура, а также их потери проверяются при опрессовке (проверка системы перед чистовой стяжкой). При правильном проектировании указанные параметры будут точными с погрешностью не более 3-5%. Чем выше перепад Т, тем выше расход пола.
Теплый пол в гараже – все, что вам нужно знать
Вот несколько хороших новостей для тех, кто любит «редукторы» – удобное и доступное отопление подходит не только для комнат вашего дома. Теплый пол – отличный вариант даже для вашего гаража! Фактически, гаражный лучистый пол с подогревом – лучший способ согреть пол, когда вы ползаете под своей машиной. Кроме того, он также сушит пол и нагревает воздух во всем гараже, делая пространство комфортным и предохраняя хранящиеся предметы от опасности образования плесени и грибка.
Если вы устали бегать по холодному бетону, пока занимаетесь проектами на своем хот-роде или семейном автомобиле, лучше всего подойдет гаражный лучистый пол с подогревом. Кроме того, эти системы работают тихо, в отличие от обогревателей или электрических воздуходувок. Слушайте любимую музыку или легко продолжайте разговор с коллегами по работе или семьей, оставаясь в тепле и сухости.
Если вы готовы значительно улучшить свое рабочее место, вот все, что вам нужно знать о теплом полу в гараже и о том, как начать его установку в домашнем гараже.
Что такое теплый пол в гараже?
Системы лучистого отопления поставляют тепло непосредственно полу или другой поверхности вашего дома. Эти системы получили свое название от метода передачи тепла – тепло излучается от компонентов системы через поверхность в воздух через инфракрасное излучение. Подумайте о том, как нагревается плита, и вы чувствуете тепло, когда приближаетесь к плите. Благодаря лучистому напольному отоплению компоненты системы отопления встраиваются в пол помещения, включая ваш гараж.
Лучистое отопление – более эффективное средство обогрева любого помещения. Нет потерь тепла через воздуховоды, и он нагревается намного более равномерно, чем обогреватели плинтуса или принудительные воздухонагреватели, обычно используемые в гаражах. Кроме того, если вы страдаете аллергией, лучистое тепло не распространяет аллергены по воздуху. Современные системы лучистого отопления энергоэффективны и могут использовать различные средства для распределения тепла, как мы рассмотрим ниже.
Самые популярные типы лучистого напольного отопления используют электрические компоненты или жидкие (гидронные) компоненты, которые проходят по полу для распределения тепла.У каждого типа системы есть свои преимущества. Давайте обсудим оба типа.
Обычно используются электрические кабели или маты из электропроводящего пластика, которые монтируются внутри материала пола или на черновом полу под напольным покрытием. Они особенно эффективны и экономичны, если они встроены в бетонный пол, способный удерживать тепловую массу в течение более длительных периодов времени. Напольные покрытия, такие как плитка или древесина твердых пород, не будут удерживать тепло так долго, что заставляет нагревать пол в течение более длительных периодов времени.
Большинство полов в гаражах бетонные, поэтому встраивание электрической системы в новый пол гаража является идеальным решением. Для существующих полов рекомендуется «мокрое» нанесение, при котором электрические кабели или маты прокладываются поверх существующего пола и сверху заливаются несколько дюймов нового бетона.
Гидравлические (жидкостные) системы – самые популярные и экономичные из имеющихся систем обогрева пола в гаражах. Эти инновационные системы передают нагретую воду по трубам, которые находятся под напольным покрытием или внутри него.Систему можно подключить к имеющемуся водонагревателю. Другой водонагреватель, установленный специально для этой цели, или другой тип бойлера.
Трубки подключаются к насосам и клапанам, которые могут регулировать поток воды с помощью термостата для регулирования температуры в помещении.
Как установить теплый пол в гараже?
Как электрические, так и водяные системы обогрева пола в гараже можно установить двумя способами. Если вы строите новый гараж, лучше всего установить систему внутри самого бетонного пола.Электрические компоненты или каналы трубопровода для жидкости соединяются с арматурной арматурой или проволочной сеткой для обеспечения эффективной и крупномасштабной установки. Затем в обычном режиме заливается бетон, чтобы сформировать пол гаража. Система подключается к источнику электричества и / или горячей воды и термостату для контроля температуры.
Гаражный лучистый пол с подогревом внутри бетонной плиты нагревает плиту и окружающий воздух над ней. Обеспечивает комфортную температуру, а также сухую теплую поверхность, на которой можно лежать под автомобилем во время работы.Мы рекомендуем установить достаточную изоляцию на стенах и потолке вашего гаража, чтобы сохранить тепло в гараже и предотвратить потери и более высокие счета за электричество.
Для существующих полов в гаражах электрические маты или трубы для жидкости можно уложить в виде рисунка на пол, а затем залить слоем гипса или бетона. Компоненты системы обогрева пола в гараже невелики и не потребуют более двух-трех дюймов дополнительного материала. Это не поднимет значительно пол вашего гаража и все же должно оставить достаточно места для транспортных средств.Обязательно измерьте высоту своего гаража перед тем, как выбрать этот метод установки.
При таком типе установки электрические и / или жидкостные компоненты затем подключаются к водонагревателю и термостату для регулирования температуры. Утепление стен и потолка вашего гаража повысит эффективность системы и сэкономит ваши деньги.
Насколько эффективен теплый пол в гараже?
Как электрическое, так и водяное отопление пола в гараже – очень эффективные методы обеспечения теплого и сухого хранилища и рабочего пространства.Обычно они потребляют столько же или меньше энергии, чем другие распространенные системы отопления, такие как принудительный воздух или обогреватели.
В зависимости от типа установки и размера вашего гаража. Обычно вы можете предположить, что ваша система обогреваемого пола в гараже будет потреблять около 12 ватт энергии на квадратный фут за каждый час использования. Это означает, что гараж площадью 100 квадратных футов будет потреблять 1200 Вт каждый час, когда система находится в активной работе. Это примерно на 300 Вт меньше, чем у среднего электрического обогревателя ракетного типа.
Кроме того, теплый пол в гараже равномерно увеличивает температуру помещения. Обогреватели или обогреватели с принудительной подачей воздуха нагревают ближайшую к обогревателю сторону комнаты быстрее. Делаем очень горячую сторону и более холодную сторону комнаты.
Расчет использования энергии лучистого отопления пола в гараже
При планировании установки системы лучистого теплого пола в гараже. Вы можете легко рассчитать приблизительное энергопотребление для гаража вашего дома.
Для выполнения расчетов выполните следующие действия:
- Рассчитайте площадь отапливаемой площади в гараже в квадратных футах.Это рассчитывается путем умножения площади всего помещения в квадратных футах на 0,9. Например, если площадь всей комнаты составляет 100 квадратных футов, 100 x 0,9 = 90 квадратных футов.
- Теперь умножьте эту отапливаемую площадь на 12 Вт на квадратный фут потребляемой энергии. Поскольку большинство систем потребляют примерно столько электроэнергии. Например, 90 квадратных футов отапливаемой площади в этом примере умножаются на 12. Или 90 x 12 = 1080 Вт электроэнергии.
- Поскольку ваш счет за электроэнергию, скорее всего, рассчитывается и выставляется в киловаттах, вы должны рассчитать эту сумму.Разделите общее количество ватт на 1000, чтобы получить количество киловатт, которое система будет использовать в час. В нашем примере с гаражом 1080 ватт делятся на 1000, или 1080 ÷ 1000 = 1,08 киловатт.
- Теперь узнайте, сколько у вас взимается за киловатт в вашем районе. Затем умножьте это число на то, сколько ваша система обогрева пола в гараже, вероятно, будет использовать в час. В среднем в США составляет 13,31 доллара за киловатт-час. Это может быть более или менее там, где вы живете. Итак, в нашем примере с гаражом 1,08 киловатта умножается на 13 долларов.31, или 1,08 x 13,31 = 14,37. Гараж в нашем примере будет стоить 14,37 доллара в час.
Однако важно помнить, что системы обогрева пола в гараже не работают круглосуточно.
Путем включения программируемого термостата в вашу систему. Вы можете установить желаемую температуру, и система будет работать только по мере необходимости для поддержания этой температуры. Кроме того, с системой можно работать только тогда, когда вы планируете ее использовать. Если вы просто не хотите поддерживать в тепле гараж 24 часа в сутки, 7 дней в неделю, нет смысла поддерживать систему в постоянной работе.
Программируемый термостат может быть настроен на работу только тогда, когда будет использоваться пространство. Кроме того, с помощью термостата Wi-Fi вы можете контролировать температуру или систему из любого места. Вытащите смартфон, откройте приложение термостата и активируйте систему, чтобы нагреть пространство до заданной температуры. Так будет тепло и жарко, когда вы планируете работать в помещении. Это невероятно удобно, а также является отличной мерой экономии.
Теплый пол | Трубы из PEX | Напольное отопление
Существует несколько способов подобрать размер трубок и коллектора RHT PEX для вашего магазина, ангара или дома.Самый простой способ определить количество труб, которые вам понадобятся, – это сначала выбрать подходящий размер и расстояние между трубками для вашего приложения, а затем определить общую линейную площадь трубопровода на основе приведенных ниже множителей площади в квадратных футах.
Для жилых помещений, а также малых и средних магазинов и гаражей O 2 кислородный барьер PEX-трубка входит в стандартную комплектацию. С трубой ½ “6” шаблон иногда используется в ванных комнатах и для экстремально холодного климата, шаблон 8 “и 9” является стандартным для большинства жилых помещений в большинстве климатических условий, а шаблон 12 “используется в гаражах и жилые помещения в более теплом климате.Для большинства крупных магазинов и небольших коммерческих предприятий обычно используются трубки из полиэтилентерефталата с кислородным барьером & frac58; “. Для трубок & frac58;” стандартным является 12-дюймовый профиль, но 16-дюймовый образец может использоваться в более теплом климате или при очень низких температурах. желательна температура окружающей среды. Для больших магазинов и больших коммерческих зданий (обычно более 5000 квадратных футов) стандартная труба PEX с кислородным барьером ¾ “. Для трубок” используется расстояние 16 или 18 дюймов, в зависимости от климата и желаемых условий. температура для пространства.
Теперь, когда вы выбрали размер и расстояние между трубами PEX для своего проекта, просто умножьте квадратные метры обогреваемого пространства на один из следующих множителей, чтобы определить общую линейную метраж трубы, которая вам понадобится. Обязательно используйте правильный множитель, соответствующий выбранному вами интервалу:
- Расстояние 6 дюймов = кв. Фута x 2,0
- Расстояние 8 дюймов = квадратный фут x 1,5
- Расстояние 9 дюймов = кв. Фута x 1,34
- Расстояние 12 дюймов = кв.футов x 1,0
- Интервал 16 дюймов = кв. Фута x 0,75
- Расстояние 18 дюймов = кв. Фут x 0,67
После того, как вы определили фактическую общую длину трубы, которая вам понадобится, следующим шагом будет определение количества петель или контуров трубы. С трубкой ½ дюйма длина цепи 300 футов является стандартной, но цепи от 250 до 350 футов находятся в пределах диапазона, рекомендованного ассоциацией Radiant Panel Association. Для трубок & frac58; “и ¾” стандартными являются контуры длиной 500 футов. Так, например, если вы используете ½-дюймовую трубу и определили, что вам понадобится 900 футов трубы, у вас будет три контура по 300 футов каждый и 3-х портовый коллектор.Если вы используете НКТ & frac58; “и определили, что вам потребуется 3000 футов трубы, у вас будет шесть контуров по 500 футов каждый и 6-канальный коллектор.
Если вам нужна дополнительная помощь в определении размеров, расстояния и / или компоновки трубок из полиэтиленгликоля для вашего проекта, компания BlueRidge будет рада помочь вам в этом. Предлагаем бесплатные услуги по проектированию и компоновке НКТ при покупке НКТ и коллекторов. Просто посетите нашу страницу Free Radiant Design и заполните форму запроса на дизайн, чтобы получить бесплатную оценку материалов, необходимых для вашего проекта: http: // www.blueridgecompany.com/quote
Для всех применений внутри плиты BlueRidge Company рекомендует использовать один из следующих изоляционных материалов для поддержания эффективности и минимизации ненужных потерь тепла (перечислены в порядке эффективности):
- 1. FOAMULAR 250 2 дюйма, жесткий пенопласт R-10
- 2. FOAMULAR 250 1 1/2 “жесткий пенопласт R-7.5.
- 3. FOAMULAR 250 1 дюйм жесткая пенная изоляция R-5
- 4. Барьерная “изоляция” R 1.7
- 5. Пузырьковая фольга Пузырьковая (немного лучше, чем ничего)