Содержание

Обозначение радиоэлементов на схемах | Практическая электроника

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. 

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.

Точка, где  соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R  – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук.  Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания  в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды  – это

группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

С – конденсаторы

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

G – генераторы, источники питания, кварцевые генераторы

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

L – катушки индуктивности и дроссели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T – трансформаторы и автотрансформаторы

U – преобразователи электрических величин в электрические, устройства связи

V  – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU

– плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF – выключатель автоматический

QS – разъединитель

RK – терморезистор

RP – потенциометр

RS – шунт измерительный

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD – диод, стабилитрон

VL – прибор электровакуумный

VS – тиристор

VT – транзистор

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды

а) общее обозначение

б) мощностью рассеяния 0,125 Вт

в) мощностью рассеяния 0,25 Вт

г) мощностью рассеяния 0,5 Вт

д) мощностью рассеяния 1 Вт

е) мощностью рассеяния 2 Вт

ж) мощностью рассеяния 5 Вт

з) мощностью рассеяния 10 Вт

и) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

 

Тензорезисторы

 

Варисторы

Шунт

Конденсаторы

a) общее обозначение конденсатора

б) вариконд

в) полярный конденсатор

г) подстроечный конденсатор

д) переменный конденсатор

Акустика

a) головной телефон

б) громкоговоритель (динамик)

в) общее обозначение микрофона

г) электретный микрофон

Диоды

а) диодный мост

б) общее обозначение диода

в) стабилитрон

г) двусторонний стабилитрон

д) двунаправленный диод

е

) диод Шоттки

ж) туннельный диод

з) обращенный диод

и) варикап

к) светодиод

л) фотодиод

м) излучающий диод в оптроне

н) принимающий излучение диод в оптроне

Измерители электрических величин

а) амперметр

б) вольтметр

в) вольтамперметр

г) омметр

д) частотомер

е) ваттметр

ж) фарадометр

з) осциллограф

Катушки индуктивности

а) катушка индуктивности без сердечника

б) катушка индуктивности с сердечником

в) подстроечная катушка индуктивности

Трансформаторы

а) общее обозначение трансформатора

б) трансформатор с выводом из обмотки

в) трансформатор тока

г) трансформатор с двумя вторичными обмотками (может быть и больше)

д) трехфазный трансформатор

Устройства коммутации

а) замыкающий

б) размыкающий

в) размыкающий с возвратом (кнопка)

г) замыкающий с возвратом (кнопка)

д) переключающий

е) геркон

 

Электромагнитное реле с разными группами контактов

Предохранители

а) общее обозначение

б) выделена сторона, которая остается под напряжением при перегорании предохранителя

в) инерционный

г) быстродействующий

д) термическая катушка

е) выключатель-разъединитель с плавким предохранителем

[quads id=1]

Тиристоры

Биполярный транзистор

Однопереходный транзистор

 

Полевой транзистор с управляющим PN-переходом

Моп-транзисторы

IGBT-транзисторы

Фото-радиоэлементы

Фоторезистор

Фотодиод

Фотоэлемент (солнечная панель)

Фототиристор

Фототранзистор

 

Оптоэлектронные приборы

Диодная оптопара

Резисторная оптопара

Транзисторная оптопара

Тиристорная оптопара

Симисторная оптопара

Кварцевый резонатор

Датчик Холла

 

Микросхема

Операционный усилитель (ОУ)

Семисегментый индикатор

Различные лампы

а) лампа накаливания

б) неоновая лампа

в) люминесцентная лампа

Соединение с корпусом (массой)

Земля

Если Вам проще по видео понять, вот можете посмотреть:

Как читать схемы радиоэлектронных устройств, обозначения радиодеталей

Буквенное
сокращение
Расшифровка
сокращения
AM амплитудная модуляция
АПЧ автоматическая подстройка
частоты
АПЧГ автоматическая подстройка
частоты гетеродина
АПЧФ автоматическая подстройка
частоты и фазы
АРУ автоматическая регулировка
усиления
АРЯ автоматическая регулировка
яркости
АС акустическая система
АФУ антенно-фидерное устройство
АЦП аналого-цифровой преобразователь
АЧХ амплитудно-частотная
характеристика
БГИМС большая гибридная
интегральная микросхема
БДУ беспроводное дистанционное
управление
БИС большая интегральная схема
БОС блок обработки сигналов
БП блок питания
БР блок развертки
БРК блок радиоканала
БС блок сведения
БТК блокинг-трансформатор кадровый
Буквенное
сокращение
Расшифровка
сокращения
БТС блокинг-трансформатор строчный
БУ блок управления
БЦ блок цветности
БЦИ блок цветности интегральный
(с применением микросхем)
ВД видеодетектор
ВИМ время-импульсная модуляция
ВУ видеоусилитель; входное
(выходное) устройство
ВЧ высокая частота
Г гетеродин
ГВ головка воспроизводящая
ГВЧ генератор высокой частоты
ГВЧ гипервысокая частота
ГЗ генератор запуска;
головка записывающая
ГИР гетеродинный индикатор
резонанса
ГИС гибридная интегральная схема
ГКР генератор кадровой развертки
ГКЧ генератор качающейся частоты
ГМВ генератор метровых волн
ГПД генератор плавного диапазона
ГО генератор огибающей
ГС генератор сигналов
Сокращение Расшифровка
сокращения
ГСР генератор строчной развертки
гсс генератор стандартных сигналов
гг генератор тактовой частоты
ГУ головка универсальная
ГУН генератор, управляемый
напряжением
Д детектор
дв длинные волны
дд дробный детектор
дн делитель напряжения
дм делитель мощности
дмв дециметровые волны
ДУ дистанционное управление
ДШПФ динамический
шумопонижающий фильтр
ЕАСС единая автоматизированная
сеть связи
ЕСКД единая система
конструкторской документации
зг генератор звуковой частоты;
задающий генератор
зс замедляющая система;
звуковой сигнал; звукосниматель
ЗЧ звуковая частота
И интегратор
икм импульсно-кодовая модуляция
ИКУ измеритель квазипикового уровня
имс интегральная микросхема
ини измеритель линейных искажений
инч инфранизкая частота
ион источник образцового напряжения
ип источник питания
ичх измеритель частотных характеристик
к коммутатор
КБВ коэффициент бегущей волны
КВ короткие волны
квч крайне высокая частота
кзв канал записи-воспроизведения
КИМ кодо-импульсная модуляции
Буквенное
сокращение
Расшифровка
сокращения
кк катушки кадровые
отклоняющей системы
км кодирующая матрица
кнч крайне низкая частота
кпд коэффициент полезного действия
КС катушки строчные
отклоняющей системы
ксв коэффициент стоячей волны
ксвн коэффициент стоячей
волны напряжения
КТ контрольная точка
КФ катушка фокусирующая
ЛБВ лампа бегущей волны
лз линия задержки
лов лампа обратной волны
лпд лавинно-пролетный диод
лппт лампово-полупроводниковый
телевизор
м модулятор
MA магнитная антенна
MB метровые волны
мдп структура
металл-диэлектрик-полупроводник
МОП структура
металл-окисел-полупроводник
мс микросхема
МУ микрофонный усилитель
ни нелинейные искажения
нч низкая частота
ОБ общая база (включение транзистора
по схеме с общей базой)
овч очень высокая частота
ои общий исток (включение транзистора
по схеме с общим истоком)
ок общий коллектор (включение
транзистора по схеме с обшим
коллектором)
онч очень низкая частота
оос отрицательная обратная связь
ОС отклоняющая система
ОУ операционный усилитель
ОЭ обший эмиттер (включение
транзистора по схеме с общим
эмиттером)
Сокращение Расшифровка
сокращения
ПАВ поверхностные акустические
волны
пдс приставка двухречевого
сопровождения
ПДУ пульт дистанционного управления
пкн преобразователь код-напряжение
пнк преобразователь напряжение-код
пнч преобразователь напряжение
частота
пос положительная обратная связь
ППУ помехоподавляющее устройство
пч промежуточная частота;
преобразователь частоты
птк переключатель телевизионных
каналов
птс полный телевизионный сигнал
ПТУ промышленная телевизионная
установка
ПУ предварительный усилитель
ПУВ предварительный усилитель
воспроизведения
ПУЗ предварительный усилитель записи
ПФ полосовой фильтр; пьезофильтр
пх передаточная характеристика
пцтс полный цветовой телевизионный
сигнал
РЛС регулятор линейности строк;
радиолокационная станция
РП регистр памяти
РПЧГ ручная подстройка частоты
гетеродина
РРС регулятор размера строк
PC регистр сдвиговый;
регулятор сведения
РФ режекторный или
заграждающий фильтр
РЭА радиоэлектронная аппаратура
СБДУ система беспроводного
дистанционного управления
СБИС сверхбольшая интегральная схема
СВ средние волны
свп сенсорный выбор программ
СВЧ сверхвысокая частота
сг сигнал-генератор
сдв сверхдлинные волны
Сокращение Расшифровка
сокращения
СДУ светодинамическая установка;
система дистанционного управления
СК селектор каналов
СКВ селектор каналов всеволновый
ск-д селектор каналов дециметровых волн
СК-М селектор каналов метровых волн
СМ смеситель
енч сверхнизкая частота
СП сигнал сетчатого поля
сс синхросигнал
сси строчный синхронизирующий импульс
СУ селектор-усилитель
сч средняя частота
ТВ тропосферные радиоволны; телевидение
твс трансформатор выходной строчный
твз трансформатор выходной канала звука
твк трансформатор выходной кадровый
ТИТ телевизионная испытательная таблица
ТКЕ температурный коэффициент емкости
тки температурный коэффициент
индуктивности
ткмп температурный коэффициент
начальной магнитной проницаемости
ткнс температурный коэффициент
напряжения стабилизации
ткс температурный коэффициент
сопротивления
тс трансформатор сетевой
тц телевизионный центр
тцп таблица цветных полос
ТУ технические условия
У усилитель
УВ усилитель воспроизведения
УВС усилитель видеосигнала
УВХ устройство выборки-хранения
УВЧ усилитель сигналов высокой частоты
Буквенное
сокращение
Расшифровка
сокращения
УВЧ ультравысокая частота
УЗ усилитель записи
УЗЧ усилитель сигналов звуковой частоты
УКВ ультракороткие волны
УЛПТ унифицированный
лампово полупроводниковый телевизор
УЛЛЦТ унифицированный лампово
полупроводниковый цветной телевизор
УЛТ унифицированный ламповый телевизор
УМЗЧ усилитель мощности сигналов
звуковой частоты
УНТ унифицированный телевизор
УНЧ усилитель сигналов низкой частоты
УНУ управляемый напряжением усилитель.
УПТ усилитель постоянного тока;
унифицированный полупроводниковый
телевизор
УПЧ усилитель сигналов
промежуточной частоты
УПЧЗ усилитель сигналов
промежуточной частоты звука
УПЧИ усилитель сигналов
промежуточной частоты изображения
УРЧ усилитель сигналов радиочастоты
УС устройство сопряжения;
устройство сравнения
УСВЧ усилитель сигналов
сверхвысокой частоты
УСС усилитель строчных синхроимпульсов
УСУ универсальное сенсорное устройство
УУ устройство (узел) управления
УЭ ускоряющий (управляющий) электрод
УЭИТ универсальная электронная
испытательная таблица
ФАПЧ фазовая автоматическая
подстройка частоты
Буквенное
сокращение
Расшифровка
сокращения
ФВЧ фильтр верхних частот
ФД фазовый детектор; фотодиод
ФИМ фазо-импульсная модуляция
ФМ фазовая модуляция
ФНЧ фильтр низких частот
ФПЧ фильтр промежуточной частоты
ФПЧЗ фильтр промежуточной частоты звука
ФПЧИ фильтр промежуточной частоты изображения
ФСИ фильтр сосредоточенной избирательности
ФСС фильтр сосредоточенной селекции
ФТ фототранзистор
ФЧХ фазо-частотная характеристика
ЦАП цифро-аналоговый преобразователь
ЦВМ цифровая вычислительная машина
ЦМУ цветомузыкальная установка
ЦТ центральное телевидение
ЧД частотный детектор
ЧИМ частотно-импульсная модуляция
чм частотная модуляция
шим широтно-импульсная модуляция
шс шумовой сигнал
эв электрон-вольт (е • В)
ЭВМ. электронная вычислительная машина
эдс электродвижущая сила
эк электронный коммутатор
ЭЛТ электронно-лучевая трубка
ЭМИ электронный музыкальный инструмент
эмос электромеханическая обратная связь
ЭМФ электромеханический фильтр
ЭПУ электропроигрывающее устройство
ЭЦВМ электронная цифровая
вычислительная машина

Позиционные обозначения элементов на схемах

Таблицы буквенных обозначений радиодеталей

⇩ Скачать зарубежные

⇩ Скачать отечественные

см. также Графические обозначения радиодеталей

Зарубежные обозначения радиодеталей

Перейти к отечественным обозначениям ▼

Международный стандарт — IEEE 315.
В данный список ▼ также добавлены обозначения, не отражённые в стандарте, но встречающиеся на практике.

A — Separable assembly or sub-assembly (e.g. printed circuit assembly) — Отдельный модуль или устройство
AE — Aerial — Антенна
ANT — Antenna — Антенна
AR — Amplifier (other than rotating), repeater — Усилитель, повторитель
AT — Attenuator, inductive termination, resistive termination — Аттенюатор, индуктивная оконечная нагрузка, резистивная оконечная нагрузка
B — Bead Ferrite — Ферритовый фильтр
B — Battery — Батарея
B — Motor — Электродвигатель
BR — Bridge rectifier — Диодный мост
BT — Battery — Батарея
BT — Photovoltaic transducer, solar cell — Фотогальванический преобразователь, солнечная батарея
C — Capacitor — Конденсатор
CB — Circuit Board — Монтажная плата
CB — Circuit breaker — Автоматический выключатель
CN — Capacitor network — Конденсаторная сборка
CN — Contact — Контакт
CP — Connector adapter, junction (coaxial or waveguide) — Переходник, cоединение (коаксиала или волновода)
CR — Diode (TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber) — Диод (лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
CRT — Cathode ray tube — Электронно-лучевая трубка
D — Diode (LED, TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber) — Диод (светодиод, лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
DC — Directional coupler — Направленный соединитель
DL — Delay line — Линия задержки
DS — Display, alphanumeric display device, annunciator, signal lamp — Дисплей, алфавитно-цифровой индикатор, световой индикатор, сигнальная лампа
DSP — Digital signal processor — Цифровой сигнальный процессор
DSW — Dual in-line package switcher — DIP переключатель
E — Electrical contact, antenna, binding post, cable termination, electrical contact brush, electrical shield, ferrite bead rings, hall element, insulator, lightning arrester, magnetic core, permanent magnet, short circuit (termination), telephone protector, vibrating reed, miscellaneous electrical part — Электрический контакт, электрод, антенна, клемма, кабельный наконечник, электрическая щётка, электрический экран, ферритовое кольцо, элемент на эффекте холла, изолятор, искровой разрядник, магнитный сердечник, постоянный магнит, перемычка, громполоса, вибрирующий пружинный контакт, прочие радиодетали
EL — место крепления радиатора пайкой
EP — Earphone — Головные телефоны
EQ — Equalizer — Эквалайзер
EY — место крепления электронного компонента, в том числе за функциональный (токоведущий) вывод
F — Fuse — Предохранитель
FB — Ferrite bead — Ферритовый фильтр
FD — Fiducial — Точка выравнивания
FEB — Ferrite bead — Ферритовый фильтр
FET — Field-effect transistor — Полевой транзистор
FH — Fuse holder — держатель предохранителя
FL — Filter — Фильтр
G — Generator or oscillator, electronic chopper, interrupter vibrator, rotating amplifier, telephone magneto — Электрогенератор или осциллятор, электронный чоппер, вибропреобразователь, электромашинный усилитель, телефонный индуктор
GDT — Gas-discharge lamp — Газоразрядная лампа
GN — General network — Общая сеть
GND — Ground — «Земля», общий провод (обычно, минус питания)
GR — Проходной контакт (пустотелая заклёпка)
GT — Одиночный штыревой контакт
H — Hardware, e.g., screws, nuts, washers — Крепёжные элементы (винты, гайки, шайбы)
HP — Hydraulic part — Деталь гидравлики
HR — Heater, heating lamp, heating resistor, infrared lamp, thermomechanical transducer — Нагревательный элемент, нагревательная лампа, нагревательный резистор, инфракрасная лампа, термомеханический преобразователь
HS — Handset, operator’s set — Телефонная трубка, телефонная гарнитура
HT — Earphone — Головной телефон, наушники
HY — Circulator or directional coupler — Циркулятор или направленный ответвитель
I — Lamp — Лампа накаливания
IC — Integrated Circuit — Микросхема, интегральная схема
J — Jack, Receptacle, Terminal Strip, connector — Гнездо, розетка, патрон, клеммник, коннектор
J — Wire link, jumper — Джампер
J — Jumper chip — Резистор нулевого сопротивления (перемычка или SMD-предохранитель)
JFET — Junction gate field-effect transistor — Однопереходный полевой транзистор
JP — Jumper (Link) — Джампер
K — Relay, contactor — Реле, контактор, электромагнитный пускатель
L — Inductor, choke, electrical solenoid, field winding, generator field, lamp ballast, motor field, reactor — Катушка индуктивности, дроссель, соленоид, обмотка электромагнита, обмотка возбуждения генератора, индуктивный балласт, обмотка возбуждения электродвигателя, реактивная катушка
LA — Lightning arrester — Молниезащита
LCD — Liquid-crystal display — ЖК-дисплей
LDR — Light Dependent Resistor, — Фоторезистор
LED — Light-emitting diode — Светодиод
LS — Loudspeaker or buzzer, audible alarm, electric bell, electric horn, siren, telephone ringer, telephone sounder — Громкоговоритель или зуммер, звуковая сигнализация, электрический колокол, ревун, сирена, телефонный звонок, телефонный капсюль
M — Motor — Электродвигатель
M — Meter, electric timer, electrical counter, oscilloscope, position indicator, thermometer — Измеритель (обобщённый), электрический таймер, электрический счётчик, осциллограф, датчик положения, термометр
MCB — Miniature circuit breaker — Миниатюрный автоматический выключатель
MG — Dynamotor, motor-generator — Динамотор, моторгенератор
MIC — Microphone — Микрофон
MK — Microphone — Микрофон
MOSFET — Metal-oxide-semiconductor field-effect transistor — МОП-транзистор
MOV — Metal-oxide varistor — Варистор на базе оксида металла
MP — Mechanical part (including screws and fasteners) — Механическая деталь (в том числе крепёж)
MT — Accelerometer — Акселерометр
MV — Варистор
N — Neon Lamp — Неоновая лампа
NE — Neon Lamp — Неоновая лампа
NT — Терморезистор
NTC — Negative Temperature Coefficient — Терморезистор с отрицательным температурным коэффициентом сопротивления
OP — Operational amplifier — Операционный усилитель
P — Plug — Штекер, штепсельная вилка, разъём
P — Одиночный штыревой контакт
PC — Photocell — Фотоэлемент
PCB — Printed circuit board — Печатная плата
PH — Earphone — Головные телефоны
PL — Разъём
PLC — Programmable logic controller — Программируемый логический контроллер
PS — Power supply, rectifier (complete power-supply assembly) — Вторичный источник электропитания, выпрямитель тока
PTC и PTH — Positive Temperature Coefficient — Позистор (терморезистор с положительным температурным коэффициентом сопротивления)
PU — Pickup, head — Звукосниматель, передающая телевизионная трубка, магнитная головка
Q — Transistor, semiconductor controlled rectifier, semiconductor controlled switch, phototransistor (3 terminal), thyratron (semiconductor device) — Транзистор, полупроводниковый преобразователь, полупроводниковый ключ, фототранзистор трёхконтактный, тиратрон полупроводниковый
R — Resistor, function potentiometer, instrument shunt, magnetoresistor, potentiometer, relay shunt, rheostat — Резистор, функциональный потенциометр, измерительный шунт, магниторезистор, потенциометр, шунт обмотки реле, реостат
RE — Radio receiver — Радиоприёмное устройство
RFC — Radio frequency choke — Высокочастотный дроссель
RJ — Resistor Joint — Резисторная сборка
RLA — Relay — Реле
RN — Resistor Network — Резисторная сборка
RT — Thermistor, ballast lamp, ballast tube, current-regulating resistor, thermal resistor — Терморезистор, термистор, электровакуумный стабилизатор тока, газоразрядный стабилитрон, токорегулирующий резистор, терморезистор
RV — Varistor, symmetrical varistor, voltage-sensitive resistor — Варистор, варистор с симметричной вах, резистор управляемый напряжением
RY — Relay — Реле
S — Switch, contactor (manually, mechanically or thermally operated), flasher (circuit interrupter), governor (electrical contact type), telegraph key, telephone dial, thermal cutout (circuit interrupter) (not visual), thermostat — Переключатель, выключатель, кнопка, пускатель (ручной, механический, термический), прерыватель цепи, регулятор контактного типа, телеграфный ключ, номеронабиратель, термовыключатель, тепловое реле
S — Разъём
SCR — Silicon controlled rectifier — Однонаправленный управляемый тиристор
SG — Spark gap — Разрядник
SP — Контрольная точка
SPK — Speaker — Громкоговоритель
SQ — Electric squib — Электровоспламенитель
SR — Rotating contact, slip ring — Вращающийся контакт, контактное кольцо
SUS — Silicon unilateral switch — Пороговый тринистор
SW — Switch — Переключатель, выключатель, кнопка
T — Transformer — Трансформатор
TB — Connecting strip, test block — Клеммная колодка, тест-блок
TC — Thermocouple — Термопара
TFT — Thin-film-transistor display — TFT-дисплей
TH — Thermistor — Терморезистор, термистор
TP — Test point — Контрольная (измерительная) точка
TR — Transistor — Транзистор
TR — Radio transmitter — Радиопередатчик
TUN — Tuner — Тюнер
U — Integrated Circuit — Микросхема, интегральная схема
U — Photon-coupled isolator — Оптопара
V — Vacuum tube, valve, ionization chamber, klystron, magnetron, phototube, resonator tube (cavity type), solion, thyratron (electron tube), traveling-wave tube, voltage regulator (electron tube) — Радиолампа, ионизационная камера, клистрон, магнетрон, вакуумный фотоэлемент, полостной вакуумный резонатор, хемотронный датчик, тиратрон (радиолампа), лампа бегущей волны, регулятор напряжения (радиолампа)
VC — Variable capacitor — Переменный конденсатор
VDR — Voltage Dependent Resistor — Варистор; резистор, управляемый напряжением
VFD — Vacuum fluorescent display — Вакуумно-люминесцентный индикатор
VLSI — Very-large-scale integration — СБИС — сверхбольшая интегральная схема
VR — Variable resistor (potentiometer or rheostat) — Переменный резистор (потенциометр или реостат)
VR — Voltage regulator — Регулятор (стабилизатор) напряжения
VT — Voltage transformer — Трансформатор напряжения
W — Wire, bus bar, cable, waveguide — Провод, перемычка, шина, кабель, волновод
WT — Wiring tiepoint — Точка примыкания
X — Solar cell — Солнечный элемент
X — Other converters — Преобразователи, не включаемые в другие категории
X — Ceramic resonator — Керамический резонатор, кварцевый генератор
X_ — Socket connector for another item — Разъём для элементов. Вторая буква соответствует подключаемому элементу
XA — Socket connector for printed circuit assembly connector — Разъём для печатных плат
XDS — Socket connector for light socket — Разъём для патрона
XF — Socket connector for fuse holder — Разъём для предохранителя
XL — Lampholder — Ламповый патрон
XMER — Transformer — Трасформатор
XTAL — Crystal — Кварцевый генератор
XU — Socket connector for integrated circuit connector — Разъём для микросхемы
XV — Socket connector for vacuum tube socket — Разъём для радиолампы
Y — Crystal or oscillator — Кварцевый резонатор или осциллятор
Z — Zener diode — Стабилитрон
Z — Balun, coupled tunable resonator, directional phase shifter (non-reciprocal), gyrator, mode suppressor, multistub tuner, phase shifter, resonator (tuned cavity) — Симметрирующий трансформатор, связанный перестраиваемый резонатор, направленный фазовращатель (не обратный), гиратор, фильтр нежелательных тип, кварцевый пьезофильтр.
ZD — Zener Diode — Стабилитрон
ZSCT — Zero sequence current transformer, also called a window-type current transformer — Трансформатор тока нулевой последовательности, трансформатор тока с проёмом для первичной цепи

Отечественные обозначения радиодеталей

Перейти к зарубежным обозначениям ▲

Буквенные обозначения электронных компонентов на отечественных схемах регламентированы ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах».

A — Устройства
AA — Регулятор тока
AB — Приводы исполнительных механизмов
AC — Устройство АВР
AF — Регулятор частоты
AK — Устройство (комплект) реле защит
AKB — Устройство блокировки типа КРБ
AKS — Устройство АПВ
AKV — Устройство комплектное продольной дифзащиты ЛЭП
AKZ — Устройство комплектное реле сопротивления
AR — Устройство комплектное реле УРОВ
AV — Устройство регулирования напряжения
AW — Регулятор мощности
B — Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот аналоговые или многоразрядные преобразователи или датчики для указания или измерения
BA — Громкоговоритель
BB — Магнитострикционный элемент
BC — Сельсин-датчик
BD — Детектор ионизирующих излучений
BE — Сельсин-приемник
BF — Телефон (капсюль)
BK — Тепловой датчик
BL — Фотоэлемент
BM — Микрофон
BP — Датчик давления
BQ — Пьезоэлемент
BR — Датчик частоты вращения (тахогенератор)
BS — Звукосниматель
BT — Датчик температуры
BV — Датчик скорости
BVA — Счетчик вольтамперчасов реактивных
BW — Счетчик ватт-часов активных
C — Конденсаторы
CB — Конденсаторный силовой блок
CG — Конденсаторный зарядный блок
D — Схемы интегральные, микросборки
DA — Схема интегральная аналоговая
DD — Схема интегральная, цифровая, логический элемент
DS — Устройства хранения информации
DT — Устройство задержки
E — Элементы разные
EK — Нагревательный элемент
EL — Лампа осветительная
ET — Пиропатрон
F — Разрядники, предохранители, устройства защитные
FA — Дискретный элемент защиты по току мгновенного действия
FP — Дискретный элемент защиты по току инерционного действия
FU — Предохранитель плавкий
FV — Дискретный элемент защиты по напряжению, разрядник
G — Генераторы, источники питания, кварцевые осцилляторы
GB — Батарея
GC — Синхронный компенсатор
GE — Возбудитель генератора
GEA — Подвозбудитель (вспомогательный возбудитель)
H — Устройства индикационные и сигнальные
HA — Прибор звуковой сигнализации
HG — Индикатор символьный
HL — Прибор световой сигнализации
HLA — Световое табло
HLG — Лампа сигнализации с линзой зеленой
HLR — Лампа сигнализации с линзой красной
HLW — Лампа сигнализации с линзой белой
HY — Индикатор полупроводниковый
K — Реле, контакторы, пускатели
KA — Реле токовое
KA0 — Реле тока нулевой последовательности, токовая защита нулевой последовательности
KAT — Реле тока с насыщающимся трансформатором, токовая защита с выдержкой времени
KAW — Реле тока с торможением
KAZ — Реле тока фильтровое
KB — Реле блокировки
KBS — Реле блокировки от многократных включений
KCC — Реле команды «включить»
KCT — Реле команды «отключить»
KF — Реле частоты
KH — Реле указательное
KHA — Реле импульсной сигнализации
KK — Реле электротепловое
KLP — Реле давления повторительное
KM — Контактор, магнитный пускатель
KQ — Реле фиксации положения выключателя
KQC — Реле положения «Включено»
KQQ — Реле фиксации команды включения
KQS — Реле фиксации положения разъединителя
KQT — Реле положения «Отключено»
KS — Реле контроля
KSG — Реле газовое
KSH — Реле струи (напора)
KSS — Реле контроля синхронизма
KSV — Реле контроля напряжения
KT — Реле времени
KV — Реле напряжения
KVZ — Фильтр – реле напряжения
KW — Реле мощности
KZ — Реле сопротивления
L — Катушки индуктивности, дроссели
LG — Реактор
LL — Дроссель люминесцентного освещения
LR — Обмотка возбуждения генератора
M — Двигатели
P — Приборы, измерительное оборудование
PA — Амперметр
PC — Счетчик импульсов электромеханический
PF — Частотомер
PG — Осциллограф
PHE — Указатель положения
PI — Счетчик активной энергии
PK — Счетчик реактивной энергии
PR — Омметр
PS — Регистрирующий прибор
PT — Часы, измеритель времени действия
PV — Вольтметр
PVA — Варметр
PW — Ваттметр
Q — Выключатели и разъединители в силовых цепях
QF — Выключатель автоматический
QK — Короткозамыкатель
QN — Короткозамыкатель
QR — Отделитель
QS — Разъединитель
QW — Выключатель нагрузки
R — Резисторы
RK — Терморезистор
RP — Потенциометр
RR — Реостат
RS — Шунт измерительный
RU — Варистор
S — Устройства коммутационные в цепях управления, сигнализации и измерительных
SA — Выключатель или переключатель
SAB — Переключатель, ключ в цепях блокировки
SAC — Переключатель режима
SB — Выключатель кнопочный
SC — Коммутатор
SF — Выключатель автоматический
SK — Выключатель, срабатывающий от температуры
SL — Выключатель, срабатывающий от уровня
SN — Переключатель измерений
SP — Выключатель, срабатывающий от давления
SQ — Путевой выключатель конечный
SQ — Выключатель, срабатывающий от положения (путевой)
SQA — Вспомогательный контакт, фиксирующий аварийное отключение выключателя
SQC — Вспомогательный контакт в цепи электромагнита включения
SQK — Вспомогательный контакт, замыкающийся при отключении выключателя
SQM — Вспомогательный контакт, замыкающийся при включении выключателя (пуск двигателя завода пружин ABM)
SQT — Вспомогательный контакт в цепи электромагнита отключения
SQY — Вспомогательный контакт готовности пружин, управляющий электродвигателем завода пружин ABM
SR — Выключатель, срабатывающий от частоты вращения
SS — Переключатель синхронизации
SX — Накладка оперативная
T — Трансформаторы, автотрансформаторы
TA — Трансформатор тока
TAN — Трансформатор тока нулевой последовательности
TAV — Трансреактор
TL — Трансформатор промежуточный
TLV — Трансформатор отбора напряжения
TS — Электромагнитный стабилизатор
TS — Электромагнитный стабилизатор
TUV — Трансформатор регулировочный
TV — Трансформатор напряжения
U — Преобразователи электрических величин в электрические, устройства связи
UA — Преобразователь тока
UB — Модулятор
UF — Преобразователь частоты
UI — Дискриминатор
UR — Демодулятор
UV — Преобразователь напряжения, фазорегулятор
UZ — Преобразователь частотный, инвертор, генератор частоты, выпрямитель
V — Приборы электровакуумные, полупроводниковые
VD — Диод, стабилитрон
VL — Прибор электровакуумный
VS — Тиристор
VT — Транзистор
W — Линии и элементы сверхвысокой частоты, антенны
WA — Антенна
WE — Ответвитель
WK — Короткозамыкатель
WS — Вентиль
WT — Трансформатор, неоднородность, фазовращатель
WU — Аттенюатор
X — Соединения контактные
XA — Токосъемник, контакт скользящий
XB — Перемычка
XG — Испытательный зажим
XN — Соединение неразборное
XP — Штырь
XS — Гнездо
XT — Соединение разборное
XW — Соединитель высокочастотный
Y — Устройства механические с электромагнитным приводом
YA — Электромагнит
YAB — Замок электромагнитной блокировки
YAC — Электромагнит включения в приводе воздушного выключателя (легкий привод), контактор включения
YAT — Электромагнит отключения (соленоид отключения)
YB — Тормоз с электромагнитным приводом
YC — Муфта с электромагнитным приводом
YH — Электромагнитный патрон или плита
YMC — Электромагнит включения в приводе масляного выключателя (тяжелый привод)
Z — Устройства оконечные, фильтры, ограничители
ZA — Фильтр тока
ZF — Фильтр частоты
ZL — Ограничитель
ZQ — Фильтр кварцевый
ZV — Фильтр напряжения

Буквенные коды функционального назначения радиоэлектронного устройства или элемента
A — Вспомогательный
C — Считающий
D — Дифференцирующий
F — Защитный
G — Испытательный
H — Сигнальный
I — Интегрирующий
M — Главный
N — Измерительный
P — Пропорциональный
Q — Состояние (старт, стоп, ограничение)
R — Возврат, сброс
S — Запоминающий, записывающий
т — Синхронизирующий, задерживающий
V — Скорость (ускорение, торможение)
W — Суммирующий
X — Умножение
Y — Аналоговый
Z — Цифровой


Поделиться новостью в соцсетях

Радиодетали резисторы виды и обозначения таблица. Обозначение на схемах радиодеталей

Обозначение радиодеталей на схеме

В данной статье приведен внешний вид и схематическое обозначение радиодеталей

Каждый наверно начинающие радиолюбитель видел и внешне радиодетали и возможно схемы,но что чем является на схеме приходится долго думать или искать,и только где то он может прочитает и увидит новые для себя слова такие как резистор, транзистор, диод и прочее.А как же они обозначаются.Разберем в данной статье.И так поехали.

1.Резистор

Чаще всего на платах и схемах можно увидеть резистор,так как их по количеству на платах больше всего.

Резисторы бывают как постоянные,так и переменные(можно регулировать сопротивление с помощью ручки)

Одна из картинок постоянного резистора ниже и обозначение постоянного и переменного на схеме.

А где переменный резистор как выглядет. Это еще картиночка ниже.Извиняюсь за такое написание статьи.

2.Транзистор и его обозначение

Много информации написано, о функциях ихних, но так как тема о обозначениях.Поговорим об обозначениях.

Транзисторы бывают биполярными,и полярными, пнп и нпн переходов.Все это учитывается при пайке на плату, и в схемах.Увидите рисунок,поймете

Обозначение транзистора нпн перехода npn

Э это эммитер , К это коллектор , а Б это база .Транзисторы pnp переходов будет отличатся тем что стрелочка будет не от базы а к базе.Для более подробного еще одна картинка


Есть так же кроме биполярных и полевые транзисторы, обозначение на схеме полевых транзисторов похожи, но отличаются.Так как нет базы эмиттера и коллектора, а есть С - сток, И - исток, З - затвор


И напоследок о транзисторах как же они выглядат на самом деле


Общем если у детали три ножки, то 80 процентов того что это транзистор.

Если у вас есть транзистор и незнаете какого он перехода и где коллектор, база, и вся прочая информация,то посмотрите в сравочнике транзисторов.

Конденсатор, внешний вид и обозначение

Конденсаторы бывают полярные и неполярные, в полярных на схеме приресовывают плюс, так как он для постоянного тока, а неполярные соответствено для переменного.

Они имеют определенную емкость в мКф (микрофарадах) и расчитаны на определенное напряжение в вольтах.Все это можно прочитать на корпусе конденсатора

Микросхемы , внешний вид обозначение на схеме

Уфф уважаемые читатели, этих существует просто огромное количество в мире, начинаю от усилителей и заканчивая телевизорами

Данная статья предназначена для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал так же встречается редко. Именно этим он и ценен.

В таблице приводится буквенное обозначение основных радиоэлементов на радиосхемах в соответствии с государственным стандартом (ГОСТом). Указанное в таблице буквенное обозначение радиоэлементов – не догма, и в основном не соблюдается разработчиками радиосхем. Например, в соответствии с ГОСТ, обозначение потенциометра (переменного резистора) – RP, а на схемах чаще всего встречается просто – R. Когда специалист любого уровня «читает» радиосхему, он безошибочно определяет, что буквенное обозначение относится именно к этому потенциометру, а не к другому радиоэлементу. Главное, что первая буква обозначения соответствует.

Бывали случаи, когда я проектировал схему, а когда наносил на схему буквенные обозначения, то вдруг обнаруживал, что я не помню, какой буквой обозначается редко используемый элемент. Тогда я обращался к этой табличке. Поэтому эта таблица с буквенными обозначениями может быть полезной не только начинающим радиолюбителям.

Основное обозначение Наименование элемента Дополнительное обозначение Вид устройства
АУстройствоАА
АК
AKS
Регулятор тока
Блок реле
Устройство
BПреобразователи
BF
BK
BL
BM
BS
Громкоговоритель
Телефон
Датчик тепловой
Фотоэлемент
Микрофон
Звукосниматель
СКонденсаторыСВ
CG
Батарея конденсаторов силовая
Блок конденсаторов зарядный
DИнтегральные схемы, микросборкиDA
DD
ИС аналоговая
ИС цифровая, логический элемент
EЭлементы разныеEK
EL
Теплоэлектронагреватель
Лампа осветительная
FРазрядники, предохранители, устройства защитыFA
FP
FU
FV
Дискретный элемент защиты по току мгновенного действия
Дискретный элемент защиты по току инерционного действия
Предохранитель плавкий
Разрядник искровой
GГенераторы, источники питанияGB
GC
GE
Батарея аккумуляторов
Синхронный компенсатор
Возбудитель генератора
HУстройства индикационные и сигнальныеHA
HG
HL
HLA
HLG
HLR
HLW
HV
Прибор звуковой сигнализации
Индикатор
Прибор световой сигнализации
Табло сигнальное
Лампа сигнальная с зелёной линзой
Лампа сигнальная с красной линзой
Лампа сигнальная с белой линзой
Индикаторы ионные и полупроводниковые
KРеле, контакторы, пускателиKA
KH
KK
KM
KT
KV
KCC
KCT
KL
Реле токовое
Реле указательное
Реле электротепловое
Контактор, магнитный пускатель
Реле времени
Реле напряжения
Реле команды включения
Реле команды отключения
Реле промежуточное
LКатушки индуктивности, дросселиLL
LR
LM
Дроссель люминисцентного освещения
Реактор
Обмотка возбуждения электродвигателя
МДвигателиМА Электродвигатели
РПриборы измерительныеPA
PC
PF
PI
PK
PR
PT
PV
PW
Амперметр
Счётчик импульсов
Частотомер
Счетчик активной энергии
Счетчик реактивной энергии
Омметр
Измеритель времени действия, часы
Вольтметр
Ваттметр
QВыключатели и разъединители силовыеQF Выключатель автоматический
RРезисторыRK
RP
RS
RU
RR
Терморезистор
Потенциометр
Шунт измерительный
Варистор
Реостат
SУстройства управления и коммутацииSA
SB
SF
Выключатель, или переключатель
Выключатель кнопочный
Выключатель автоматический
TТрансформаторы, автотрансформаторыTA
TV
Трансформатор тока
Трансформатор напряжения
UПреобразователиUB
UR
UG
UF
Модулятор
Демодулятор
Блок питания
Преобразователь частоты
VПриборы электровакуумные и полупроводниковыеVD
VL
VT
VS
Диод, стабилитрон
Прибор электровакуумный
Транзистор
Тиристор
XСоединители контактныеXA
XP
XS
XW
Токосъёмник
Штырь
Гнездо
Соединитель высокочастотный
YУстройства механические с электромагнитным приводомYA
YAB
Электромагнит
Замок электромагнитный

Чтобы можно было собрать радиоэлектронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их соединения. Для осуществления этой цели и были придуманы схемы. На заре радиотехники радиодетали изображались трехмерными. Для их составления требовались опыт художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные знаки.

Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.

Помимо принципиальной, существуют и монтажные. Они предназначены для точного отображения каждого элемента относительно друг друга. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее УГО на всех схемах почти одинаково, а вот буквенный код существенно отличается. Существует 2 вида стандарта:

  • государственный, в этот стандарт может входить несколько государств;
  • международный, пользуются почти во всем мире.

Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:

  • источники питания;
  • индикаторы, датчики;
  • переключатели;
  • полупроводниковые элементы.

Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.

Источники питания

К ним относятся все устройства, способные вырабатывать, аккумулировать или преобразовывать энергию. Первый аккумулятор изобрел и продемонстрировал Александро Вольта в 1800 году. Он представлял собой набор медных пластин, проложенных влажным сукном. Видоизмененный рисунок стал состоять из двух параллельных вертикальных прямых, между которыми стоит многоточие. Оно заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не ставится.

В схеме с постоянным током важно знать, где находится положительное напряжение. Поэтому положительную пластину делают выше, а отрицательную ниже. Причем обозначение аккумулятора на схеме и батарейке ничем не отличается.

Также нет отличия и в буквенном коде Gb. Солнечные батареи, которые вырабатывают ток под влиянием солнечного света, в своем УГО имеют дополнительные стрелки, направленные на батарею.

Если источник питания внешний, например, радиосхема питается от сети, тогда вход питания обозначается клеммами. Это могут быть стрелки, окружности со всевозможными добавлениями. Возле них указывается номинальное напряжение и род тока. Переменное напряжение обозначается знаком «тильда» и может стоять буквенный код Ас. Для постоянного тока на положительном вводе стоит «+», на отрицательном «-«, а может стоять знак «общий». Он обозначается перевернутой буквой Т.

Полупроводники, пожалуй, имеют самую обширную номенклатуру в радиоэлектронике. Постепенно добавляются все новые приборы. Все их можно условно разделить на 3 группы:

  1. Диоды.
  2. Транзисторы.
  3. Микросхемы.

В полупроводниковых приборах используется р-п-переход, схемотехника в УГО старается показывать особенности того или иного прибора. Так, диод способен пропускать ток в одном направлении. Это свойство схематически показано в условном обозначении. Оно выполнено в виде треугольника, у вершины которого стоит черточка. Эта черточка показывает, что ток может идти только по направлению треугольника.

Если к этой прямой пририсован короткий отрезок и он обращен в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Такое обозначение справедливо только для приборов общего назначения. Например, изображение для диода с барьером Шоттки нарисован s-образный знак.

Некоторые радиодетали имеют свойства двух простых приборов, соединенных вместе. Эту особенность также отмечают. При изображении двустороннего стабилитрона рисуются оба, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.

Другие приборы обладают свойствами двух разных деталей, например, варикап. Это полупроводник, поэтому он рисуется треугольником. Однако в основном используется емкость его р-п-перехода, а это уже свойства конденсатора. Поэтому к вершине треугольника пририсовывается знак конденсатора - две параллельные прямые.

Признаки внешних факторов, влияющих на прибор, также нашли свое отражение. Фотодиод преобразует солнечный свет в электрический ток, некоторые виды являются элементами солнечной батареи. Они изображаются как диод, только в круге, и на них направлены 2 стрелки, для показа солнечных лучей. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.

Транзисторы полярные и биполярные

Транзисторы также являются полупроводниковыми приборами, но имеют в основном два p-n-p-перехода в биполярных транзисторах. Средняя область между двумя переходами является управляющей. Эмиттер инжектирует носители зарядов, а коллектор принимает их.

Корпус изображен кружком. Два p-n-перехода изображены одним отрезком в этом кружке. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов - это база. С другой стороны, 2 косые прямые. Одна из них имеет стрелку - это эмиттер, другая без стрелки - коллектор.

По эмиттеру определяют структуру транзистора. Если стрелка идет по направлению к переходу, то это транзистор p-n-p типа, если от него - то это n-p-n транзистор. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, имеет один p-n-переход. Обозначается как биполярный, но коллектор отсутствует, а баз две.

Похожий рисунок имеет и полевой транзистор. Отличие в том, что переход у него называется каналом. Прямая со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки показывает тип канала. Если стрелка направлена на канал, то канал n-типа, если от него, то p-типа.

Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор рисуется в виде буквы г и не соединяется с каналом, стрелка помещается между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами на схеме добавляется второй такой же затвор. Сток и исток взаимозаменяемые, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.

Интегральные микросхемы

Интегральные микросхемы являются самыми сложными электронными компонентами. Выводы, как правило, являются частью общей схемы. Их можно разделить на такие виды:

  • аналоговые;
  • цифровые;
  • аналого-цифровые.

На схеме они обозначаются в виде прямоугольника. Внутри стоит код и (или) название схемы. Отходящие выводы пронумерованы. Операционные усилители рисуются треугольником, выходящий сигнал идет из его вершины. Для отсчета выводов на корпусе микросхемы рядом с первым выводом ставится отметка. Обычно это выемка квадратной формы. Чтобы правильно читать микросхемы и обозначения знаков, прилагаются таблицы.

Прочие элементы

Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.

Конденсаторы обозначаются двумя параллельными отрезками. Если это электролитический, для подключения которого важно соблюдать полярность, то возле его положительного вывода ставится +. Могут встречаться обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из них (отрицательный) окрашивается в черный цвет.

Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд - конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше - буквенный код опускается.

Еще один элемент, без которого не обходится ни одна электрическая схема - это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.

Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт - двумя косыми, 0,25 Вт - одной косой, 0,5 Вт - одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.

Буквенно-цифровой код

Для простоты радиодетали разделяются на группы по признакам. Группы делятся на виды, виды - на типы. Ниже приведены коды групп:

Для удобства монтажа на печатных платах указываются места для радиодеталей буквенным кодом, рисунком и цифрами. У деталей с полярными выводами у положительного вывода ставится +. В местах для пайки транзисторов каждый вывод помечается соответствующей буквой. Плавкие предохранители и шунты отображаются прямой линией. Выводы микросхем маркируются цифрами. Каждый элемент имеет свой порядковый номер, который указан на плате.

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:


Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Базовые изображения и функциональные признаки

Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

Основные функции могут выполнять только неподвижные контакты.

Условные обозначения однолинейных схем

Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

Изображение шин и проводов

В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображают выключатели, переключатели, розетки

На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

Светильники на схемах

В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

Элементы принципиальных электрических схем

Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

Буквенные условные обозначения в электрических схемах

Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТаКраткое описание
2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68Требования к размерам отображения элементов в графическом виде.
21.614 88Принятые нормы для планов электрооборудования и проводки.
2.755 87Отображение на схемах коммутационных устройств и контактных соединений
2.756 76Нормы для воспринимающих частей электромеханического оборудования.
2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.



Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.


Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.


УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.


Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.


УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.


Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.


Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.


Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.


Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.


Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.



Зарубежные буквенные обозначения электронных комплектующих [Мозаика системного администрирования]

ASeparable assembly or sub-assembly (e.g. printed circuit assembly)Отдельный модуль или устройство
AEAerialАнтенна
ANTAntennaАнтенна
ARAmplifier (other than rotating), repeaterУсилитель, повторитель
ATAttenuator, inductive termination, resistive terminationАттенюатор, индуктивная оконечная нагрузка, резистивная оконечная нагрузка
BBead FerriteФерритовый фильтр
BBatteryБатарея
BMotorЭлектродвигатель
BRBridge rectifierДиодный мост
BTBatteryБатарея
BTPhotovoltaic transducer, solar cellФотогальванический преобразователь, солнечная батарея
CCapacitorКонденсатор
CBCircuit BoardМонтажная плата
CBCircuit breakerАвтоматический выключатель
CNCapacitor networkКонденсаторная сборка
CPConnector adapter, junction (coaxial or waveguide)Переходник, cоединение (коаксиала или волновода)
CRDiode (TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber)
Диод (лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
CRTCathode ray tubeЭлектронно-лучевая трубка
DDiode (LED, TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber)
Диод (светодиод, лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
DCDirectional couplerНаправленный соединитель
DLDelay lineЛиния задержки
DSDisplay, alphanumeric display device, annunciator, signal lampДисплей, алфавитно-цифровой индикатор, световой индикатор, сигнальная лампа
DSPDigital signal processorЦифровой сигнальный процессор
EElectrical contact, antenna, binding post, cable termination, electrical contact brush, electrical shield, ferrite bead rings, hall element, insulator, lightning arrester, magnetic core, permanent magnet, short circuit (termination), telephone protector, vibrating reed, miscellaneous electrical partЭлектрический контакт, электрод, антенна, клемма, кабельный наконечник, электрическая щётка, электрический экран, ферритовое кольцо, элемент на эффекте холла, изолятор, искровой разрядник, магнитный сердечник, постоянный магнит, перемычка, громполоса, вибрирующий пружинный контакт, прочие радиодетали
EPEarphoneГоловные телефоны
EQEqualizerЭквалайзер
FFuseПредохранитель
FBFerrite beadФерритовый фильтр
FDFiducialТочка выравнивания
FEBFerrite beadФерритовый фильтр
FETField-effect transistorПолевой транзистор
FLFilterФильтр
GGenerator or oscillator, electronic chopper, interrupter vibrator, rotating amplifier, telephone magnetoЭлектрогенератор или осциллятор, электронный чоппер, вибропреобразователь, электромашинный усилитель, телефонный индуктор
GDTGas-discharge lampГазоразрядная лампа
GNGeneral networkОбщая сеть
HHardware, e.g., screws, nuts, washersКрепёжные элементы (винты, гайки, шайбы)
HPHydraulic partДеталь гидравлики
HRHeater, heating lamp, heating resistor, infrared lamp, thermomechanical transducerНагревательный элемент, нагревательная лампа, нагревательный резистор, инфракрасная лампа, термомеханический преобразователь
HSHandset, operator's setТелефонная трубка, телефонная гарнитура
HTEarphoneГоловной телефон, наушники
HYCirculator or directional couplerЦиркулятор или направленный ответвитель
ILampЛампа накаливания
ICIntegrated CircuitМикросхема, интегральная схема
JJack, Receptacle, Terminal Strip, connectorГнездо, розетка, патрон, клеммник, коннектор
JWire link, jumperДжампер
JJumper chipРезистор нулевого сопротивления (перемычка или SMD-предохранитель)
JFETJunction gate field-effect transistorОднопереходный полевой транзистор
JPJumper (Link)Джампер
KRelay, contactorРеле, контактор, электромагнитный пускатель
LInductor, choke, electrical solenoid, field winding, generator field, lamp ballast, motor field, reactorКатушка индуктивности, дроссель, соленоид, обмотка электромагнита, обмотка возбуждения генератора, индуктивный балласт, обмотка возбуждения электродвигателя, реактивная катушка
LALightning arresterМолниезащита
LCDLiquid-crystal displayЖК-дисплей
LDRLight Dependent Resistor,Фоторезистор
LEDLight-emitting diodeСветодиод
LSLoudspeaker or buzzer, audible alarm, electric bell, electric horn, siren, telephone ringer, telephone sounderГромкоговоритель или зуммер, звуковая сигнализация, электрический колокол, ревун, сирена, телефонный звонок, телефонный капсюль
MMotorЭлектродвигатель
MMeter, electric timer, electrical counter, oscilloscope, position indicator, thermometerИзмеритель (обобщённый), электрический таймер, электрический счётчик, осциллограф, датчик положения, термометр
MCBMiniature circuit breakerМиниатюрный автоматический выключатель
MGDynamotor, motor-generatorДинамотор, моторгенератор
MICMicrophoneМикрофон
MKMicrophoneМикрофон
MOSFETMetal-oxide-semiconductor field-effect transistorМОП-транзистор
MOVMetal oxide varistorВаристор на базе оксида металла
MPMechanical part (including screws and fasteners)Механическая деталь (в том числе крепёж)
MTAccelerometerАкселерометр
NNeon LampНеоновая лампа
NENeon LampНеоновая лампа
OPOperational amplifierОперационный усилитель
PPlugШтекер, штепсельная вилка
PCPhotocellФотоэлемент
PCBPrinted circuit boardПечатная плата
PHEarphoneГоловные телефоны
PLCProgrammable logic controllerПрограммируемый логический контроллер
PSPower supply, кectifier (complete power-supply assembly)Вторичный источник электропитания, выпрямитель тока
PUPickup, headЗвукосниматель, передающая телевизионная трубка, магнитная головка
QTransistor, semiconductor controlled rectifier, semiconductor controlled switch, phototransistor (3 terminal), thyratron (semiconductor device)Транзистор, полупроводниковый преобразователь, полупроводниковый ключ, фототранзистор трёхконтактный, тиратрон полупроводниковый
RResistor, function potentiometer, instrument shunt, magnetoresistor, potentiometer, relay shunt, rheostatРезистор, функциональный потенциометр, измерительный шунт, магниторезистор, потенциометр, шунт обмотки реле, реостат
RERadio receiverРадиоприёмное устройство
RFCRadio frequency chokeВысокочастотный дроссель
RJResistor JointРезисторная сборка
RLARelayРеле
RNResistor NetworkРезисторная сборка
RTThermistor, ballast lamp, ballast tube, current-regulating resistor, thermal resistorТерморезистор, термистор, электровакуумный стабилизатор тока, газоразрядный стабилитрон, токорегулирующий резистор, терморезистор
RVVaristor, symmetrical varistor, voltage-sensitive resistorВаристор, варистор с симметричной вах, резистор управляемый напряжением
RYRelayРеле
SSwitch, contactor (manually, mechanically or thermally operated), flasher (circuit interrupter), governor (electrical contact type), telegraph key, telephone dial, thermal cutout (circuit interrupter) (not visual), thermostatПереключатель, выключатель, кнопка, пускатель (ручной, механический, термический), прерыватель цепи, регулятор контактного типа, телеграфный ключ, номеронабиратель, термовыключатель, тепловое реле
SCRSilicon controlled rectifierОднонаправленный управляемый тиристор
SPKSpeakerГромкоговоритель
SQElectric squibЭлектровоспламенитель
SRRotating contact, slip ringВращающийся контакт, контактное кольцо
SUSSilicon unilateral switchПороговый тринистор
SWSwitchПереключатель, выключатель, кнопка
TTransformerТрансформатор
TBConnecting strip, test blockКлеммная колодка, тест-блок
TCThermocoupleТермопара
TFTThin-film-transistor displayTFT-дисплей
THThermistorТерморезистор, термистор
TPTest pointКонтрольная (измерительная) точка
TRTransistorТранзистор
TRRadio transmitterРадиопередатчик
TUNTunerТюнер
UIntegrated CircuitМикросхема, интегральная схема
UPhoton-coupled isolatorОптопара
VVacuum tube, valve, ionization chamber, klystron, magnetron, phototube, resonator tube (cavity type), solion, thyratron (electron tube), traveling-wave tube, voltage regulator (electron tube)Радиолампа, ионизационная камера, клистрон, магнетрон, вакуумный фотоэлемент, полостной вакуумный резонатор, хемотронный датчик, тиратрон (радиолампа), лампа бегущей волны, регулятор напряжения (радиолампа)
VCVariable capacitorПеременный конденсатор
VDRVoltage Dependent ResistorВаристор; резистор, управляемый напряжением
VFDVacuum fluorescent displayВакуумно-люминесцентный индикатор
VLSIVery-large-scale integrationСБИС — сверхбольшая интегральная схема
VRVariable resistor (potentiometer or rheostat)Переменный резистор (потенциометр или реостат)
VRVoltage regulatorРегулятор (стабилизатор) напряжения
VTVoltage transformerТрансформатор напряжения
WWire, bus bar, cable, waveguideПровод, шина, кабель, волновод
WTWiring tiepointТочка примыкания
XSolar cellСолнечный элемент
XOther convertersПреобразователи, не включаемые в другие категории
XCeramic resonatorКерамический резонатор, кварцевый генератор
X_Socket connector for another itemРазъём для элементов. Вторая буква соответствует подключаемому элементу
XASocket connector for printed circuit assembly connectorРазъём для печатных плат
XDSSocket connector for light socketРазъём для патрона
XFSocket connector for fuse holderРазъём для предохранителя
XLLampholderЛамповый патрон
XMERTransformerТрасформатор
XTALCrystalКварцевый генератор
XUSocket connector for integrated circuit connectorРазъём для микросхемы
XVSocket connector for vacuum tube socketРазъём для радиолампы
YCrystal or oscillatorКварцевый резонатор или осциллятор
ZZener diodeСтабилитрон
ZBalun, coupled tunable resonator, directional phase shifter (non-reciprocal), gyrator, mode suppressor, multistub tuner, phase shifter, resonator (tuned cavity)Симметрирующий трансформатор, связанный перестраиваемый резонатор, направленный фазовращатель (не обратный), гиратор, фильтр нежелательных типов волн, многошлейфовый согласователь, фазовращатель, объёмный резонатор
ZDZener DiodeСтабилитрон
ZSCTZero sequence current transformer, also called a window-type current transformerТрансформатор тока нулевой последовательности, трансформатор тока с проёмом для первичной цепи
Vddплюс(D — drain, сток)
Vssминус(S — source, исток)

Распиновка и маркировка советских радиодеталей

Здравствуйте посетители сайта 2 Схемы. Многие не понимают, как определить номинал советской радиодетали по коду, написанному на каком-либо радиоэлементе. А ведь многие устройства или приборы ещё тех времён успешно эксплуатируются до сих пор. Сейчас мы расскажем про определение номинала основных деталей производства СССР.

Резисторы

Начнём, конечно, с самой часто используемой детали — резистора. И начнём именно с советских резисторов. Почти на всех таких резисторах есть буквенная маркировка. Для начала изучим буквы, которые используются на данной детали:

  • Буква «Е», «R» — означает Омы
  • Буква «К» — означает Килоом
  • Буква «М» — означает Мегаом

И сама загвоздка заключается в расположении буквы между, перед или после цифры. Вообще ничего сложного нет. Если буква стоит между цифрами, например:

1К5 – это означает 1,5Килоома. Просто в Советском Союзе чтобы не возиться с запятой, вставили туда букву номинала. Если же написано 1R5 или 1Е5 — это значит что сопротивление 1,5 Ома или 1М5 — это 1,5 Мегаом. Если буква стоит перед цифрами, значит вместо буквы мы подставляем «0» и продолжаем строчку из цифр, которые стоят после буквы.

Например: К10 = 0,10 К, значит если в килооме 1000 Ом, то умножаем эту цифру (0,10) на 1000 и получаем 100 Ом. Или просто подставляем к цифрам нолик, при этом меняем в уме сопротивление на самое ближнее, меньшее этого.

И если буква стоит после цифр, значит ничего не меняется — так и вычисляем что написано на резисторе, например:

  • 100к = 100 килоом
  • 1М = 1 Мегаом
  • 100R или 100Е = 100 Ом

Можно определять номиналы вот по такой таблице:

Есть ещё и цветовая маркировка резисторов, самая основная, но при этом используют чаще всего онлайн калькуляторы или можно просто его скачать по ссылке.


Ещё на схемах где есть резисторы, на графических обозначениях резистора пишутся «палки». Эти «палки» обозначают мощность по такой таблице:

А мощность у резисторов определяется по размерам и надписям на них. На советских мощностью 1-3 Ватта писали мощность, а на современных уже не пишут. Но тут мощность определяют уже опытом или по справочникам.

Конденсаторы

Далее берём конденсаторы. В них немного другая маркировка. На современных конденсаторах идёт только цифровая маркировка, поэтому на все буквы кроме «p», «n» не обращаем внимания, все посторонние буквы обычно обозначают допуск, термостойкость и так далее. У них обычно кодовая маркировка состоит из 3 цифр. Первые три мы оставляем как есть, а третья показывает количество нулей, и эти нули мы выписываем, после чего емкость получается в пикофарадах.

Пример: 104 = 10 (выписываем 4 ноля, так как цифра после первых двух 4) 0000 Пикофарад = 100 Нанофарад или 0,1 микрофарад. 120 = 12 пикофаррад.

Но есть и с количеством менее 3 цифр (два или один). Значит емкость в указанных уже нам пикофарадах. Пример:

  • 3 = 3 пикофарада
  • 47 = 47 пикофарад

Вот фото:

Тут емкость 18 пикофарад.

Если есть буквы «n» или «p», значит емкость в пикофардах или нанофарадах, например:

  • Буква «n» — нанофарады
  • Буква «p» — пикофарады

На первом (большом) написано «2n7» — в этом случае как и на резисторе 2,7 нанофарад. На втором конденсаторе написано 58n, то есть емкость у него 58 нанофарад. Но если все-таки это не понимаете лучше купить мультиметр, например UT-61, у него есть функция измерения емкости. Там есть специальный разъём, куда вставляется конденсатор и под него нужно выбрать необходимый диапазон измерения (в пикофарадах, нанофарадах, микрофарадах). У данного мультиметра емкость измеряется до 20 микрофарад.

Транзисторы

Теперь советские транзисторы, так как их сейчас всё равно много, хоть не всех их продолжают делать. Маркировка у них обозначается цветными точками двух типов, такие:

И такие:

Есть ещё вот такие, с кодовой маркировкой:

Конечно можно не запоминать эти таблицы, а использовать программку-справочник, что в общем архиве по ссылке выше. Надеемся эти сведения об основных деталях отечественного производства вам очень пригодятся. Автор материала — Свят.


Обозначение на схемах радиодеталей

Начинающие радиолюбители нередко сталкиваются с такой проблемой, как обозначение на схемах радиодеталей и правильное прочтение их маркировки. Основная трудность заключается в большом количестве наименований элементов, которые представлены транзисторами, резисторами, конденсаторами, диодами и другими деталями. От того, насколько правильно прочитана схема, во многом зависит ее практическое воплощение и нормальная работа готового изделия.

Резисторы

К резисторам относятся радиодетали, обладающие строго определенным сопротивление протекающему через них электрическому току. Данная функция предназначена для понижения тока в цепи. Например, чтобы лампа светила менее ярко, питание на нее подается через резистор. Чем выше сопротивление резистора, тем меньше будет свечение лампы. У постоянных резисторов сопротивление остается неизменным, а переменные резисторы могут изменять свое сопротивление от нулевого значения до максимально возможной величины.

Каждый постоянный резистор обладает двумя основными параметрами – мощностью и сопротивлением. Значение мощности указывается на схеме не буквенными или цифровыми символами, а с помощью специальных линий. Сама мощность определяется по формуле: P = U x I, то есть равна произведению напряжения и силы тока. Данный параметр имеет важное значение, поскольку тот или иной резистор может выдержать лишь определенное значение мощности. Если это значение будет превышено, элемент просто сгорит, так как во время прохождения тока по сопротивлению происходит выделение тепла. Поэтому на рисунке каждые линии, нанесенные на резистор, соответствуют определенной мощности.

Существуют и другие способы обозначения резисторов на схемах:

  1. На принципиальных схемах обозначается порядковый номер в соответствии с расположением (R1) и значение сопротивления, равное 12К. Буква «К» является кратной приставкой и обозначает 1000. То есть, 12К соответствует 12000 Ом или 12 килоом. Если в маркировке присутствует буква «М», это указывает на 12000000 Ом или 12 мегаом.
  2. В маркировке с помощью букв и цифр, буквенные символы Е, К и М соответствуют определенным кратным приставкам. Так буква Е = 1, К = 1000, М = 1000000. Расшифровка обозначений будет выглядеть следующим образом: 15Е – 15 Ом; К15 – 0,15 Ом – 150 Ом; 1К5 – 1,5 кОм; 15К – 15 кОм; М15 – 0,15М – 150 кОм; 1М2 – 1,5 мОм; 15М – 15мОм.
  3. В данном случае используются только цифровые обозначения. Каждое включает в себя три цифры. Первые две из них соответствуют значению, а третья – множителю. Таким образом, к множителям относятся: 0, 1, 2, 3 и 4. Они означают количество нулей, добавляемых к основному значению. Например, 150 – 15 Ом; 151 – 150 Ом; 152 – 1500 Ом; 153 – 15000 Ом; 154 – 120000 Ом.

Постоянные резисторы

Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.

Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.

Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.

Переменные резисторы

Начинающие радиолюбители нередко путают переменный резистор с конденсатором переменной емкости, поскольку внешне они очень похожи друг на друга. Тем не менее, у них совершенно разные функции, а также имеются существенные отличия в отображении на принципиальных схемах.

В конструкцию переменного резистора входит ползунок, вращающийся по резистивной поверхности. Его основной функцией является подстройка параметров, заключающаяся в изменении внутреннего сопротивления до нужного значения. На этом принципе основана работа регулятора звука в аудиотехнике и других аналогичных устройствах. Все регулировки осуществляются за счет плавного изменения напряжения и тока в электронных устройствах.

Основным параметром переменного резистора является сопротивление, способное изменяться в определенных пределах. Кроме того, он обладает установленной мощностью, которую должен выдерживать. Этими качествами обладают все типы резисторов.

На отечественных принципиальных схемах элементы переменного типа обозначаются в виде прямоугольника, на котором отмечены два основных и один дополнительный вывод, располагающийся вертикально или проходящих сквозь значок по диагонали.

На зарубежных схемах прямоугольник заменен изогнутой линией с обозначением дополнительного вывода. Рядом с обозначением ставится английская буква R с порядковым номером того или иного элемента. Рядом проставляется значение номинального сопротивления.

Соединение резисторов

В электронике и электротехнике довольно часто используются соединения резисторов в различных комбинациях и конфигурациях. Для большей наглядности следует рассматривать отдельный участок цепи с последовательным, параллельным и смешанным соединением.

При последовательном соединении конец одного резистора соединяется с началом следующего элемента. Таким образом, все резисторы подключаются друг за другом, и по ним протекает общий ток одинакового значения. Между начальной и конечной точкой существует только один путь для протекания тока. С возрастанием количества резисторов, соединенных в общую цепь, происходит соответствующий рост общего сопротивления.

Параллельным считается такое соединение, когда начальные концы всех резисторов объединяются в одной точке, а конечные выходы – в другой точке. Течение тока происходит по каждому, отдельно взятому резистору. В результате параллельного соединения с увеличением числа подключенных резисторов, возрастает и количество путей для протекания тока. Общее сопротивление на таком участке уменьшается пропорционально количеству подключенных резисторов. Оно всегда будет меньше, чем сопротивление любого резистора, подключенного параллельно.

Чаще всего в радиоэлектронике используется смешанное соединение, представляющее собой комбинацию параллельного и последовательного вариантов.

На представленной схеме параллельно соединяются резисторы R2 и R3. Последовательное соединение включает в себя резистор R1, комбинацию R2 и R3 и резистор R4. Для того чтобы рассчитать сопротивление такого соединения, вся цепь разбивается на несколько простейших участков. После этого значения сопротивлений суммируются и получается общий результат.

Полупроводники

Стандартный полупроводниковый диод состоит из двух выводов и одного выпрямляющего электрического перехода. Все элементы системы объединяются в общем корпусе из керамики, стекла, металла или пластмассы. Одна часть кристалла называется эмиттером, в связи с высокой концентрацией примесей, а другая часть, с низкой концентрацией, именуется базой. Маркировка полупроводников на схемах отражает их конструктивные особенности и технические характеристики.

Для изготовления полупроводников используется германий или кремний. В первом случае удается добиться более высокого коэффициента передачи. Элементы из германия отличаются повышенной проводимостью, для которой достаточно даже невысокого напряжения.

В зависимости от конструкции, полупроводники могут быть точечными или плоскостными, а по технологическим признакам они бывают выпрямительными, импульсными или универсальными.

Конденсаторы

Конденсатор представляет собой систему, включающую два и более электродов, выполненных в виде пластин – обкладок. Они разделяются диэлектриком, который значительно тоньше, чем обкладки конденсатора. Все устройство имеет взаимную емкость и обладает способностью к сохранению электрического заряда. На простейшей схеме конденсатор представлен в виде двух параллельных металлических пластин, разделенных каким-либо диэлектрическим материалом.

На принципиальной схеме рядом с изображением конденсатора указывается его номинальная емкость в микрофарадах (мкФ) или пикофарадах (пФ). При обозначении электролитических и высоковольтных конденсаторов, после номинальной емкости указывается значение максимального рабочего напряжения, измеряемого в вольтах (В) или киловольтах (кВ).

Переменные конденсаторы

Для обозначения конденсаторов с переменной емкостью используются два параллельных отрезка, которые пересекает наклонная стрелка. Подвижные пластины, подключаемые в определенной точке схемы, изображаются в виде короткой дуги. Возле нее проставляется обозначение минимальной и максимальной емкости. Блок конденсаторов, состоящий из нескольких секций, объединяется с помощью штриховой линии, пересекающей знаки регулировки (стрелки).

Обозначение подстроечного конденсатора включает в себя наклонную линию со штрихом на конце вместо стрелки. Ротор отображается в виде короткой дуги. Другие элементы – термоконденсаторы обозначаются буквами СК. В его графическом изображении возле знака нелинейной регулировки проставляется температурный символ.

Постоянные конденсаторы

В принципиальных электрических схемах широко используются графические обозначения конденсаторов с постоянной емкостью. Они изображаются в виде двух параллельных отрезков и выводов из середины каждого из них. Возле значка проставляется буква С, после нее – порядковый номер элемента и с небольшим интервалом – числовое обозначение номинальной емкости.

При использовании в схеме конденсатора с ориентировочной емкостью, вместо его порядкового номера наносится звездочка. Значение номинального напряжения указывается лишь для цепей с высоким напряжением. Это касается всех конденсаторов, кроме электролитических. Цифровой символ напряжения проставляется после обозначения емкости.

Соединение многих электролитических конденсаторов требует соблюдения полярности. На схемах для обозначения положительной обкладки используется значок «+» либо узкий прямоугольник. При отсутствии полярности узкими прямоугольниками помечаются обе обкладки.

Диоды и стабилитроны

Диоды относятся к простейшим полупроводниковым приборам, функционирующим на основе электронно-дырочного перехода, известного как p-n-переход. Свойство односторонней проводимости наглядно передается на графических обозначениях. Стандартный диод изображается в виде треугольника, символизирующего анод. Вершина треугольника указывает направление проводимости и упирается в поперечную черту, обозначающую катод. Все изображение пересекается по центру линией электрической цепи.

Для маркировки диодов используется буквенное обозначение VD. Оно отображает не только отдельные элементы, но и целые группы, например, диодные мосты. Тип того или иного диода указывается возле его позиционного обозначения.

Базовый символ применяется и для обозначения стабилитронов, представляющих собой полупроводниковые диоды с особыми свойствами. В катоде присутствует короткий штрих, направленный в сторону треугольника, символизирующего анод. Данный штрих располагается неизменно, независимо от положения значка стабилитрона на принципиальной схеме.

Транзисторы

У большинства радиоэлектронных компонентов имеется лишь два вывода. Однако такие элементы как транзисторы оборудованы тремя выводами. Их конструкции отличаются разнообразными типами, формами и размерами. Общие принципы работы у них одинаковые, а небольшие отличия связаны с техническими характеристиками конкретного элемента.

Транзисторы используются преимущественно в качестве электронных коммутаторов для включения и выключения различных устройств. Основное удобство таких приборов заключается в возможности коммутировать большое напряжение с помощью источника малого напряжения.

По своей сути каждый транзистор является полупроводниковым прибором, с помощью которого генерируются, усиливаются и преобразуются электрические колебания. Наибольшее распространение получили биполярные транзисторы с одинаковой электропроводностью эмиттера и коллектора.

На схемах они обозначаются буквенным кодом VT. Графическое изображение представляет собой короткую черточку, от середины которой отходит линия. Данный символ обозначает базу. К ее краям проводятся две наклонные линии под углом 60, отображающие эмиттер и коллектор.

Электропроводность базы зависит от направления стрелки эмиттера. Если она направлена в сторону базы, то электропроводность эмиттера – р, а у базы – n. При направлении стрелки в противоположную сторону, эмиттер и база меняют электропроводность на противоположное значение. Знание электропроводности необходимо для правильного подключения транзистора к источнику питания.

Для того чтобы обозначение на схемах радиодеталей транзистора было более наглядным, оно помещается в кружок, означающий корпус. В некоторых случаях выполняется соединение металлического корпуса с одним из выводов элемента. Такое место на схеме отображается в виде точки, проставляемой там, где вывод пересекается с символом корпуса. Если же на корпусе имеется отдельный вывод, то линия, обозначающая вывод, может подсоединяться к кружку без точки. Возле позиционного обозначения транзистора указывается его тип, что позволяет существенно повысить информативность схемы.

Буквенные обозначение на схемах радиодеталей

Основное обозначение

Наименование элемента

Дополнительное обозначение

Вид устройства

А

Устройство

АА

Регулятор тока
 

АК

Блок реле
 

AKS

Устройство

В

Преобразователи

ВА

Громкоговоритель
 

BF

Телефон
 

ВК

Датчик тепловой
 

BL

Фотоэлемент
 

ВМ

Микрофон
 

BS

Звукосниматель

С

Конденсаторы

СВ

Батарея конденсаторов силовая
 

CG

Блок конденсаторов зарядный

D

Интегральные схемы, микросборки

DA

ИС аналоговая
 

DD

ИС цифровая, логический элемент

Е

Элементы разные

ЕК

Теплоэлектронагреватель
 

EL

Лампа осветительная

F

Разрядники, предохранители, устройства защитные

FA

Дискретный элемент защиты по току мгновенного действия
 

FP

То же, по току инерционного действия
 

FU

Предохранитель плавкий
 

FV

Разрядник

G

Генераторы, источники питания

GB

Батарея аккумуляторов
 

GC

Синхронный компенсатор
 

Возбудитель генератора

Н

Устройства индикационные и сигнальные

НА

Прибор звуковой сигнализации
 

HG

Индикатор
 

HL

Прибор световой сигнализации
 

HLА

Табло сигнальное
 

HLG

Лампа сигнальная с зеленой линзой
 

HLR

Лампа сигнальная с красной линзой
 

HLW

Лампа сигнальная с белой линзой
 

HV

Индикаторы ионные и полупроводниковые

К

Реле, контакторы, пускатели

КА

Реле токовое
 

КН

Реле указательное
 

КК

Реле электротепловое
 

КМ

Контактор, магнитный пускатель
 

КТ

Реле времени
 

KV

Реле напряжения
 

КСС

Реле команды включения
 

КСТ

Реле команды отключения
 

KL

Реле промежуточное

L

Катушки индуктивности, дроссели

LL

Дроссель люминесцентного освещения
 

LR

Реактор
 

LM

Обмотка возбуждения электродвигателя

М

Двигатели

МА

Электродвигатели

Р

Приборы измерительные

РА

Амперметр
 

РС

Счетчик импульсов
 

PF

Частотомер
 

PI

Счетчик активной энергии
 

PK

Счетчик реактивной энергии
 

PR

Омметр
 

PT

Измеритель времени действия, часы
 

PV

Вольтметр
 

PW

Ваттметр

Q

Выключатели и разъединители силовые

QF

Выключатель автоматический

R

Резисторы

RK

Терморезистор
 

RP

Потенциометр
 

RS

Шунт измерительный
 

RU

Варистор
 

RR

Реостат

S

Устройство коммутации в цепях управления, сигнализации и измерительных цепях

SA

Выключатель или переключатель
 

SB

Выключатель кнопочный
 

SF

Выключатель автоматический

Т

Трансформаторы, автотрансформаторы

TA

Трансформатор тока
 

TV

Трансформаторы напряжения

U

Преобразователи

UB

Модулятор
 

UR

Демодулятор
 

UG

Блок питания
 

UF

Преобразователь частоты

V

Приборы электровакуумные и полупроводниковые

VD

Диод, стабилитрон
 

VL

Прибор электровакуумный
 

VT

Транзистор
 

VS

Тиристор

Х

Соединители контактные

ХА

Токосъемник
 

ХР

Штырь
 

XS

Гнездо
 

XW

Соединитель высокочастотный

Y

Устройства механические с электромагнитным приводом

YA

Электромагнит
 

YAB

Замок электромагнитный

% PDF-1.2 % 4 0 obj > эндобдж xref 4 102 0000000016 00000 н. 0000002386 00000 н. 0000002768 00000 н. 0000002976 00000 н. 0000003605 00000 н. 0000003674 00000 н. 0000003742 00000 н. 0000003812 00000 н. 0000003879 00000 п. 0000003948 00000 н. 0000004029 00000 н. 0000004098 00000 н. 0000004167 00000 н. 0000004236 00000 п. 0000004305 00000 н. 0000004379 00000 н. 0000004448 00000 н. 0000004501 00000 п. 0000004579 00000 п. 0000004648 00000 н. 0000004717 00000 н. 0000004797 00000 н. 0000004850 00000 н. 0000004919 00000 н. 0000004988 00000 н. 0000005057 00000 н. 0000005126 00000 н. 0000005195 00000 н. 0000005264 00000 н. 0000005921 00000 н. 0000006123 00000 н. 0000006532 00000 н. 0000006601 00000 п. 0000006670 00000 н. 0000006740 00000 н. 0000006956 00000 н. 0000007281 00000 н. 0000007491 00000 н. 0000007560 00000 н. 0000007629 00000 н. 0000007701 00000 н. 0000007771 00000 н. 0000007951 00000 н. 0000008021 00000 н. 0000008091 00000 н. 0000008113 00000 п. 0000015821 00000 п. 0000015902 00000 н. 0000015924 00000 п. 0000022128 00000 п. 0000022150 00000 п. 0000029593 00000 п. 0000030046 00000 п. 0000030267 00000 п. 0000030289 00000 п. 0000038495 00000 п. 0000038517 00000 п. 0000046866 00000 п. 0000047051 00000 п. 0000047257 00000 п. 0000047279 00000 н. 0000056623 00000 п. 0000056645 00000 п. 0000063904 00000 п. 0000063926 00000 п. 0000071464 00000 п. 0000072309 00000 п. 0000073154 00000 п. 0000073969 00000 п. 0000074310 00000 п. 0000075106 00000 п. 0000075889 00000 п. 0000076183 00000 п. 0000076905 00000 п. 0000077339 00000 п. 0000077988 00000 п. 0000078611 00000 п. 0000079436 00000 п. 0000080153 00000 п. 0000080490 00000 н. 0000081226 00000 п. 0000082061 00000 п. 0000082504 00000 п. 0000083072 00000 н. 0000083915 00000 п. 0000084425 00000 п. 0000084971 00000 п. 0000085449 00000 п. 0000086269 00000 п. 0000087175 00000 п. 0000087949 00000 п. 0000088465 00000 п. 0000089329 00000 п. 00000

00000 п. 00000 00000 п. 00000

00000 п. 0000091815 00000 п. 0000092662 00000 п. 0000093099 00000 п. 0000093825 00000 п. 0000002456 00000 н. 0000002746 00000 н. трейлер ] >> startxref 0 %% EOF 5 0 obj > эндобдж 104 0 объект > поток Hb`Ha`d`PZ

Радиочастотный спектр - обзор

11.1 Работа с радиочастотой

В этом и последующих разделах мы обсуждаем передачу электроэнергии на самых высоких частотах, для которых используются линии передачи, как мы их описываем. Хотя будут обсуждаться некоторые специальные применения линий на этих частотах, основной упор остается на функции линии как носителя электроэнергии. Например, выходная радиочастота передатчика может быть порядка 100 кВт, и эта мощность должна передаваться на антенну, чтобы излучалась некоторая часть.Поскольку передатчик и антенна обычно разделены, для их соединения должна использоваться линия передачи, и ее функция будет заключаться в эффективной и действенной передаче энергии. При радиоприеме линия передачи может связывать антенну и приемник, и здесь требуется, чтобы линия выдерживала мощность на уровне микроватт; но основное требование, чтобы он передавал эту мощность с минимальным затуханием и искажением, остается неизменным.

Радиочастотный спектр простирается от примерно 15 кгц / с до примерно 30 000 МГц / с, и современные технологии вынуждены использовать этот огромный диапазон для удовлетворения постоянно растущего спроса на каналы связи.В данном контексте нас интересует частотный диапазон примерно от 100 кгц / с, в котором характерны особенности радиочастотного излучения. передачи становятся важными, примерно до 1000 Мгц / с, выше которых частоты используются полые волноводы, а не линии, которые мы описываем.

В нашем обзоре линий по всей этой книге мы постепенно увеличиваем рассматриваемые частоты, и при этом длина волны, которую мы изучаем, становится меньше. Например, при частоте 10 мегагерц в секунду длина волны, распространяющейся в свободном пространстве, составляет около 30 м - примерно 100 футов.Если антенна установлена ​​примерно в четверти мили от передатчика, генерирующего на этой частоте, линия, необходимая для их подключения, должна иметь длину около 13 длин волн. (Напротив, читатель может рассчитывать длину в милях линии электропередачи с частотой 50 Гц и 13 длинами волн.) В Великобритании частоты около 100 Мгц / с используются для v.h.f. услуги B.B.C. Длина волны теперь составляет около 3 м или 10 футов, а коаксиальная линия между антенной на крыше и нижним приемником может составлять три длины волны.

Диапазон частот, который нас сейчас интересует, соответственно, это диапазон, в котором линии передачи имеют длину в несколько длин волн, а функция наших линий заключается в передаче энергии на радиочастотах, либо в качестве воздушных фидеров, каналов телефонной связи, проводных распределителей или других средств связи. аксессуары.

Полосы радиочастот | TeraSense

Сертифицированный спектральный диапазон наших камер формирования изображений суб-терагерцового диапазона (50 ГГц - 0,7 ТГц) граничит с другими частями электромагнитного спектра, поэтому имеет смысл кратко описать соседние диапазоны и их особенности.

Радиоспектр (также известный как радиочастота или RF) является одной из таких частей электромагнитного спектра, который перекрывает наш суб-ТГц диапазон на его нижнем конце. Соответственно, электромагнитные волны в этом диапазоне частот называются радиочастотными диапазонами или просто «радиоволнами». Радиочастотные диапазоны распространяются в диапазоне от 30 кГц до 300 ГГц (альтернативная точка зрения предлагает покрытие от 3 кГц до 300 ГГц). Все известные системы передачи работают в диапазоне радиочастотного спектра, включая аналоговое радио, авиационную навигацию, морское радио, любительское радио, телевещание, мобильные сети и спутниковые системы.

Полосы радиочастот

Для предотвращения помех между различными пользователями создание и передача радиочастотных диапазонов строго регулируется национальными законами и координируется международным органом, Международным союзом электросвязи (ITU). МСЭ (базируется в Женеве, Швейцария) является членом группы развития ООН, координирует совместное глобальное использование радиочастотного спектра, способствует международному сотрудничеству в назначении спутниковых орбит, работает над улучшением инфраструктуры электросвязи в развивающихся странах и помогает в развитии. и согласование мировых технических стандартов.

Различные части радиочастотного спектра (диапазоны RF) выделяются ITU для различных технологий и приложений радиопередачи; около 40 услуг радиосвязи определены в Регламенте радиосвязи (РР) МСЭ.

Радиочастотный диапазон - это небольшой непрерывный участок радиочастотного спектра, в котором каналы обычно используются или зарезервированы для использования. Например, радиовещание, мобильное радио или навигационные устройства будут размещены в неперекрывающихся диапазонах частот.Для каждой из этих полос у ITU есть план полосы, который диктует, как ее следует использовать и совместно использовать, чтобы избежать помех и установить протокол для совместимости передатчиков и приемников.

В соответствии с соглашением ITU делит радиоспектр на 12 полос (как показано в таблице ниже), каждая из которых начинается с длины волны, равной мощности десяти (10 n ) метров, с соответствующей частотой 3 × 10 8 − n Гц, каждый из которых охватывает декаду частоты или длины волны.У каждой из этих групп есть традиционное название.

02

Длина волны

0

Super низкая частота

900 заменить рентгеновские лучи, сверхбыструю молекулярную динамику, физику конденсированного состояния, терагерцовую спектроскопию во временной области, терагерцовые вычисления / связь, дистанционное зондирование

Название диапазона

Аббревиатура

Номер диапазона ITU

Частота

Пример

Чрезвычайно низкая частота

ELF

1

3–30 Гц

100000–10 000 км

Связь с подводными лодками

SLF

2

30–300 Гц

10 000–1 000 км

Связь с подводными лодками

Сверхнизкая частота

ULF

3

300–3000 Гц

1000–100 км

Подводная связь, связь внутри шахт

Очень низкая частота

VLF

3–30 кГц

100–10 км

Навигация, сигналы времени, подводная связь, беспроводные пульсометры, геофизика

Низкая частота

LF

5

30–300 кГц

10–1 км

Навигация, сигналы времени, длинноволновое AM радиовещание (Европа и часть Азии), RFID, любительское радио

Средняя частота

MF

6

300–3000 кГц

1000–100 м

AM (средневолновое) радиовещание, любительское радио, лавинные радиомаяки

Высокая частота

HF

7

–30 МГц

100–10 м

Коротковолновое вещание, гражданское радио, любительское радио и загоризонтная авиационная связь, RFID, загоризонтный радар, автоматическое установление связи (ALE) / ближний -вертикальное падение Skywave (NVIS) Радиосвязь, морская и мобильная радиотелефония

Очень высокая частота

VHF

8

30–300 МГц

10– 1 м

FM, телевизионные передачи, связь земля-самолет и самолет-самолет в прямой видимости, наземная подвижная и морская подвижная связь нс, любительское радио, метеорологическое радио

Сверхвысокая частота

UHF

9

300–3000 МГц

1–0.1 м

Телевидение, микроволновая печь, микроволновые устройства / средства связи, радиоастрономия, мобильные телефоны, беспроводная локальная сеть, Bluetooth, ZigBee, GPS и двусторонние радиоприемники, такие как наземная мобильная связь, радио FRS и GMRS, любительское радио, спутник радио, Системы дистанционного управления, ADSB

Сверхвысокая частота

SHF

10

3–30 ГГц

100–10 мм

Радиоастрономия , микроволновые устройства / средства связи, беспроводная локальная сеть, DSRC, самые современные радары, спутники связи, кабельное и спутниковое телевещание, DBS, любительское радио, спутниковое радио

Чрезвычайно высокая частота

EHF

11

30–300 ГГц

10–1 мм

Радиоастрономия, высокочастотная ncy микроволновое радиореле, микроволновое дистанционное зондирование, любительское радио, оружие направленной энергии, сканер миллиметровых волн, беспроводная локальная сеть (802.11ad)

Терагерц или чрезвычайно высокая частота

ТГц или ТГФ

12

300–3000 ГГц

1–0,1 мм

1–0,1 мм

Конечно, в этой «истории» и в каком-то другом мире есть нечто большее. известные организации также приложили руку к этому вопросу.Институт инженеров по электротехнике и электронике США (IEEE) был весьма продуктивным и внес значительный вклад, введя дополнительную классификацию микроволнового диапазона. Благодаря IEEE полосы частот в микроволновом диапазоне обозначены буквами. Эта классификация также стала широко используемым стандартом для радиолокационных диапазонов.

Короткая волна

03

75-900 110 ГГц

Диапазон
обозначение

Диапазон частот

Объяснение значений букв

HF

0.003–0,03 ГГц

Высокая частота

VHF

0,03–0,3 ГГц

Очень высокая частота

UHF

GHz

0,3–2

Сверхвысокая частота

L

От 1 до 2 ГГц

Длинноволновая

S

2–4 ГГц

C

4–8 ГГц

Компромисс между S и X

X

8–12 ГГц

Используется во Второй мировой войне для управления огнем, X - крест (как в прицеле).Экзотика.

Ku

12–18 ГГц

Kurz-under

K

18–27 ГГц

Kurz (сокращенно по-немецки)

Ka

27-40 ГГц

Курц-выше

V

40-75 ГГц

W

W следует за V в алфавите

мм или G

110–300 ГГц

Миллиметр

Это соглашение началось во время Второй мировой войны с участием военных обозначения частот, используемых в радарах, которые были первым применением микроволн.Так получилось, что существует несколько несовместимых систем именования для микроволновых диапазонов, и даже внутри данной системы точный частотный диапазон, обозначенный буквой, может несколько отличаться в разных областях применения.

Конечно, другие высокопоставленные организации, такие как ЕС, НАТО, ЕСМ, также внесли свой вклад, представив свое видение классификационных частотных обозначений. В таблице ниже дается краткое сравнение между классификациями и показаны области «перекрытия».

Некоторые из наших клиентов часто используют различные термины, связанные с радиочастотными диапазонами и радиочастотной терминологией в целом, особенно в отношении наших терагерцовых генераторов (источников ТГц).Это требует краткого описания диапазонов частот волновода, установленных в качестве стандарта среди экспертов.

03

1

03

03

9

110

Диапазон

Диапазон частот

Диапазон

1,70–2,60 ГГц

Диапазон K

18.От 0 до 26,5 ГГц

Диапазон D

2,20–3,30 ГГц

Диапазон Ka

26,5–40,0 ГГц

Диапазон S

3,95

ГГц

Диапазон Q

От 33 до 50 ГГц

Диапазон E

от 3,30 до 4,90 ГГц

Диапазон U

от 40 до 60 ГГц 900

Диапазон G

3.95–5,85 ГГц

Диапазон V

40–75 ГГц

Диапазон F

4,90–7,05 ГГц

Диапазон E

Диапазон C

5,85–8,20 ГГц

Диапазон W

75–110 ГГц

Диапазон H

7.От 05 до 10,10 ГГц

Диапазон F

От 90 до 140 ГГц

Диапазон X

От 8,2 до 12,4 ГГц

Диапазон D от

Ku-диапазон

12,4–18,0 ГГц

Диапазон Y

325–500 ГГц

Terasense может предложить источники ТГц, которые подходят для диапазонов E, W , Диапазон F и диапазон D.Для получения дополнительной информации посетите нашу веб-страницу, посвященную генераторам ТГц диапазона.

Персональные системы FM / DM для людей с нарушением слуха и нарушениями слуха

Учитель использует удаленный микрофон как часть FM-системы.

Использование микрофонов и приемников, систем FM и DM поможет вам слышать и уменьшить фоновый шум.

Обе системы улучшают соотношение сигнал / шум, - объясняет клинический аудиолог Сара Спаркс, доктор юридических наук, основатель Audiology Outside the Box PLLC в Вашингтоне, округ Колумбия.

«Они берут звук, который находится дальше, и приближают его к слушателю», - говорит Спаркс.

Узнайте больше о том, как работают эти системы, а также о том, кто может рассмотреть возможность их использования, когда системы FM / DM идеально подходят для использования и многое другое.

Что такое системы FM / DM?

Учителя или другие выступающие могут носить
выносной микрофон, передающий звук
через сигналы FM / DM до слуха человека
помощь или подобное устройство.

Фотография любезно предоставлена ​​Oticon

Вот как это работает: динамик использует микрофон, а слушатель носит приемник. "Приемник может быть простой парой наушников, приемниками на уровне ушей, которые доставляют звук в уши, или слуховым устройством, таким как кохлеарные имплантаты или слуховые аппараты", - объясняет Спаркс.

«FM-система не заменяет слуховой аппарат, - говорит Ри Нессон, AuD, основатель компании Hearing Doctors of New Jersey, - но эти устройства часто добавляются к слуховым аппаратам», - говорит она.

FM в сравнении с DM

Если вы видите «FM» и думаете, что «радио», вы на правильном пути - этот тип системы использует FM-радиосигналы, назначенные FCC для передачи звука, говорит Нессон.

Системы

DM, напротив, используют цифровые сигналы и, как правило, имеют лучшее качество звука, избегая при этом потенциальных помех (подумайте: статический звук другой FM-станции), - говорит Спаркс.

«Мой собственный опыт использования систем DM показывает, что их качество звука значительно четче, чем у систем FM, что снижает сложность ситуации прослушивания», - отмечает глухой Спаркс.

Примечание. Несмотря на то, что они используют разные сигналы, возможно, из-за того, что они работают примерно одинаково, а FM существует уже некоторое время, обе системы часто называют FM. Аудиологи и специалисты по слуховым аппаратам предпочитают термин "вспомогательная слуховая аппаратура с дистанционным микрофоном" (RM-HAT), поскольку он включает оба типа систем.

Кому выгодно его использовать? / Кому следует рассмотреть возможность использования систем FM / DM?

Существует широкий круг людей, которым может быть полезно использование системы FM / DM:

Студенты : Системы FM / DM часто используются с глухими или слабослышащими детьми.

«Детям, у которых нет потери слуха, иногда также может быть полезна FM-система, - говорит Нессон, - которая включает как детей с нарушением слуха, так и учащихся с нарушением слуха при наличии фонового шума.

«Для детей в школах эти системы часто включаются в IEP и планы 504», - говорит Спаркс. Эти планы предусматривают юридически обязательные меры по оказанию помощи детям с потерей слуха.

Кандидаты со слуховыми аппаратами : Во время групповых бесед, в церкви, на концертах и ​​в других ситуациях, когда слух может быть затруднен, взрослые, которые выбирают слуховые аппараты, могут воспользоваться этими устройствами.

«Иногда просьба предоставить специальные устройства, такие как FM и DM, может быть началом пути человека к проверке слуха и использованию соответствующих слуховых устройств», - говорит Спаркс.

Взрослые со слуховыми аппаратами : Если у вас есть слуховые аппараты, использование системы FM / DM может помочь снизить фоновый шум. Поэтому в сложных условиях слуха, например в шумном ресторане, ваш собеседник по обеду может носить микрофон.

Кто угодно, на самом деле : Даже люди с нормальным слухом могут извлечь выгоду, когда микрофоны FM / DM подключены к громкоговорителям и используются в аудиториях, отмечает Спаркс, включая людей с СДВГ или расстройствами слуховой обработки, а также не носителей языка.«Наличие более четкого и доступного звукового сигнала может помочь в понимании сообщения», - говорит она. Это также снижает утомляемость при слушании.

Дети чаще используют системы FM / DM. «Но это не потому, что взрослые не получают от этого пользы!» Спаркс говорит - она ​​отмечает, что взрослым, возможно, придется немного поработать, прося их предоставить.

«Из-за стигмы, связанной с пониженной чувствительностью слуха, многие взрослые не решаются запрашивать такие виды приспособлений для работы и получения высшего образования», - отмечает она.

Как они работают?

Простая версия, как указано выше: микрофон и приемник объединены в пары. Но, конечно, это еще не все.

С этими системами можно использовать несколько типов микрофонов:

  • Настольный микрофон : при размещении в центре стола эти микрофоны улавливают все голоса за столом. Они подходят для конференц-залов или тихих ресторанов. Некоторые из них обладают всенаправленным звуком, улавливающим звуки во всех направлениях.У других «может быть опция наведения, при которой акселерометр в микрофоне позволяет ему изменять направленность и улавливать звук в том направлении, в котором он указывает, но затем возвращаться во всенаправленный режим, когда он лежит на столе», - говорит Спаркс.
  • Клипсовые или отворотные микрофоны : они вешаются на шею человека на шнурке или прикрепляются к рубашке говорящего на уровне груди. Убедитесь, что они находятся в пределах шести дюймов от рта говорящего, чтобы обеспечить максимально сильный речевой сигнал.
  • Портативный : микрофон этого типа можно носить с собой.
  • Штанговый микрофон : Эти микрофоны свешиваются с уха на расстоянии примерно трех дюймов от лица. Представьте себе стиль микрофона, который носят поп-певцы или представители службы поддержки клиентов.

«В некоторых системах DM несколько типов микрофонов могут быть связаны друг с другом в рамках одной системы, чтобы слушатели могли слышать звук из разных динамиков в разное время», - говорит Спаркс.

Затем следует сторона-получатель:

  • Приемники на уровне ушей : «Приемники на уровне ушей можно присоединять к слуховым аппаратам и процессорам кохлеарных имплантов, чтобы глухие и слабослышащие люди могли принимать звуковой сигнал напрямую», - говорит Спаркс. Ресиверы на уровне ушей, которые иногда называют «ботинками для слуховых аппаратов», являются наиболее интегрированным решением для людей, которые носят слуховые аппараты. Дети с потерей слуха носят эти приемники в школе. Но они также доступны для людей без проблем со слухом, говорит Спаркс.
  • Приемники с петлей для шеи : Приемники этого типа, также называемые индукционной петлей, носятся на шее и передают сигнал в слуховые аппараты посредством электромагнитной энергии. Этот ресивер требует использования индукционной катушки в ваших слуховых аппаратах. По словам Спаркс, для людей с обычным слухом их можно подключить к наушникам.
  • Громкоговорители : Звуки также могут передаваться на громкоговорители по всему пространству.
  • Носимый на теле приемник : Носимый на теле приемник можно положить в карман или прикрепить к поясу.Хотя они более громоздкие, они портативны. В сочетании с традиционными наушниками они являются идеальным решением для тех, кто не носит слуховые аппараты или временно не пользуется слуховыми аппаратами во время ремонта. Врачи часто используют этот тип приемника для разговора с пациентами с потерей слуха, которые не носят слуховые аппараты.

Кроме того, некоторые системы могут быть объединены с другими технологиями - например, Sparks соединяет свою систему DM с ноутбуком и использует ее во время видеочатов.

Где можно использовать системы FM / DM

Кинотеатры и другие места часто
есть системы доступности для людей
с потерей слуха.

Их можно легко использовать во многих местах, в том числе:

  • Театры и зрительные залы : Многие большие зрительные залы имеют возможность обеспечивать превосходное качество звука без помех. FM-технология в кинотеатре или кинотеатре позволяет использовать слуховой аппарат с FM-приемником, и сигнал проходит прямо на устройство, обеспечивая чистый звук. Тем, кто не носит слуховые аппараты, могут быть доступны FM-системы в сочетании с традиционными гарнитурами, которые можно носить во время шоу.Не стесняйтесь - спрашивайте в кассах.
  • Классные комнаты и лекционные залы : В некоторых классах используется система усиления звукового поля, чтобы все дети могли получить пользу от усиления голоса учителя. Система усиления звукового поля использует микрофон для усиления голоса говорящего через систему громкоговорителей, которая стратегически расположена в классе. Таким образом, все учащиеся могут получить пользу от усиления, а дети с потерей слуха освобождаются от бремени ношения специального ресивера.
  • Рестораны : Когда у вас есть оборудование, вы можете использовать либо настольный микрофон, либо тот, который носит динамик во время еды.

Эти системы полезны всякий раз, когда есть фоновый шум и вы хотите послушать еще одного человека, - говорит Спаркс. В некоторых случаях законы о доступности ADA могут предусматривать предоставление систем FM / DM.

Сколько они стоят?

Систему

FM можно приобрести в Интернете, в магазинах электроники или у местного специалиста-сурдолога.Если вы не знаете, с чего начать или какое устройство лучше всего подойдет вам, поговорите со своим специалистом по слуховым аппаратам и попросите продемонстрировать его.

«Аудиолог сможет сказать человеку, какой приемник наиболее подходит для его нужд», - говорит Спаркс. Вам также понадобится микрофон (который часто можно подключить к нескольким различным приемникам).

Будьте готовы к широкому диапазону цен с этими устройствами, которые могут стоить от 150 до нескольких тысяч долларов.

Мадлен Берри

Мадлен Берри - внештатный писатель и редактор из Бруклина.Она написала о здоровье для нескольких интернет-изданий, включая «Женское здоровье», «Профилактика», «Здоровье», «Livestrong» и «Хорошее домашнее хозяйство». Вы можете следить за ней в Twitter @lovelanewest. Узнайте больше о Мадлен.

Как читать схему

Добавлено в избранное Любимый 98

Обзор

Схемы

- это наша карта для проектирования, создания и устранения неисправностей схем. Понимание того, как читать схемы и следовать им, - важный навык для любого инженера-электронщика.

Это руководство должно превратить вас в полностью грамотного читателя схем! Мы рассмотрим все основные условные обозначения:

Затем мы поговорим о том, как эти символы связаны на схемах, чтобы создать модель цепи. Мы также рассмотрим несколько советов и рекомендаций, на которые следует обратить внимание.

Рекомендуемая литература

Понимание схем - это довольно базовый навык работы с электроникой, но есть несколько вещей, которые вы должны знать, прежде чем читать это руководство.Посмотрите эти уроки, если они кажутся пробелами в вашем растущем мозгу:

Условные обозначения на схеме (часть 1)

Готовы ли вы к шквалу компонентов схемы? Вот некоторые из стандартизованных основных схематических символов для различных компонентов.

Резисторы

Самые основные компоненты схем и символы! Резисторы на схеме обычно представлены несколькими зигзагообразными линиями с двумя выводами , выходящими наружу.В схемах, использующих международные символы, вместо волнистых линий может использоваться безликий прямоугольник.

Потенциометры и переменные резисторы

Переменные резисторы и потенциометры дополняют обозначение стандартного резистора стрелкой. Переменный резистор остается устройством с двумя выводами, поэтому стрелка просто расположена по диагонали посередине. Потенциометр - это трехконтактное устройство, поэтому стрелка становится третьей клеммой (дворником).

Конденсаторы

Обычно используются два символа конденсатора.Один символ представляет поляризованный (обычно электролитический или танталовый) конденсатор, а другой - неполяризованные колпачки. В каждом случае есть две клеммы, перпендикулярно входящие в пластины.

Символ с одной изогнутой пластиной указывает на то, что конденсатор поляризован. Изогнутая пластина обычно представляет собой катод конденсатора, который должен иметь более низкое напряжение, чем положительный анодный вывод. Знак плюс также должен быть добавлен к положительному выводу символа поляризованного конденсатора.

Катушки индуктивности

Катушки индуктивности обычно представлены сериями изогнутых выступов или петлевых катушек. Международные символы могут просто обозначать катушку индуктивности как закрашенный прямоугольник.

Коммутаторы

Коммутаторы существуют во многих различных формах. Самый простой переключатель, однополюсный / однопозиционный (SPST), представляет собой две клеммы с полусоединенной линией, представляющей привод (часть, которая соединяет клеммы вместе).

Переключатели с более чем одним ходом, такие как SPDT и SP3T ниже, добавляют больше посадочных мест для привода.

Многополюсные переключатели обычно имеют несколько одинаковых переключателей с пунктирной линией, пересекающей средний привод.

Источники энергии

Так же, как существует множество вариантов питания вашего проекта, существует большое разнообразие символов цепей источника питания, помогающих указать источник питания.

Источники постоянного или переменного напряжения

В большинстве случаев при работе с электроникой вы будете использовать источники постоянного напряжения. Мы можем использовать любой из этих двух символов, чтобы определить, подает ли источник постоянный ток (DC) или переменный ток (AC):

Батареи

Батарейки, будь то цилиндрические, щелочные AA или литий-полимерные аккумуляторные батареи, обычно выглядят как пара непропорциональных параллельных линий:

Чем больше пар линий, тем больше ячеек в батарее.Кроме того, более длинная линия обычно используется для обозначения положительной клеммы, а более короткая линия соединяется с отрицательной клеммой.

Узлы напряжения

Иногда - особенно на очень загруженных схемах - вы можете назначить специальные символы для узловых напряжений. Вы можете подключать устройства к этим символам с одним контактом , и они будут напрямую связаны с 5 В, 3,3 В, VCC или GND (землей). Узлы положительного напряжения обычно обозначаются стрелкой, направленной вверх, в то время как узлы заземления обычно включают от одной до трех плоских линий (или иногда стрелку или треугольник, направленную вниз).

Условные обозначения на схеме (часть 2)

Диоды

Базовые диоды обычно представляют собой треугольник, прижатый к линии. Диоды также поляризованы, поэтому для каждого из двух выводов требуются отличительные идентификаторы. Положительный анод - это вывод, входящий в плоский край треугольника. Отрицательный катод выходит за линию символа (воспринимайте его как знак -).

Существует множество различных типов диодов, каждый из которых имеет специальный рифф на стандартном символе диода. Светодиоды (LED) дополняют символ диода парой линий, направленных в сторону. Фотодиоды , которые генерируют энергию из света (в основном, крошечные солнечные элементы), переворачивают стрелки и направляют их в сторону диода.

Другие специальные типы диодов, такие как диоды Шоттки или стабилитроны, имеют свои собственные символы с небольшими вариациями на штриховой части символа.

Транзисторы

Транзисторы

, будь то биполярные транзисторы или полевые МОП-транзисторы, могут существовать в двух конфигурациях: положительно легированные или отрицательно легированные.Итак, для каждого из этих типов транзисторов есть как минимум два способа его нарисовать.

Биполярные переходные транзисторы (БЮТ)

БЮТ - трехполюсные устройства; у них есть коллектор (C), эмиттер (E) и база (B). Есть два типа BJT - NPN и PNP - и каждый имеет свой уникальный символ.

Контакты коллектора (C) и эмиттера (E) расположены на одной линии друг с другом, но на эмиттере всегда должна быть стрелка. Если стрелка указывает внутрь, это PNP, а если стрелка указывает наружу, это NPN.Мнемоника для запоминания: «NPN: n или p ointing i n ».

Металлооксидные полевые транзисторы (МОП-транзисторы)

Как и BJT, полевые МОП-транзисторы имеют три терминала, но на этот раз они названы исток (S), сток (D) и затвор (G). И снова, есть две разные версии символа, в зависимости от того, какой у вас полевой МОП-транзистор с n-каналом или p-каналом. Для каждого типа полевого МОП-транзистора существует ряд часто используемых символов:

Стрелка в середине символа (называемая основной частью) определяет, является ли полевой МОП-транзистор n-канальным или p-канальным.Если стрелка указывает внутрь, это означает, что это n-канальный MOSFET, а если он указывает, это p-канал. Помните: «n is in» (своего рода противоположность мнемонике NPN).

Цифровые логические ворота

Наши стандартные логические функции - И, ИЛИ, НЕ и ИСКЛЮЧАЮЩЕЕ - все имеют уникальные условные обозначения:

Добавление пузыря к выходу отменяет функцию, создавая NAND, NOR и XNOR:

У них может быть более двух входов, но формы должны оставаться такими же (ну, может быть, немного больше), и все равно должен быть только один выход.

Интегральные схемы

Интегральные схемы

решают такие уникальные задачи, и их так много, что на самом деле они не получают уникального символа схемы. Обычно интегральная схема представляет собой прямоугольник с выступающими по бокам выводами. Каждый вывод должен быть помечен как номером, так и функцией.

Схематические символы для микроконтроллера ATmega328 (обычно присутствующего на Arduinos), микросхемы шифрования ATSHA204 и микроконтроллера ATtiny45. Как видите, эти компоненты сильно различаются по размеру и количеству выводов.

Поскольку микросхемы имеют такой общий символ схемы, имена, значения и метки становятся очень важными. Каждая микросхема должна иметь значение, точно идентифицирующее имя микросхемы.

Уникальные ИС: операционные усилители, регуляторы напряжения

Некоторые из наиболее распространенных интегральных схем получают уникальный символ схемы. Обычно вы увидите операционные усилители, расположенные, как показано ниже, с 5 выводами: неинвертирующий вход (+), инвертирующий вход (-), выход и два входа питания.

Часто в один корпус интегральной схемы встроено два операционных усилителя, для которых требуется только один вывод для питания и один для заземления, поэтому тот, что справа, имеет только три контакта.

Простые регуляторы напряжения обычно представляют собой трехконтактные компоненты с входными, выходными и заземляющими (или регулирующими) контактами. Обычно они имеют форму прямоугольника с выводами слева (вход), справа (выход) и снизу (заземление / регулировка).

Разное

Кристаллы и резонаторы

Кристаллы или резонаторы обычно являются важной частью схем микроконтроллера. Они помогают обеспечить тактовый сигнал. Кристаллические символы обычно имеют два вывода, в то время как резонаторы, которые добавляют два конденсатора к кристаллу, обычно имеют три вывода.

Заголовки и разъемы

Будь то обеспечение питания или отправка информации, разъемы необходимы для большинства цепей. Эти символы различаются в зависимости от того, как выглядит разъем, вот пример:

Двигатели, трансформаторы, динамики и реле

Мы объединим их вместе, так как они (в основном) все так или иначе используют катушки. Трансформаторы (не самые очевидные) обычно включают две катушки, прижатые друг к другу, с парой линий, разделяющих их:

Реле обычно соединяют катушку с переключателем:

Динамики и зуммеры обычно имеют форму, аналогичную их реальным аналогам:

Двигатели

и обычно имеют обведенную буквой «М», иногда с немного большим количеством украшений вокруг клемм:

Предохранители и PTC

Предохранители и PTC - устройства, которые обычно используются для ограничения больших скачков тока - каждое имеет свой уникальный символ:

Символ PTC на самом деле является общим обозначением термистора , резистора, зависящего от температуры (обратите внимание на международный символ резистора там?).


Несомненно, многие символы схем не включены в этот список, но те, что указаны выше, должны дать вам 90% грамотности в чтении схем. В общем, символы должны иметь довольно много общего с реальными компонентами, которые они моделируют. Помимо символа, каждый компонент на схеме должен иметь уникальное имя и значение, которое в дальнейшем помогает его идентифицировать.

Обозначения имен и значения

Один из важнейших ключей к схематической грамотности - это способность распознавать, какие компоненты какие.Компонентные символы рассказывают половину истории, но для завершения каждый символ должен сочетаться с именем и значением.

Имена и значения

Значения помогают точно определить, что такое компонент. Для схемных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, значение говорит нам, сколько у них Ом, фарад или генри. Для других компонентов, таких как интегральные схемы, значением может быть просто название микросхемы. Кристаллы могут указывать свою частоту колебаний как свою ценность.По сути, значение компонента схемы вызывает его наиболее важную характеристику .

Имена компонентов обычно представляют собой комбинацию одной или двух букв и числа. Буквенная часть имени определяет тип компонента - R для резисторов, C для конденсаторов, U для интегральных схем и т. Д. Каждое имя компонента на схеме должно быть уникальным; если в цепи несколько резисторов, например, они должны называться R 1 , R 2 , R 3 и т. д.Имена компонентов помогают нам ссылаться на определенные точки на схемах.

Префиксы имен довольно хорошо стандартизированы. Для некоторых компонентов, таких как резисторы, префикс - это просто первая буква компонента. Другие префиксы имен не столь буквальны; индукторы, например, L (потому что ток уже прошел I [но он начинается с C ... электроника - глупое место]). Вот краткая таблица общих компонентов и их префиксов:

Имя Идентификатор Компонент
R Резисторы
C Конденсаторы
L Катушки индуктивности
S Переключатели 900 D77
Q Транзисторы
U Интегральные схемы
Y Кристаллы и осцилляторы

Хотя тезисы являются «стандартизированными» названиями символов компонентов, они не всегда соблюдаются.Вы можете увидеть интегральные схемы с префиксом IC вместо U , например, или кристаллы с маркировкой XTAL вместо Y . Используйте свой здравый смысл при диагностике, какая часть есть какая. Символ обычно должен передавать достаточно информации.

Чтение схемы

Понимание того, какие компоненты есть на схеме, - это более чем полдела на пути к ее пониманию. Теперь все, что осталось, - это определить, как все символы связаны друг с другом.

Сети, узлы и метки

Схематические цепи показывают, как компоненты соединяются в цепи. Цепи представлены в виде линий между клеммами компонентов. Иногда (но не всегда) они имеют уникальный цвет, например, зеленые линии на этой схеме:

Соединения и узлы

Провода могут соединять две клеммы вместе, или их можно соединять десятки. Когда провод разделяется на два направления, образуется соединение . На схемах изображаем стыки с узлами , маленькими точками на пересечении проводов.

Узлы

дают нам возможность сказать, что «провода, пересекающие этот переход , соединены ». Отсутствие узла на стыке означает, что два отдельных провода просто проходят мимо, не образуя никакого соединения. (При разработке схем обычно рекомендуется по возможности избегать этих несвязанных перекрытий, но иногда это неизбежно).

Сетевые имена

Иногда, чтобы схема была более разборчивой, мы даем цепи имя и маркируем ее, а не прокладываем провод по всей схеме.Предполагается, что цепи с таким же именем подключены, даже если нет видимого провода, соединяющего их. Имена могут быть написаны прямо поверх сети, или они могут быть «тегами», свисающими с провода.

Подключается каждая цепь с таким же именем, как на этой схеме для коммутационной платы FT231X. Имена и метки помогают сохранить схемы от слишком хаотичного (представьте, если бы все эти цепи были действительно соединены проводами). Цепям

обычно дается имя, в котором конкретно указывается назначение сигналов на этом проводе.Например, цепи питания могут быть обозначены «VCC» или «5V», а цепи последовательной связи - «RX» или «TX».

Советы по чтению схем

Определить блоки

Действительно обширные схемы следует разбивать на функциональные блоки. Это может быть раздел для ввода мощности и регулирования напряжения, или раздел микроконтроллера, или раздел, посвященный разъемам. Попытайтесь распознать, какие секции какие, и проследить за цепочкой от входа к выходу. По-настоящему хорошие разработчики схем могут даже выложить схему в виде книги: входы слева, выходы - справа.

Если ящик схемы действительно хорош (например, инженер, который разработал эту схему для RedBoard), они могут разделить части схемы на логические помеченные блоки.
Распознать узлы напряжения

Узлы напряжения - это одноконтактные компоненты схемы, к которым мы можем подключать клеммы компонентов, чтобы назначить им определенный уровень напряжения. Это специальное приложение имен цепей, означающее, что все клеммы, подключенные к узлу напряжения с одинаковым именем, соединены вместе.

Узлы напряжения с одинаковыми названиями - например, GND, 5 В и 3,3 В - все подключены к своим аналогам, даже если между ними нет проводов.

Узел заземления особенно полезен, потому что очень многие компоненты нуждаются в заземлении.

Справочные материалы по компонентам

Если на схеме есть что-то, что не имеет смысла, попробуйте найти таблицу для наиболее важного компонента. Обычно компонент, выполняющий большую часть работы со схемой, - это интегральная схема, такая как микроконтроллер или датчик.Обычно это самый крупный компонент, часто расположенный в центре схемы.

Ресурсы и дальнейшее развитие

Вот и все, что нужно для чтения схем! Зная символы компонентов, отслеживание цепей и определение общих меток. Понимание того, как работает схема, открывает вам целый мир электроники! Ознакомьтесь с некоторыми из этих руководств, чтобы попрактиковаться в новых знаниях схемотехники:

  • Делители напряжения - это одна из самых основных принципиальных схем.Узнайте, как с помощью всего двух резисторов превратить большое напряжение в меньшее!
  • Как использовать макетную плату - Теперь, когда вы знаете, как читать схемы, почему бы не сделать ее! Макетные платы - отличный способ создавать временные функциональные прототипы схем.
  • Работа с проводом - Или пропустите макет и сразу приступите к проводке. Умение разрезать, зачищать и подключать провода - важный навык электроники.
  • Последовательные и параллельные схемы - Построение последовательных или параллельных схем требует хорошего понимания схем.
  • Шитье токопроводящей нитью. Если вы не хотите работать с проволокой, как насчет создания цепи электронного текстиля с токопроводящей нитью? В этом прелесть схематических схем: одна и та же принципиальная схема может быть построена множеством различных способов с использованием различных носителей.

Блок-схема USRP-2930 - Руководство по программно определяемому радиоустройству USRP

Сигналы, полученные USRP-2930, усиливаются, преобразуются с понижением частоты, фильтруются, оцифровываются и прореживаются перед передачей на главный компьютер.Сигналы, передаваемые USRP-2930, перед передачей подвергаются повышающей дискретизации, реконструируются, фильтруются, преобразуются с повышением частоты и усиливаются.

Примечание

Коммутатор RF позволяет выполнять операции приема и передачи на одной и той же общей антенне. На этом устройстве обозначена одна антенна только для приема.

Путь приема:

  • Малошумящий усилитель и усилитель возбуждения усиливают входящий сигнал.
  • Контур фазовой автоподстройки частоты (PLL) управляет генератором, управляемым напряжением (VCO), так что часы устройства и гетеродин (LO) можно синхронизировать по частоте с опорным сигналом.
  • Смеситель преобразует сигналы с понижением частоты в синфазную (I) и квадратурную (Q) составляющие основной полосы частот.
  • Фильтр нижних частот снижает шум и высокочастотные компоненты в сигнале.
  • Аналого-цифровой преобразователь (АЦП) оцифровывает данные I и Q.
  • Цифровой понижающий преобразователь (DDC) смешивает, фильтрует и прореживает сигнал до заданной пользователем скорости.
  • Образцы, преобразованные с понижением частоты, передаются на главный компьютер через стандартное соединение Gigabit Ethernet.

Путь передачи:

  • Главный компьютер синтезирует I / Q-сигналы в основной полосе частот и передает их на устройство через стандартный гигабитный Ethernet. связь.
  • Цифровой преобразователь с повышением частоты (DUC) смешивает, фильтрует и интерполирует сигнал до 400 Мвыб / с.
  • Цифро-аналоговый преобразователь (ЦАП) преобразует сигнал в аналоговый.
  • Фильтр нижних частот снижает шум и высокочастотные компоненты в сигнале.
  • Смеситель преобразует сигналы с повышением частоты до заданной пользователем радиочастоты.
  • ФАПЧ управляет ГУН, так что тактовые импульсы устройства и гетеродин могут быть синхронизированы по частоте с опорным сигналом.
  • Усилитель передатчика усиливает сигнал и передает сигнал через антенну.

Железо - Информация об элементе, свойства и использование

Расшифровка:

Химия в ее элементе: железо

(Promo)

Вы слушаете Химию в ее стихии, представленную вам Chemistry World , журналом Королевского химического общества.

(Конец промо)

Крис Смит

Здравствуйте, на этой неделе мы обратимся к одному из самых важных элементов человеческого тела. Это тот, который делает возможным метаболизм, и мы просто не знаем об этом. Есть вызовы железного человека, лидеры с железными кулаками и те, у кого в душе есть железо. Но у элемента номер 26 есть и темная сторона, потому что его мощный химический состав означает, что это также плохие новости для клеток мозга, как объясняет лауреат Нобелевской премии Кэри Маллис

Кэри Маллис

Для человеческого мозга железо важно, но смертельно опасно.Он существует на Земле в основном в двух степенях окисления - FeII и FeIII. FeIII преобладает в пределах нескольких метров от атмосферы, которая около двух миллиардов лет назад превратила 20% кислорода, окисляя это железо до состояния плюс три, которое практически нерастворимо в воде. Это изменение относительно обильного и растворимого FeII потребовало тяжелого труда почти для всего живого в то время.

Выжившие наземные и обитающие в океане микробы выработали растворимые молекулы сидерофоров, чтобы восстановить доступ к этому многочисленному, но в остальном недоступному важному ресурсу, который использовал хелатирующие группы гидроксамата или катехола для возвращения FeIII в раствор.Со временем появились высшие организмы, включая животных. Животные использовали энергию рекомбинации кислорода с углеводородами и углеводами в растительной жизни для обеспечения движения. Железо было неотъемлемой частью этого процесса.

Но ни одно животное, однако, не смогло адекватно справиться в долгосрочной перспективе - то есть восьмидесятилетней продолжительности жизни - с тем фактом, что железо необходимо для преобразования солнечной энергии в движение, но практически нерастворимо в воде при нейтральной pH и, что еще хуже, токсичен.

Углерод, сера, азот. кальций, магний, натрий и, возможно, десять других элементов также участвуют в жизни, но ни один из них не обладает способностью железа перемещать электроны, и ни один из них не способен полностью разрушить всю систему. Железо делает. Системы эволюционировали, чтобы поддерживать железо в определенных полезных и безопасных конфигурациях - ферменты, которые используют его каталитические свойства, или трансферрины и гемосидерины, которые перемещают его и хранят. Но они не идеальны. Иногда атомы железа неуместны, и нет известных систем для повторного улавливания железа, осажденного внутри клетки.

В некоторых тканях клетки, перегруженные железом, могут быть переработаны или уничтожены, но это не работает с нейронами.

Нейроны за время своего существования порождают тысячи процессов, стремясь сформировать сети соединений с другими нейронами. В процессе развития мозга взрослого человека большой процент клеток полностью удаляется, и добавляются новые. Это процесс обучения. Но как только какая-то область мозга заработает, уже ничего нельзя будет сделать биологически, если по какой-либо причине перестает работать большое количество ее клеток.

Причиной этого, вероятно, является медленное движение осажденного железа в течение многих десятилетий. В менее сложных тканях, таких как печень, могут активироваться новые стволовые клетки, но в мозгу необходимы обученные, структурно сложные, взаимосвязанные нейроны с тысячами проекций, которые накапливаются за время обучения. Таким образом, результатом является медленно прогрессирующее нейродегенеративное заболевание, такое как болезни Паркинсона и Альцгеймера.

Тот же самый основной механизм может приводить к множеству заболеваний.Есть двадцать или тридцать белков, которые связаны с железом в мозгу - удерживают железо и передают его с места на место. Каждый новый человек, наделенный новым набором хромосом, наделен новым набором этих белков. Некоторые комбинации будут лучше, чем другие, а некоторые будут опасны по отдельности и в совокупности.

Мутация в гене, который кодирует один из этих белков, может нарушить его функцию, что приведет к потере атомов железа. Эти атомы, которые были потеряны из химических групп, которые их удерживают, не всегда будут безопасно возвращены в какую-либо структуру, такую ​​как трансферрин или гемоферритин.Некоторые из них вступят в реакцию с водой и исчезнут навсегда. Только они не совсем заблудились. Они накапливаются в несчастливых типах клеток, которые были назначенными местами для экспрессии белков с наибольшей утечкой железа. И оксиды железа не просто занимают критическое место. Железо очень реактивно. Печально известные «реактивные формы кислорода», которые, как подозревают, вызывают столько возрастных заболеваний, могут возникать только из-за различных форм железа.

Пришло время специалистам в области химии, разбирающимся в химии железа, обратить внимание на нейродегенеративные заболевания.

Крис Смит

Кэри Маллис рассказывает историю железа, элемента, без которого мы не можем обойтись, но который в то же время может держать ключ к нашему неврологическому падению. В следующий раз на «Химии в ее элементе» Джонни Болл расскажет историю Марии Кюри и элемента, который она обнаружила и затем назвала в честь ее родины.

Джонни Болл

Пичбленда, урансодержащая руда, казалась слишком радиоактивной, чем можно было объяснить ураном.Они просеивали и отсортировывали вручную унцию за унцией через тонны урана в проветриваемом морозильном сарае, прежде чем в конечном итоге были обнаружены крошечные количества полония.

Крис Смит

Так что будьте радиоактивными или, по крайней мере, будьте активны в подкасте и присоединяйтесь к нам, чтобы узнать загадочную историю о полонии в программе «Химия в его элементе» на следующей неделе. Я Крис Смит, спасибо за внимание, увидимся в следующий раз.

(Промо)

(Окончание промо)

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *