Простые терморегуляторы в блоках питания - Все для "кулера" (Вентилятора) - Компьютер и электроника к нему!!!

Сначала - терморегулятор. При выборе схемы учитывались такие факторы, как ее простота, доступность необходимых для сборки элементов (радиодеталей), особенно применяемых в качестве термодатчиков, технологичность сборки и установки в корпус БП.

По этим критериям наиболее удачной, на наш взгляд, оказалась схема В.Портунова [1]. Она позволяет уменьшить износ вентилятора и снизить уровень шума, создаваемого им. Схема этого автоматического регулятора частоты вращения вентилятора показана на рис.1. Датчиком температуры служат диоды VD1— VD4, включенные в обратном направлении в цепь базы составного транзистора VT1, VT2. Выбор в качестве датчика диодов обусловила зависимость их обратного тока от температуры, которая имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания. Немаловажную роль сыграла распространенность диодов и их доступность для радиолюбителей.


Резистор R1 исключает возможность выхода из строя транзисторов VTI, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.

Рис.1


Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1,VT2. Если при указанном нa схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить. Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой . Естественно, если при четырех диодах датчика частота вращения слишком высокая, число диодов следует уменьшить.

Рис.2


Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 c припаянными к его выводам резисторами R1, R2 и транзистором VT1 (рис.2) устанавливают выводом эмиттера в отверстие «+12 В вентилятора» платы БП (раньше туда подключался красный провод от вентилятора). Налаживание устройства сводится к подбору резистора R2 спустя 2.. 3 мин после включения ПК и прогрева транзисторов БП. Временно заменив R2 переменным (100-150 кОм) подбирают такое сопротивление, чтобы при номинальной нагрузке теплоотводы транзисторов блока питания нагревались не более 40 ºС.

Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) "измерять" температуру на ощупь можно, только выключив компьютер.

Простую и надежную схему предложил И. Лаврушов (UA6HJQ). Принцип ее работы тот же, что и в предыдущей схеме, однако в качестве датчика температуры применен терморезистор NTC (номинал 10 кОм некритичен). Транзистор в схеме выбран типа КТ503. Как определено опытным путем его работа является более устойчивой, чем других типов транзисторов. Подстроечный резистор желательно применить многооборотный, что позволит точнее настроить температурный порог срабатывания транзистора и, соответственно, частоту вращения вентилятора. Терморезистор приклеивается к диодной сборке 12 В. При отсутствии его можно заменить двумя диодами. Более мощные вентиляторы с током потребления больше 100 мА следует подключать через схему составного транзистора (второй транзистор КТ815).


Рис.3

Схемы двух других, относительно простых и недорогих регуляторов частоты вращения вентиляторов охлаждения БП, часто приводятся в интернете (CQHAM.ru). Их особенность в том, что в качестве порогового элемента применяется интегральный стабилизатор TL431. Довольно просто «добыть» эту микросхему можно при разборке старых БП ПК АТХ.

Автор первой схемы (рис.4) Иван Шор (RA3WDK). При повторении выявилась целесообразность в качестве подстроечного резистора R1 применять многооборотный того же номинала. Терморезистор крепится на радиатор охлаждаемой диодной сборки (или на ее корпус) через термопасту КПТ-80.



Рис.4

Подобную схему, но на двух включенных параллельно КТ503 (вместо одного КТ815) применил Александр (RX3DUR). При указанных на схеме (рис.5) номиналах деталей на вентилятор поступает 7В, повышаясь при нагреве терморезистора. Транзисторы КТ503 можно заменить на импортные 2SC945, все резисторы мощностью 0,25Вт.

Рис.5

Более сложная схема регулятора частоты вращения вентилятора охлаждения описана в [2]. Длительное время она с успехом применяется в другом БП. В отличие от прототипа в ней применены «телевизионные» транзисторы. Отошлю читателей к статье на нашем сайте «Еще один универсальный БП» и архиву, в котором представлен вариант печатной платы (рис.5 в архиве) и журнальный источник [2]. Роль радиатора регулируемого транзистора Т2 на ней выполняет свободный участок фольги, оставленный на лицевой стороне платы. Эта схема позволяет, кроме автоматического увеличения частоты вращения вентилятора при нагреве радиатора охлаждаемых транзисторов БП или диодной сборки, устанавливать минимальную пороговую частоту вращения вручную, вплоть до максимума.
Рис.6

cxema.my1.ru

Терморегулятор для вентилятора своими руками – Поделки для авто

Сегодня рассмотрим принцип действия системы охлаждения радиатора, а точнее систему управления вентилятором. Вентилятор в автомобиле служит для охлаждения двигателя при его нагреве, однако постоянная работа вентилятора совсем не требуется, во-первых, она бессмысленна, когда радиатор не требует дополнительного охлаждения, во-вторых постоянная работа вентилятора сильно нагружает бортовую сеть, что также ни есть хорошо.

Поэтому нам необходимо обеспечить включение вентилятора при определенном нагреве радиатора (или жидкости в нем). Сама схема представлена на чертеже ниже, помимо включения при определенном нагреве схема обеспечивает плавное включение вентилятора и уменьшает звуковые шумы, что хорошо скажется на сроке службы вентилятора.

Основным элементом в схеме является терморезистор с отрицательным коэффициентом температурной зависимости. Рабочее сопротивление 5-50 кОм все зависит от марки терморезистора. Терморезистор приваривается непосредственно к радиатору. Операция очень ответственная, терморезистор обязательно должен касаться радиатора, при плохой сварке потом придется все переделывать, поэтому этому моменту уделяем особое внимание.

Все номиналы или их определение расписано в схеме, для подбора R1 замеряем мультиметром значение сопротивления терморезистора делим на 5. Полученный результат даст вам понять примерный диапазон значения переменного резистора. Устанавливаем необходимые значения резистора, распаиваем схему и начинаем отладку работы прибора.

Показанная на схеме RC цепочка указана штрихпунктирной линией, потому что не всегда требуется. В случае если при отладке схема будет «хондрить» ее надо будет довесить. Вращая переменный резистор и измеряя сторонним прибором температуру радиатора выставляем необходимую нам температуру включения вентилятора.

Вентилятор достаточно мощный прибор поэтому транзистор, коммутирующий ток через него, обязательно устанавливаем на теплоотвод или на корпус автомобиля, однако в этом случае необходимо обеспечить изоляцию корпуса транзистора от кузова, это обычно делается с помощью слюдяной прокладки. В качестве замены КТ815, можно взять КТ819 или иностранный аналог.

Автор; Ака Касьян

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Автоматический регулятор оборотов кулера


Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.

Схема



Схема крайне проста, содержит всего два транзистора, пару резисторов и термистор, но, тем не менее, замечательно работает. М1 на схеме – вентилятор, обороты которого будут регулироваться. Схема предназначена на использование стандартных кулеров на напряжение 12 вольт. VT1 – маломощный n-p-n транзистор, например, КТ3102Б, BC547B, КТ315Б. Здесь желательно использовать транзисторы с коэффициентом усиления 300 и больше. VT2 – мощный n-p-n транзистор, именно он коммутирует вентилятор. Можно применить недорогие отечественные КТ819, КТ829, опять же желательно выбрать транзистор с большим коэффициентом усиления. R1 – терморезистор (также его называют термистором), ключевое звено схемы. Он меняет своё сопротивление в зависимости от температуры. Сюда подойдёт любой NTС-терморезистор сопротивлением 10-200 кОм, например, отечественный ММТ-4. Номинал подстроечного резистора R2 зависит от выбора термистора, он должен быть в 1,5 – 2 раза больше. Этим резистором задаётся порог срабатывания включения вентилятора.

Изготовление регулятора


Схему можно без труда собрать навесным монтажом, а можно изготовить печатную плату, как я и сделал. Для подключения проводов питания и самого вентилятора на плате предусмотрены клеммники, а терморезистор выводится на паре проводков и крепится к радиатору. Для большей теплопроводности прикрепить его нужно, используя термопасту. Плата выполняется методом ЛУТ, ниже представлены несколько фотографий процесса.

Скачать плату:
shema.zip [2,09 Kb] (cкачиваний: 726)
После изготовления платы в неё, как обычно запаиваются детали, сначала мелкие, затем крупные. Стоит обратить внимание на цоколёвку транзисторов, чтобы впаять их правильно. После завершения сборки плату нужно отмыть от остатков флюса, прозвонить дорожки, убедиться в правильности монтажа.

Настройка


Теперь можно подключать к плате вентилятор и осторожно подавать питание, установив подстроечный резистор в минимальное положение (база VT1 подтянута к земле). Вентилятор при этом вращаться не должен. Затем, плавно поворачивая R2, нужно найти такой момент, когда вентилятор начнёт слегка вращаться на минимальных оборотах и повернуть подстроечник совсем чуть-чуть обратно, чтобы он перестал вращаться. Теперь можно проверять работу регулятора – достаточно приложить палец к терморезистору и вентилятор уже снова начнёт вращаться. Таким образом, когда температура радиатора равно комнатной, вентилятор не крутится, но стоит ей подняться хоть чуть-чуть, он сразу же начнёт охлаждать.

sdelaysam-svoimirukami.ru

Схема для сборки простого терморегулятора (термостата) в домашних условиях

Терморегуляторы широко используются в современных бытовых приборах, автомобилях, системах отопления и кондиционирования, на производстве, в холодильном оборудовании и при работе печей. Принцип действия любого терморегулятора основан на включении или выключении различных приборов после достижения определенных значений температуры.

Как сделать терморегулятор

Современные цифровые терморегуляторы управляются при помощи кнопок: сенсорных или обычных. Многие модели также оснащены цифровой панелью, на которой отображается заданная температура. Группа программируемых терморегуляторов является самой дорогостоящей. С помощью прибора можно предусмотреть изменение температуры по часам или задать необходимый режим на неделю вперед. Управлять прибором можно дистанционно: через смартфон или компьютер.

Для сложного технологического процесса, например, сталеплавильной печи, сделать терморегулятор своими руками – задача довольно непростая, которая требует серьезных знаний. Но собрать небольшое устройство для кулера или инкубатора под силу любому домашнему мастеру.

Механический терморегулятор

Для того, чтобы понять, как работает регулятор температуры, рассмотрим простое устройство, которое используется для открывания и закрывания заслонки шахтового котла и срабатывает при нагреве воздуха.

Для работы устройства были использованы 2 алюминиевые трубы, 2 рычага, пружина для возврата, цепочка, которая идет к котлу, и регулировочный узел в виде кран-буксы. Все комплектующие были смонтированы на котел.

Как известно, коэффициент линейного теплового расширения алюминия составляет 22х10-6 0С. При нагревании алюминиевой трубы длиной полтора метра, шириной 0,02 м и толщиной 0,01 м до 130 градусов Цельсия происходит удлинение на 4,29 мм. При нагреве трубы расширяются, за счет этого происходит смещение рычагов, и заслонка закрывается. При остывании трубы уменьшаются в длине, а рычаги открывают заслонку. Основной проблемой при использовании данной схемы является то, что точно определить порог срабатывания терморегулятора очень сложно. Сегодня предпочтение отдается устройствам на основе электронных элементов.

Механический терморегулятор

Схема работы простого терморегулятора

Обычно для поддержания заданной температуры используются схемы на основе реле. Основными элементами, входящими в данное оборудование, являются:

  • температурный датчик;
  • пороговая схема;
  • исполнительное или индикаторное устройство.

В качестве датчика можно использовать полупроводниковые элементы, термисторы, термометры сопротивления, термопары и биметаллические термореле.

Схема терморегулятор реагирует на превышения параметра над заданным уровнем и включает исполнительное устройство. Самым простым вариантом такого прибора является элемент на биполярных транзисторах. Термореле выполнено на основе триггера Шмидта. В роли датчика температуры выступает терморезистор – элемент, сопротивление которого изменяется в зависимости от повышения или понижения градусов.

R1 – это потенциометр, который устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. За счет регулировки происходит срабатывание исполнительного устройства и коммутации реле K1, когда сопротивление терморезистора изменяется. При этом рабочее напряжение реле должно соответствовать рабочему питанию оборудования. Чтобы защитить выходной транзистор от импульсов напряжения, параллельно подсоединен полупроводниковый диод. Величина нагрузки подключаемого элемента зависит от максимального тока электромагнитного реле.

Схема работы терморегулятора

Внимание! В интернете можно увидеть картинки с чертежами термостата для разного оборудования. Но довольно часто изображение и описание не соответствуют друг другу. Иногда на рисунках могут быть представлены просто другие устройства. Поэтому изготовление можно начинать только после тщательного изучения всей информации.

Перед началом работ следует определиться с мощностью будущего терморегулятора и температурным диапазоном, в котором предстоит ему работать. Для холодильника потребуются одни элементы, а для отопления –другие.

Терморегулятор на трех элементах

Одним из элементарных устройств, на примере которого можно собрать и понять принцип работы, является простой терморегулятор своими руками, предназначенный для вентилятора в ПК. Все работы производятся на макетной плате. Если же существуют проблемы с пальником, то можно взять беспаечную плату.

Схема терморегулятор в этом случае состоит всего лишь из трех элементов:

  • силового транзистора MOSFET (N канальный), можно использовать IRFZ24N MOSFET 12 В и 10 А или IFR510 Power MOSFET;
  • потенциометра 10 кОм;
  • NTC термистора в 10 кОм, который будет выполнять роль сенсора температуры.

Термодатчик реагирует на повышение градусов, за счет чего срабатывает вся схема, и вентилятор включается.

Теперь переходим к настройке. Для этого включаем компьютер и регулируем потенциометр, задавая значение для выключенного вентилятора. В тот момент, когда температура приближается к критической, максимально уменьшаем сопротивление до того, как лопасти будут вращаться очень медленно. Лучше сделать настройку несколько раз, чтобы убедиться в эффективности работы оборудования.

Простой терморегулятор для ПК

Современная электронная промышленность предлагает элементы и микросхемы, значительно отличающиеся по виду и техническим характеристикам. У каждого сопротивления или реле есть несколько аналогов. Необязательно использовать только те элементы, которые указаны в схеме, можно брать и другие, совпадающие по параметрам с образцами.

Терморегуляторы для котлов отопления

При регулировке отопительных систем важно точно откалибровать прибор. Для этого потребуется измеритель напряжения и тока. Для создания работающей системы можно воспользоваться следующей схемой.

Схема терморегулятора для отопления

С помощью этой схемы можно создать наружное оборудование для контроля за твердотопливным котлом. Роль стабилитрона здесь выполняет микросхема К561ЛА7. Работа устройства основана на способности терморезистора уменьшать сопротивление при нагреве. Резистор подключается в сеть делителя напряжения электричества. Необходимую температуру можно задать с помощью переменного резистора R2. Напряжение поступает на инвертор 2И-НЕ. Полученный ток подается на конденсатор С1. К 2И-НЕ, который контролирует работу одного триггера, подключен конденсатор. Последний соединен со вторым триггером.

Контроль температуры идет по следующей схеме:

  • при понижении градусов напряжение в реле растет;
  • при достижении определенного значения вентилятор, который соединен с реле, выключается.

Напайку лучше производить на слепыше. В качестве элемента питания можно взять любое устройство, работающее в пределах 3-15 В.

Осторожно! Установка самодельных приборов любого назначения на системы отопления может привести к выходу из строя оборудования. Более того, использование подобных устройств может быть запрещено на уровне служб, осуществляющих подвод коммуникаций в вашем доме.

Цифровой терморегулятор

Для того чтобы создать полноценно функционирующий терморегулятор с точной калибровкой, без цифровых элементов не обойтись. Рассмотрим прибор для контроля температур в небольшом хранилище для овощей.

Основным элементом здесь является микроконтроллер PIC16F628A. Эта микросхема обеспечивает управление разными электронными устройствами. В микроконтроллере PIC16F628A собраны 2 аналоговых компаратора, внутренний генератор, 3 таймера, модули сравнения ССР и обмена передачи данных USART.

При работе терморегулятора значение существующей и заданной температуры подается на MT30361 – трехразрядный индикатор с общим катодом. Для того чтобы задать необходимую температуру, используются кнопки: SB1 – для уменьшения и SB2 – для увеличения. Если проводить настойку с одновременным нажатием кнопки SB3, то можно установить значения гистерезиса. Минимальным значением гистерезиса для этой схемы является 1 градус. Подробный чертеж можно увидеть на плане.

Терморегулятор с регулируемым гистерезисом

При создании любого из устройств важно не только правильно спаять саму схему, но и продумать, как лучше разместить оборудование. Необходимо, чтобы сама плата была защищена от влаги и пыли, иначе не избежать короткого замыкания и выхода из строя отдельных элементов. Также следует позаботиться об изоляции всех контактов.

Видео

Оцените статью:

jelectro.ru

Терморегулятор для вентилятора своими руками – Поделки для авто

Сегодня рассмотрим принцип действия системы охлаждения радиатора, а точнее систему управления вентилятором. Вентилятор в автомобиле служит для охлаждения двигателя при его нагреве, однако постоянная работа вентилятора совсем не требуется, во-первых, она бессмысленна, когда радиатор не требует дополнительного охлаждения, во-вторых постоянная работа вентилятора сильно нагружает бортовую сеть, что также ни есть хорошо.

Поэтому нам необходимо обеспечить включение вентилятора при определенном нагреве радиатора (или жидкости в нем). Сама схема представлена на чертеже ниже, помимо включения при определенном нагреве схема обеспечивает плавное включение вентилятора и уменьшает звуковые шумы, что хорошо скажется на сроке службы вентилятора.

Основным элементом в схеме является терморезистор с отрицательным коэффициентом температурной зависимости. Рабочее сопротивление 5-50 кОм все зависит от марки терморезистора. Терморезистор приваривается непосредственно к радиатору. Операция очень ответственная, терморезистор обязательно должен касаться радиатора, при плохой сварке потом придется все переделывать, поэтому этому моменту уделяем особое внимание.

Все номиналы или их определение расписано в схеме, для подбора R1 замеряем мультиметром значение сопротивления терморезистора делим на 5. Полученный результат даст вам понять примерный диапазон значения переменного резистора. Устанавливаем необходимые значения резистора, распаиваем схему и начинаем отладку работы прибора.

Показанная на схеме RC цепочка указана штрихпунктирной линией, потому что не всегда требуется. В случае если при отладке схема будет «хондрить» ее надо будет довесить. Вращая переменный резистор и измеряя сторонним прибором температуру радиатора выставляем необходимую нам температуру включения вентилятора.

Вентилятор достаточно мощный прибор поэтому транзистор, коммутирующий ток через него, обязательно устанавливаем на теплоотвод или на корпус автомобиля, однако в этом случае необходимо обеспечить изоляцию корпуса транзистора от кузова, это обычно делается с помощью слюдяной прокладки. В качестве замены КТ815, можно взять КТ819 или иностранный аналог.

Автор; Ака Касьян

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Автоматическое управление вентилятором | Все своими руками

Опубликовал admin | Дата 22 января, 2016

     Не так давно попался в руки блок питания Enhance P520N от домашнего компьютера. Помимо основной платы блока питания, в ней обнаружилась еще небольшое устройство. Это был терморегулятор скорости вращения вентилятора. Схема простенькая, содержит всего два транзистора, четыре резистора, диод и конденсатор. Схема устройства показана на рисунке 1.


     Данный регулятор можно применять не только для блоков питания, но и в усилителях мощности низкой частоты, сварочных аппаратах, мощных преобразователях, регуляторах мощности и т.д. Зачем зря жужжать, если все ПП (полупроводниковые приборы) холодные. Диод VD1, стоящий на плате и в указанной схеме по всей вероятности нужен только в конкретном ИИП, поэтому его можно убрать. На плате стоит диод 1N4002. Первый транзистор можно заменить на отечественный — КТ3102. Импортный транзистор C1384 по документации рассчитан на ток коллектора 1А, напряжение коллектор-эмиттер 60В, постоянная рассеиваемая мощность коллектора 1 ватт. Можно попробовать заменить на наш КТ814 с любой буквой или на КТ972. Электролитический конденсатор должен быть на напряжение 16 вольт.

Начальную скорость вращения вентилятора выбирают изменением величины сопротивления резистора R1. Схема работает следующим образом. Когда температура внутри контролируемого объема или непосредственно теплоотвода ПП невысокая, то транзистор VT2 призакрыт и вентилятор имеет не большую скорость вращения. При увеличении температуры начинает уменьшаться сопротивление терморезистора Rt, что в свою очередь приведет к уменьшению напряжения на базе VT1, начнет уменьшаться и ток коллектора этого транзистора. Уменьшение тока через первый транзистор приведет к увеличению тока база-эмиттер второго транзистора VT2 (уменьшится шунтирующее действие транзистора VT1 на переход база-эмиттер VT2). Транзистор VT2 начнет открываться, напряжение на вентиляторе начнет возрастать, Скорость его вращения увеличится.
     Для большей универсальности в схему можно ввести стабилизатор напряжения, например, КР142ЕН8Б. У этой микросхемы максимальное входное напряжение во всем диапазоне температур равно 35 вольт.
     Вид платы показан на фото 1, а рисунок печатной платы на рисунке 2.


     

В случае применения поверхностного монтажа, плату можно будет закрепить непосредственно на контролируемом теплоотводе для ПП, сделав в ней соответствующее отверстие для винта крепления.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:9 519


www.kondratev-v.ru

Регулятор оборотов вентилятора с датчиком температуры. CAVR.ru

Рассказать в:

Довольно простой вариант автоматического регулятора оборотов вентилятора для компьютера с датчиком, выполненном на транзисторе. 
Именно на транзисторе, потому что: во-первых - полупроводниковые датчики более чувствительны и надёжны, во-вторых - найти терморезистор необходимого сопротивления довольно проблематично. 
Это не самая простая схема такого девайса, есть и проще, но гораздо менее надежные и мнее чувствительные. 
Схема подходит под напряжение 12 В. Транзисторы в них можно легко заменить на аналогичные, КТ315 вообще можно заменить на практически любой другой транзистор n-p-n перехода, но при этом, возможно, понадобиться подобрать резистор R3 к нему, если при использовании другого транзистора R3 будет сильно греться, то его можно заменить на другой резистор сопротивлением: 150-200 Ом.

 

ЭлементНоминал
R122 КОм
R25 КОм
R3100 Ом
C133 мкФ
C2100 мкФ
VT1КТ315
VT2КТ816

Схема очень проста и собирается минут за 10, размером с четверть спичечного коробка.

КТ315 выполняет роль датчика, он устанавливается между ребер радиатора.

Схема настраивается следующим образом: резистор R2 устанавливается в так, чтобы подключенный к схеме вентилятор остановился, затем датчик (VT1 - КТ315) надо нагреть до уровня комнатной температуры, можно подержать его в руке пару минут, далее начинаем крутить R2 до тех пор, пока вентилятор не начнет крутиться. 
После этого мложно устанавливать схему, но немного отточить настройку всё же надо. Необходимо еще немного подстроить резистор R2, чтобы вентилятор гарантированно стартовал при включении компьютера.

Таким образом при температору 25-30 градусов, вентилятор работает на минимальных оборотах, а при температуре радиатора, а соответственно и датчика, 50-60 градусов вентилятор крутится на полную мощность.

Как я уже сказал, транзистор КТ315 можно заменить на практически любой маломощный кремниевый транзистор, неплохо было бы использовать транзистор с металлическим корпусом или, максимально сточить корпус транзистора, чтобы увеличить его чувствительность.

VT2 (КТ816) тоже можно заменить на аналогичный транзистор более мощный, но не используйте составные транзисторы и транзисторы со встроенным сопротивлением.

Данный терморегулятор эффективен в том случае, когда в системном блоке хорошая вентиляция, ведь а противном случае тот же процессорный кулер будет гонять горячий воздух и разница в температурах при высокой нагрузке и при простое будет небольшая и терморегулятор будет просто бесполезен.


Раздел: [Все для "кулера" (Вентилятора)]
Сохрани статью в:
Оставь свой комментарий или вопрос:

www.cavr.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *